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Chapter 9

Tracer advection-diffusion equation

In this chapter, we explain the advection-diffusion equation, which is the governing equation of the tracers including
potential temperature and salinity.

9.1 The advection-diffusion equation
The equations for potential temperature and salinity, Eqs. (2.35) and (2.36), are re-written:

𝜕 (𝑧𝑠𝜃)
𝜕𝑡

+ 1
ℎ𝜇ℎ𝜓

{
𝜕 (𝑧𝑠ℎ𝜓𝑢𝜃)

𝜕𝜇
+
𝜕 (𝑧𝑠ℎ𝜇𝑣𝜃)

𝜕𝜓

}
+ 𝜕 (𝑧𝑠 ¤𝑠𝜃)

𝜕𝑠
= −𝑧𝑠∇ · F𝜃 + 𝑧𝑠𝑄 𝜃 , (9.1)

𝜕 (𝑧𝑠𝑆)
𝜕𝑡

+ 1
ℎ𝜇ℎ𝜓

{
𝜕 (𝑧𝑠ℎ𝜓𝑢𝑆)

𝜕𝜇
+
𝜕 (𝑧𝑠ℎ𝜇𝑣𝑆)

𝜕𝜓

}
+ 𝜕 (𝑧𝑠 ¤𝑠𝑆)

𝜕𝑠
= −𝑧𝑠∇ · F𝑆 + 𝑧𝑠𝑄𝑆 . (9.2)

Representing 𝜃 and 𝑆 with a general variable 𝑇 , they become a common advection-diffusion equation,

𝜕 (𝑧𝑠𝑇)
𝜕𝑡

+ 1
ℎ𝜇ℎ𝜓

{
𝜕 (𝑧𝑠ℎ𝜓𝑢𝑇)

𝜕𝜇
+
𝜕 (𝑧𝑠ℎ𝜇𝑣𝑇)

𝜕𝜓

}
+ 𝜕 (𝑧𝑠 ¤𝑠𝑇)

𝜕𝑠
= −𝑧𝑠∇ · F𝑇 + 𝑧𝑠𝑄𝑇 , (9.3)

where 𝑄𝑇 indicates the source or sink term for 𝑇 . If the advection term is expressed as A(𝑇), the horizontal diffusion
term D𝐻 (𝑇), and the vertical diffusion term D𝑉 (𝑇),

𝜕 (𝑧𝑠𝑇)
𝜕𝑡

= A(𝑇) + D𝐻 (𝑇) + D𝑉 (𝑇) + 𝑧𝑠𝑄𝑇 (9.4)

A(𝑇) = − 1
ℎ𝜇ℎ𝜓

{
𝜕 (𝑧𝑠ℎ𝜓𝑢𝑇)

𝜕𝜇
+
𝜕 (𝑧𝑠ℎ𝜇𝑣𝑇)

𝜕𝜓

}
− 𝜕 (𝑧𝑠 ¤𝑠𝑇)

𝜕𝑠
(9.5)

D𝐻 (𝑇) = −
1

ℎ𝜇ℎ𝜓

{
𝜕 (ℎ𝜓𝑧𝑠𝐹𝑇

𝜇 )
𝜕𝜇

+
𝜕 (ℎ𝜇𝑧𝑠𝐹𝑇

𝜓 )
𝜕𝜓

}
(9.6)

D𝑉 (𝑇) = −
𝜕𝐹𝑇

𝑧

𝜕𝑠
. (9.7)

Chapter 10, 11 and 12 explain the numerical treatments of A(𝑇), D𝐻 (𝑇) and D𝑉 (𝑇), respectively. It should be noted
that horizontal diffusion and vertical diffusion are treated together in the derivation of isopycnal diffusion (Sec. 11.3) as

D(𝑇) = D𝐻 (𝑇) + D𝑣 (𝑇). (9.8)

(In this case as well, diffusion is divided into D𝐻 (𝑇) and D𝑉 (𝑇) in the program code.)
Since the hydrostatic approximation is used, an unstable stratification should be removed somehow. Generally, we assume

that vertical convection occurs instantaneously to remove unstable stratification. We call this convective adjustment, which
is explained in Section 12.2. One might also choose to mix tracers by setting the local vertical diffusion coefficient to a
large value such as 10 000 cm2 s−1 where stratification is unstable. In this case, the tracer equation should be solved using
the partial implicit method, which is described in Section 23.5.
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9.2 Boundary conditions

9.2 Boundary conditions
The boundary conditions of tracers can also be represented in common. The sea surface and bottom boundary conditions
for 𝜃 and 𝑆 are shown by Eqs. (2.23), (2.24) and (2.25). These can be generally expressed as follows:

