〇高山陽三、中里真久、石部 勝、鈴木 修、高谷美正(気象衛星・観測システム研究部)

1. はじめに

水蒸気分布とその変化は、雲の生成・消滅や降水現象と 密接に関係しており、水蒸気分布観測は、これら機構の解 明・予測のために必要であり、予測モデルの高解像化に伴い、 時間空間分解能の高い水蒸気分布の観測が重要となってき ている。水蒸気の鉛直分布観測はゾンデ、ライダー、長波長 レーダーなどで行われているが、時間分解能、観測高度、運 用、天候の制約など特性に一長一短があり、改良すべき点が ある。

この研究では、多周波のマイクロ波放射観測のリモートセ ンシングにより、観測サンプリング周期が短く、観測機器の維 持負担の少ない観測手段として、晴天・曇天時の水蒸気鉛直 分布の観測方法の改良・開発を目指し、マイクロ波放射計観 測から水蒸気の鉛直分布(以下、プロファイル)を推定するア ルゴリズムの開発と観測装置の製作を行った。

マイクロ波放射観測による水蒸気鉛直分布観測 1. 方法

マイクロ波放射を利用し水蒸気プロファイルを推定するた めに、水蒸気の高度分布に対応した情報を持つ大気からの マイクロ波放射を測定する。この情報を得るため、通常マイク 口波の水蒸気吸収線近傍で、吸収の強さが異なる多数の周 波数でマイクロ波放射強度の測定を行なう。測定するマイク 口波放射強度は、水蒸気の密度分布、気温分布、気圧分布 や雲、降水によって決まるが、これらの分布の変化と放射強 度の変化の関係は測定周波数によって異なる。この性質を 利用して、測定した多数のマイクロ波周波数の放射強度から 適当な変換方法を利用し、水蒸気プロファイルを推定する。こ の時の問題は、多数の周波数で測定を行っても、求めるべき 水蒸気プロファイルは連続量の未知数であり、独立な既知の 測定データは少なく、何らかの条件を与えなければ水蒸気プ ロファイルは推定できない。また放射測定誤差が推定するプ ロファイルの結果に大きな影響を及ぼし安定した推定方法を エ夫する必要がある。ここでは、水蒸気・気温プロファイルと マイクロ波放射強度の統計値を利用し、プロファイル推定が 安定して得られるアルゴリズムを作成し、水蒸気プロファイル の推定を行った。水蒸気情報を得るため、22GHz付近の水蒸 気吸収バンドを、温度補正用に60GHz付近の酸素の吸収バ ンドを利用した。アルゴリズムの検証は、既存の多周波マイク ロ波放射計とゾンデとの同期観測で行った。

2.2. 水蒸気推定精度

第1図は高層気象台のゾンデとマイクロ波放射計で推定し た2003年10月13日の8時30分と20時30分の水蒸気及び気温 のプロファイルを示す。実線は8時30分のゾンデ、破線は20時 30分のゾンデ観測時のプロファイルを示す。 概ね、マイクロ 波放射計で推定した水蒸気プロファイルはゾンデ観測のプロ ファイルと一致した結果を得た。

第1図: マイクロ波放射計とゾンデ観測の気温・水蒸気プロフ ァイルの比較。暖色が温度プロファイル、寒色が水蒸気プロ ファイル

6月1ヶ月間ゾンデ観測に同期してマイクロ波放射計観測を 行い、マイクロ波放射計から推定した水蒸気プロファイルの 比較を行った。第2図はマイクロ波観測で推定した水蒸気プロ ファイルからゾンデ観測で得た水蒸気プロファイルの差のrms 値を示す(青)。黄土色はゾンデが観測した1ヶ月間の水蒸気 プロファイルの平均値を示す。緑線は従来の方法で求めた水 蒸気プロファイルのrmsを示す。黄色は1ヶ月間のゾンデ水蒸 気プロファイルのrms変動を示す。水蒸気プロファイルの推定 誤差をゾンデに対するrmsの値としてみると、水蒸気量が多い

