気象庁気象研究所 台風・災害気象研究部
TOP > 台風・災害気象研究部TOP >Top page

SELECTED PUBLICATIONS

Distinct typhoons and atmospheric disturbances

         
  • 【Typhoon Haiyan(2013)】 Wada, A., S. Kanada, and H. Yamada, 2018 : Effect of air–sea environmental conditions and interfacial processes on extremely intense typhoon Haiyan (2013). Journal of Geophysical Research: Atmospheres, 123, 10379-10405, https://doi.org/10.1029/2017JD028139.
  • 【Typhoon Mawar(2023)】 Wada, A.,2023 : Roles of Air–Sea Interactions in the Predictability of Typhoon Mawar and Remote Heavy-Rainfall Events after Five Days. Atmosphere,14, 1638, https://doi.org/10.3390/atmos14111638.
  •          
  • 【Typhoon Hagibis (2019)】 Wada, A., M. Hayashi, and W. Yanase, 2022 : Application of Empirical Orthogonal Function Analysis to 1-km ensemble simulations and Himawari-8 observation in the Intensification Phase of Typhoon Hagibis (2019). Atmosphere,13, 1559, https://doi.org/10.3390/atmos13101559.
  •          
  • 【Typhoon Trami and Kong-Rey(2018)】Wada, A., 2021: Roles of oceanic mesoscale eddy in rapid weakening of Typhoons Trami and Kong-Rey in 2018 simulated with a 2-km-mesh atmosphere-wave-ocean coupled model. J. Meteor. Soc. Japan, 99, 1453-1482, http://doi.org/10.2151/jmsj.2021-071.
  •          
  • 【Typhoon Jongdari(2018)】Wada, A., W. Yanase, and K. Okamoto, 2022:Interactions between a Tropical Cyclone and Upper-Tropospheric Cold-Core Lows Simulated by an Atmosphere-Wave-Ocean Coupled Model: A Case Study of Typhoon Jongdari (2018). J. Meteor. Soc. Japan, 100, 387-414, https://doi.org/10.2151/jmsj.2022-019.
  •          
  • 【Typhoon Lionrock(2016)】 Wada, A., and R. Oyama, 2018 : Relation of convective bursts to changes in the intensity of Typhoon Lionrock (2016) during the decay phase simulated by an atmosphere-wave-ocean coupled model. Journal of Meteorological Society of Japan, 96,489-509, https://doi.org/10.2151/jmsj.2018-052.
  •          
  • 【Kanto-Tohiku heavy rainfall(2015)】 Wada, A., H. Tsuguti, K. Okamoto, and N. Seino, 2019: Air-Sea coupled data assimilation experiment for Typhoons Kilo, Etau and the September 2015 Kanto-Tohoku heavy rainfall with the Advanced Microwave Scanning Radiometer 2 sea surface temperature. Journal of Meteorological Society of Japan, 97, 553-575, https://doi.org/10.2151/jmsj.2019-029.
  •          
  • 【Typhoon Man-yi(2013)】 Wada, A. 2015: Unusually rapid intensification of Typhoon Man-yi in 2013 under preexisting warm-water conditions near the Kuroshio front south of Japan, Journal of Oceanography. DOI: 10.1007/s10872-015-0273-9
  • Tropical cyclone heat potential

             
  • Wada, A. and J. C. L. Chan, 2021: Increasing TCHP in the Western North Pacific and Its Influence on the Intensity of FAXAI and HAGIBIS in 2019. SOLA, 17A, 29-32,https://doi.org/10.2151/sola.17A-005
  • Wada, A. 2016 : Reexamination of Tropical Cyclone Heat Potential in the Western North Pacific. Journal of Geophysical Research - Atmospheres, doi:10.1002/2015JD024688
  • Wada, A., N. Usui, and K. Sato, 2012 : Relationship of maximum tropical cyclone intensity to sea surface temperature and tropical cyclone heat potential in the North Pacific Ocean. Journal of Geophysical Research - Atmospheres, 117, D11118.
  • Wada, A. and J. C. L. Chan, 2008: Relationship between typhoon actibity and upper ocean heat content, Geophysical Research Letters, 35, L17603.
  • Wada, A. and N. Usui, 2007: Importance of tropical cyclone heat potential for tropical cyclone intensity and intensification in the western North Pacific, Journal of Oceanography, 63, 427-447.
  • Atmosphere-(wave)-ocean coupled model/system

  • Wada, A., T. Uehara, and S. Ishizaki, 2014 : Typhoon-induced sea surface cooling during the 2011 and 2012 typhoon seasons: observational evidence and numerical investigations of the sea surface cooling effect using typhoon simulations. Progress in Earth and Planetary Science. 1, 11.
  • Wada, A., M. F. Cronin, A. J. Sutton, Y. Kawai and M. Ishii, 2013 : Numerical simulations of oceanic pCO2 variations and interactions between Typhoon Choi-wan (0914) and the ocean. Journal of Geophysical Research - Oceans, 118, 2667-2684.
  • Wada, A., N. Kohno and Y. Kawai, 2010: Impact of Wave-Ocean Interaction on Typhoon Hai-Tang in 2005, SOLA, 6A, 13-16.
  • Wada, A. 2009: Idealized numerical experiments associated with the intensity and rapid intensification of stationary tropical cyclone-like vortex and its relation to initial sea-surface temperature and vortex-induced sea-surface cooling, Journal of Geophysical Research - Atmospheres, 114, D18111.
  • Oceanic responses to tropical cyclones

  • Wada, A., T. Midorikawa, M. Ishii, and T. Motoi, 2011 : Carbon system changes in the East China Sea induced by Typhoons Tina and Winnie in 1997. Journal of Geophysical Research - Oceans, 116, C07014.
  • Wada, A. H. Niino and H. Nakano 2009: Roles of Vertical Turbulent Mixing in the Ocean Response to Typhoon Rex (1998), Journal of Oceanography, 65, 373-396.
  • Wada, A. 2005: Numerical Simulations of Sea Surface Cooling by a Mixed Layer Model during the Passage of Typhoon Rex, Journal of Oceanography, 61, 41-57.