𝜅𝑉
𝜕𝑇

𝜕𝑧

���
𝑧∗=0

=𝐹𝑇
surf , (9.9)

−𝜅𝑉
𝜕𝑇

𝜕𝑧

���
𝑧∗=−𝐻

=𝐹𝑇
bottom, (9.10)

where 𝐹𝑇
surf is the surface flux (positive downward), while 𝐹𝑇

bottom is the bottom flux (positive upward). At side walls, the
boundary condition (Eq. 2.26) is given for the 𝑛 direction, which is perpendicular to the wall, as

𝜕𝑇

𝜕𝑛
= 0. (9.11)

9.3 Various tracers
Tracers governed by the advection-diffusion equation are not only 𝜃 and 𝑆. Passive tracers such as CFCs and age tracers
(Chapter 20), and state variables of biogeochemical models (Chapter 19) are also tracers. Though time evolution of them
is obtained by the common governing equation, Eq. (9.3), the boundary conditions and 𝑄𝑇 are different. In addition,
appropriate numerical schemes for advection and diffusion can change depending on tracer characteristics. MRI.COM
allows individual flexible specifications for various tracers in the model. See Chapter 13 for details.
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Chapter 10

Tracer advection schemes

This chapter describes the following tracer advection schemes available in MRI.COM.

• The weighted upcurrent scheme (Section 10.2)
• The Quadratic Upstream Interpolation for Convective Kinematics (QUICK; Leonard, 1979, Section 10.3)
• A combination of the QUICK with Estimated Streaming Terms (QUICKEST; Leonard, 1979, Section 10.3) for

vertical advection and the Uniformly Third-Order Polynomial Interpolation Algorithm (UTOPIA; Leonard et al.,
1993, Section 10.4) for horizontal advection

• The Second Order Moment (SOM; Prather, 1986, Section 10.5) scheme
• The Piecewise Parabolic Method (PPM; Colella and Woodward, 1984, Section 10.6) scheme
• The Multidimensional Positive Definite Advection Transport Algorithm (MPDATA; Smolarkiewicz and Margolin,

1998, Section 10.7) scheme

The default advection scheme for MRI.COM is a weighted upcurrent scheme, and the others are optional. Different
advection schemes can be used for individual tracers. They should be chosen from among compiled schemes at run time
(Chapter 13).

10.1 Finite volume or flux form method
Removing terms except for the time tendency and advection terms from Eq. (9.4), we gain the following three-dimensional
advection equation:

𝜕 (𝑧𝑠𝑇)
𝜕𝑡

= A(𝑇), (10.1)

or
𝜕 (𝑧𝑠𝑇)
𝜕𝑡

= − 1
ℎ𝜇ℎ𝜓

{
𝜕 (𝑧𝑠ℎ𝜓𝑢𝑇)

𝜕𝜇
+
𝜕 (𝑧𝑠ℎ𝜇𝑣𝑇)

𝜕𝜓

}
− 𝜕 (𝑧𝑠 ¤𝑠𝑇)

𝜕𝑠
. (10.2)

The finite difference form of (10.1) is given by first considering a control cell volume and then calculating fluxes through
the cell faces, and setting their divergence and convergence to be the time change rate at the grid cell (Figure 10.1). In
finite difference form, this is expressed as follows:

𝑇𝑛+1
𝑖, 𝑗 ,𝑘− 1

2
Δ𝑉𝑛+1

𝑖, 𝑗 ,𝑘− 1
2
= 𝑇𝑛

𝑖, 𝑗,𝑘− 1
2
Δ𝑉𝑛

𝑖, 𝑗,𝑘− 1
2

+ Δ𝑡 {FXA𝑖− 1
2 , 𝑗 ,𝑘−

1
2
− FXA𝑖+ 1

2 , 𝑗 ,𝑘−
1
2
+ FYA𝑖, 𝑗− 1

2 ,𝑘−
1
2
− FYA𝑖, 𝑗+ 1

2 ,𝑘−
1
2
+ FZA𝑖, 𝑗 ,𝑘 − FZA𝑖, 𝑗 ,𝑘−1},

(10.3)

where Δ𝑉 is the volume of the grid cell, and FXA, FYA, and FZA represent (flux due to advection) × (area of the cell
boundary). The same consideration may be applied for the discretization of the diffusion term.

