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Chapter 23

Basics of the finite difference method

This chapter describes the basics of finite difference methods for solving differential equations. The general principles
of the finite differencing methods are introduced using the diffusion equation as an example in Section 23.1. Sections
23.2 and 23.3 describe applying finite difference methods of basic time and space derivatives in differential equations. A
more sophisticated time-integration method will be explained later in 23.6. Considerations in finite-difference methods
for advection-diffusion equations are discussed in Section 23.4. An implicit method for solving the diffusion equation is
described in Section 23.5. In 23.6, we mainly discuss the errors of various time-integration methods for the wave equation.
A comprehensive description of these differencing methods in geophysical fluid dynamics is given in detail in Durran
(2010).

23.1 Diffusion equation
As an example, consider an initial-boundary value problem expressed by a one-dimensional diffusion equation (heat
conductive equation),

𝜕𝑇

𝜕𝑡
= 𝜅

𝜕2𝑇

𝜕𝑥2 . (23.1)

Given 𝑇 (𝑥, 0) = 𝑓 (𝑥) as the initial distribution and 𝑇 (0, 𝑡) = 𝑇 (𝐿, 𝑡) = 0 as the boundary condition, the analytical solution
is

𝑇 (𝑥, 𝑡) =
∞∑

𝑚=0
𝑓𝑚𝑒
−𝜅𝑘2

𝑚𝑡 sin(𝑘𝑚𝑥), (23.2)

where

𝑓𝑚 =
2
𝐿

∫ 𝐿

0
𝑓 (𝑥) sin(𝑘𝑚𝑥)𝑑𝑥, 𝑘𝑚 =

𝑚𝜋

𝐿
. (23.3)

Next, consider the finite difference method to get the solution numerically. In the finite difference method, grids are set
with a finite increment in space and time, and each term in the equation is evaluated at each grid using 𝑇𝑛

𝑗 = 𝑇 (𝑥 𝑗 , 𝑡𝑛). For
example,

𝑇𝑛+1
𝑗 − 𝑇𝑛

𝑗

Δ𝑡
= 𝜅

𝑇𝑛
𝑗+1 − 2𝑇𝑛

𝑗 + 𝑇𝑛
𝑗−1

Δ𝑥2 , (23.4)

where Δ𝑡 = 𝑡𝑛+1 − 𝑡𝑛 and Δ𝑥 = 𝑥 𝑗+1 − 𝑥 𝑗 .
Distribution at the new time level 𝑇𝑛+1 can then be calculated if 𝑇𝑛 is known. This finite difference equation is identical

to the original differential equation (23.1) in the limit Δ𝑡 → 0,Δ𝑥 → 0 (consistency).
If the initial distribution is assumed to be 𝑓 (𝑥) = 𝑇0 sin 𝑘1𝑥, the solution of the finite difference equation (23.4) for 𝑡 = 𝑡𝑛

is
𝑇𝑛
𝑗 = 𝜆𝑛𝑇0 sin 𝑘1𝑥 𝑗 , (23.5)

where
𝜆 = 1 − 2𝜅Δ𝑡

Δ𝑥2 (1 − cos 𝑘1Δ𝑥). (23.6)

In order to suppress oscillation and divergence of the solution (stability), 0 < 𝜆 < 1 is necessary and Δ𝑥 and Δ𝑡
must be set to satisfy this condition. This solution is identical to the analytical solution in the limit of Δ𝑡 → 0,Δ𝑥 → 0
(convergence).

To summarize, the finite difference method that satisfies consistency, stability, and convergence is the necessary condition
for an accurate solution.
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23.2 Finite difference expressions for time derivatives

23.2 Finite difference expressions for time derivatives
The following are the four basic finite difference expressions. These had been used in the MRI.COM before ver. 4.0.

forward :
𝑇𝑛+1 − 𝑇𝑛

Δ𝑡
= 𝐹 (𝑇𝑛) (23.7)

backward :
𝑇𝑛+1 − 𝑇𝑛

Δ𝑡
= 𝐹 (𝑇𝑛+1) (23.8)

Matsuno :
𝑇∗𝑛+1 − 𝑇𝑛

Δ𝑡
= 𝐹 (𝑇𝑛), 𝑇𝑛+1 − 𝑇𝑛

Δ𝑡
= 𝐹 (𝑇∗𝑛+1) (23.9)

leap-frog :
𝑇𝑛+1 − 𝑇𝑛−1

2Δ𝑡
= 𝐹 (𝑇𝑛). (23.10)

The scheme used in the previous section is the forward scheme. The forward, backward, and Matsuno schemes use the
values at two time levels and are accurate to 𝑂 (Δ𝑡), while the leap-frog scheme uses three time levels and is accurate to
𝑂 (Δ𝑡)2. Basically, the leap-frog scheme is employed in MRI.COM because of its higher order accuracy.

However, the leap-frog scheme cannot be applied to the diffusion equation. A solution by the finite difference method
using the leap-frog scheme is given by

𝑇𝑛
𝑗 = (𝑇𝑎𝜆𝑛𝑎 + 𝑇𝑏𝜆𝑛𝑏) sin 𝑘1𝑥 𝑗 , (23.11)

where

𝜆𝑎 = −−𝛼 +
√
𝛼2 + 4

2
, 𝜆𝑏 = −−𝛼 −

√
𝛼2 + 4

2
(𝛼 ≡ 4𝜅Δ𝑡

Δ𝑥2 (1 − cos 𝑘1Δ𝑥)). (23.12)

Because 𝜆𝑏 < −1 for arbitrary values of 𝛼, the divergent mode with oscillation is always included (computational mode).
In order to avoid this computational mode, the forward scheme is employed for diffusion and viscosity terms in MRI.COM.

When the diffusion and viscosity coefficients are very large as in the surface mixed layer, the time step has to be unusually
small for the stability of the forward scheme according to (23.6). In such a case, the backward scheme is used for vertical
diffusion and viscosity (implicit method; see Section 23.5). Though the time integration at each point can proceed without
referring to the result of other points by the forward, leap-frog, and Matsuno schemes, it must be done by solving combined
linear equations in the backward scheme (see Section 23.5).

The Matsuno scheme is useful for suppressing the computational mode in the leap-frog scheme. By defaults, the
Matsuno scheme is used once per twelve steps of the leap-frog scheme in MRI.COM. In the old version, this interval
can be changed at run time using a namelist parameter (nstep_matsuno_interval) of namelist nml_time_step (Table
25.6). It should be noted that the Matsuno scheme needs twice as many numerical operations as the forward and leap-frog
schemes.

The simplest forward method is used in components such as the sea ice model, mixed layer model, and ecosystem model.
The 3rd-order leap-frog Adams-Moulton scheme (LFAM3) used in the current version of the MRI.COM dynamical frame
is discussed in the next section, mainly considering the errors of various time integration methods for the wave equation.

23.3 Finite difference expression for space derivatives
Let us consider a one-dimensional advection equation,

𝜕𝑇

𝜕𝑡
= −𝑢 𝜕𝑇

𝜕𝑥
, (23.13)

where 𝑢 is a constant velocity. The solution is

𝑇 (𝑥, 𝑡) = 𝑇 (𝑥 − 𝑢𝑡, 0). (23.14)

Using the leap-frog scheme for time differencing, the finite difference equation can be written as follows:

𝑇𝑛+1
𝑗 − 𝑇𝑛−1

𝑗

2Δ𝑡
= −𝑢

𝑇𝑛
𝑗+ 1

2
− 𝑇𝑛

𝑗− 1
2

Δ𝑥
, (23.15)

where 𝑇𝑛
𝑗− 1

2
and 𝑇𝑛

𝑗+ 1
2

are the values at the left and right faces of the grid cell for 𝑥 𝑗 , i.e., values at 𝑥 𝑗− 1
2

and 𝑥 𝑗+ 1
2
. The point

𝑥 𝑗− 1
2

is defined as the central point between 𝑥 𝑗 and 𝑥 𝑗−1. Because the transport of 𝑇 at the boundary that enters a grid
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Chapter 23 Basics of the finite difference method

cell is identical to that leaving the adjacent grid cell, the total 𝑇 in the whole system is conserved in this finite difference
equation.

There are several methods to decide 𝑇𝑛
𝑗− 1

2
using a value at a single or multiple grid points. The following are two simple

and frequently used formulations,

upstream finite difference :𝑇𝑛
𝑗− 1

2
= 𝑇𝑛

𝑗−1 (𝑢 > 0), 𝑇𝑛
𝑗− 1

2
= 𝑇𝑛

𝑗 (𝑢 < 0), (23.16)

central finite difference :𝑇𝑛
𝑗− 1

2
=
𝑇𝑛
𝑗−1 + 𝑇

𝑛
𝑗

2
. (23.17)

The former is accurate to 𝑂 (Δ𝑥), and the latter is accurate to 𝑂 (Δ𝑥2).
In central finite differencing, the expression for (23.15) is

𝑇𝑛+1
𝑗 − 𝑇𝑛−1

𝑗

2Δ𝑡
= −𝑢

𝑇𝑛
𝑗+1 − 𝑇

𝑛
𝑗−1

2Δ𝑥
. (23.18)

Assuming the solution to be 𝑇 (𝑥, 𝑡) = 𝜏(𝑡)𝑒−𝑖𝑘𝑥 ,

𝜏𝑛+1 = 𝜏𝑛−1 + 2𝑖𝛼𝜏𝑛, where 𝛼 ≡ 𝑢Δ𝑡
Δ𝑥

sin 𝑘Δ𝑥. (23.19)

It is stable (neutral) if |𝛼 | ≤ 1. To be stable for any wave number,����𝑢Δ𝑡Δ𝑥

���� ≤ 1 (23.20)

must be satisfied (CFL condition). However, if 𝜏𝑛 = 𝜏0𝑒−𝑖𝑛Δ𝜃 ,

Δ𝜃 = − sin−1 [𝜇 sin 𝑘Δ𝑥] (where 𝜇 ≡ 𝑢Δ𝑡
Δ𝑥
). (23.21)

Expanding the r.h.s. by a Taylor expansion we obtain

Δ𝜃 ' − 𝜇 sin 𝑘Δ𝑥 − 1
6
(𝜇 sin 𝑘Δ𝑥)3

' − 𝜇𝑘Δ𝑥 + 𝜇(𝑘Δ𝑥)
3

6
− 𝜇

3 (𝑘Δ𝑥)3
6

= − 𝜇𝑘Δ𝑥
{
1 − (𝑘Δ𝑥)

2

6
(1 − 𝜇2)

}
. (23.22)

This means that the phase of the solution from this finite difference scheme is delayed relative to that of analytical solution,
depending on its wavenumber (numerical dispersion). Therefore, a distribution with maxima and minima that do not
exist in the initial distribution arises. However, this method is popularly used since the kinetic energy is conserved by
employing the central difference in the advection term in the equation of motion. Moreover, the "Arakawa method," which
can nearly conserve the enstrophy (squared vorticity) for horizontally non-divergent flows, is adopted in MRI.COM by
using the central difference. This topic is treated in Chapter 8.

Using the upstream finite difference, the finite difference equation (23.15) is

𝑇𝑛+1
𝑗 − 𝑇𝑛−1

𝑗

2Δ𝑡
= −𝑢

𝑇𝑛
𝑗 − 𝑇𝑛

𝑗−1

Δ𝑥
. (23.23)

Expanding the r.h.s. by a Taylor expansion we obtain

−𝑢 𝜕𝑇
𝜕𝑥
+ 𝑢Δ𝑥

2
𝜕2𝑇

𝜕𝑥2 +𝑂 (Δ𝑥
2). (23.24)

The second term has the diffusion (heat conductive) form (which disappears in the central finite differencing). Actually, the
initial distribution diffuses when the advection equation is solved by the upstream finite difference (numerical diffusion).

The third order schemes (QUICK, QUICKEST, and UTOPIA) can be used in MRI.COM to suppress the numerical
dispersion and diffusion somewhat in the advection calculation for tracers, but not completely. The grid boundary value
is set in QUICK as

𝑇𝑛
𝑗− 1

2
=
−𝑇𝑛

𝑗−2 + 6𝑇𝑛
𝑗−1 + 3𝑇𝑛

𝑗

8
(𝑢 > 0), 𝑇𝑛

𝑗− 1
2
=

3𝑇𝑛
𝑗−1 + 6𝑇𝑛

𝑗 − 𝑇𝑛
𝑗+1

8
(𝑢 < 0). (23.25)
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23.4 Finite differencing of advection-diffusion equation

The QUICKEST method uses the time averaged value at the grid boundary as the tracer value to be transported, considering
the change of the value there by advection during one time step. UTOPIA is a multi-dimensional extension of QUICKEST.
The details of these schemes are described in Chapter 10.