※本研究は、海洋開発及地球科学技術調査研究促進費「マイクロ波分光放射計による水蒸気鉛直分布観測に関する研究(H14-16)」の一環として行われた。主任研究者:高山陽三、研究担当者:中里真久(H15-)、石部勝(H15-)、高谷美正(H14)、鈴木修(H14)。

ほど誤差は大きく、地上付近で大きく約4g/m³あり、高度ととも に誤差は小さくなり、5km高度で1.6g/m³程度となった。平均水 蒸気量に対する相対誤差で見ると、地上から11kmの高度範 囲で、30~55%の誤差になっている。高度5km近辺の誤差が 55%程度と大きく、それより下層上層では相対誤差は小さく30 ~40%程度の誤差になっている。5km高度での誤差が大きくな っている原因は雲の影響によるものと推定される。この研究 で開発した水蒸気プロファイルの結果(青線)と従来公表され ているアルゴリズムで推定した結果(緑線)を比べると、rmsで どの高度とも改善されており、下層で1.5g/m³、5km高度で 0.5g/m³程度改善することができた。

2.3. 観測事例

観測事例として2003年10月13日につくば付近を、寒冷前線 とその上を熱帯低気圧崩れの低気圧が通過したときのマイク ロ波放射計で観測した、水蒸気と気温のプロファイルの時系 列を第3図に示す。横軸は時刻(JST)、縦軸が高度(km)、カ ラーが水蒸気量または気温を示す。前線は14時ごろ通過し約 1時間激しい雨が降り、この間観測は不良であったが、前線 通過前では、南からの風により下層に気温が高く湿った大気 状態であったものが、前線通過後は北風にかわり気温の低 い水蒸気の少ない大気状態に下層は置き変わった様子が見 られる。しかし4km以上上空の大気状態は、前線の通過があ っても水蒸気・気温ともあまり変化がなく上層の大気状態は 変わっていないことが観測された。大雨の場合、マイクロ波放 射は放射計近辺で大きな吸収を受け、観測に使用できない が、降水がない場合の大気状況を10分程度のサンプリング 周期でモニターできそうである。今後いろいろな気象状態で有 効性を検証していく必要がある。

3. 結論

多周波マイクロ波放射計により、水蒸気プロファイルを推 定するアルゴリズムの開発を行なった。開発したアルゴリズ ムで推定した水蒸気分布と同時刻に観測したゾンデの水蒸 気プロファイルとの比較を1ヶ月間行った結果、地上から高度 11kmまでのプロファイルを得ることができた。ゾンデとのrms 残差は地上付近で、4~5g/m³、5km高度で1.6g/m³、これは 比較した時期の水蒸気プロファイルに対し30~55%の相対誤 差に相当する精度である。従来の方法と比較し、rmsで約 1g/m³の改善となっている。

寒冷前線通過時の事例観測では、寒冷前線通過前後の水 蒸気分布の変動の様子を時間を追って捉えることができ、短 時間の大気変動のモニターとして利用できる可能性が判った

製作した観測装置は、現在機器の校正を行なう段階であり、

今後周波数を変えた方法など、多周波放射計による観測方 法の改善方法に利用する予定である。

この研究は、海洋開発及地球科学技術調査研究促進費並 びに科学技術振興機構の予算でなされた。

第2図:2003年6月1ヶ月間のマイクロ波とゾンデによる水蒸気 プロファイルのrms残差。青:マイクロ波とゾンデのrms残差、 黄土色:1ヶ月間のゾンデ平均水蒸気プロファイル。緑:従来 のアルゴリズムによるマイクロ波とゾンデのrms残差。縦軸: 高度(km)、横軸:水蒸気量rms残差(g/m³)。

第3図:2003年10月13日前線通過時の水蒸気(上)・気温(下) の鉛直プロファイルの時系列。横軸は時間、縦軸は高度、水 蒸気量・気温はカラーバーで表示。