As explained in Chapter 3, Δ𝑉 varies with time and is given by (3.28),

Δ𝑉𝑖, 𝑗 ,𝑘− 1
2
≡ (volt)𝑖, 𝑗 ,𝑘− 1

2
= (volu_bl)𝑖+ 1

2 , 𝑗+
1
2 ,𝑘−

1
2
+ (volu_tl)𝑖+ 1

2 , 𝑗−
1
2 ,𝑘−

1
2

+ (volu_br)𝑖− 1
2 , 𝑗+

1
2 ,𝑘−

1
2
+ (volu_tr)𝑖− 1

2 , 𝑗−
1
2 ,𝑘−

1
2
. (10.4)

The volume of the left-lower quarter of the T-cells at (𝑖, 𝑗) (corresponding to the southwestern part in geographic
coordinates) is represented by (volt_tr)𝑖− 1

2 , 𝑗−
1
2
. Similarly, (volt_tl)𝑖+ 1

2 , 𝑗−
1
2

is the right-lower (southeastern),
(volt_br)𝑖− 1

2 , 𝑗+
1
2

is the left-upper (northwestern), and (volt_bl)𝑖+ 1
2 , 𝑗+

1
2

is the right-upper (northeastern) quarter of a
T-cell at (𝑖, 𝑗).
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10.2 Weighted upcurrent scheme

Fluxes due to advection are given as follows:

FXA𝑖+ 1
2 , 𝑗 ,𝑘−

1
2
=𝑈𝑇

𝑖+ 1
2 , 𝑗 ,𝑘−

1
2
𝑇𝑖+ 1

2 , 𝑗 ,𝑘−
1
2
, (10.5)

FYA𝑖, 𝑗+ 1
2 ,𝑘−

1
2
=𝑉𝑇

𝑖, 𝑗+ 1
2 ,𝑘−

1
2
𝑇𝑖, 𝑗+ 1

2 ,𝑘−
1
2
, (10.6)

FZA𝑖, 𝑗 ,𝑘 =𝑊𝑇
𝑖, 𝑗,𝑘𝑇𝑖, 𝑗 ,𝑘 , (10.7)

where horizontal volume transport𝑈𝑇 and 𝑉𝑇 are defined as follows,

𝑈𝑇
𝑖+ 1

2 , 𝑗 ,𝑘−
1
2
=
Δ𝑦𝑖+ 1

2 , 𝑗

2

(
𝑢𝑖+ 1

2 , 𝑗−
1
2 ,𝑘−

1
2
Δ𝑧𝑖+ 1

2 , 𝑗−
1
2 ,𝑘−

1
2
+ 𝑢𝑖+ 1

2 , 𝑗+
1
2 ,𝑘−

1
2
Δ𝑧𝑖+ 1

2 , 𝑗+
1
2 ,𝑘−

1
2

)
, (10.8)

𝑉𝑇
𝑖, 𝑗+ 1

2 ,𝑘−
1
2
=
Δ𝑥𝑖, 𝑗+ 1

2

2

(
𝑣𝑖− 1

2 , 𝑗+
1
2 ,𝑘−

1
2
Δ𝑧𝑖− 1

2 , 𝑗+
1
2 ,𝑘−

1
2
+ 𝑣𝑖+ 1

2 , 𝑗+
1
2 ,𝑘−

1
2
Δ𝑧𝑖+ 1

2 , 𝑗+
1
2 ,𝑘−

1
2

)
. (10.9)

Vertical volume transport𝑊𝑇 is then obtained by diagnostically solving (6.9) with (6.11). Moreover, the vertical velocity
𝑤, which is necessary for using QUICKEST, is calculated as follows (𝑤 is not needed except for QUICKEST):

𝑊𝑇
𝑖, 𝑗,𝑘 = 𝑤𝑖, 𝑗 ,𝑘 × (areat)𝑖, 𝑗 ,𝑘− 1

2
, (10.10)

where

(areat)𝑖, 𝑗 ,𝑘− 1
2
= (a_tr)𝑖− 1

2 , 𝑗−
1
2
× (aexl)𝑖− 1

2 , 𝑗−
1
2 ,𝑘−

1
2
+ (a_tl)𝑖+ 1

2 , 𝑗−
1
2
× (aexl)𝑖+ 1

2 , 𝑗−
1
2 ,𝑘−

1
2

+ (a_br)𝑖− 1
2 , 𝑗+

1
2
× (aexl)𝑖− 1

2 , 𝑗+
1
2 ,𝑘−

1
2
+ (a_bl)𝑖+ 1

2 , 𝑗+
1
2
× (aexl)𝑖+ 1

2 , 𝑗+
1
2 ,𝑘−

1
2
. (10.11)

An array aexl is set to be unity if the corresponding U-cell is a sea cell and set to be zero otherwise.

10.2 Weighted upcurrent scheme
In the weighted upcurrent scheme (e.g., Suginohara and Aoki, 1991; Yamanaka et al., 2000), the cell boundary value is
determined by a weighted average of the upcurrent scheme and the centered finite difference scheme.