23.4 Finite differencing of advection-diffusion equation
According to the above restriction, when the advection-diffusion equation (Eqs. (10.1) and (11.1)) is expressed in finite
difference form using the leap-frog scheme, it is necessary to use present (previous) time level for advection (diffusion)
term. The following finite difference equation is then employed:

𝑇𝑛+1 − 𝑇𝑛−1

2Δ𝑡
= −A(𝑇𝑛) + D(𝑇𝑛−1), (23.26)

where A and D are advection and diffusion operators, respectively.
When the vertical diffusion term is very large,D(𝑇𝑛+1) is used instead ofD(𝑇𝑛−1). This formula is an implicit scheme

and is described in the next section.

23.5 Implicit method for vertical diffusion equation
Turbulent mixing is parameterized by using high vertical diffusivity and viscosity determined by boundary layer models,
which was treated in Chapter 15. The time step must be set very small to keep the calculation stable when viscosity and
diffusivity are very high, since the time tendency becomes very large due to the rapid mixing. To avoid this problem, the
implicit method uses the advanced (mixed) state for evaluating viscosity and diffusivity, unlike the normal explicit method
where previous or present values are used.

Expressing the present time step as 𝑛 and the time steps before and after as 𝑛± 1, the finite-difference method is applied
to the advection-diffusion equation using the leap-frog scheme. The diffusion term is written separately using (𝑛 − 1) step
for the horizontal direction and (𝑛 + 1) step for the vertical direction,

(𝑇𝑛+1 − 𝑇𝑛−1)
2Δ𝑡

= −A(𝑇𝑛) + D𝐻 (𝑇𝑛−1) + D𝑉 (𝑇𝑛+1). (23.27)

Putting all the terms involving 𝑇𝑛+1 on the l.h.s.,

𝑇𝑛+1 − 2Δ𝑡D𝑉 (𝑇𝑛+1) = 𝑇𝑛−1 + 2Δ𝑡 (−A(𝑇𝑛) + D𝐻 (𝑇𝑛−1)) (23.28)

is obtained, which is an algebraic equation for 𝑇𝑛+1. The finite difference form is rewritten specifically as

𝑇𝑛+1
𝑘 − 2Δ𝑡

1
Δ𝑧𝑘

(
𝜅𝑘− 1

2
(𝑇𝑛+1

𝑘−1 − 𝑇
𝑛+1
𝑘 )/Δ𝑧𝑘− 1

2
− 𝜅𝑘+ 1

2
(𝑇𝑛+1

𝑘 − 𝑇𝑛+1
𝑘+1 )/Δ𝑧𝑘+ 1

2

)
(23.29)

= 𝑇𝑛−1
𝑘 + 2Δ𝑡 (−A(𝑇𝑛

𝑘 ) + D𝐻 (𝑇𝑛−1
𝑘 )).

By putting

𝑎 =
2Δ𝑡𝜅𝑘− 1

2

Δ𝑧𝑘Δ𝑧𝑘− 1
2

, 𝑏 = 1 + 𝑎 + 𝑐, 𝑐 =
2Δ𝑡𝜅𝑘+ 1

2

Δ𝑧𝑘Δ𝑧𝑘+ 1
2

, (23.30)

we get,
−𝑎𝑇𝑛+1

𝑘−1 + 𝑏𝑇
𝑛+1
𝑘 − 𝑐𝑇𝑛+1

𝑘+1 = 𝑇𝑛−1
𝑘 + 2Δ𝑡 (−A(𝑇𝑛

𝑘 ) + D𝐻 (𝑇𝑛−1
𝑘 )). (23.31)

Setting F𝑘 ≡ −A(𝑇𝑛
𝑘 ) + D𝐻 (𝑇𝑛−1

𝑘 ), this is expressed in the matrix form as

©«

𝑏 −𝑐
−𝑎 𝑏 −𝑐

−𝑎 𝑏 −𝑐
. . .

. . .
. . .

−𝑎 𝑏 −𝑐
−𝑎 𝑏 −𝑐

−𝑎 𝑏

ª®®®®®®®®®®¬

©«

𝑇𝑛+1
1
𝑇𝑛+1

2
𝑇𝑛+1

3
...

𝑇𝑛+1
KM−2
𝑇𝑛+1

KM−1
𝑇𝑛+1

KM

ª®®®®®®®®®®¬
=

©«

𝑇𝑛−1
1 + 2Δ𝑡F1
𝑇𝑛−1

2 + 2Δ𝑡F2
𝑇𝑛−1

3 + 2Δ𝑡F3
...

𝑇𝑛−1
KM−2 + 2Δ𝑡FKM−2
𝑇𝑛−1

KM−1 + 2Δ𝑡FKM−1
𝑇𝑛−1

KM + 2Δ𝑡FKM

ª®®®®®®®®®®¬
. (23.32)

The l.h.s. has the form of the tri-diagonal matrix.
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23.5.1 A solution of tri-diagonal matrix
In general, simultaneous linear equations for 𝑛 variables with tri-diagonal matrix coefficients

©«

𝐵1 𝐶1
𝐴2 𝐵2 𝐶2

. . .
. . .

. . .

𝐴𝑛−1 𝐵𝑛−1 𝐶𝑛−1
𝐴𝑛 𝐵𝑛

ª®®®®®®¬
©«

𝑋1
𝑋2
...

𝑋𝑛−1
𝑋𝑛

ª®®®®®®¬
=

©«

𝐷1
𝐷2
...

𝐷𝑛−1
𝐷𝑛

ª®®®®®®¬
(23.33)

are solved using the Thomas method, which is modified from LU decomposition,

𝑃1 =𝐶1/𝐵1 (23.34)
𝑄1 =𝐷1/𝐵1 (23.35)

𝑃𝑘 =
𝐶𝑘

𝐵𝑘 − 𝐴𝑘𝑃𝑘−1
(2 ≤ 𝑘 ≤ 𝑛 − 1) (23.36)

𝑄𝑘 =
𝐷𝑘 − 𝐴𝑘𝑄𝑘−1

𝐵𝑘 − 𝐴𝑘𝑃𝑘−1
(2 ≤ 𝑘 ≤ 𝑛) (23.37)

𝑋𝑛 =𝑄𝑛 (23.38)
𝑋𝑘 =𝑄𝑘 − 𝑃𝑘𝑋𝑘+1 (1 ≤ 𝑘 ≤ 𝑛 − 1). (23.39)

23.6 Evaluation of time-integration methods for wave equations
In the ocean models, the CFL condition is mainly determined by the speed of baroclinic gravity waves. In evaluating time
integration in such wave propagation, it is not sufficient to evaluate only one variable as we have done in the previous
sections, but it is necessary to consider the interaction of two variables. Here, we evaluate time integration methods for
the simplest one-dimensional wave equation.

Consider the following one-dimensional wave equation,

𝜕𝑝

𝜕𝑡
= −𝑐 𝜕𝑢

𝜕𝑥
, (23.40)

𝜕𝑢

𝜕𝑡
= −𝑐 𝜕𝑝

𝜕𝑥
. (23.41)

We will discuss the accuracy of the time integration method based on Shchepetkin and McWilliams (2005) (hereafter,
SM2005). For the parts not explained in SM2005, see Durran (2010), Section 2.2 for more details.

Applying the Fourier transformation with respect to space by placing 𝑝(𝑡, 𝑥) = 𝑝𝑘𝑒
𝑖𝑘𝑥 , 𝑢(𝑡, 𝑥) = �̂�𝑘𝑢𝑖𝑘𝑥 and 𝜔𝑘 = 𝑘𝑐

yields,

𝜕𝑝𝑘
𝜕𝑡

= −𝑖𝜔𝑘 �̂�𝑘 , (23.42)

𝜕�̂�𝑘
𝜕𝑡

= −𝑖𝜔𝑘 𝑝𝑘 . (23.43)

For simplicity, we omit ˆ and the subscript 𝑘 , and denote the variable 𝜁𝑛 at the time 𝑡 = 𝑛Δ𝑡 of the variable 𝜁 . To further
simplify the equation, we introduce the dimensionless quantity 𝛼 = 𝜔𝑘Δ𝑡 = 𝑐𝑘Δ𝑡 (Durran (2010) uses 𝜔Δ𝑡 throughout his
text though it is a bit redundant). Since the maximum 𝑘 (𝑘𝑚𝑎𝑥) that can be resolved in the model is 1/Δ𝑥, the maximum
𝛼 (𝛼𝑚𝑎𝑥) is 𝑐Δ𝑡/Δ𝑥, i.e. Courant number.

In studying the stability and accuracy of the time integration scheme for the wave equation, we assume that a variable 𝜁
is multiplied by the complex number 𝜆 between 𝑛 and 𝑛 + 1 steps. (Durran (2010) uses 𝐴 instead of 𝜆).

𝜁𝑛+1 = 𝜆𝜁𝑛. (23.44)

During the time step, the amplification rate is |𝜆 | =
(
<(𝜆)2 + =(𝜆)2

)1/2, and phase change is 𝜃 = arctan(=(𝜆)/<(𝜆)).
(<(),=() are functions to extract real and complex numbers, respectively). The relative phase error is estimated as
𝑅 = 𝜃/𝛼 using the positive phase 𝛼. If 𝑅 > 1, the scheme is accelerating; if 𝑅 < 1, the scheme is decelerating. If the wave
is completely represented, then 𝜆 = 𝑒𝑖𝛼. In SM2005, to visually represent the error, 𝜆(𝛼) is drawn on the complex plane
by varying 𝛼 and compared with the complete solution 𝑒𝑖𝛼 (i.e. the unit circle on the complex plane).
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23.6.1 LFAM3 method
Here, we consider solving the wave equation with the third-order leap-frog Adams-Moulton method (LFAM3) as the
time-integration method used in the current version of MRI.COM. In the LFAM3 method, we first obtain a tentative value
of 𝑝𝑛+1,∗, 𝑢𝑛+1,∗ in the predictor step,

𝑝𝑛+1,∗ = 𝑝𝑛−1 − 2𝑖𝛼𝑢𝑛, (23.45)

𝑢𝑛+1,∗ = 𝑢𝑛−1 − 2𝑖𝛼𝑝𝑛. (23.46)

In the corrector step, we conduct the final time integration,

𝑝𝑛+1 = 𝑝𝑛 − 𝑖𝛼
{

5
12
𝑢𝑛+1,∗ + 2

3
𝑢𝑛 − 1

12
𝑢𝑛−1

}
, (23.47)

𝑢𝑛+1 = 𝑢𝑛 − 𝑖𝛼
{

5
12
𝑝𝑛+1,∗ + 2

3
𝑝𝑛 − 1

12
𝑝𝑛−1

}
. (23.48)

n - 2 n - 1

n n + 1

n+1/2

Δt

Adams-Moulton

Leap frog

Figure23.1 Schematics of the LFAM3 time integration. The 3rd-order Adams-Moulton method uses values at 𝑛 − 1,
𝑛, and, 𝑛 + 1 steps to find the value at 𝑛 + 1

2 step. The LFAM3 method used the leap-frog method to create the value
at 𝑛 + 1 step. This is why it is named LFAM3. For reference the third-order Adams-Bashforth methods uses values at
𝑛 − 2, 𝑛 − 1, and 𝑛 steps to find the value at 𝑛 + 1

2 .

The LFAM3 used for OGCM is as follows, which corresponds to SM2005 equations (2.38)-(2.41) (or SM2009 equations
(4.1)-(4.2)). This is composed of the predictor step,

𝑝𝑛+1/2 =

(
1
2
− 2𝛾

)
𝑝𝑛−1 +

(
1
2
+ 2𝛾

)
𝑝𝑛 − 𝑖𝛼(1 − 2𝛾)𝑢𝑛 (23.49)

𝑢𝑛+1/2 =

(
1
2
− 2𝛾

)
𝑢𝑛−1 +

(
1
2
+ 2𝛾

)
𝑢𝑛 − 𝑖𝛼(1 − 2𝛾)

[
𝑝𝑛 + 𝛽2𝑝𝑛+1/2 − 3𝑝𝑛 + 𝑝𝑛−1

1 − 2𝛾

]
(23.50)

and corrector step,

𝑝𝑛+1 = 𝑝𝑛 − 𝑖𝛼𝑢𝑛+1/2 (23.51)

𝑢𝑛+1 = 𝑢𝑛 − 𝑖𝛼
{
(1 − 𝜖)𝑝𝑛+1/2 + 𝜖

[(
1
2
− 𝛾

)
𝑝𝑛+1 +

(
1
2
+ 2𝛾

)
𝑝𝑛 − 𝛾𝑝𝑛−1

]}
. (23.52)

In the case of 𝛾 = 1/12, 𝛽 = 0, 𝜖 = 0, (23.45–23.48) and (23.49–23.52) are mathematically equivalent. The procedure for
(23.49–23.52) is described in detail in Section 3.