  • 書籍(分担執筆)[Books, Co-author]

  • 6. Wada, A. (2016):Unusually rapid intensification of Typhoon Man-yi in 2013 under preexisting warm-water conditions near the Kuroshio front south of Japan, “Hot Spots” in the Climate System, New Developments in the Extratropical Ocean-Atmosphere Interaction Research, Springer, 131-156.
  • 5. 和田 章義(編著), 筆保弘徳(編), 杉本周作(著), 万田敦昌(著), 小田僚子(著), 猪上淳(著), 飯塚聡(著), 川合義美(著), 吉岡真由美(著), 2016: 天気と海の関係についてわかっていることいないこと-ようこそ、そらの研究室へ, べレ出版, 336p.
  • 4. 和田 章義, 2013: 台風と海洋, 台風研究の最前線(上), 気象研究ノート, 226, 149-189.
  • 3. Wada, A. (2012):Tropical Cyclone-Ocean Interaction: Climatology, Climatology: New Developments. NOVA Publishers, ISBN: 978-1-62100-322-9.
  • 2. Wada, A. (2010):Tropical Cyclone-Ocean Interaction: Numerical Studies, Advances in Energy Research. Volume 1. NOVA Publishers, ISBN: 978-1-61668-994-0.
  • 1. Wada, A. (2010):Tropical Cyclone-Ocean Interaction: Climatology, Advances in Energy Research. Volume 1. NOVA Publishers, ISBN: 978-1-61668-994-0.

  • 査読論文(筆頭)[Refereed paper (Corresponding author)]

  • 30. Wada, A.,2023 : Roles of Air–Sea Interactions in the Predictability of Typhoon Mawar and Remote Heavy-Rainfall Events after Five Days. Atmosphere,14, 1638, https://doi.org/10.3390/atmos14111638.
  • 29. Wada, A., M. Hayashi, and W. Yanase, 2022 : Application of Empirical Orthogonal Function Analysis to 1-km ensemble simulations and Himawari-8 observation in the Intensification Phase of Typhoon Hagibis (2019). Atmosphere,13, 1559, https://doi.org/10.3390/atmos13101559.
  • 28. Wada, A., W. Yanase, and K. Okamoto, 2022:Interactions between a Tropical Cyclone and Upper-Tropospheric Cold-Core Lows Simulated by an Atmosphere-Wave-Ocean Coupled Model: A Case Study of Typhoon Jongdari (2018). J. Meteor. Soc. Japan, 100,https://doi.org/10.2151/jmsj.2022-019.
  • 27. Wada, A., 2021: Roles of oceanic mesoscale eddy in rapid weakening of Typhoons Trami and Kong-Rey in 2018 simulated with a 2-km-mesh atmosphere-wave-ocean coupled model. J. Meteor. Soc. Japan, 99, 1453-1482, http://doi.org/10.2151/jmsj.2021-071.
  • 26. Wada, A. and J. C. L. Chan, 2021: Increasing TCHP in the Western North Pacific and Its Influence on the Intensity of FAXAI and HAGIBIS in 2019. SOLA, 17A, 29-32,https://doi.org/10.2151/sola.17A-005
  • 25. Wada, A., H. Tomita, and S. Kako, 2020: Comparison of the third-generation Japanese ocean flux data set J-OFURO3 with numerical simulations of Typhoon Dujuan (2015) traveling south of Okinawa. Journal of Oceanograpy. 76, 419-437. https://doi.org/10.1007/s10872-020-00554-6
  • 24. Wada, A., H. Tsuguti, K. Okamoto, and N. Seino, 2019: Air-Sea coupled data assimilation experiment for Typhoons Kilo, Etau and the September 2015 Kanto-Tohoku heavy rainfall with the Advanced Microwave Scanning Radiometer 2 sea surface temperature. Journal of Meteorological Society of Japan, 97, 553-575, https://doi.org/10.2151/jmsj.2019-029.
  • 23. Wada, A., S. Kanada, and H. Yamada, 2018 : Effect of air–sea environmental conditions and interfacial processes on extremely intense typhoon Haiyan (2013). Journal of Geophysical Research: Atmospheres, 123, 10379-10405, https://doi.org/10.1029/2017JD028139.
  • 22. Wada, A., and R. Oyama, 2018 : Relation of convective bursts to changes in the intensity of Typhoon Lionrock (2016) during the decay phase simulated by an atmosphere-wave-ocean coupled model. Journal of Meteorological Society of Japan, 96,489-509, https://doi.org/10.2151/jmsj.2018-052.
  • 21. Wada, A., and M. Kunii 2017 : The role of ocean-atmosphere interaction in Typhoon Sinlaku (2008) using a regional coupled data assimilation system. Journal of Geophysical Research - Oceansi>, 122, 3675-3695. doi:10.1002/2017JC012750
  • 20. Wada, A. 2016 : Reexamination of Tropical Cyclone Heat Potential in the Western North Pacific. Journal of Geophysical Research - Atmospheres, doi:10.1002/2015JD024688