The upcurrent scheme employs the upstream value as the cell boundary value:

𝑇
upcurrent
𝑖+ 1

2 , 𝑗 ,𝑘−
1
2
=

{
𝑇𝑖, 𝑗 ,𝑘− 1

2
, if 𝑈𝑖+ 1

2 , 𝑗 ,𝑘−
1
2
> 0,

𝑇𝑖+1, 𝑗 ,𝑘− 1
2
, if 𝑈𝑖+ 1

2 , 𝑗 ,𝑘−
1
2
< 0. (10.12)

The centered finite difference scheme uses the average between the two neighboring points of tracer as the cell boundary
value:

𝑇center
𝑖+ 1

2 , 𝑗 ,𝑘−
1
2
=
𝑇𝑖+1, 𝑗 ,𝑘− 1

2
+ 𝑇𝑖, 𝑗 ,𝑘− 1

2

2
. (10.13)

Taking the weight of the upcurrent scheme to be 𝛼 (0 ≤ 𝛼 ≤ 1), the tracer flux at the eastern face of a grid cell is
expressed as follows:

FXA𝑖+ 1
2 , 𝑗 ,𝑘−

1
2
=𝛼


𝑈𝑇
𝑖+ 1

2 , 𝑗 ,𝑘−
1
2
+

��𝑈𝑇
𝑖+ 1

2 , 𝑗 ,𝑘−
1
2

��
2

𝑇𝑖 +
𝑈𝑇
𝑖+ 1

2 , 𝑗 ,𝑘−
1
2
−

��𝑈𝑇
𝑖+ 1

2 , 𝑗 ,𝑘−
1
2

��
2

𝑇𝑖+1


+ (1 − 𝛼)𝑈𝑇

𝑖+ 1
2 , 𝑗 ,𝑘−

1
2

𝑇𝑖+1, 𝑗 ,𝑘− 1
2
+ 𝑇𝑖, 𝑗 ,𝑘− 1

2

2
(10.14)

=𝑈𝑇
𝑖+ 1

2 , 𝑗 ,𝑘−
1
2


1
2

(
1 + 𝛼

𝑈𝑇
𝑖+ 1

2 , 𝑗 ,𝑘−
1
2��𝑈𝑇

𝑖+ 1
2 , 𝑗 ,𝑘−

1
2

�� )𝑇𝑖 + 1
2

(
1 − 𝛼

𝑈𝑇
𝑖+ 1

2 , 𝑗 ,𝑘−
1
2��𝑈𝑇

𝑖+ 1
2 , 𝑗 ,𝑘−

1
2

�� )𝑇𝑖+1 (10.15)

=𝑈𝑇
𝑖+ 1

2 , 𝑗 ,𝑘−
1
2


[
1
2
+
𝑈𝑇
𝑖+ 1

2 , 𝑗 ,𝑘−
1
2��𝑈𝑇

𝑖+ 1
2 , 𝑗 ,𝑘−

1
2

�� (𝛽 − 1
2

)]
𝑇𝑖 +

[
1
2
−
𝑈𝑇
𝑖+ 1

2 , 𝑗 ,𝑘−
1
2��𝑈𝑇

𝑖+ 1
2 , 𝑗 ,𝑘−

1
2

�� (𝛽 − 1
2

)]
𝑇𝑖+1

 . (10.16)

Mainly for the sake of computational efficiency, we give a parameter 𝛽 = 1
2 (𝛼 + 1) (0.5 ≤ 𝛽 ≤ 1) instead of 𝛼 at run time.

Different parameters for horizontal and vertical directions may be given, which are listed on Table 10.1.

– 96 –



Chapter 10 Tracer advection schemes

Ti, j

UVi-1/2, j+1/2
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UVi-1/2, j-1/2 UVi+1/2, j-1/2
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UVi-1/2, k+1/2 UVi+1/2, k+1/2Ti, k+1/2

W T

i, k+1

Figure10.1 Grid arrangement around TS-Box (Upper: Views from the upper, Below: views from the horizontal).
Fluxes represented by an arrow are calculated.

Table10.1 Namelist nml_tracer_adv for weighted upcurrent scheme

variable name units description usage
weight_upcurrent_horz 1 upstream-side weighting ratio for the

horizontal advection
1.0: up-current, 0.5: centered differ-
ence

weight_upcurrent_vert 1 upstream-side weighting ratio for the
vertical advection

1.0: up-current, 0.5: centered differ-
ence

10.3 QUICK and QUICKEST schemes
This section explains the QUICK and QUICKEST schemes. In the QUICK scheme, the cell boundary value is interpolated
by a quadratic function, using three points, with one of them added from the upstream side (Figure 10.2).