Now let us return to (23.45–23.48) to evaluate their errors. (23.45–23.48) is combined into two equations.

𝑝𝑛+1 =

(
1 − 5

6
𝛼2

)
𝑝𝑛 − 𝑖𝛼

{
2
3
𝑢𝑛 + 1

3
𝑢𝑛−1

}
, (23.53)

𝑢𝑛+1 =

(
1 − 5

6
𝛼2

)
𝑢𝑛 − 𝑖𝛼

{
2
3
𝑝𝑛 + 1

3
𝑝𝑛−1

}
. (23.54)

The above equations can be written in matrix form.(
𝑝𝑛+1

𝑢𝑛+1

)
=

(
1 − 5

6𝛼
2 −𝑖 2

3𝛼

−𝑖 2
3𝛼 1 − 5

6𝛼
2

) (
𝑝𝑛

𝑢𝑛

)
+

(
0 −𝑖 1

3𝛼
−𝑖 1

3𝛼 0

) (
𝑝𝑛−1

𝑢𝑛−1

)
(23.55)
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Figure23.2 Schematics of LFAM3 method used in the model. Mathematically this is equivalent to Fig. 23.1. The
starting point of the predictor step is 𝑛 − 1/2 + 2𝛾 step, which is a linear combination of 𝑛 − 1 and 𝑛 steps. The values
at 𝑛 + 1

2 step is obtained by integrating over the interval (1 − 2𝛾)Δ𝑡. In the corrector step, the values at 𝑛 + 1 step is
obtained from 𝑛 by integrating over the domain 𝑛-𝑛 + 1. The values at 𝑛 + 1

2 step are discarded after the corrector step.

The characteristic equation of this system is obtained by substituting 𝑝𝑛+1 = 𝜆𝑝𝑛 = 𝜆2𝑝𝑛−1, 𝑢𝑛+1 = 𝜆𝑢𝑛 = 𝜆2𝑢𝑛−1.

𝜆2
(
𝑝𝑛−1

𝑢𝑛−1

)
= 𝜆

(
1 − 5

6𝛼
2 −𝑖 2

3𝛼

−𝑖 2
3𝛼 1 − 5

6𝛼
2

) (
𝑝𝑛−1

𝑢𝑛−1

)
+

(
0 −𝑖 1

3𝛼
−𝑖 1

3𝛼 0

) (
𝑝𝑛−1

𝑢𝑛−1

)
(23.56)

Rearranging it yields the following equation.(
𝜆2 − 𝜆(1 − 5

6𝛼
2) 𝑖𝛼( 23𝜆 +

1
3 )

𝑖𝛼( 23𝜆 +
1
3 ) 𝜆2 − 𝜆(1 + 5

6𝛼
2)

) (
𝑝𝑛−1

𝑢𝑛−1

)
=

(
0
0

)
(23.57)

From the above determinant = 0, we obtain the following solution

𝜆2 −
(
1 − 5

6
𝛼2

)
𝜆 = ±𝑖𝛼

(
2
3
𝜆 + 1

3

)
(23.58)

The plus and minus in the equation correspond to the propagation of the waves in both directions, and placing 𝛼 = −𝛼
does not change the equation. Also, since the form is the same for 𝑝 and 𝑢, the properties of the wave equation in LFAM
are the same for that in LFAM3 for one variable.

Adopting the plus of equation (23.58), we obtain the following equation,

𝜆± =
1
12

(
𝑔1 ±

√
(−𝑔1)2 + 48𝑖𝛼

)
(23.59)

𝑔1 = 6 + 4𝑖𝛼 − 5𝛼2 (23.60)

Physical mode and Computational mode are 𝜆+ and 𝜆− for the range 0 < 𝛼 < 1.55, respectively. In the range 1.55 < 𝛼 <
1.59 they are 𝜆− and 𝜆+ respectively.

Figure 23.3 shows the 𝜆(𝛼) of LFAM3 drawn in the complex plane by varying 𝛼 and compared to the exact solution
𝑒𝑖𝛼 (i.e., the unit circle in the complex plane). Stability is determined by the amplitude of the physical mode exceeding
1, 𝛼 = 1.587 at this time. Though computational mode decreases faster than physical mode, there is a drawback that the
amplitudes of the computational mode and the physical mode approach each other when 𝛼 exceeds 1.

23.6.2 Generalized Leap-Frog Adams-Mouton method (G-LFAM3)
SM2005 has shown that the accuracy and stability of the time integration can be increased for the wave equation by making
minor modifications over the original LFAM3. The characteristic equation of Generalized LFAM3 derived by SM2005 is
as follows (SM2005 Equation 2.31),(

𝑝𝑛+1

𝑢𝑛+1

)
=

(
𝐴 −𝑖𝐵
−𝑖𝐶 𝐷

) (
𝑝𝑛

𝑢𝑛

)
+

(
𝐸 −𝑖𝐹
−𝑖𝐺 𝐻

) (
𝑝𝑛−1

𝑢𝑛−1

)
(23.61)
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Figure23.3 Characteristic solution of LFAM3 (𝛽 = 𝜖 = 0, 𝛾 = 1/12) on the complex plane. The solid line from (1,0)
is the physical mode, and the dashed line from (0,0) is the computational mode. Dots are marked every time 𝛼 changes
by 0.1. The point where the amplitude in physical mode exceeds 1 is at 𝛼 = 1.587.

Here, 𝐴–𝐻 are

𝐴 = 1 − 2𝛼2
(
1
2
− 𝛾

)
(1 − 2𝛽), 𝐵 = 𝛼

{
1
2
+ 2𝛾 − 4𝛼2

(
1
2
− 𝛾

)
𝛽

}
, (23.62)

𝐶 = 𝛼

{
1
2
+ 2𝛾 + 𝜖

(
1
2
− 𝛾

) [
1 − 2𝛼2

(
1
2
− 𝛾

)
(1 − 2𝛽)

]}
, (23.63)

𝐷 = 1 − 2𝛼2
(
1
2
− 𝛾

) {
1 − 𝜖

[
3
4
− 𝛾 + 2𝛼2

(
1
2
− 𝛾

)
𝛽

]}
, (23.64)

𝐸 = −4𝛼2
(
1
2
− 𝛾

)
𝛽, 𝐹 = 𝛼

(
1
2
− 2𝛾

)
, (23.65)

𝐻 = −𝛼2
(
1
2
− 𝛾

) (
1
2
− 2𝛾

)
𝜖, 𝐺 = 𝛼

{
1
2
− 2𝛾 − 𝜖

(
1
2
− 𝛾

) [
1 + 4𝛼2

(
1
2
− 𝛾

)
𝛽

]}
(23.66)

SM2005 discusses how to move 𝛾, 𝜖, 𝛽 to reduce error and increase stability. According to this, the case 𝛾 = 1/12, 𝜖 =
11/20, 𝛽 = 17/120 has the smallest error: its accuracy for the wave equation is 𝑂 (𝛼4). In this case the solution
is very close to the ideal solution as shown in Fig. 23.4. Stability is determined by the amplitude of computational
mode exceeding 1, where 𝛼 = 1.851640. This is the default setting of MRI.COM. The most stable combination is
𝛾 = 1/12, 𝛽 = 0.126, 𝜖 = 0.83 (Fig. 23.5). In this case the place where the amplitude of computational mode exceeds 1 is
𝛼 = 1.958537, but its accuracy for the wave equation is 𝑂 (𝛼3).

Figure23.4 Characteristic solutions of G-LFAM3 in the complex plane for the most accurate case 𝛾 = 1/12, 𝛽 =
17/120, 𝜖 = 11/20. Its accuracy for the wave equation is 𝑂 (𝛼4). The solid line from (1,0) is the physical mode, and
the dashed line from (0,0) is the computational mode. The point is marked every time 𝛼 changes by 0.1, and the place
where the amplitude of the computational mode exceeds 1 is 𝛼 = 1.851640.

23.6.3 Evaluation of errors in leap-frog method for wave equation
Here, we estimate the error in solving the wave equation with leap frog method previously used in MRI.COM.

𝑝𝑛+1 = −2𝑖𝛼𝑢𝑛 + 𝑝𝑛−1 (23.67)

𝑢𝑛+1 = −2𝑖𝛼𝑝𝑛 + 𝑢𝑛−1 (23.68)
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Figure23.5 Characteristic solutions of G-LFAM3 in the complex plane for the most stable case 𝛾 = 1/12, 𝛽 =
0.126, 𝜖 = 0.83. Its accuracy for the wave equation is 𝑂 (𝛼3). The solid line following from (1,0) is the physical mode,
and the dashed line following from (0,0) is the computational mode. Dots are marked every time 𝛼 changes by 0.1.
The point where the amplitude of the computational mode exceeds 1 is 𝛼 = 1.958537.

The following equation is obtained when written using matrices.(
𝑝𝑛+1

𝑢𝑛+1

)
=

(
0 −2𝑖𝛼
−2𝑖𝛼 0

) (
𝑝𝑛

𝑢𝑛

)
+

(
1 0
0 1

) (
𝑝𝑛−1

𝑢𝑛−1

)
(23.69)

The characteristic equations of this system are obtained by substituting 𝑝𝑛+1 = 𝜆𝑝𝑛 = 𝜆2𝑝𝑛−1, 𝑢𝑛+1 = 𝜆𝑢𝑛 = 𝜆2𝑢𝑛−1.

𝜆2
(
𝑝𝑛−1

𝑢𝑛−1

)
= 𝜆

(
0 −2𝑖𝛼
−2𝑖𝛼 0

) (
𝑝𝑛−1

𝑢𝑛−1

)
+

(
1 0
0 1

) (
𝑝𝑛−1

𝑢𝑛−1

)
(23.70)

This is rewritten as (
𝜆2 − 1 2𝑖𝛼𝜆
2𝑖𝛼𝜆 𝜆2 − 1

) (
𝑝𝑛−1

𝑢𝑛−1

)
=

(
0
0

)
. (23.71)

From the determinant = 0, we obtain the following equation,

(𝜆2 − 1)2 + 4𝛼2𝜆2 = 0. (23.72)

(𝜆2 − 1) = ±2𝑖𝛼𝜆 (23.73)

From the negative sign (the result is the same for the positive sign), we obtain the characteristic equation,

𝜆2 + 2𝑖𝛼𝜆 − 1 = 0. (23.74)

The characteristic equation above is exactly the same as the characteristic equation derived from the following one-
variable leap-frog equation.

𝑝𝑛+1 = 𝑝𝑛−1 − 2𝑖𝛼𝑝𝑛 (23.75)

𝜆2 + 2𝑖𝛼𝜆 − 1 = 0 (23.76)

The quadratic formula yields
𝜆 = −𝑖𝛼 ±

√
1 − 𝛼2 (23.77)

However, the above expression is correct only for 0 < 𝛼 < 1. Of these, −𝑖𝛼 +
√

1 − 𝛼2 is called the physical mode and
−𝑖𝛼 −

√
1 − 𝛼2 is called the computational mode.

The amplification factor |𝜆 | is always 1 in the range 0 < 𝛼 < 1. The relative phase shift is written as ∗

𝑅 =
1
𝛼

arctan

(
𝛼√

1 − 𝛼2

)
' 1 + 𝛼

2

6
+ 3𝛼4

40
+𝑂 (𝛼5) (23.78)

From Fig. 23.6, we can see that the phase is accelerated in the leap-frog time integration scheme. Since the amplitude of
not only the physical mode but also the computational mode is 1, it is necessary to introduce some mechanism to attenuate
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Figure23.6 Characteristic solutions in the complex plane of LF. The line starting from (1,0) is the physical mode, and
the line starting from (-1,0) is the computational mode. The outer dotted line is the exact solution (𝑒𝑖𝛼). The dotted
line outside is the exact solution (𝑒𝑖𝛼). Originally, the two lines overlap, but the exact solution is shifted outward to
make the difference in phase easier to understand. The color is changed every time 𝛼 changes 𝜋/18.

the computational mode. In the old version of MRI.COM, this was handled by inserting the Matsuno scheme about once
every 10 times.