  • 19. Wada, A. 2015: Verification of tropical cyclone heat potential for tropical cyclone intensity forecasting in the Western North Pacific, Journal of Oceanography. DOI: 10.1007/s10872-015-0298-0
  • 18. Wada A. 2015: Unusually rapid intensification of Typhoon Man-yi in 2013 under preexisting warm-water conditions near the Kuroshio front south of Japan, Journal of Oceanography. DOI: 10.1007/s10872-015-0273-9
  • 17. Wada A., T. Uehara, and S. Ishizaki, 2014 : Typhoon-induced sea surface cooling during the 2011 and 2012 typhoon seasons: observational evidence and numerical investigations of the sea surface cooling effect using typhoon simulations. Progress in Earth and Planetary Science. 1, 11.
  • 16. Wada, A., M. F. Cronin, A. J. Sutton, Y. Kawai and M. Ishii, 2013 : Numerical simulations of oceanic pCO2 variations and interactions between Typhoon Choi-wan (0914) and the ocean. Journal of Geophysical Research - Oceans, 118, 2667-2684.
  • 15. Wada, A., N. Usui and M. Kunii, 2013 : Interactions between Typhoon Choi-wan (2009) and the Kuroshio Extension System. Advances in Meteorology, 2013, 859810.
  • 14. Wada, A., 2012 : Numerical study on the effect of the ocean on tropical-cyclone intensity and structural change. Atmospheric Model Applications, In Tech, 43-68.
  • 13. Wada, A., N. Usui, and K. Sato, 2012 : Relationship of maximum tropical cyclone intensity to sea surface temperature and tropical cyclone heat potential in the North Pacific Ocean. Journal of Geophysical Research - Atmospheres , 117, D11118.
  • 12. Wada, A., T. Midorikawa, M. Ishii, and T. Motoi, 2011 : Carbon system changes in the East China Sea induced by Typhoons Tina and Winnie in 1997. Journal of Geophysical Research - Oceans, 116, C07014.
  • 11. Wada, A., N. Kohno and Y. Kawai, 2010: Impact of Wave-Ocean Interaction on Typhoon Hai-Tang in 2005, SOLA, 6A, 13-16.
  • 10. Wada, A. and N. Usui, 2010: Impacts of oceanic preexisting conditions on predictions of Typhoon Hai-Tang in 2005, Advances in Meteorology, 2010, 756071, doi:10.1155/ 2010/756071.
  • 9. Wada, A., N. Usui, K. Sato and Y. Kawai, 2009 : Comment on "Importance of pre-existing oceanic conditions to upper ocean response induced by Super Typhoon Hai-Tang" by Z.-W. Zheng, C.-R. Ho and N.-J. Kuo, Geophysical Research Letters, 36, L09603, doi:10.1029/2008GL036890.
  • 8. Wada, A. 2009: Idealized numerical experiments associated with the intensity and rapid intensification of stationary tropical cyclone-like vortex and its relation to initial sea-surface temperature and vortex-induced sea-surface cooling, Journal of Geophysical Research - Atmospheres, 114, D18111.
  • 7. Wada, A. H. Niino and H. Nakano 2009: Roles of Vertical Turbulent Mixing in the Ocean Response to Typhoon Rex (1998), Journal of Oceanography, 65, 373-396.
  • 6. Wada, A. and J. C. L. Chan, 2008: Relationship between typhoon actibity and upper ocean heat content, Geophysical Research Letters, 35, L17603.
  • 5. Wada, A. 2007: Numerical problems associated with tropical cyclone intensity prediction using a sophisticated coupled typhoon-ocean model. Pap. Met. Geophys.,58, 103-126.
  • 4. Wada, A. and N. Usui, 2007: Importance of tropical cyclone heat potential for tropical cyclone intensity and intensification in the western North Pacific, Journal of Oceanography, 63, 427-447.
  • 3. Wada, A. 2005: Numerical Simulations of Sea Surface Cooling by a Mixed Layer Model during the Passage of Typhoon Rex, Journal of Oceanography, 61, 41-57.
  • 2. Wada, A. 2002: The processes of SST cooling by typhoon passage and case study of Typhoon Rex with a mixed layer ocean model. Pap. Met. Geophys., 52, 31-66.
  • 1. Wada, A., T. Miyao and Y. Dokiya 1997: Chemical components of the precipitation in relation to the meteorological element. Umi-to-Sora, 72, 82-91. in Japanese with English abstract

