事項 |
詳細 |
所属・職名 |
気象観測研究部・第三研究室・主任研究官 |
連絡先 |
 |
個人ページ |
researchmap |
専門分野 |
データ同化、メソ気象学 |
学位 |
博士(理学) |
受賞歴、委員等 |
- JAXA 地球観測に関する科学アドバイザリ委員会
- Quality Working Group
- NASA Atmosphere Observing System Modeling and Data Assimilation Working group
|
発表論文 |
-
Ikuta, Y., M. Satoh, W. Roh, S. Matsugishi, N. Kuba, T. Seiki, A. Umehara, and H. Eito, 2025:
Improvement of a single-moment cloud microphysics scheme consistent with dual-polarization radar.
Journal of Geophysical Research: Atmospheres, 130, e2024JD042139,
https://doi.org/10.1029/2024JD042139.
-
Yamaguchi, M., Y. Ikuta, K. Ito, and M. Satoh, 2025: Tropical Cyclone Track and Intensity
Predictions in the Western North Pacific Basin Using Pangu-Weather and JMA Initial Conditions, J.
Meteor. Soc. Japan, https://doi.org/10.2151/jmsj.2025-018.
-
Hamada, A., C. Yokoyama, H. Tsuji, Y. Ikuta, S. Shige, M. Yamaji, T. Kubota, and Y. N. Takayabu,
2025: Spectral Latent Heating Retrieval for the Midlatitudes Using GPM DPR. Part II: Development and
Consistency Check of the Retrieval Algorithm. J. Appl. Meteor. Climatol., 64, 45–61,
https://doi.org/10.1175/JAMC-D-23-0218.1.
-
Yokoyama, C., A. Hamada, Y. Ikuta, S. Shige, M. Yamaji, H. Tsuji, T. Kubota, and Y. N. Takayabu,
2025: Spectral Latent Heating Retrieval for the Midlatitudes Using GPM DPR. Part I: Construction of
Lookup Tables. J. Appl. Meteor. Climatol., 64, 21–43,
https://doi.org/10.1175/JAMC-D-23-0217.1.
-
Yoshida, S., T. Sakai, T. Nagai, Y. Ikuta, T. Kato, K. Shiraishi, R. Kato, and H. Seko, 2024: Water
Vapor Lidar Observation and Data Assimilation for a Moist Low-Level Jet Triggering a Mesoscale
Convective System. Mon. Wea. Rev., 152, 1119–1137,
https://doi.org/10.1175/MWR-D-23-0094.1.
-
Ikuta, Y., and U. Shimada, 2024: Impact of Assimilation of the Tropical Cyclone Strong Winds
Observed by Synthetic Aperture Radar on Analyses and Forecasts. Mon. Wea. Rev.,
https://doi.org/10.1175/MWR-D-23-0103.1.
-
Yokota, S., T. Banno, M. Oigawa, G. Akimoto, K. Kawano, Y. Ikuta, 2024: JMA Operational Hourly
Hybrid 3DVar with Singular Vector-Based Mesoscale Ensemble Prediction System. J. Meteor. Soc.
Japan, 102, 129–150, https://doi.org/10.2151/jmsj.2024-006.
-
Ikuta, Y., M. Sawada, and M. Satoh, 2023: Determining the Impact of Boundary Layer Schemes on the
Secondary Circulation of Typhoon Faxai Using Radar Observations in the Gray Zone. J. Atmos.
Sci., 80, 961–981, https://doi.org/10.1175/JAS-D-22-0169.1.
-
Satoh, M., S. Matsugishi, W. Roh, Y. Ikuta, N. Kuba, T. Seiki, T. Hashino, and H. Okamoto, 2022:
Evaluation of cloud and precipitation processes in regional and global models with ULTIMATE
(ULTra-sIte for Measuring Atmosphere of Tokyo metropolitan Environment): a case study using the
dual-polarization Doppler weather radars. Prog. Earth Planet Sci., 9, 51,
https://doi.org/10.1186/s40645-022-00511-5.
-
Yoshida, S., T. Sakai, T. Nagai, Y. Ikuta, Y. Shoji, H. Seko, and K. Shiraishi, 2022: Lidar
Observations and Data Assimilation of Low-Level Moist Inflows Causing Severe Local Rainfall
Associated with a Mesoscale Convective System. Mon. Wea. Rev., 150, 1781–1798,
https://doi.org/10.1175/MWR-D-21-0213.1.
-
Ikuta, Y., H. Seko, and Y. Shoji, 2022: Assimilation of shipborne precipitable water vapour by
Global Navigation Satellite Systems for extreme precipitation events. Quart. J. Roy. Meteor.
Soc., 148, 57–75, https://doi.org/10.1002/qj.4192.
-
Ikuta, Y., T. Fujita, Y. Ota, and Y. Honda, 2021: Variational Data Assimilation System for
Operational Regional Models at Japan Meteorological Agency. J. Meteor. Soc. Japan, 99,
1563–1592, https://doi.org/10.2151/jmsj.2021-076.
-
Ikuta, Y. 2021: Chapter 23 - Radar data assimilation in numerical weather prediction models.
Precipitation Science Measurement, Remote Sensing, Microphysics and Modeling, Elsevier,
743–756. https://doi.org/10.1016/B978-0-12-822973-6.00012-3.
-
Ikuta, Y., M. Satoh, M. Sawada, H. Kusabiraki,and T. Kubota, 2021: Improvement of the Cloud
Microphysics Scheme of the Mesoscale Model at the Japan Meteorological Agency Using Spaceborne Radar
and Microwave Imager of the Global Precipitation Measurement as Reference. Mon. Wea. Rev.,
149, 3803–3819. https://doi.org/10.1175/MWR-D-21-0066.1.
-
Barreyat, M., P. Chambon, J.-F. Mahfouf, G. Faure, and Y. Ikuta, 2021: A 1D Bayesian inversion
applied to GPM Microwave Imager observations: Sensitivity studies. J. Meteor. Soc. Japan,
99, 1045–1070. https://doi.org/10.2151/jmsj.2021-050.
-
Ikuta, Y., K. Okamoto, and T. Kubota, 2021: One‐dimensional maximum‐likelihood estimation for
spaceborne precipitation radar data assimilation. Quart. J. Roy. Meteor. Soc., 147,
858–875. https://doi.org/10.1002/qj.3950.
- Gustafsson, N., T. Janjić,
C. Schraff, D. Leuenberger, M. Weissmann, H. Reich, P. Brousseau, T. Montmerle, E. Wattrelot, A,
Bučánek, M. Mile, R. Hamdi, M. Lindskog, J. Barkmeijer, M. Dahlbom, B. Macpherson, S. Ballard, G.
Inverarity, J. Carley, C. Alexander, D. Dowell, S. Liu, Y. Ikuta, and T. Fujita, 2018:
Survey of data assimilation methods for convective‐scale numerical weather prediction at operational
centres. Quart. J. Roy. Meteor. Soc., 144, 1218–1256.
https://doi.org/10.1002/qj.3179.
|
担当課題リスト |
- 気象研究所 基盤技術研究「データ同化技術と観測解析技術の高度化に関する研究」
- 「富岳」気象学的および数理的アプローチによる線状降水帯のメカニズム解明
- 令和7年度東京大学大気海洋研究所共同利用外来研究員「メソ気象における雲降水プロセスの解明とデータ同化に関する研究」
- JAXA第4回地球観測研究公募(代表)「日本周辺におけるkmスケールの現象を対象とした雲降水データ同化の高度化」
- 科研費基盤研究C(代表)「集中豪雨の発達機構を解明する水物質同化手法の研究」
|