23.6.4 Leap frog with Shuman’s averaging (LF-SA)
The method discussed in this subsection is not employed by MRI.COM, but is used by NEMO and others and is explained
for comparison. This method adopts Shuman’s averaging (LF-SA), which uses a weighted average of 𝑛 + 1, 𝑛 − 1, and 𝑛
steps to calculate the pressure gradient. In this case, it is known that the time step can be set to be twice as long as that
of a normal leap-frog method for wave equation. Here, we confirm this by actually solving the wave equations with the
Shuman’s averaging method (LF-SA), which are written as

𝑝𝑛+1 = 𝑝𝑛−1 − 2𝑖𝛼𝑢𝑛, (23.79)

𝑢𝑛+1 = 𝑢𝑛−1 − 2𝑖𝛼
(
𝑝𝑛−1 + 2𝑝𝑛 + 𝑝𝑛+1

4

)
. (23.80)

The characteristic equation in the matrix form is

𝜆2
(
𝑝𝑛−1

𝑢𝑛−1

)
=

(
1 −2𝑖𝛼𝜆

−2𝑖𝛼
(

1+2𝜆+𝜆2

4

)
1

) (
𝑝𝑛−1

𝑢𝑛−1

)
(23.81)

From the above determinant = 0, the eigenvalues are solutions of the following characteristic equations.

(𝜆2 − 1)2 + 𝛼2𝜆(𝜆 + 1)2 = 0 (23.82)

This equation has multiple solutions as 𝜆 = −1, which is the computational mode. The physical mode is

𝜆 =
2 − 𝛼2 ± 𝑖𝛼

√
4 − 𝛼2

2
. (23.83)

The amplification factor |𝜆 | is always 1 in the range 0 < 𝛼 < 2, and its relative phase error is

𝑅 =
1
𝛼

arctan

(
𝛼
√

4 − 𝛼2

2 − 𝛼2

)
' 1 + 𝛼

2

24
+ 3𝛼4

640
+𝑂 (𝛼5). (23.84)

This is practically the same as replacing 𝛼′ = 𝛼/2 in the LF method.

∗ The derivation of the last Taylor expansion is complicated. Here, it was derived using mathematica. The relative phase accuracy is 𝑂 (𝛼) and the
absolute phase accuracy is 𝑂 (𝛼2) .
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23.6.5 Time-staggered method
The method discussed in this subsection is not employed by MRI.COM, but is used by MITgcm, MOM, and others and
is explained for comparison. The properties of this solution are the same as the physical mode of LF-SA according to
Lemariè et al. (2015). Here, we confirm this by actually solving the wave equations with the time-staggered method, which
are written as

𝑝𝑛+
1
2 = 𝑝𝑛−

1
2 − 𝑖𝛼𝑢𝑛, (23.85)

𝑢𝑛+1 = 𝑢𝑛−1 − 𝑖𝛼𝑝𝑛+ 1
2 . (23.86)

In matrix form, it is rewritten as

𝜆

(
𝑝𝑛−1/2

𝑢𝑛

)
=

(
1 −𝑖𝛼
−𝑖𝛼𝜆 1

) (
𝑝𝑛−

1
2

𝑢𝑛

)
(23.87)

Its characteristic equation is
(𝜆 − 1)2 + 𝛼2𝜆 = 0. (23.88)

This solution has no computational mode. Its physical mode is

𝜆 =
2 − 𝛼2 ± 𝑖𝛼

√
4 − 𝑎2

2
. (23.89)

This solution is indeed identical to the physical mode of LF-SA shown in the previous subsection.

23.6.6 The 3rd-order Adams-Bashforth method (AB3)
The third-order Adams-Bashforth method (AB3), which may be used in the time extrapolation of the external force for the
barotropic component of the momentum equation, is also evaluated here with a single variable.

𝑞𝑛+
1
2 =

23
12
𝑞𝑛 − 4

3
𝑞𝑛−1 + 5

12
𝑞𝑛−2, (23.90)

𝑞𝑛+1 = 𝑞𝑛 − 𝑖𝛼𝑞𝑛+ 1
2 . (23.91)

The characteristic equation is

𝜆3 =

(
1 − 𝑖𝛼23

12

)
𝜆2 + 𝑖𝛼4

3
𝜆 − 𝑖𝛼 5

12
. (23.92)

Analytical solutions exist, but they are very long and have been omitted. As shown in Fig. 23.7, there are physical and
computational modes. The instability occurs when the amplitude of the computational mode exceeds 1 at 𝛼 = 0.72. It has
𝑂 (𝛼3) accuracy.

Figure23.7 The characteristic solution of the AB3 method in the complex plane. The solid line starting from (1,0)
is the physical mode, and the dashed line starting from (0,0) is the computational mode. The points are marked every
time 𝛼 changes by 0.1. The place where the amplitude of the computational mode exceeds 1 is 𝛼 = 0.72.
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23.6.7 Quasi-second-order Adams-Bashforth method (AB2𝜖 )
The quasi-second-order Adams-Bashforth method (AB2𝜖), which may be used in the time extrapolation of external forces
for the forward pressure equation, is also evaluated for a single variable. Quasi-second order means that the original AB2 is
second-order accurate but unstable, so by introducing 𝜖 , stability is obtained instead of giving up perfect𝑂 (Δ𝑡2) accuracy.

𝑞𝑛+
1
2 =

(
3
2
+ 𝜖

)
𝑞𝑛 −

(
1
2
+ 𝜖

)
𝑞𝑛−1 (23.93)

𝑞𝑛+1 = 𝑞𝑛 − 𝑖𝛼𝑞𝑛+ 1
2 (23.94)

The characteristic equation and its solution are

𝜆2 =

{
1 − 𝑖𝛼

(
3
2
+ 𝜖

)}
𝜆 + 𝑖𝛼

(
1
2
+ 𝜖

)
, (23.95)

𝜆± =
1
4

(
𝑔 ±

√
𝑔2 + 8𝑖𝛼(1 + 2𝜖))

)
(23.96)

𝑔 = −𝑖𝛼(3 + 2𝜖) + 2 (23.97)

The 𝜆+, 𝜆− are the physical mode and computational mode, respectively. As shown in Fig. 23.8, the physical mode is
distributed almost on the unit circle and slightly outside the unit circle around𝛼 = 0.50. The amplitude of the computational
mode is kept small enough. When 𝜖=0, it is outside the unit circle at the starting point of (1,0).

Figure23.8 The characteristic solution of the AB2𝜖 method in the complex plane. The solid line starting from (1,0)
is the physical mode, and the dashed line starting from (0,0) is the computational mode. The points are marked every
time 𝛼 changes by 0.1. The place where the amplitude of the computational mode exceeds 1 is 𝛼 = 0.50254.

23.6.8 Matsuno scheme
Here, we evaluate the Matsuno scheme, which was previously used with the LF method on MRI.COM.

𝑞𝑛+1∗ = 𝑞𝑛 − 𝑖𝛼𝑞𝑛 (23.98)

𝑞𝑛+1 = 𝑞𝑛 − 𝑖𝛼𝑞𝑛+1∗ =
(
1 − 𝑖𝛼 − 𝛼2

)
𝑞𝑛 (23.99)

Its characteristic solution is
𝜆 = 1 − 𝑖𝛼 − 𝛼2 (23.100)

Though it is stable for 0 < 𝛼 < 1, it has large amplitude and phase errors (Fig. 23.9).
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Figure23.9 The characteristic solution of the Matsuno method in the complex plane. The points are marked every
time 𝛼 changes by 0.1. The place where its amplitude exceeds 1 is 𝛼 = 1.

23.7 Evaluation of the time-integration method for advection-diffusion equation
Until now, we have concentrated on stability analysis for waves (internal gravity waves) according to SM2005, so we have
evaluated the time-integration method by considering only 𝜔𝑖 in the following equation,

𝜕𝑞𝑘
𝜕𝑡

= −𝜔𝑞𝑘 , (23.101)

𝜔 = 𝜔𝑟 + 𝑖𝜔𝑖 , (23.102)

and moving 𝛼 ≡ 𝜔𝑖Δ𝑡 in the range of real numbers. Then the method has been evaluated by comparing the behavior of
the eigenvalues (𝜆) of the characteristic equation with the analytical solution (𝑒𝑖𝛼).

This is equivalent to placing 𝑀 = 0 in the following one-dimensional advection-diffusion equation.

𝜕𝑞

𝜕𝑡
+ 𝑐 𝜕𝑞

𝜕𝑥
= 𝑀

𝜕2𝑞

𝜕𝑥2 (23.103)

On the other hand, Lemariè et al. (2015) considers that 𝜔𝑟 can be used to evaluate the difference between upstream
differential (numerical diffusion) and central differential advection in stability analysis. To do so, he investigated the
behavior of the eigenvalues (𝜆) of the characteristic equation by moving 𝜔 on the complex plane. Following this method,
in this section we examine stability analysis for various time-difference schemes, i.e., the range of amplitudes |𝜆 | ≤ 1 of
the characteristic equations. This is equivalent to the analysis called Absolute Stability (A-Stability) in Durran (2010).
Here we perform A-Stability for the LFAM3 method in the one-variable case and show that the imaginary part of this
solution is equivalent to the analysis of SM2005. The time integral of LFAM3 can be expressed for the Fourier series 𝑞
using 𝜇 ≡ 𝜔Δ𝑡 as follows

𝑞𝑛+1,∗ = 𝑞𝑛−1 + 2𝜇𝑞𝑛, (𝐿𝐹) (23.104)

𝑞𝑛+1/2 =
5
12
𝑞𝑛+1,∗ + 2

3
𝑞𝑛 − 1

12
𝑞𝑛−1 (AM3) (23.105)

𝑞𝑛+1 = 𝑞𝑛 + 𝜇𝑞𝑛+1/2 (corrector), (23.106)

=

(
1 + 2𝜇

3
+ 5𝜇2

6

)
𝑞𝑛 + 𝜇

3
𝑞𝑛−1. (23.107)

The characteristic equation for (23.107) is

𝜆2 =

(
1 + 2𝜇

3
+ 5𝜇2

6

)
𝜆 + 𝜇

3
. (23.108)

Its solution is

𝜆± =
1
12

(
𝑔1 ±

√
(−𝑔1)2 + 48𝜇

)
(23.109)

𝑔1 = 6 + 4𝜇 + 5𝜇2 (23.110)
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23.7 Evaluation of the time-integration method for advection-diffusion equation

The region of A-Stability is obtained by finding the region of |𝜆 | ≤ 1 on the complex plane of 𝜇, which corresponds to
the interior of the contour in Fig. 23.10. On the other hand, if we set 𝜇𝑟 = 0 in 𝜆 and vary 𝜆 on the complex plane with
𝛼 ≡ 𝜇𝑖 as a parameter, we obtain Fig. 23.3. In fact, substituting 𝜇 = −𝑖𝛼 in equation (23.108), we obtain equation (23.60).
The place where the contour in Fig. 23.10 intersects the imaginary axis is 𝜇𝑖 = 1.59, which is equal to the place where the
physical mode intersects the unit circle in Fig. 23.3. Incidentally, the region of stability of LF is on the imaginary axis in
the range from (0,−𝑖) to (0, 𝑖), and is absolutely unstable with respect to diffusion, etc.

Figure23.10 Contour of |𝜆 | = 1 on the complex plane of 𝜇. This is equivalent to the curve of LFAM3 in Fig.1(a) in
Lemariè et al. (2015). The blue line corresponds to 𝜆+ and the red lines correspond to 𝜆−. The region enclosed by the
curve is the stable region.

When we draw the region of stability for AB2𝜖 and AB3, we get Fig. 23.11. The intersection of the imaginary axes
is 0.502 for AB2𝜖 versus 0.72 for AB3, which means that AB3 is more stable in the pure wave equation. Since AB2𝜖 is
more extended toward the real axis, the stability for diffusion is more stable for AB2𝜖 . For other schemes, see Fig. 1 of
Lemariè et al. (2015).

Figure23.11 Contours of |𝜆 | = 1 on the complex plane of 𝜇, which are equivalent to the curve of AB2𝜖 and AB3 in
Fig.1(a) in Lemariè et al. (2015). The blue line corresponds to the AB2𝜖 method and the red line corresponds to the
AB3𝜆− method. The regions enclosed by the curves are the stable regions.
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Chapter 24

Generalized orthogonal curvilinear coordinate
grids

This chapter introduces generalized orthogonal curvilinear coordinates and presents related calculus.

24.1 Outline
A finite volume ocean model on geographic coordinates does not have any problem concerning the South Pole because
it does not calculate around the South Pole. However, serious problems arise around the North Pole where the meridian
concentrates to one point in the ocean. First, it is necessary to calculate the temporal evolution of the physical quantity in
a special way only there, because the relations between U-cells that surround the North Pole and the northernmost T-cell
are topologically peculiar. Next, even if a cell doesn’t touch the North Pole, its zonal lattice interval is extremely small
near the North Pole. Therefore, a short time step for integration is required owing to the limitation of the CFL condition.
This limitation is reflected directly in the increased calculation time required. Moreover, when the zonal grid intervals in
low latitudes and the Arctic region are extremely different, the arguments about accuracies of numerical schemes and the
parameters for diffusion and viscosity operators generally cannot be applied uniformly to a model domain.