  • 査読論文(共著)[Refereed paper (Co-author)]


  • 23. Takamura, N., A. Wada, W. Yanase, Y. Miyamoto, 2023: Effects of Storm Size on the Interactions between Mid-Latitude Westerlies and Tropical Cyclones during Extratropical Transition in the Western North Pacific. Journal of the Meteorological Society of Japan, 101, 391-409. https://doi.org/10.2151/jmsj.2023-023.
  • 22. Horinouchi, T., S. Tsujino, M. Hayashi, U. Shimada, W. Yanase, A. Wada, and H. Yamada, 2023: Stationary and Transient Asymmetric Features in Tropical Cyclone Eye with Wavenumber-one Instability: Case Study for Typhoon Haishen (2020) with Atmospheric Motion Vectors from 30-second Imaging, Monthly Weather Review, 151, 253-273, https://doi.org/10.1175/MWR-D-22-0179.1.
  • 21. Yamada, Y., T. Miyakawa, T., M. Nakano, C. Kodama, A. Wada, T. Nasuno, Y.-W. Chen, A. Yamazaki, H. Yashiro, and M. Satoh, 2022: Large ensemble simulation for investigating predictability of precursor vortices of Typhoon Faxai in 2019 with a 14-km mesh global nonhydrostatic atmospheric model. Geophysical Research Letters. 50, e2022GL100565. https://doi.org/10.1029/2022GL100565.
  • 20. Yanase, W., K. Araki, A. Wada, U. Shimada, M. Hayashi, and T. Horinouchi, 2022: Multiple dynamics of precipitation concentrated on the north side of Typhoon Hagibis (2019) during extratropical transition. Journal of the Meteorological Society of Japan, 100, 783-805, https://doi.org/10.2151/jmsj.2022-041.
  • 19. Fudeyasu, H., U. Shimada, Y. Oikawa, H.Eito, A. Wada, R. Yoshida, and T. Horinouchi, 2022: Contributions of the large-scale environment to the typhoon genesis of Faxai (2019). Journal of the Meteorological Society of Japan,100, 617-630, https://doi.org/10.2151/jmsj.2022-031.
  • 18. Miyamoto,Y., H. Fudeyasu, and A. Wada, 2022: Intensity and Structural Changes of numerically simulated Typhoon Faxai (1915) before landfall. Journal of the Meteorological Society of Japan, 98, 181-196. https://doi.org/10.2151/jmsj.2022-009
  • 17. Takamura, N., and A. Wada, 2020: Unusual Characteristics of Extratropical Transition of Typhoons in August 2016. Journal of the Meteorological Society of Japan, 98, 691-706. https://doi.org/10.2151/jmsj.2020-035
  • 16. Fukuda K., K. Yasunaga, R. Oyama, A. Wada, A. Hamada, and H. Fudeyasu, 2020: The diurnal cycle of clouds in tropical cyclones over the western North Pacific Basin. SOLA.16,109-114 https://doi.org/10.2151/sola.2020-019
  • 15. Horinouchi, T., U. Shimada, and A. Wada, 2020: Convective Bursts With Gravity Waves in Tropical Cyclones: Case Study With the Himawari‐8 Satellite and Idealized Numerical Study. Geophysical Research Letters, 47. e2019GL086295.https://doi.org/10.1029/2019GL086295
  • 14. Oyama, R. and A. Wada, 2019: The relationship between convective bursts and warm-core intensification in a nonhydrostatic simulation of Typhoon Lionrock (2016). Monthly Weather Review, 147, 1557–1579, https://doi.org/10.1175/MWR-D-18-0457.1
  • 13. Nakano, M., A. Wada, M. Sawada, H. Yoshimura, R. Onishi, S. Kawahara, W. Sasaki, T. Nasuno, M. Yamaguchi, T. Iriguchi, M. Sugi, and Y. Takeuchi, 2017: Global 7 km mesh nonhydrostatic Model Intercomparison Project for improving TYphoon forecast (TYMIP-G7): experimental design and preliminary results, Geosci. Model Dev., 10, 1363-1381, https://doi.org/10.5194/gmd-10-1363-2017.
  • 12. Kunii, M., K. Ito, and A. Wada, 2017: Preliminary Test of a Data Assimilation System with a Regional High-Resolution Atmosphere–Ocean Coupled Model Based on an Ensemble Kalman Filter. Mon. Weather Rev., 145, 565-581. DOI: 10.1175/MWR-D-16-0068.1.
  • 11. Kanada, S., and A. Wada, 2017: Different Climatological Characteristics, Inner-Core Structures, and Intensification Processes of Simulated Intense Tropical Cyclones between 20-km global and 5-km regional models. Journal of Climate, 30, 1583-1603, DOI: 10.1175/JCLI-D-16-0093.1.
  • 10. Oyama, R., A. Wada and M. Sawada, 2016: Intensification of Typhoon Danas (1324) Captured by MTSAT Upper Tropospheric Atmospheric Motion Vectors. SOLA, 12, 135-139. /doi:10.2151/sola.2016-029
  • 9. Kanada, S. and A. Wada, 2015: Sensitivity to horizontal resolution of the simulated intensifying rate and inner-core structure of Typhoon IDA, an extremely intense typhoon. Journal of the Meteorological Society of Japan, 94A, 181-190.
  • 8. Kanada, S. and A. Wada, 2015: Numerical study on the extremely rapid intensification of an intense tropical cyclone, Typhoon Ida (1958). Journal of the Atmospheric Sciences, 72, 4194-4217.
  • 7. Ito, K., T. Kuroda, K. Saito and A. Wada, 2015: Forecasting a large number of tropical cyclone intensities around Japan using a high-resolution atmosphere-ocean coupled model. Wea. Forecasting. 30, 793-808.
  • 6. Shimada, U., A. Wada, K. Yamazaki, and N. Kitabatake, 2014:Roles of an upper-level cold vortex and low-level baroclinicity in the development of polar lows over the Sea of Japan. Tellus A, 66, 24694.
  • 5. Kanada, S., A. Wada, M. Sugi, 2013: Future changes in structures of extremely intense tropical cyclones using a 2-km mesh nonhydrostatic model. Journal of Climate, 26, 9986–10005.
  • 4. Kanada, S., A. Wada, M. Nakano, and T. Kato, 2012 : Effect of planetary boundary layer schemes on the development of intense tropical cyclones using a cloud-resolving model. Journal of Geophysical Research, 117, D03107.
  • 3. Kawai, Y., and A. Wada, 2011 : Detection of cyclone-induced rapid increases in chlorophyll-a with sea surface cooling in the northwestern Pacific Ocean from a MODIS/SeaWiFS merged satellite chlorophyll product. International Journal of Remote Sensing, 32, 9455-9471.
  • 2. Nemoto, K., T. Midorikawa, A. Wada, K. Ogawa, T. Sukeyoshi, H. Kimoto, M. Ishii and H.Y. Inoue, 2009 : Continuous observations of atmospheric and oceanic CO2 using the moored buoy in the East China Sea:Variations during the passage of typhoons, Deep-Sea Research II, 56, 542-553, doi:10.1016/j.dsr 2.2008.12.015.
  • 1. Kawai, Y., and A. Wada, 2007 : Diurnal sea surface temperature variation and its impact on the atmosphere and ocean: A review, Journal of Oceanography, 63, 721-744.
  •  

    論文(その他)[Non-refereed paper]

  • 8. 和田 章義, 2020: 特集 近年の台風の特徴と将来予測 . 気象年鑑, 3-29.
  • 7. 和田 章義, 2019:台風通過時の海洋応答から台風予測研究へ, 大気・海洋の渦・対流・シア流とその相互作用, 月刊海洋号外, 62, 81-86.
  • 6. 和田章義、小出直久、檜垣将和, 2016:台風強度予報作業における海洋貯熱量情報の利用, 量的予報技術資料(予報技術研修テキスト) 21 137-159.
  • 5. Wada, A. 2015: Utilization of Tropical Cyclone Heat Potential for Improving Tropical Cyclone Intensity Forecasts, RSMC Tokyo-Typhoon Center Technical Review.
  • 4. Wada, A.Impacts of Surface Roughness Lengths on Typhoon Simulations, 30th Conference on Hurricanes and Tropical Meteorology. April 18, 2012, Jacksonville, Florida.
  • 3. 和田 章義, 2006:表層海洋変動が台風に与える影響, 台風研究II-台風の力学-, 月刊海洋, 30, 164-169.
  • 2. 和田 章義, 2005:2004年の日本上陸台風と海面水温場、大気場及び海洋貯熱量の関係, 台風/2004 -日本列島上陸を中心にして-, 月刊海洋号外, 42, 30-39.
  • 1. 和田 章義, 2005:衛星観測データ及び非静力学大気海洋混合層結合モデルによる台風強度維持と台風による海面水温低下の関係, 台風/2004 -日本列島上陸を中心にして-, 月刊海洋号外, 42, 203-211.