Originally, cell boundary values in the QUICK scheme are given as follows:

𝑇𝑖+ 1
2 , 𝑗 ,𝑘−

1
2
=
Δ𝑥𝑖𝑇𝑖+1, 𝑗 ,𝑘− 1

2
+ Δ𝑥𝑖+1𝑇𝑖, 𝑗 ,𝑘− 1

2

Δ𝑥𝑖+1 + Δ𝑥𝑖
− Δ𝑥𝑖+1Δ𝑥𝑖

4
𝑐𝑖+ 1

2 , 𝑗 ,𝑘−
1
2
, (10.17)

𝑇𝑖, 𝑗+ 1
2 ,𝑘−

1
2
=
Δ𝑦 𝑗𝑇𝑖, 𝑗+1,𝑘− 1

2
+ Δ𝑦 𝑗+1𝑇𝑖, 𝑗 ,𝑘− 1

2

Δ𝑦 𝑗+1 + Δ𝑦 𝑗
−
Δ𝑦 𝑗+1Δ𝑦 𝑗

4
𝑑𝑖, 𝑗+ 1

2 ,𝑘−
1
2
, (10.18)

𝑇𝑖, 𝑗 ,𝑘 =
Δ𝑧𝑘− 1

2
𝑇𝑖, 𝑗+1,𝑘+ 1

2
+ Δ𝑧𝑘+ 1

2
𝑇𝑖, 𝑗 ,𝑘− 1

2

Δ𝑧𝑘+ 1
2
+ Δ𝑧𝑘− 1

2

−
Δ𝑧𝑘− 1

2
Δ𝑧𝑘+ 1

2

4
𝑒𝑖, 𝑗 ,𝑘 , (10.19)

– 97 –



10.3 QUICK and QUICKEST schemes

T

T-box

Ti-1

Ti

Ti+1
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Ti+1/2

Ui+1/2

X
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passes three points

Figure10.2 Schematic for interpolation: 𝑇𝑖 represents the value of a tracer at T-point with index 𝑖, and 𝑇𝑖+ 1
2

is the cell
boundary value. In the QUICK scheme, 𝑇𝑖+ 1

2
is interpolated by a quadratic function that passes 𝑇𝑖 and the neighboring

T-point values, 𝑇𝑖−1 and 𝑇𝑖+1.

where 𝑐, 𝑑, and 𝑒 are defined depending on the direction of the mass flux as follows:

𝑐𝑖+ 1
2 , 𝑗 ,𝑘−

1
2

=
Δ𝑥𝑖𝛿𝑥𝛿𝑥𝑇𝑖, 𝑗 ,𝑘− 1

2

2Δ𝑥𝑖
𝑥 (≡ 𝑐𝑝), if 𝑈𝑇

𝑖+ 1
2 , 𝑗 ,𝑘−

1
2
> 0,

=
Δ𝑥𝑖+1𝛿𝑥𝛿𝑥𝑇𝑖+1, 𝑗 ,𝑘− 1

2

2Δ𝑥𝑖+1
𝑥 (≡ 𝑐𝑚), if 𝑈𝑇

𝑖+ 1
2 , 𝑗 ,𝑘−

1
2
< 0,

𝑑𝑖, 𝑗+ 1
2 ,𝑘−

1
2

=
Δ𝑦 𝑗𝛿𝑦𝛿𝑦𝑇𝑖, 𝑗 ,𝑘− 1

2

2Δ𝑦 𝑗
𝑦 (≡ 𝑑𝑝), if 𝑉𝑇

𝑖, 𝑗+ 1
2 ,𝑘−

1
2
> 0,

=
Δ𝑦 𝑗+1𝛿𝑦𝛿𝑦𝑇𝑖, 𝑗+1,𝑘− 1

2

2Δ𝑦 𝑗+1
𝑦 (≡ 𝑑𝑚), if 𝑉𝑇

𝑖, 𝑗+ 1
2 ,𝑘−

1
2
< 0,

𝑒𝑖, 𝑗 ,𝑘 =
Δ𝑧𝑘+ 1

2
𝛿𝑧𝛿𝑧𝑇𝑖, 𝑗 ,𝑘+ 1

2

2Δ𝑧𝑖, 𝑗 ,𝑘+ 1
2

𝑧 (≡ 𝑒𝑝), if 𝑊𝑇
𝑖, 𝑗,𝑘 > 0,

=
Δ𝑧𝑘− 1

2
𝛿𝑧𝛿𝑧𝑇𝑖, 𝑗 ,𝑘− 1

2

2Δ𝑧𝑖, 𝑗 ,𝑘− 1
2

𝑧 (≡ 𝑒𝑚), if 𝑊𝑇
𝑖, 𝑗,𝑘 < 0.