The following can be considered to avoid such problems concerning the North Pole. 1) Creating a huge island including
the North Pole. The finite-difference calculation in the island is abandoned, and the lateral boundary values are restored
to the climatology. 2) Shifting the singular points of the model to a continent or a huge island by changing the model’s
horizontal grid system. The MRI.COM scheme adopts the latter approach, which is outlined in this section.

Because the MRI.COM code is based on generalized orthogonal coordinates, the geographical latitude (𝜙) and longitude
(𝜆) are not of a great concern for the calculus in the model. However, it is necessary to know the land and sea distribution,
sea depth, scale factor, and the Coriolis parameter given as a function of 𝜆 and 𝜙 at every grid point of the model prior
to the calculation. We describe the method of generating the orthogonal coordinate grid system in Section 24.2. Using a
conformal transformation in the general sense, the functions that describe the relation between model coordinates (𝜇, 𝜓)
and geographic coordinates (𝜆, 𝜙), 𝜆(𝜇, 𝜓), 𝜙(𝜇, 𝜓), 𝜇(𝜆, 𝜙), and 𝜓(𝜆, 𝜙), are obtained.

Because an atmospheric boundary condition is given in many cases at grid points in geographic coordinates, it is
necessary to prepare tables for converting the surface atmospheric temperature, the wind stress, and so on. To convert a
vector quantity, we must remember that the direction of the 𝜇 contour differs from that of the 𝜆 contour (meridian). The
difference is described in Section 24.3. We can use the functions, (𝜆, 𝜙) ⇐⇒ (𝜇, 𝜓), to convert a scalar quantity as well
as sea depth and the Coriolis parameter. The total flux that the ocean receives from the atmosphere should be equal to the
total flux that the atmosphere gives to the ocean. The method for conserving the total flux is explored in Section 24.4. The
vector operation in generalized orthogonal coordinates is concisely described in Section 24.5.

24.2 Generation of orthogonal coordinate system using conformal mapping
We designate the plane that touches the sphere at the North Pole as SN. A polar stereographic projection is a conformal
transformation in the general sense, so that an orthogonal coordinate system on the sphere is mapped onto an orthogonal
coordinate system on SN and the orthogonality is preserved on the reverse transformation (Figure 24.1). Moreover, if SN is
assumed to be a complex plane, various conformal transformations can be defined on it. Therefore, applying (i) the polar
stereographic projection, (ii) a conformal transformation on the complex plane SN, and (iii) the reverse polar stereographic
projection to a geographic coordinate grid point (𝜆, 𝜙) on the sphere, an orthogonal coordinate grid point on the sphere
can be obtained (Bentzen et al., 1999).

The functions 𝜇(𝜆, 𝜙) and 𝜓(𝜆, 𝜙) are obtained by the following procedure:
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Figure24.1 Schematic illustration of a Polar stereographic projection (a conformal transformation in the general sense
between the sphere and SN).

1. From a point (𝜆, 𝜙) on the sphere to a point 𝑧 on SN (polar stereographic projection). Defining colatitude
𝜙′ = 𝜋/2 − 𝜙,

𝑧 = tan
(
𝜙′

2

)
𝑒𝑖𝜆, (24.1)

where the origin of SN corresponds to 𝜙′ = 0 (𝜙 = 𝜋/2), and the positive part of the real axis corresponds to 𝜆 = 0.
2. Conformal transformation 𝑀C on SN:

𝜁 = 𝑀C (𝑧). (24.2)

3. From a point 𝜁 on SN to a point (𝜇, 𝜓) on the sphere (reverse polar stereographic projection).

𝜇 = arg(𝜁), (24.3)
𝜓 ′ = 2 arctan |𝜁 |, (24.4)
𝜓 = 𝜋/2 − 𝜓 ′. (24.5)

Functions 𝜆(𝜇, 𝜓) and 𝜙(𝜇, 𝜓) are obtained by reversing the above procedure.
Defining 𝜓 ′ = 𝜋/2 − 𝜓,

𝜁 = tan
(
𝜓 ′

2

)
𝑒𝑖𝜇, (24.6)

𝑧 = 𝑀−1
C (𝜁), (24.7)

and

𝜆 = arg(𝑧), (24.8)
𝜙′ = 2 arctan |𝑧 |, (24.9)
𝜙 = 𝜋/2 − 𝜙′. (24.10)

Thus, when a model coordinate grid point, (𝜇0 +Δ𝜇× (𝑖−1), 𝜓0 +Δ𝜓× ( 𝑗 −1)) is given, we know the geographic position
of the point, Coriolis parameter, etc., at once.

Bentzen et al. (1999) used the linear fraction conversion as a conformal transformation on SN. That is,

𝜁 = 𝑀C (𝑧) =
(𝑧 − 𝑎)(𝑏 − 𝑐)
(𝑐 − 𝑎) (𝑏 − 𝑧) , (24.11)
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where the three complex numbers 𝑎, 𝑏, and 𝑐 expressed by

𝑎 = tan
(
𝜙′𝑎
2

)
𝑒𝑖𝜆𝑎 , 𝑏 = tan

(
𝜙′𝑏
2

)
𝑒𝑖𝜆𝑏 , 𝑐 = tan

(
𝜙′𝑐
2

)
𝑒𝑖𝜆𝑐 , (24.12)

correspond to the three geographic coordinate grid points (𝜆𝑎, 𝜙𝑎), (𝜆𝑏 , 𝜙𝑏), and (𝜆𝑐 , 𝜙𝑐), which are mapped to the model
coordinate grid points, (𝜇, 𝜓) = (0, 𝜋/2), (0,−𝜋/2), (0, 0), respectively. Therefore, the singular point (𝜇, 𝜓) = (0, 𝜋/2)
in the model calculation can be put on Greenland, by setting (𝜆𝑎, 𝜙𝑎) at 75◦N and 40◦W. If TRIPOLAR or JOT option is
specified instead of SPHERICAL, then two singular points: (𝜇, 𝜓) = (0, 𝜋/2) and (0,−𝜋/2) can be put on arbitrary land
locations by suitably setting (𝜆𝑎, 𝜙𝑎) and (𝜆𝑏 , 𝜙𝑏), which are model parameters (north_pole_lon, north_pole_lat,
south_pole_lon, and south_pole_lat in degree) that should be specified in namelist nml_poles (Table 3.3).

When TRIPOLAR option is specified, the parameters are set to 𝜙𝑎 = 𝜙𝑏 = 64°N, 𝜆𝑎 = 80°E, and 𝜆𝑏 = 100°W. The
transformed grids are used for the region north of 64°N, and geographic coordinates are used for the region south of 64°N.
This tripolar coordinate system can express the Arctic Sea with a higher resolution than the Southern Ocean. The adoption
of geographic coordinates south of 64°N enables us to do the assimilation and analysis with relative ease (Figure 24.2).

When JOT option is specified, the Joukowski conversion is used as a conformal transformation on SN. That is,

𝑧 = 𝑀−1
𝐶 (𝜁) =

(
𝜁 +

𝜓 ′20
𝜁

)
𝑒𝑖𝜇0 . (24.13)

This Joukowski conversion maps the area outside the circle with a radius of 𝜓 ′0 centered at the origin of the 𝜁-plane to the
whole domain of the 𝑧-plane, and rotates it by 𝜇0. The left panel of Figure 24.2 presents an example where the coordinate
system is created by setting 𝜓 ′0 to 20° and 𝜇0 to 80°. Because there is no discontinuity of grid spacing in this coordinate
system, the singular points can be put at various positions. For instance, the singular point on the North American side
can be put on the Labrador Peninsula or in Greenland.

Figure24.2 Model coordinate grid arrangement in the Arctic sea. Left: Grid system made through the Joukowski
conversion (JOT). Right: Combination of the coordinate systems made through the linear fraction conversion and
conventional geographic coordinates (TRIPOLAR).

Functions 𝜆(𝜇, 𝜓) and 𝜙(𝜇, 𝜓) are defined as subroutine mp2lp, and functions 𝜇(𝜆, 𝜙) and 𝜓(𝜆, 𝜙) are defined as
subroutine lp2mp. Module programs trnsfrm.{spherical, moebius, tripolar, jot}.F90 contain these internal sub-
routines. These functions, especially mp2lp, are frequently used when the topography and the surface boundary condition
are made before starting the main integration of model.

24.3 Rotation of vector
A vector expressed in geographic coordinates (𝜆, 𝜙) should be rotated when observed from model coordinates (𝜇, 𝜓).
Taking advantage of the local orthogonality of coordinate axes, the angle (𝛼) is obtained as an angle at which the meridian
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(𝜆 = 𝜆0) of geographic coordinates intersects that of the model coordinates (𝜇 = 𝜇0) at a certain point. First, we set

𝑧 = 𝑓 (𝜁), 𝑧 = 𝑥 + 𝑖𝑦, 𝜁 = 𝑢 + 𝑖𝑣, (24.14)

𝑓 ′(𝜁) =
𝜕𝑥

𝜕𝑢
+ 𝑖 𝜕𝑦
𝜕𝑢

=
𝜕𝑦

𝜕𝑣
− 𝑖 𝜕𝑥
𝜕𝑣
. (24.15)

At a certain point 𝑧0 = 𝑓 (𝜁0) on geographic coordinates, the angle 𝜃 at which a curve 𝑣 = 𝑣0 meets a straight line 𝑦 = 𝑦0
is given by

tan 𝜃 =
[
𝜕𝑦

𝜕𝑥

]
𝑣0

=

[
𝜕𝑦

𝜕𝑢

/ 𝜕𝑥
𝜕𝑢

]
𝑣0

,

then (see Figure 24.3),
𝜃 = arg( 𝑓 ′(𝜁0)). (24.16)

Figure24.3 A meridian (red) in geographic coordinates (𝜆, 𝜙) (left) and a meridian (blue) in model coordinates (𝜇, 𝜓) (right).

Assuming 𝜆 = arg(𝑧) and 𝜇 = arg(𝜁), at point 𝜁0 the straight line (𝑣 = 𝑣0) meets the straight line (𝜇 = 𝜇0) at the angle
−𝜇0 (𝜇0 → 𝑣0), and at point 𝑧0 the meridian (𝜆 = 𝜆0) meets the curve (𝑣 = 𝑣0) at the angle 𝜆0 − 𝜃 (𝑣0 → 𝜆0). The
meridian (𝜆 = 𝜆0) in 𝜆-𝜙 coordinates meets the line (𝜇 = 𝜇0) in 𝜇-𝜓 coordinates at angle 𝛼 given as follows:

𝛼 = − 𝜇0 + 𝜆0 − 𝜃
=𝜆0 − 𝜇0 − arg( 𝑓 ′(𝜁0)). (24.17)

Subroutine rot_mp2lp defined in trnsfrm.{spherical, moebius, tripolar, jot}.F90 returns (cos𝛼, sin𝛼) at a
specified grid point of the model. A wind stress vector (𝜏𝑥 , 𝜏𝑦) in geographic coordinates should appear in the model
ocean described in the 𝜇-𝜓 coordinate system as (𝜏𝑥 cos𝛼 − 𝜏𝑦 sin𝛼, 𝜏𝑥 sin𝛼 + 𝜏𝑦 cos𝛼).

24.4 Mapping a quantity from geographic coordinates to transformed coordinates
We consider a method to receive a quantity 𝐺 𝐼 ,𝐽 given at the geographic coordinate grids (𝐼, 𝐽) as the quantity 𝐻𝑀,𝑁

at the model coordinate grids (𝑀, 𝑁) (Figure 24.4). The quantities are wind stress components after the vector rotation,
precipitation per unit area, sea surface atmospheric temperature, and so on. In addition, the average depth at a model grid
point can also be calculated by the following method because bottom topography (depths of sea floor) is usually given in
geographic coordinates.
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Figure24.4 Grids (𝐼, 𝐽) and (𝑀, 𝑁) subdivided into finer grids (𝑖, 𝑗) and (𝑚, 𝑛).

Grids (𝐼, 𝐽) and (𝑀, 𝑁) are suitably subdivided into finer grids (𝑖, 𝑗) and (𝑚, 𝑛). We call these filter grids. A quantity
𝐺 ′𝑖, 𝑗 is assumed to be homogeneously distributed in the geographic filter grids (𝑖, 𝑗) covered by grid (𝐼, 𝐽),

𝐺 ′𝑖, 𝑗 = 𝐺 𝐼 ,𝐽 .