  • 報告書 [Non-refereed report]

  • 3. Shay L. K., M. M. Ali, S. Chen, I. Ginis, G. Halliwell, H-S Kim, Marie-Dominque Leroux, I-I Lin and A. Wada, 2014: Eighth International Workshop on Tropical Cyclones: Air-sea Interface and Oceanic Influences, IWTC-8 report.
  • 2. Kepert J., Y-H Huang, S. Kanada, M. Powell, J. Schwendike, C. Slocum, A. Wada, C-C. Wu, J. Zhang, 2014: Eighth International Workshop on Tropical Cyclones: Role of the Boundary Layer, IWTC-8 report.
  • 1. Shay L. K., M. M. Ali, D. Barbary, E. A. D'Asaro, G. Halliwell, J. Doyle, C. Fairall, I. Ginis, I-I Lin, I-J Moon, P. Sandery, E. Uhlhorn, and A. Wada, 2010:Seventh International Workshop on Tropical Cyclones: Air-Sea Interface and Oceanic Influences, IWTC-7 report.
  • 報告書(WGNE Blue Book)[Non-refereed WGNE report]

  • 80. Wada, A., W. Yanase, and S. Tsujino, 2023: The impact of ocean coupling on the rainfall distribution of Typhoon Nanmadol (2022) at the landfall. WGNE RESEARCH ACTIVITIES IN EARTH SYSTEM MODELLING, 53. 9-16.
  • 79. Wada, A., 2023: The impact of ocean coupling on the track simulation of Typhoon Nanmadol (2022). WGNE RESEARCH ACTIVITIES IN EARTH SYSTEM MODELLING, 53. 9-14.
  • 78. Wada, A., W. Yanase, and S. Tsujino, 2023: The impact of ocean coupling on the genesis of Typhoon Songda (2022) simulated by two atmosphere-ocean coupled models. WGNE RESEARCH ACTIVITIES IN EARTH SYSTEM MODELLING, 53. 9-18.
  • 77. Wada, A. 2022: The effects of oceanic initial conditions created from different reanalysis datasets on the intensity prediction of Typhoon Trami (2018). Research activities in Earth system modelling. Working Group on Numerical Experimentation, 52, 9-07.
  • 76. Wada, A., W. Yanase, and S. Tsujino, 2022: Numerical simulations of Typhoon Rai (2021) by two nonhydrostatic atmosphere models and an atmosphere-wave ocean coupled model. Research activities in Earth system modelling. Working Group on Numerical Experimentation, 52, 9-05.
  • 75. Wada, A., W. Yanase, and S. Tsujino, 2022: Numerical simulations of Typhoon Chanthu (2021) by two nonhydrostatic atmosphere models and an atmosphere-wave ocean coupled model. Research activities in Earth system modelling. Working Group on Numerical Experimentation, 52, 9-03.
  • 74. Wada, A., 2021: Rainfall simulations of Typhoon Mangkhut (2018) landfalling in the Philippines. Research activities in Earth system modelling. Working Group on Numerical Experimentation, 51, 9-11.
  • 73. Wada, A., W. Yanase, 2021: Numerical simulations of Typhoon Haishen by a coupled atmosphere-wave ocean model with two different oceanic initial conditions. Research activities in Earth system modelling. Working Group on Numerical Experimentation, 51, 9-09.
  • 72. Wada, A., 2021: Atmosphere-wave-ocean coupled-model ensemble simulation on rapid intensification of Typhoon Hagibis (2019). Research activities in Earth system modelling. Working Group on Numerical Experimentation, 51, 9-07.
  • 71. Wada, A., W. Yanase, 2021: Numerical simulations of the rapid weakening of Typhoon Haishen (2020) by a coupled atmosphere-wave ocean model. Research activities in Earth system modelling. Working Group on Numerical Experimentation, 51, 9-05.
  • 70. Wada, A., 2020: Atmosphere-wave-ocean coupled-model simulation on rapid intensification of Typhoon Hagibis (2019). Research Activities in Earth System Modelling, 50. 9-15.
  • 69. Wada, A., 2020: Sensitivity experiments on axisymmetrization of Typhoon Faxai (2019) just before landfalling in Japan simulated by atmosphere-ocean coupled model. Research Activities in Earth System Modelling, 50. 9-13.
  • 68. Wada, A., 2020: Atmosphere-wave-ocean coupled-model simulation on Typhoon Bualoi(2019) and formation of quasi-linear convective system around Boso Peninsula. Research Activities in Earth System Modelling,50. 9-07.
  • 67. Wada, A., and K. Okamoto, 2020: Atmosphere-wave-ocean coupled-model simulation on the effect of Himawari-8 all-sky infrared radiances assimilation on the track simulation of Typhoon Jongdari (2018). Research Activities in Earth System Modelling, 50. 9-17.
  • 66. Wada, A., 2020: Rainfall simulations of Typhoons Kammuri and Phanfone landfalling in the Philippines. Research Activities in Earth System Modelling, 50. 9-11.
  • 65. Wada, A., H. Yoshimura, and M. Nakagawa, 2020: The effect of the cloud-water conversion rate in the cumulus parameterization on the simulation of Typhoon Lionrock (2016). Research Activities in Earth System Modelling, 50. 9-09.
  • 64. Wada, A., and H. Tomita, 2019: Comparison of J-OFURO remote-sensing based ocean flux data with numerical simulations by a coupled atmosphere-wave-ocean model in Typhoon Dujuan (2015) case. CAS/JSC WGNE Research Activities in Atmospheric and Oceanic Modelling. 49. 9.11-9.12.