(10.20)

The finite difference operators are defined as follows (definitions in 𝑦 and 𝑧 directions are the same):

𝛿𝑥𝐴𝑖 ≡
𝐴𝑖+ 1

2
− 𝐴𝑖− 1

2

Δ𝑥𝑖
, 𝛿𝑥𝐴𝑖+ 1

2
≡ 𝐴𝑖+1 − 𝐴𝑖

Δ𝑥𝑖+ 1
2

,

𝐴𝑖
𝑥 ≡

𝐴𝑖+ 1
2
+ 𝐴𝑖− 1

2

2
, 𝐴𝑖+ 1

2

𝑥 ≡ 𝐴𝑖+1 + 𝐴𝑖
2

. (10.21)

Letting 𝑐𝑝 , 𝑑𝑝 , and 𝑒𝑝 represent their values for positive velocity at the cell boundary and 𝑐𝑚, 𝑑𝑚, and 𝑒𝑚 represent their
values for negative velocity at cell boundary and taking

𝑐𝑎 = 𝑐𝑚 + 𝑐𝑝 (10.22)
𝑐𝑑 = 𝑐𝑚 − 𝑐𝑝 (10.23)
𝑑𝑎 = 𝑑𝑚 + 𝑑𝑝 (10.24)
𝑑𝑑 = 𝑑𝑚 − 𝑑𝑝 (10.25)
𝑒𝑎 = 𝑒𝑚 + 𝑒𝑝 (10.26)
𝑒𝑑 = 𝑒𝑚 − 𝑒𝑝 , (10.27)
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we obtain

FXA𝑖+ 1
2 , 𝑗 ,𝑘−

1
2
= 𝑈𝑇

𝑖+ 1
2 , 𝑗 ,𝑘−

1
2

[
Δ𝑥𝑖, 𝑗𝑇𝑖+1, 𝑗 ,𝑘− 1

2
+ Δ𝑥𝑖+1, 𝑗𝑇𝑖, 𝑗 ,𝑘− 1

2

Δ𝑥𝑖+1, 𝑗 + Δ𝑥𝑖, 𝑗
−
Δ𝑥𝑖+1, 𝑗Δ𝑥𝑖, 𝑗

8
𝑐𝑎𝑖+ 1

2 , 𝑗 ,𝑘−
1
2

]
+ |𝑈𝑇

𝑖+ 1
2 , 𝑗 ,𝑘−

1
2
|
Δ𝑥𝑖+1, 𝑗Δ𝑥𝑖, 𝑗

8
𝑐𝑑𝑖+ 1

2 , 𝑗 ,𝑘−
1
2
, (10.28)

FYA𝑖, 𝑗+ 1
2 ,𝑘−

1
2
= 𝑉𝑇

𝑖, 𝑗+ 1
2 ,𝑘−

1
2

[
Δ𝑦𝑖, 𝑗𝑇𝑖, 𝑗+1,𝑘− 1

2
+ Δ𝑦𝑖, 𝑗+1𝑇𝑖, 𝑗 ,𝑘− 1

2

Δ𝑦𝑖, 𝑗+1 + Δ𝑦𝑖, 𝑗
−
Δ𝑦𝑖, 𝑗+1Δ𝑦𝑖, 𝑗

8
𝑑𝑎𝑖, 𝑗+ 1

2 ,𝑘−
1
2

]
+ |𝑉𝑇

𝑖, 𝑗+ 1
2 ,𝑘−

1
2
|
Δ𝑦𝑖, 𝑗+1Δ𝑦𝑖, 𝑗

8
𝑑𝑑𝑖, 𝑗+ 1

2 ,𝑘−
1
2
, (10.29)

FZA𝑖, 𝑗 ,𝑘 = 𝑊𝑇
𝑖, 𝑗,𝑘

[
Δ𝑧𝑖, 𝑗 ,𝑘− 1

2
𝑇𝑖, 𝑗 ,𝑘+ 1

2
+ Δ𝑧𝑖, 𝑗 ,𝑘+ 1

2
𝑇𝑖, 𝑗 ,𝑘− 1

2

Δ𝑧𝑖, 𝑗 ,𝑘+ 1
2
+ Δ𝑧𝑖, 𝑗 ,𝑘− 1

2

−
Δ𝑧𝑖, 𝑗 ,𝑘+ 1

2
Δ𝑧𝑖, 𝑗 ,𝑘− 1

2

8
𝑒𝑎𝑖, 𝑗,𝑘

]
+ |𝑊𝑇

𝑖, 𝑗,𝑘− 1
2
|
Δ𝑧𝑖, 𝑗 ,𝑘+ 1

2
Δ𝑧𝑖, 𝑗 ,𝑘− 1

2

8
𝑒𝑑𝑖, 𝑗,𝑘 . (10.30)