Assume the quantity at a model filter grid 𝐻 ′𝑚,𝑛 is equal to that at the nearest geographic filter grid,

𝐻 ′𝑚,𝑛 = 𝐺 ′𝑖 (𝑚,𝑛) , 𝑗 (𝑚,𝑛) .

The quantity at model grid (𝑀, 𝑁) is obtained as the area-weighted average:

𝐻𝑀,𝑁 =
1

𝐴𝐻 𝑀,𝑁

∑
𝑚,𝑛

𝐴𝐻 ′𝑚,𝑛𝐻
′
𝑚,𝑛, (24.18)

where 𝐴𝐻 𝑀,𝑁 is the area of model grid and 𝐴𝐻 ′𝑚,𝑛 is the area of model filter grid.
When the grid intervals of geographic filter grid (𝑖, 𝑗) and model filter grid (𝑚, 𝑛) are extremely small, the total quantity

(flux) received on the model grids (𝑀, 𝑁) is equal to the total quantity (flux) given by the geographic grids (𝐼, 𝐽). The
relation between the quantity in the geographic grids and that in the model grids is defined by weight 𝑤,

𝐻𝑀,𝑁 =
∑
𝐼 ,𝐽

𝑤(𝑀, 𝑁, 𝐼, 𝐽)𝐺 𝐼 ,𝐽 . (24.19)

How is the quantity converted in an actual calculation in the model?

1. When the strict conservation of quantity (flux) is necessary:
Fresh water is not permitted to be generated or vanish at the surface boundary in a run using an atmosphere-ocean
coupled model, for instance. In this case, 𝑤(𝑀, 𝑁, 𝐼, 𝐽) is prepared beforehand, and the flux is passed from the
atmosphere through equation (24.19) to the ocean. The resolution of the filter grid need not be extremely fine,
provided that every geographic filter grid is linked to more-than-zero model filter grids and∑

𝐼 ,𝐽

𝐴𝐺𝐼 ,𝐽 =
∑
𝑖, 𝑗

𝐴′𝐺′ 𝑖, 𝑗 =
∑
𝑚,𝑛

𝐴′𝐻 ′𝑚,𝑛 =
∑
𝑀,𝑁

𝐴𝐻 𝑀,𝑁 .

2. When conservation need not be guaranteed:
When the ocean model is driven by the surface boundary condition based on atmospheric re-analysis data, the
amount of fresh water entering the sea as precipitation and river discharge is not equal to that drawn from the ocean

– 307 –



24.5 Vector operation and differentiation in generalized orthogonal coordinates

through evaporation and sublimation. Therefore, the global sea surface height rises or descends during years of
integration. It is not very important to pursue complete conservation of fresh-water under this condition. In such a
case, the flux at a model grid point can be prepared beforehand using equation (24.19), to avoid the time-consuming
flux conversions in the model calculation.

24.5 Vector operation and differentiation in generalized orthogonal coordinates
To formulate the model equations, we have to know the vector operation and differentiation in generalized orthogonal
coordinates. Some basic formulae used in formulating primitive equations are presented here.

The line element vector 𝛿x at a certain point (𝜇, 𝜓, 𝑟) in an arbitrary general orthogonal coordinate system is expressed
as

𝛿x = ℎ𝜇𝛿𝜇e𝜇 + ℎ𝜓𝛿𝜓e𝜓 + ℎ𝑟 𝛿𝑟e𝑟 , (24.20)

where basis vectors e𝜇, e𝜓 , and e𝑟 are mutually orthogonal unit vectors, and ℎ𝜇, ℎ𝜓 , and ℎ𝑟 are scale factors.
Defining

∇ =
e𝜇
ℎ𝜇

𝜕

𝜕𝜇
+

e𝜓
ℎ𝜓

𝜕

𝜕𝜓
+ e𝑟
ℎ𝑟

𝜕

𝜕𝑟
, (24.21)

the gradient of scalar 𝐴(𝜇, 𝜓, 𝑟) is

∇𝐴 =
e𝜇
ℎ𝜇

𝜕𝐴

𝜕𝜇
+

e𝜓
ℎ𝜓

𝜕𝐴

𝜕𝜓
+ e𝑟
ℎ𝑟

𝜕𝐴

𝜕𝑟
, (24.22)

and the divergence of vector A = 𝐴𝜇e𝜇 + 𝐴𝜓e𝜓 + 𝐴𝑟e𝑟 is

∇ · A =
1

ℎ𝜇ℎ𝜓ℎ𝑟

[
𝜕 (ℎ𝜓ℎ𝑟 𝐴𝜇)

𝜕𝜇
+
𝜕 (ℎ𝑟 ℎ𝜇𝐴𝜓)

𝜕𝜓
+
𝜕 (ℎ𝜇ℎ𝜓𝐴𝑟 )

𝜕𝑟

]
. (24.23)

The 𝑟 component of curlA is
1

ℎ𝜇ℎ𝜓

[
𝜕 (ℎ𝜓𝐴𝜓)

𝜕𝜇
−
𝜕 (ℎ𝜇𝐴𝜇)
𝜕𝜓

]
. (24.24)

The calculation of velocity advection includes (a · ∇)A, where a is an arbitrary vector (a = 𝑎𝜇e𝜇 + 𝑎𝜓e𝜓 + 𝑎𝑟e𝑟 ).
The 𝜇 component of (a · ∇)A is

a · ∇𝐴𝜇 +
𝐴𝜓

ℎ𝜇ℎ𝜓

(
𝑎𝜇
𝜕ℎ𝜇

𝜕𝜓
− 𝑎𝜓

𝜕ℎ𝜓

𝜕𝜇

)
+ 𝐴𝑟
ℎ𝑟 ℎ𝜇

(
𝑎𝜇
𝜕ℎ𝜇

𝜕𝑟
− 𝑎𝑟

𝜕ℎ𝑟
𝜕𝜇

)
. (24.25)

The second and third terms are so-called "metric" terms in the equation of motion in spherical coordinates.
These expressions in spherical coordinates (𝜆, 𝜙, 𝑟) are shown next. Defining longitude 𝜆, latitude 𝜙, and radius of the

earth 𝑟, scale factors are ℎ𝜆 = 𝑟 cos 𝜙, ℎ𝜙 = 𝑟 , and ℎ𝑟 = 1.
Velocity vector v is

v = 𝑢e𝜆 + 𝑣e𝜙 + 𝑤e𝑟 , (24.26)

where e𝜆, e𝜙 , and e𝑟 are the eastward, northward, and upward unit vectors, respectively, and (𝑢, 𝑣, 𝑤) = (𝑟 cos 𝜙 ¤𝜆, 𝑟 ¤𝜙, ¤𝑟).
The gradient of scalar function 𝐴(𝜆, 𝜙, 𝑟) is,

∇𝐴 =
e𝜆

𝑟 cos 𝜙
𝜕𝐴

𝜕𝜆
+

e𝜙
𝑟

𝜕𝐴

𝜕𝜙
+ e𝑟

𝜕𝐴

𝜕𝑟
, (24.27)

where
∇ =

e𝜆
𝑟 cos 𝜙

𝜕

𝜕𝜆
+

e𝜙
𝑟

𝜕

𝜕𝜙
+ e𝑟

𝜕

𝜕𝑟
. (24.28)

For vector A = 𝐴𝜆e𝜆 + 𝐴𝜙e𝜙 + 𝐴𝑟e𝑟 , the divergence is

∇ · A =
1

𝑟 cos 𝜙

[
𝜕𝐴𝜆
𝜕𝜆
+
𝜕 (cos 𝜙𝐴𝜙)

𝜕𝜙

]
+ 𝜕 (𝑟

2𝐴𝑟 )
𝑟2𝜕𝑟

. (24.29)

and the 𝑟 component of curlA is

[curlA]𝑟 =
1

𝑟 cos 𝜙

[
𝜕𝐴𝜙

𝜕𝜆
− 𝜕 (cos 𝜙𝐴𝜆)

𝜕𝜙

]
. (24.30)
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The 𝜆 component of (a · ∇)A is

[(a · ∇)A]𝜆 = a · ∇𝐴𝜆 −
𝐴𝜙𝑎𝜆 tan 𝜙

𝑟
+ 𝐴𝑟𝑎𝜆

𝑟
. (24.31)

The Coriolis force in generalized orthogonal coordinates (𝜇, 𝜓, 𝑟) is given as

2Ω × v = (2Ω𝜓𝑤 − 2Ω𝑟 𝑣)e𝜇 + (2Ω𝑟𝑢 − 2Ω𝜇𝑤)e𝜓 + (2Ω𝜇𝑣 − 2Ω𝜓𝑢)e𝑟 , (24.32)

where Ω = Ω𝜇e𝜇 + Ω𝜓e𝜓 + Ω𝑟e𝑟 is the rotation vector of the Earth, and v = 𝑢e𝜇 + 𝑣e𝜓 + 𝑤e𝑟 is the velocity vector. We
designate 𝑓𝜇 = 2Ω𝜇, 𝑓𝜓 = 2Ω𝜓 , and 𝑓 = 𝑓𝑟 = 2Ω𝑟 in Chapter 2. The rotation vector of the Earth is (Ω𝜆,Ω𝜙 ,Ω𝑟 ) =
(0,Ω cos 𝜙,Ω sin 𝜙) in geographic coordinates (𝜆, 𝜙, 𝑟).
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User’s Guide

This chapter briefly explains the procedures needed to run MRI.COM. The description in this chapter is based on
MRI.COM version 5.0 and some contents presented in this chapter may not be used for the latest version. It is recom-
mended that users refer to README_First.md, README_Options.md, README_Namelist.md, README_Monitor.md, and
README_Restart.md in the docs/ directory when setting up a model.

The minimal information to prepare, run, and post-process is presented in this chapter in the following order:

• Model setup: User defined parameter files and compilation (Section 25.1 and Table 25.1).
• Input data: Grid spacing, topography, and surface forcing etc., to be read at run time (Section 25.2 and Table

25.2).
• Restart file: Explanation of restart files (Section 25.3).
• Execution: Explanation of the runtime parameters that control time-integration (Section 25.4).
• Post process: A description of monitor files (Section 25.5).

Note that cgs units are employed to express physical values in the model.
We are developing a comprehensive package of tools "MRI.COM eXecution Environment (MXE)" that aggregates

programs for preprocessing, execution, postprocessing, and analysis of MRI.COM experiments. This is briefly explained
in Section 25.6. Appendix (Sec. 25.7) contains website information and a list of model compilation options.

25.1 Model setup
25.1.1 Model configuration file (configure.in)
This section describes the procedures necessary for setting up the model and compiling its programs. First, prepare
configure.in that contains the information about model options and grid size. This is needed for compilation. Additional
parameters are required for some particular model options. Those are listed in Table 25.1 (see also README_Options.md).
Following is an example of configure.in.

An example configure.in for Global tripolar 1° × 0.5° grid model� �
DEFAULT_OPTIONS="IDEALAGE ICE SIDYN CALALBSI SMAGOR VIS9P DIFAJS GLS VVDIMP
SOMADVEC ISOPYCNAL HFLUX TAUBULK WFLUX RUNOFF SFLUXR BULKNCAR
CYCLIC BBL TRIPOLAR PARALLEL"
NAME_MODEL=’GLOBAL’
IMUT=364
JMUT=368
KM=51
NPARTX=8
NPARTY=4
NUM_ICECAT=5
NUMTRC_P=1� �
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Table25.1 Model parameters to be set in configure.in

option name variable name description
always required IMUT, JMUT, KM zonal/meridional/vertical grid number

NAME_MODEL name of the model (default = "tmOGCM")
NSFMRGN the number of side-boundary ghost cells to reduce the communication cost

in parallel computation (see Ishizaki and Ishikawa, 2006)
PARALLEL NPARTX, NPARTY the number of zonally/meridionally partitioned region for a computation us-

ing parallel processors: the number of parallel processes should be NPARTX
× NPARTY

passive tracers NUMTRC_P only when any passive tracer is calculated (NUMTRC_P ≥ 1)
ICE NUM_ICECAT the number of thickness categories of sea ice

25.1.2 Compilation of the model
A standard compiling script is prepared as compile.sh in the src/ directory. The part depending on the system (OS,
Fortran compiler, and compiler option) are found in Machines/ directory.

To compile the programs, execute compile.sh. The script compile.sh creates param.F90, Icecat/ice_param.F90,
and Makefile from configure.in by running configure, and then executes the command make to create the executable
file ogcm. The environment variables for compilation are set in configure using the options prescribed in configure.in.
If configure.in is newer than param.F90, a new param.F90 is created based on the parameter values defined in
configure.in.