  • 63. Wada, A., 2019: The impacts of preexisting oceanic cold eddies on the intensity forecast of Typhoon Trami (2018) during the mature phase. CAS/JSC WGNE Research Activities in Atmospheric and Oceanic Modelling. 49. 9.09-9.10.
  • 62. Wada, A., and R. P. Gile, 2019: Roles of ocean coupling and cumulus parameterization in predicting rainfall amounts caused by landfalling typhoons in the Philippines. CAS/JSC WGNE Research Activities in Atmospheric and Oceanic Modelling. 49. 9.07-9.08.
  • 61. Wada, A., 2019: The impacts of a cold eddy induced by Typhoon Trami (2018) on the intensity forecast of Typhoon Kong-Rey (2018).CAS/JSC WGNE Research Activities in Atmospheric and Oceanic Modelling. 49. 9.05-9.06.
  • 60. Wada, A., H. Yoshimura, and M. Nakagawa, 2019: Preliminary numerical experiments on the prediction of Typhoon Lionrock (2016) using the global atmosphere-ocean coupled model. CAS/JSC WGNE Research Activities in Atmospheric and Oceanic Modelling. 49. 9.03-9.04.
  • 59. Wada, A., and N. Seino, 2018: Numerical simulations on a local heavy rainfall event south of Kanto region by using a coupled atmosphere-wave-ocean model with the regional air-sea coupled data assimilation system based on NHM-LETKF. CAS/JSC WGNE Research Activities in Atmospheric and Oceanic Modelling. 48. 9.03-9.04.
  • 58. Wada, A., H. Tsuguti, and H. Yamada, 2018: Formation and propagation of shield-like precipitation pattern in the Eastern China Sea remotely enhanced by Typhoon Nepartak (2016) simulated by an atmosphere-wave-ocean coupled model. CAS/JSC WGNE Research Activities in Atmospheric and Oceanic Modelling. 48. 5.13-5.14.
  • 57. Wada, A., H. Yoshimura, and M. Nakagawa, 2018: Sensitivity of the prediction of Typhoon Lionrock (2016) to the surface boundary scheme using the 7-km mesh nonhydrostatic global spectral atmospheric Double Fourier Series Model (DFSM). CAS/JSC WGNE Research Activities in Atmospheric and Oceanic Modelling. 48. 4.13-4.14.
  • 56. Wada, A., H. Yoshimura, and M. Nakagawa, 2018: Sensitivity of the prediction of Typhoon Lionrock (2016) to the parameter in the cloud scheme using the 7-km mesh nonhydrostatic global spectral atmospheric Double Fourier Series Model (DFSM). CAS/JSC WGNE Research Activities in Atmospheric and Oceanic Modelling. 48. 4.11-4.12.
  • 55. Wada, A., and R. Oyama, 2017: Numerical simulations of convective bursts occurred just before landfall of Typhoon Lionrock (2016). CAS/JSC WGNE Research Activities in Atmospheric and Oceanic Modelling. 47. 5.20-5.21.
  • 54. Wada, A., H. Tsuguti, H. Yamada, 2017: Numerical simulations of shield-like precipitation pattern in the Eastern China Sea remotely enhanced by Typhoon Nepartak (2016). CAS/JSC WGNE Research Activities in Atmospheric and Oceanic Modelling. 47. 5.24-5.25.
  • 53. Wada, A., 2017: Sensitivity numerical simulations of Hurricane Patricia (2015) on lateral boundary conditions and inhibition rate of evaporation. CAS/JSC WGNE Research Activities in Atmospheric and Oceanic Modelling. 47. 5.22-5.23.
  • 52. Wada, A., M. Kunii, Y. Yonehara, and K. Sato, 2017: Impacts on local heavy rainfalls of surface winds measurement by seabirds soaring over the ocean during Typhoons Kilo and Etau (2015). CAS/JSC WGNE Research Activities in Atmospheric and Oceanic Modelling. 47. 1.27-1.28.
  • 51. Wada, A. and M. Kunii 2016: The effect of predicted oceanic conditions on the assimilation of Typhoon Sinlaku (2008). CAS/JSC WGNE Research Activities in Atmospheric and Oceanic Modelling. 46. 9.05-9.06.
  • 50. Wada, A. 2016: Idealized storm evolution and the difference between the eastern and the western North Pacific calculated by an atmosphere-wave-ocean coupled model. CAS/JSC WGNE Research Activities in Atmospheric and Oceanic Modelling. 46. 9.07-9.08.
  • 49. Wada, A. 2016: Comparison of numerical simulations of Typhoon Haiyan in 2013 and Typhoon Mike in 1990. CAS/JSC WGNE Research Activities in Atmospheric and Oceanic Modelling. 46. 9.09-9.10.
  • 48. Wada, A. 2016: Typhoon Man-yi in 2013 simulated by an atmosphere-wave-ocean coupled model with 1.2-km horizontal resolution. CAS/JSC WGNE Research Activities in Atmospheric and Oceanic Modelling. 46. 9.11-9.12.
  • 47. Wada, A. 2016: Extremely deepening of central pressures for Typhoon Neoguri in 2014 simulated by an atmosphere-wave-ocean coupled model and its dependency on the horizontal resolution.. CAS/JSC WGNE Research Activities in Atmospheric and Oceanic Modelling. 46. 9.13-9.14.
  • 46. Wada, A. and M. Kunii 2015: The impact of a sea-spray parameterization on the assimilation of Typhoon Sinlaku (2008). CAS/JSC WGNE Research Activities in Atmospheric and Oceanic Modelling. 45. 9.08-9.09.
  • 45. Wada, A. 2015: Roles of the ocean on extremely rapid intensification and the maximum intensity of Typhoon Haiyan in 2013. CAS/JSC WGNE Research Activities in Atmospheric and Oceanic Modelling. 45. 9.10-9.11.