Equation (10.28) can be rewritten as

FXA𝑖+ 1
2 , 𝑗 ,𝑘−

1
2
' 𝑈𝑇

𝑖+ 1
2 , 𝑗 ,𝑘−

1
2
𝑇𝑖+ 1

2 , 𝑗 ,𝑘−
1
2
+ 𝐴𝑄

𝜕3𝑇𝑖+ 1
2 , 𝑗 ,𝑘−

1
2

𝜕𝑥3 , (10.31)

where 𝑇𝑖+ 1
2 , 𝑗 ,𝑘−

1
2

is the value of 𝑇 at the cell boundary interpolated by the cubic polynomial, and

𝐴𝑄 = |𝑈𝑇
𝑖+ 1

2 , 𝑗 ,𝑘−
1
2
|
Δ𝑥𝑖+1Δ𝑥𝑖+ 1

2
Δ𝑥𝑖

8
. (10.32)

Although the time integration for advection is done by the leap-frog scheme, the second term on the r.h.s. of (10.31) has
a biharmonic diffusion form, and thus the forward scheme is used to achieve calculation stability (Holland et al., 1998).

A similar procedure is applied for the north-south and vertical directions.
The weighted up-current scheme is used for vertical direction if 𝑤𝑖, 𝑗 ,𝑘−1 > 0 and the T-point at (𝑖, 𝑗 , 𝑘 + 1

2 ) is below
the bottom. The upstream-side weighting ratio is given by the user as the namelist parameter specified for the up-current
scheme (Table 10.1).

The following paragraphs describe the specific expression and the accuracy of the QUICK with Estimated Streaming
Terms (QUICKEST; Leonard, 1979).

Consider a one-dimensional equation of advection for incompressible fluid

𝜕𝑇

𝜕𝑡
+ 𝜕

𝜕𝑧
(𝑤𝑇) = 0, (10.33)

where 𝑤 is a constant. Although the velocities are not uniform in the real three dimensional ocean, we assume a constant
velocity for simplicity.

Following the notation of vertical grid points and their indices (Section 3.2), tracers are defined at the center (𝑘 − 1
2 )

of the vertical cells and vertical velocities are defined at the top (𝑘 − 1) and bottom (𝑘) faces of the vertical cells. The
following relation holds for the vertical grid spacing:

Δ𝑧𝑘 =
Δ𝑧𝑘+ 1

2
+ Δ𝑧𝑘− 1

2

2
. (10.34)

In QUICKEST, the distribution of tracer 𝑇 is defined using the second order interpolations, and the mean value during
a time step at the cell face (boundary of two adjacent tracer cells) is calculated. The coefficients for the second order
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interpolation are calculated first. A Taylor expansion of 𝑇 about point 𝑧𝑘 gives

𝑇𝑘− 3
2
= 𝑐0 + 𝑐1

(
Δ𝑧𝑘− 3

2

2
+ Δ𝑧𝑘− 1

2

)
+ 𝑐2

(
Δ𝑧𝑘− 3

2

2
+ Δ𝑧𝑘− 1

2

)2

+𝑂 (Δ𝑧3), (10.35)

𝑇𝑘− 1
2
= 𝑐0 + 𝑐1

Δ𝑧𝑘− 1
2

2
+ 𝑐2

Δ𝑧2
𝑘− 1

2

4
+𝑂 (Δ𝑧3), (10.36)

𝑇𝑘+ 1
2
= 𝑐0 − 𝑐1

Δ𝑧𝑘+ 1
2

2
+ 𝑐2

Δ𝑧2
𝑘+ 1

2

4
+𝑂 (Δ𝑧3), (10.37)

𝑇𝑘+ 3
2
= 𝑐0 − 𝑐1

(
Δ𝑧𝑘+ 3

2

2
+ Δ𝑧𝑘+ 1

2

)
+ 𝑐2

(
Δ𝑧𝑘+ 3

2

2
+ Δ𝑧𝑘+ 1

2

)2

+𝑂 (Δ𝑧3). (10.38)

Coefficients 𝑐0, 𝑐1, and 𝑐2 can be solved using three of the four equations (10.35), (10.36), (10.37), and (10.38). The three
upstream-side equations are chosen. When 𝑤 > 0 (𝑤 < 0), equations (10.36), (10.37), and (10.38) ((10.35), (10.36), and
(10.37)) are used. The solution is as follows:

𝑐0 =
𝑇𝑘− 1

2
Δ𝑧𝑘+ 1

2
+ 𝑇𝑘+ 1

2
Δ𝑧𝑘− 1

2

2Δ𝑧𝑘
−
Δ𝑧𝑘+ 1

2
Δ𝑧𝑘− 1

2

4
𝑐2, (10.39)