The program files that should be compiled are automatically selected according to the descriptions of the relationships in
Makefile, but users should be careful since it might not be perfect. The compilation should be carried out after executing
make clean, when any compile option in configure.in is changed.

25.2 Preparation of input data files for execution
Data files listed on Table 25.2 must be prepared, according to user’s specification of compile options and runtime
parameters. See Section 25.3 for how to handle restart files.

Table25.2 Main input data files and their related program files. Here, name_model represents the specific name given
as NAME_MODEL in configure.in.

subject file name specified in (NAMELIST.name_model)
runtime parameters NAMELIST.name_model
specification about monitoring NAMELIST.name_model.MONITOR
variable horizontal grid spacing file_dxdy_tbox_deg (nml_horz_grid)
variable vertical grid spacing file_dz_cm (nml_vert_grid)
grid cell area and line elements file_scale (nml_grid_scale)
topography file_topo (nml_topo)
reference data for tracers trcref(_surf)_conf%file_data
restoring coefficient for tracers rstcoef(_surf)_conf%file_data
surface forcing file_data (nml_force_data)
surface forcing grid file_data_grid (nml_force_data)
restart files file_base (nml_restart)

25.2.1 Grid spacing and cell area
Details on how to specify grid information and how to prepare the necessary data is given in Section 3.6. The grid spacing
data file should be prepared for each of the horizontal (file_dxdy_tbox_deg) or vertical (file_dz_cm) directions when
variable grid spacing is used for that direction. The units are in degrees for the horizontal and in cm for the vertical.

When the model grid points are defined on the basis of general orthogonal coordinates, the quarter cell area and line
elements should be prepared. The units are in cgs. It is read from the file file_scale.

When spherical coordinates are used (SPHERICAL option), e.g., the grids are defined on geographical latitude and
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longitude, the grid information is analytically calculated in the model, and the file file_scale is not necessary.

25.2.2 Topography
Land-sea distribution and sea-floor topography should be given by the topography data file file_topo. The topographic
data consist of the 4-byte integer array HO4(imut, jmut) that contains the sea floor depths of the velocity grid points (in
cm) and the 4-byte integer array EXNN(imut, jmut) that contains its corresponding vertical level. They should be written
unformatted and sequentially as follows:

Format of topographic data (file_topo)� �
integer(4) :: ho4(imut,jmut),exnn(imut,jmut)
open(unit=nu,file=file_topo)
write(unit=nu) ho4, exnn� �

An example of the topography for global 1◦ × 0.5◦ model is shown in Figure 25.1. In creating a model topography,
especially for a low-resolution model, the user should be careful that the important gateways for the ocean circulation be
kept open and that the land blocking the ocean circulation be kept closed.

Figure25.1 Example of ocean model topography (global 1◦ × 0.5◦ grid model).

25.2.3 Reference data and restoring coefficient for tracers
For each tracer, the integration may be started from an initial state based on the reference data and the tracer values may be
restored to the reference data during the integration. To do this, tracer reference values and restoring coefficients should
be prepared. See Chapter 13 for how to prepare these data.

25.2.4 Surface forcing data
See Chapter 14 for how to prepare surface forcing data. The surface forcing data are read at a uniform time interval. A leap
year is set according to an optional namelist, nml_calendar (Table 25.10). Climatological data may be used repeatedly.

The following data files should be prepared according to the chosen model options. Each file is opened only once at the
beginning of run time and thus should contain all the data needed for that run.

– 313 –



25.3 Restart file

Table25.3 Surface data to be read from namelist nml_force_data.

name units usage
X-ward wind stress U-wind dyn cm−2 if not TAUBULK
Y-ward wind stress V-wind dyn cm−2 if not TAUBULK
X-ward wind speed U-wind cm s−1 if TAUBULK
Y-ward wind speed V-wind cm s−1 if TAUBULK
Downward shortwave radiation ShortWave erg s−1 cm−2 =

10−3 W m−2

Downward longwave radiation LongWave erg s−1 cm−2

Surface air temperature TempAir °C
Surface air specific humidity SphAir 1
Scalar wind speed ScalarWind cm s−1 unnecessary if TAUBULK
Sea level pressure SeaLevelPressure hPa also available for SLP
precipitation Precipitation g s−1 cm−2 WFLUX
river discharge RiverDischargeRate g s−1 cm−2 RUNOFF
Sea ice area fraction IceConcentrationClimatology 1 ICECLIM

25.3 Restart file
A set of restart files provides an instantaneous state necessary to resume a model integration. This section explains how
to handle restart files.

25.3.1 Restart for the ocean model
Restart files for the ocean model are specified using a common namelist block, nml_restart, in the same manner as
history outputs. The namelists must be written in NAMELIST.name_model (default) as follows:

An example namelist for temperature restart files� �
&nml_restart
name = ’temperature’,
file_base = ’result/rs_t’,
(interval_step = 0,)

/� �
where name is a variable name to be input/output (listed in Table 25.4), and file_base specifies the basename of the
restart files. This information is shared by both input and output files. In the above example, the name of a restart file
for temperature is result/rs_t.YYYYMMDDHHMMSS. A suffix indicating the date and time of data is always added to the
basename. (Namlist block nmlrs_ in MRI.COMv4 has been removed.)

Table 25.4 lists available names in nml_restart (name is not case sensitive). Required elements depend on model
options. See docs/README_Restart.md for more information. An example for a set of biogeochemical tracers is also
shown in Section 19.6.

Table25.4 Restart variables and their namelist block that specifies their restart file attributes.

variable name model options namelist in MRI.COMv4
Potential temperature nmlrs_t
Salinity nmlrs_s
X Velocity nmlrs_u
Y Velocity nmlrs_v

Continued on next page
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Table 25.4 – continued from previous page
variable name model options namelist in MRI.COMv4

Sea Surface Height nmlrs_ssh
X Transport nmlrs_uml
Y Transport nmlrs_vml
X diffusion flux for SSH nmlrs_ssh_dflx_x
Y diffusion flux for SSH nmlrs_ssh_dflx_y
Global Mean Density and Pressure required if CALPP nmlrs_density
Vertical Tracer Diffusivity VVDIMP nmlrs_vmix_avd
Vertical Momentum Diffusivity VVDIMP nmlrs_vmix_avm
passive tracers (see Section 19.6) NUMTRC_P > 0 nmlrs_ptrc
Tidal X Transport TIDE nmlrs_tide_um
Tidal Y Transport TIDE nmlrs_tide_vm
Tidal Sea Surface Height TIDE nmlrs_tide_ssh
M-Y eddy kinetic energy diffusion MELYAM nmlrs_my_avq
M-Y turbulent velocity scale MELYAM nmlrs_my_q
M-Y length scale MELYAM nmlrs_my_alo
Noh-Kim eddy kinetic energy diffusion NOHKIM nmlrs_nk_avq
Noh-Kim eddy kinetic energy NOHKIM nmlrs_nk_eb
GLS eddy kinetic energy diffusion GLS nmlrs_gls_avk
GLS generic variable diffusion GLS nmlrs_gls_avp
GLS eddy kinetic energy GLS nmlrs_gls_eke
GLS generic variable GLS nmlrs_gls_psi
GLS length scale GLS nmlrs_gls_alo
(see Section 25.3.2) SOMADVEC and

adv_scheme%name
= ”som” in nml_tracer_data
for any tracer

nml_somadv

Sea ice ICE nml_seaice_rst_in

Restart files are saved in a Fortran direct-access format, which can be read by a following program.
Program to read a restart file of the ocean model� �

character(14) :: date = ’20010101000000’ !- for 0:00z1JAN2001
real(8) :: d(imut,jmut,km)
integer(4),parameter :: nu = 10 ! device number

open(nu, file=’result/rs_t.’//date, form=’unformatted’, &
& access=’direct’,recl=imut*jmut*km*8)

read(nu,rec=1) d
close(nu)� �

The file endian is that of the computer where the model runs. There are support tools to visualize restart files in
the directory, tools/MK_GRADS. Please follow the instructions given by tools/MK_GRADS/00README.txt. The MXE
package (Section 25.6) also has tools for visualization in the directory, postp/.

25.3.2 Restart for the SOM advection scheme
When the SOM tracer advection scheme is used (SOMADVEC), the model may read and write additional 9 restart files of the
2nd order moments for each tracer. Their names are BASENAME_SOM_SS.YYYYMMDDHHMMSS, where BASENAME indicates a
character string specified by file_base in namelist nml_restart, SS elements of the moments (9 types), and the suffix
for the date and time. The format of each file is the same as the tracer restart files. See Section 10.5 for the SOM scheme,
and nml_tracer_data in docs/README_Namelist.md to control the SOM restart input/output. (Naming of the SOM
restart files was changed in MRI.COMv5. Use tools/ver46to47/SOMRESTART/ to rename SOM restart files.)
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25.3.3 Restart for the sea ice model
To handle restart files of the sea ice model, a namelist block, nml_restart with name = "Sea ice", must be specified.
(nml_seaice_rst_in and nml_seaice_rst_out are obsolete.) The restart file contains a number of variables needed
to restart the sea ice model, and can be read by the following program.
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Program to read restart for the sea ice model� �
integer(4), parameter :: ncat = 5 ! number of thickness categories
! ice concentration
real(8) :: aicen (1:imut,1:jmut,0:ncat), a0iceo(imut,jmut)
! ice thickness
real(8) :: hicen (1:imut,1:jmut,0:ncat), hiceo (imut,jmut)
! averaged sea-ice thickness
real(8) :: hin (1:imut,1:jmut,0:ncat), hi (imut,jmut)
! snow depth
real(8) :: hsnwn (1:imut,1:jmut,0:ncat), hsnwo (imut,jmut)
! averaged snow thickness
real(8) :: hsn (1:imut,1:jmut,0:ncat), hsnw (imut,jmut)
! ice surface temperature
real(8) :: tsfcin(1:imut,1:jmut,0:ncat), tsfci (imut,jmut)
! ice temperature
real(8) :: t1icen(1:imut,1:jmut,0:ncat)
! sea surface skin temperature
real(8) :: t0icen(1:imut,1:jmut,0:ncat)
! sea surface skin salinity
real(8) :: s0n (1:imut,1:jmut,0:ncat)
! skin temperature beneath the sea ice
real(8) :: t0iceo(imut,jmut)
! skin temperature in the open leads
real(8) :: t0icel(imut,jmut)
! stress tensor
real(8) :: sigma1(imut,jmut), sigma2(imut,jmut), sigma3(imut,jmut)

integer(4),parameter :: nu = 10 ! device number
integer(4) 　　　　　:: i = 0, m

open(nu, file=’result/rs_ice’, form=’unformatted’, &
& access=’direct’, recl=imut*jmut*8)

do m = 0, ncat ; i = i + 1 ; read(nu,rec=i) aicen(1:imut,1:jmut,m) ; enddo
do m = 0, ncat ; i = i + 1 ; read(nu,rec=i) hin (1:imut,1:jmut,m) ; enddo
do m = 0, ncat ; i = i + 1 ; read(nu,rec=i) hsn (1:imut,1:jmut,m) ; enddo
do m = 0, ncat ; i = i + 1 ; read(nu,rec=i) hicen(1:imut,1:jmut,m) ; enddo
do m = 0, ncat ; i = i + 1 ; read(nu,rec=i) hsnwn(1:imut,1:jmut,m) ; enddo
do m = 0, ncat ; i = i + 1 ; read(nu,rec=i) tsfcin(1:imut,1:jmut,m) ; enddo
do m = 0, ncat ; i = i + 1 ; read(nu,rec=i) t1icen(1:imut,1:jmut,m) ; enddo
do m = 0, ncat ; i = i + 1 ; read(nu,rec=i) t0icen(1:imut,1:jmut,m) ; enddo
do m = 0, ncat ; i = i + 1 ; read(nu,rec=i) s0n(1:imut,1:jmut,m) ; end do

i = i + 1 ; read(nu,rec=i) a0iceo(1:imut,1:jmut)
i = i + 1 ; read(nu,rec=i) hi(1:imut,1:jmut)
i = i + 1 ; read(nu,rec=i) hsnw(1:imut,1:jmut)
i = i + 1 ; read(nu,rec=i) hiceo(1:imut,1:jmut)
i = i + 1 ; read(nu,rec=i) hsnwo(1:imut,1:jmut)
i = i + 1 ; read(nu,rec=i) uice(1:imut,1:jmut)
i = i + 1 ; read(nu,rec=i) vice(1:imut,1:jmut)
i = i + 1 ; read(nu,rec=i) sigma1(1:imut,1:jmut)
i = i + 1 ; read(nu,rec=i) sigma2(1:imut,1:jmut)
i = i + 1 ; read(nu,rec=i) sigma3(1:imut,1:jmut)

close(nu)� �
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25.3.4 Control of input and output at run time
a. Input

Input of restart files at run time is controlled by namelist listed on Table 25.5. By setting l_rst_in = .true. in
nml_run_ini_state, all necessary elements are read from restart files. However, the specification by l_rst_in may be
overridden for some elements by specifying namelists dedicated to those elements. Note that model tries to read restart
files for all passive tracers, thus namelist nmlrs_ptrc must be always specified appropriately.