  • 44. Wada, A. 2015: The effect of ocean coupling on torrential rains caused by Typhoon Man-yi in 2013. CAS/JSC WGNE Research Activities in Atmospheric and Oceanic Modelling. 45. 9.12-9.13.
  • 43. Wada, A. 2015: The effects of ocean coupling and sea spray on the simulated track for Typhoon Muifa in 2011. CAS/JSC WGNE Research Activities in Atmospheric and Oceanic Modelling. 45. 9.14-9.15.
  • 42. Wada, A. and M. Kunii 2014: Introduction of an atmosphere-wave-ocean coupled model into the NHM-LETKF. CAS/JSC WGNE Research Activities in Atmospheric and Oceanic Modelling. 44. 9.03-9.04.
  • 41. Wada, A. 2014: Numerical simulations of Typhoon Haiyan in 2013. CAS/JSC WGNE Research Activities in Atmospheric and Oceanic Modelling. 44. 9.05-9.06.
  • 40. Wada, A. 2014: Numerical simulations of Typhoon Man-Yi in 2013. CAS/JSC WGNE Research Activities in Atmospheric and Oceanic Modelling. 44. 9.07-9.08.
  • 39. Wada, A. 2013: The impact of oceanic initial conditions on the simulations of Typhoon Ma-on in 2011. CAS/JSC WGNE Research Activities in Atmospheric and Oceanic Modelling. 43. 9.05-9.06.
  • 38. Wada, A. 2013: Sensitivity of horizontal resolution and sea spray to the simulations of Typhoon Roke in 2011. CAS/JSC WGNE Research Activities in Atmospheric and Oceanic Modelling. 43. 9.07-9.08.
  • 37. Wada, A. 2013: Lagged simulations of the oceanic initial condition for Typhoon Choi-wan (2009). CAS/JSC WGNE Research Activities in Atmospheric and Oceanic Modelling. 43. 9.09-9.10.
  • 36. Wada, A. 2013: Impacts of surface roughness lengths on axisymmetrically mean structure of Typhoon Fanapi (2010). CAS/JSC WGNE Research Activities in Atmospheric and Oceanic Modelling. 43. 9.11-9.12.
  • 35. Wada, A. 2013: Effect of Talas-induced sea-surface cooling on the generation of a subsequent typhoon. CAS/JSC WGNE Research Activities in Atmospheric and Oceanic Modelling. 43. 9.13-9.14.
  • 34. Wada, A. 2012: Numerical simulations of the intensity change of Typhoon Choiwan (2009) and the oceanic response. CAS/JSC WGNE Research Activities in Atmospheric and Oceanic Modelling. 42. 9.03-9.04.
  • 33. Wada, A. 2012: Rapid intensification of Typhoon Roke in 2011. CAS/JSC WGNE Research Activities in Atmospheric and Oceanic Modelling. 42. 9.05-9.06.
  • 32. Wada, A. 2012: Spin-down process caused by vortex-induced sea-surface cooling. CAS/JSC WGNE Research Activities in Atmospheric and Oceanic Modelling. 42. 9.07-9.08.
  • 31. Wada, A. 2012: Oceanic influences for a large eye of Typhoon Talas in 2011. CAS/JSC WGNE Research Activities in Atmospheric and Oceanic Modelling. 42. 9.09-9.10.
  • 30. Wada, A. and N. Kohno, 2012: Impact of surface roughness lengths on simulations of Typhoon Fanapi (2010). CAS/JSC WGNE Research Activities in Atmospheric and Oceanic Modelling. 41. 9.11-9.12.
  • 29. Wada, A. 2011: Impacts of short-term variation in sea-surface temperature and the sea state on the evolution of stationary tropical-cyclone-like vortex. CAS/JSC WGNE Research Activities in Atmospheric and Oceanic Modelling. 42. 9.07-9.08.
  • 28. Wada, A. 2011: Drag coefficient under extremely high winds of typhoon Hai-Tang (2005). CAS/JSC WGNE Research Activities in Atmospheric and Oceanic Modelling. 41. 9.09-9.10.
  • 27. Wada, A., T. Midorikawa and M. Ishii, 2011: Variation in air-sea CO2 flux and pH induced by passage of typhoon Hai-Tang (2005). CAS/JSC WGNE Research Activities in Atmospheric and Oceanic Modelling. 41. 9.11-9.12.
  • 26. Wada, A. Y. Kawai and N. Usui, 2010: Impacts of diurnally-varying sea-surface temperature on the predictions of Typhoon Hai-Tang in 2005. Part I. Intensity prediction. CAS/JSC WGNE Research Activities in Atmospheric and Oceanic Modelling. 40. 9.09-9.10.
  • 25. Wada, A. Y. Kawai and N. Usui, 2010: Impacts of diurnally-varying sea-surface temperatureon the predictions of Typhoon Hai-Tang in 2005. Part II. The impact on the thermodynamics field around Hai-Tang's center. CAS/JSC WGNE Research Activities in Atmospheric and Oceanic Modelling. 40. 9.11-9.12.
  • 24. Wada, A. and N. Usui, 2010: The influence of the variation of oceanic precondition on the prediction of Typhoon Hai-Tang in 2005. CAS/JSC WGNE Research Activities in Atmospheric and Oceanic Modelling. 40. 9.13-9.14.
  • 23. Wada, A. N. Kohno and Y. Kawai, 2010: Formulation of the effect of breaking surface waves on entrainment and its impact on Typhoon Hai-Tang in 2005. CAS/JSC WGNE Research Activities in Atmospheric and Oceanic Modelling. 40. 9.15-9.16.
  • 22. Wada, A. and T. Midorikawa, 2009: Numerical simulation for the ocean response to Typhoons Tina and Winnie in 1997 and their relations to sudden variations of pCO2. CAS/JSC WGNE Research Activities in Atmospheric and Oceanic Modelling. 39. 8.07-8.08.