Table25.5 Namelist blocks that control input of restart files.

namelist block variable name Usage
nml_run_ini_state l_rst_in .true. : read restart files and resume integration

.false. (default): initial state is set internally
No motion (u,v,ssh=0).
Initial condition for temperature and salinity are
deteremined by nml_tracer_run

nml_barotropic_run l_rst_barotropic_in default = l_rst_in
nml_baroclinic_run l_rst_baroclinic_in default = l_rst_in
nml_tracer_run l_rst_tracer_in default = l_rst_in

applicable to only temperature and salinity
nml_vmix_run l_rst_vmix_in default = l_rst_in
nml_tide_run l_rst_tide_in default = l_rst_in
nml_melyam_run l_rst_melyam_in default = l_rst_in
nml_nohkim_run l_rst_nohkim_in default = l_rst_in
nml_gls_run l_rst_gls_in default = l_rst_in
nml_density_run l_rst_density_in default = l_rst_in
nml_seaice_run l_rst_seaice_in default = .false.
nml_tracer_data adv_scheme%lrstin_som = .true. to read restart of SOM scheme
nml_tracer_data adv_scheme%lrstout_som = .true. to write restart of SOM scheme

b. Output

Model always try to write restart files of the oceanic part according to the specification by the namelists listed on Table
25.4. Users have to specify those namelists appropriately to obtain restart files and terminate the model normally. Output
from the SOM scheme may be suppressed if adv_scheme%lrstout_som = .false. in nml_tracer_data.

25.4 Execution
To run a model, a shell script that handles input/output files, executes the compiled binary ogcm, and post-processes is
usually prepared. The following two namelist files have to be given.

• NAMELIST.name_model gives runtime parameters. See docs/README_Namelist.md for details.
• NAMELIST.name_model.MONITOR specifies sampling. See docs/README_Monitor.md for details.

Runtime parameters relevant to time-integration are listed on Tables 25.6 through 25.11. Other parameters are explained
in corresponding chapters.
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Table25.6 Namelist nml_time_step.

variable name units description usage
dt_sec sec,

real(8)
unit time interval for equation of motion
and tracer

required

alpha_bryan_1984 real(8) acceleration parameter 𝛼 of Bryan (1984).
See Section 2.3.1.

default = 1

l_monitor_time logical time step monitor is written to standard out-
put ()

default = .true.

Table25.7 Namelist nml_run_period.

variable name units description usage
nstep_total integer total number of time step of this run required

Table25.8 Namelist nml_exp_start that specifies start time of the whole experiment.

variable name units description usage
year integer(4) year default = −999
month integer(4) month default = 1
day integer(4) day default = 1
hour integer(4) hour default = 0
minute integer(4) minute default = 0
second integer(4) second default = 0

Table25.9 Namelist nml_run_ini that specifies start time of this run.

variable name units description usage
year integer(4) year default = 1
month integer(4) month default = 1
day integer(4) day default = 1
hour integer(4) hour default = 0
minute integer(4) minute default = 0
second integer(4) second default = 0

Table25.10 Namelist nml_calendar that specifies treatment of leap year.

variable name units description usage
l_force_leap logical Use l_leap to decide whether the current year

is leap or not.
default = .false., the realistic calendar is
followed

l_leap logical the current year is a leap year or not. default = .false.

Table25.11 Namelist nml_stdout that specifies standard output (program log).

variable name units description usage
l_stdout2file logical Standard output is written to separate files for MPI processes default = .false.
file_base_stdout file name is name_model-file_base_stdout-stdout.XXXX

(XXXX: mpi process number)
l_debug logical debug mode default = .false.

25.5 Monitoring
This section summarizes outputs of states in experiments (so called history data) used for monitoring and analyses.
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25.5.1 History of the ocean and ice models
Specification of history outputs is common in the ocean and sea ice models. Users prepare a namelist file named
NAMELIST.name_model.MONITOR dedicated to history outputs (name_model can be specified by NAME_MODEL in
configure.in, default=OGCM), and write the following namelist blocks, nml_history, in it as needed,

An example namelist for mean temperature output� �
&nml_history
name = ’temperature’
file_base = ’result/hs_t’
interval_step = 48
[suffix = ’day’]

/� �
where name specifies the variable name to be output、file_base the basename of the history files, interval_step the
output interval in terms of the integration time step. An option item of suffix specifies the depth of calendar date and time
used in the file suffix. In the above example, the time-mean temperature is written to the file, result/hs_t.YYYYMMDD, at
every 48-th time step.

History files are saved in a Fortran direct-access format, which can be read by a following program.
Program to read ocean model history data� �

character(8) :: date = ’20010101’ !- for 1JAN2001
real(4) :: d(imut,jmut,km)
integer(4),parameter :: nu = 10 ! device number

open(nu, file=’result/hs_t.’//date, form=’unformatted’, &
& access=’direct’, recl=imut*jmut*km*4)

read(nu,rec=1) d
close(nu)� �

A GrADS control file to visualize data is also made by default (result/hs_t.ctl in the above example).
The state variables that can be monitored by namelist nml_history are listed in docs/README_Monitor.md. There

are many options in nml_history, such as netCDF output, snapshot output, averaging in the model region, output in a
specified sub region, addition of an offset value, multiplication by a factor, and so on. See docs/README_Monitor.md for
the available options.

History outputs of the sea ice model are also specified by nml_history in the same manner as the ocean model. State
variables that can be monitored are listed in the sea ice section of docs/README_Monitor.md. The format of output files
is also common, except that a missing value for grids of ocean without sea ice should be different from the one for land
grids. By default, the value of 0.e0 is used for the former, while -9.99e33 for the latter. (These values can be changed by
nml_seaice_hst written in NAMELIST.name_model.)

25.6 MRI.COM eXecution Environment (MXE)
We have been developing a package "MRI.COM eXecution Environment (MXE)" that aggregates programs for prepro-
cessing, execution, postprocessing, and analysis of MRI.COM experiments. By using prepared tools, users can relatively
easily perform complex work of model building and various analyses. In fact, this package is also used as a common basis
for developing various ocean models at the Meteorological Research Institute.

The MXE package includes the following tools.

• Preprocessing tools for creating experiment setup files (directory prep/)
• Directory template for running MRI.COM (exp/)
• Postprocessing tools for visualizing output files (postp/)
• Fortran analysis tools (anl/)
• Python analysis tools (anlpy/)
• A Fortran library that provides basic subroutines such as grid and topography information (lib/)

The main programs are written in Fortran and sample shell scripts are also included for execution. Several tools in the
package have been confirmed by unit testing. This package is managed independently from MRI.COM, but it is provided
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to users as an accompanying material. Since it is often updated like MRI.COM, it is recommended to use the latest version.
For details on how to use MXE, see the file README-MXE.md in the top directory (in Japanese).

25.7 Appendix
25.7.1 Web site
See the web page https://mri-ocean.github.io/ for getting MRI.COM.

25.7.2 Model options
The model options are listed on Table 25.12. Only major options are listed here. Description about those related to
bio-geochemical models can be found in Chapter 19. The description of all options for the latest version can be found
in src/README.Options. Though an expression like OGCM_PARALLEL is used in the source program, OGCM_ is omitted
when users specify options in configure.in.

Table25.12 Description of Model Options

Model option Description
BBL uses the bottom boundary layer model
BIHARMONIC uses biharmonic operator for both horizontal viscosity and diffusion

(*) If ISOPYCNAL is also selected, the biharmonic form is used only for viscosity and not for diffusion.
BULKNCAR Large and Yeager (2004; 2009) is used for the surface flux bulk formula. This option corresponds to

the COREs.
(*) BULKNCAR is available only for HFLUX case.

CALALBSI Sea-ice albedo is calculated using sea-ice conditions according to Los-Alamos model instead of using
a constant value

CALPP considers the time variation of pressure for the equation of state
CARBON bio-geochemical process is included

(*) numtrc_p= 4 for Obata-Kitamura model; numtrc_p= 8 for NPZD model
CBNHSTRUN atmospheric pCO2 is given from file

(*) use with CARBON
CHLMA94 shortwave penetration scheme with chlorophyll concentration by Morel and Antoine (1994)

(*) use with NPZD and SOLARANGLE
CYCLIC uses zonally cyclic condition
DIFAJS sets large vertical diffusion coefficient (1.0 m2 s−1) between unstable points instead of convective

adjustment
F2003 Program uses Fortran 2003 features
FSVISC calculates viscosity explicitly in the barotropic momentum equation
GMANISOTROP Anisotropic horizontal variation of thickness diffusion is used

(*) use with ISOPYCNAL
GMTAPER Taper GM vector stream function near the sea surface

(*) cannot be used with SLIMIT, GMANISOTROP, AFC
GMVAR Horizontal thickness diffusion is allowed to vary in horizontal
GLS Generic length scale model of Umlauf and Burchard (2003)
HFLUX calculates sea surface heat flux using bulk formula
ICE sea ice is included

Continued on next page
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Table 25.12 – continued from previous page
Model option Description
ICECLIM reading climatological sea-ice fractional area from file
ISOPYCNAL uses isopycnal diffusion and Gent-McWilliams’ parameterization for eddy

induced tracer transport velocity (thickness diffusion)
ISOTAPER Taper isopycnal diffusion coefficient (ISOPYCNAL)
MELYAM uses Mellor and Yamada Level 2.5 for mixed layer model
MPDATAADVEC uses MPDATA for tracer advection
NOHKIM uses Noh’s mixed layer model
NPZD NPZD process is included

(*) use with CARBON
OFFNESTPAR Used as the lower-resolution part of an off-line one-way nesting calculation
OFFNESTSUB Used as the higher-resolution part of an off-line one-way nesting calculation
PARALLEL parallel calculation using MPI. The number of zonally and meridionally partitioned regions should

be specified as NPARTX and NPARTY, respectively.
PARENT executed as low resolution model of the on-line nesting calculation
RUNOFF uses river runoff data

(*) available only for WFLUX
SIDYN sea-ice dynamics model with EVP rheology

(*) available only for ICE
SLIMIT Tapers thickness diffusion near the sea surface
SLP Sea surface is elevated/depressed according to surface atmospheric pressure
SMAGHD uses the Smagorinsky viscosity coefficient multiplied by a constant ratio as the horizontal diffusion

coefficient
(*) available only for SMAGOR

SMAGOR uses the Smagorinsky parameterization for horizontal viscosity
SOLARANGLE solar insolation angle is considered in calculating shortwave penetration
SOMADVEC uses second order moment advection by Prather (1986)
SPHERICAL calculates scale factor semi-analytically for spherical coordinates
SUB executed as a high resolution model of the on-line nesting calculation
TAUBULK calculates the wind stress using bulk formulae by reading wind speed over the ocean
TDEW reads dew-point temperature and converts to specific humidity

(*) available only for HFLUX
TIDE Tide producing forcing is activated
TRCBIHARM uses biharmonic operator for horizontal diffusion

(*) Should not be used with ISOPYCNAL
TRIPOLAR Tripolar system is used to construct model grids of a global model

(*) Cannot be used with SPHERICAL
UTZQADVEC "UTOPIA" and "QUICKEST" scheme can be used for horizontal and vertical tracer advection with

ultimate limiter
VISANISO Anisotropic viscosity coefficients are used

(*) use with VIS9P
VIS9P calculates the viscosity using adjacent 9 grid points
VISBIHARM uses biharmonic operator for both horizontal viscosity
VMBG3D reads 3-D vertical viscosity and diffusion coefficients from a file
VVDIMP calculates the vertical diffusion/viscosity by implicit method

Continued on next page
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Table 25.12 – continued from previous page
Model option Description

(*) it is automatically loaded if any mixed layer model is used or ISOPYCNAL option is selected
WADJ adjusts sea surface freshwater flux every time step to keep its global sum to be zero

(*) available only for WFLUX
WFLUX uses the sea surface freshwater flux to force the model
MOVE used as ocean module for data assimilation (MOVE) system
SCUP use simple coupler (SCUP) library
SCUPCGCM used as an ocean module for a coupled model using scup for communication
SCUPNEST on-line nesting

(*) use with SCUP
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