  • 21. Wada, A. N. Usui, K. Sato and Y. Kawai, 2009: The impact of pre-existing oceanic condition on the ocean response to Typhoon Hai-Tang in 2005. CAS/JSC WGNE Research Activities in Atmospheric and Oceanic Modelling. 39. 8.09-8.10.
  • 20. Wada, A. and Y. Kawai, 2009: The Development of Diurnally-Varying Sea-Surface Temperature Scheme. Part I. Preliminary numerical experiments. CAS/JSC WGNE Research Activities in Atmospheric and Oceanic Modelling. 39. 9.07-9.08.
  • 19. Wada, A. and Y. Kawai, 2009: The Development of Diurnally-Varying Sea-Surface Temperature Scheme. Part II. Idealized numerical experiments. CAS/JSC WGNE Research Activities in Atmospheric and Oceanic Modelling. 39. 9.09-9.10.
  • 18. Wada, A. N. Kohno and N. Usui, 2009: Numerical predictions for Typhoon Hai-Tang in 2005 by an experimental atmosphere-wave-ocean coupled model. CAS/JSC WGNE Research Activities in Atmospheric and Oceanic Modelling. 39. 9.11-9.12.
  • 17. Wada, A., H. Niino and H. Nakano, 2008: Sensitivity of tuning parameters in a mixed-layer scheme to simulated sea surface cooling caused by a passage of a typhoon. CAS/JSC WGNE Research Activities in Atmospheric and Oceanic Modelling. 38. 8.15-8.16.
  • 16. Wada, A., N. Usui and H. Niino, 2008: The impact of oceanic observations on tropical cyclone intensity prediction in the case of Typhoon Namtheun (2004). CAS/JSC WGNE Research Activities in Atmospheric and Oceanic Modelling. 38. 9.03-9.04.
  • 15. Wada, A. and H. Niino, 2008: Numerical experiments of intensification of an idealized typhoon-like vortex under various sea surface temperatures by a nonhydrostatic atmosphere-ocean coupled model . CAS/JSC WGNE Research Activities in Atmospheric and Oceanic Modelling. 38. 9.05-9.06.
  • 14. Wada, A., H. Niino and H. Nakano 2007: Improvement of multi-limit mixed-layer entrainment parameterization from the results in an ocean global circulation model. CAS/JSC WGNE Research Activities in Atmospheric and Oceanic Modelling. 37. 8.05-8.06.
  • 13. Wada, A. and A. Murata, 2007: Effects of horizontal resolution and sea surface cooling on simulations of tropical cyclones in case of Typhoon Namtheun (2004) by a coupled MRI tropical cyclone-ocean model. CAS/JSC WGNE Research Activities in Atmospheric and Oceanic Modelling. 37. 9.09-9.10.
  • 12. Wada, A. 2006: Numerical Experiments of Typhoons in 2004 Typhoon Season using a Non-Hydrostatic Atmospheric Model Coupled with a Mixed-Layer Ocean Model. CAS/JSC WGNE Research Activities in Atmospheric and Oceanic Modelling. 36. 9.09-9.10.
  • 11. Wada, A. and W. Mashiko, 2006: Introduction of a Mixed-Layer Ocean Model into the MRI Interactive Multiply-Nested Movable Mesh Tropical Cyclone Model. CAS/JSC WGNE Research Activities in Atmospheric and Oceanic Modelling. 36. 9.11-9.12.
  • 10. Wada, A. 2006: Numerical Experiments of Typhoon Namtheun (T0410) using Different Atmosphere-Ocean Coupled Models. CAS/JSC WGNE Research Activities in Atmospheric and Oceanic Modelling. 36. 9.13-9.14.
  • 9. Wada, A. 2006: Typhoon-Ocean Interaction in Typhoon Megi (T0415) using an Atmosphere-Mixed-Layer Ocean Coupled Model. CAS/JSC WGNE Research Activities in Atmospheric and Oceanic Modelling. 36. 9.15-9.16.
  • 8. Wada, A. 2005: Numerical Experiments of Typhoon Bilis Using a Non-Hydrostatic Atmospheric Model Coupled with a Mixed-Layer Ocean Model. CAS/JSC WGNE Research Activities in Atmospheric and Oceanic Modelling. 35. 9.05-9.06.
  • 7. Wada, A. 2004: Effects of atmospheric physical processes to the intensity of typhoons and their ocean responses. CAS/JSC WGNE Research Activities in Atmospheric and Oceanic Modelling. 34. 9.05-9.06.
  • 6. Wada, A. 2004: Typhoon-ocean coupled model with upgraded mixed layer model. CAS/JSC WGNE Research Activities in Atmospheric and Oceanic Modelling. 34. 9.07-9.08.
  • 5. Wada, A. 2003: Improvement of wind induced mixing and entrainment in MRI mixed layer model. 33. 8.16-8.17.
  • 4. Wada, A. 2003: Validation of typhoon intensity prediction by MRI typhoon-ocean coupled model. CAS/JSC WGNE Research Activities in Atmospheric and Oceanic Modelling. 33. 9.05-9.06.
  • 3. Wada, A. 2003: Typhoon-ocean coupled model with upgraded mixed layer model. CAS/JSC WGNE Research Activities in Atmospheric and Oceanic Modelling. 33. 9.07-9.08.
  • 2. Wada, A. 2002: Improvement of SST Prediction By Diunal Cycling Algorithm in the Mri Mixed Layer Ocean Model. CAS/JSC WGNE Research Activities in Atmospheric and Oceanic Modelling. 32. 8.29-8.30.
  • 1. Wada, A., H. Mino, 2002: Implementation of the JMA Typhoon Model Coupled With the Mixed Layer Ocean Model And Its Application for Typhoon Bilis. CAS/JSC WGNE Research Activities in Atmospheric and Oceanic Modelling. 32. 9.10-9.11.
  •  

    last update : 2024-1-5
    All Rights Reserved, Copyright © 2003, Japan, Meteorological Research Institute