𝑐1 =
𝑇𝑘− 1

2
− 𝑇𝑘+ 1

2

Δ𝑧𝑘
−
Δ𝑧𝑘− 1

2
− Δ𝑧𝑘+ 1

2

2
𝑐2, (10.40)

𝑐2 =


1

Δ𝑧𝑘+Δ𝑧𝑘+1

(
𝑇
𝑘− 1

2
−𝑇

𝑘+ 1
2

Δ𝑧𝑘
−

𝑇
𝑘+ 1

2
−𝑇

𝑘+ 3
2

Δ𝑧𝑘+1

)
(𝑤 > 0),

1
Δ𝑧𝑘−1+Δ𝑧𝑘

(
𝑇
𝑘− 3

2
−𝑇

𝑘− 1
2

Δ𝑧𝑘−1
−

𝑇
𝑘− 1

2
−𝑇

𝑘+ 1
2

Δ𝑧𝑘

)
(𝑤 < 0).

(10.41)

Next, equation (10.33) is integrated over one time step and one grid cell.∫ 𝑡𝑛+1

𝑡𝑛
𝑑𝑡

∫ 𝑧𝑘−1

𝑧𝑘

𝑑𝑧
𝜕𝑇

𝜕𝑡
= −

∫ 𝑡𝑛+1

𝑡𝑛
𝑑𝑡

∫ 𝑧𝑘−1

𝑧𝑘

𝑑𝑧
𝜕

𝜕𝑧
(𝑤𝑇). (10.42)

The r.h.s. of (10.42) can be written as

−
∫ 𝑡𝑛+1

𝑡𝑛
𝑑𝑡 (𝑤𝑢𝑇𝑢 − 𝑤𝑙𝑇𝑙), (10.43)

where subscript 𝑢 (𝑙) denotes 𝑧 = 𝑧𝑘−1 (𝑧 = 𝑧𝑘 ). Assuming that 𝑤 does not depend on time,∫ 𝑡𝑛+1

𝑡𝑛
𝑑𝑡𝑇𝑙 =

∫ 0

−𝑤𝑙Δ𝑡
[𝑐𝑛0 + 𝑐

𝑛
1𝜉 + 𝑐

𝑛
2𝜉

2 +𝑂 (Δ𝑧3)] 𝑑𝜉
𝑤𝑙
. (10.44)

Thus expression (10.43) becomes
−Δ𝑡 (𝑤𝑢𝑇

𝑛
𝑢 − 𝑤𝑙𝑇

𝑛
𝑙 ) +𝑂 (Δ𝑧

3𝑤Δ𝑡), (10.45)

where

𝑇𝑛
𝑙 =

1
𝑤𝑙Δ𝑡

∫ 0

−𝑤𝑙Δ𝑡
(𝑐𝑛0 + 𝑐

𝑛
1𝜉 + 𝑐

𝑛
2𝜉

2)𝑑𝜉

= 𝑐𝑛0 −
𝑐𝑛1
2
𝑤𝑙Δ𝑡 +

𝑐𝑛2
3
𝑤2
𝑙Δ𝑡

2. (10.46)

Using up to the second order terms of a Taylor expansion, the l.h.s. of (10.42) can be written as follows:∫ 𝑡𝑛+1

𝑡𝑛
𝑑𝑡

∫ 𝑧𝑘−1

𝑧𝑘

𝑑𝑧
𝜕𝑇

𝜕𝑡
= Δ𝑧𝑘− 1

2

𝑇𝑛+1
𝑘− 1

2
− 𝑇𝑛

𝑘− 1
2
+
Δ𝑧2

𝑘− 1
2

24
(𝑇𝑧𝑧𝑛+1𝑘− 1

2
− 𝑇𝑧𝑧𝑛𝑘− 1

2
) +𝑂 (Δ𝑧3)

 , (10.47)
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where

𝑇𝑧𝑧
𝑛+1
𝑘− 1

2
− 𝑇𝑧𝑧𝑛𝑘− 1

2
= Δ𝑡

𝜕𝑇𝑧𝑧
𝜕𝑡

����𝑛
𝑘− 1

2

+𝑂 (Δ𝑡2)

= −Δ𝑡 𝜕
2

𝜕𝑧2

[
𝜕

𝜕𝑧
(𝑤𝑇)

]𝑛
𝑘− 1

2

+𝑂 (Δ𝑡2)

= −Δ𝑡 𝜕
𝜕𝑧
(𝑤𝑇𝑧𝑧)𝑛𝑘− 1

2
+𝑂 (Δ𝑡2)

= −Δ𝑡
{
𝑤𝑢𝑇𝑧𝑧

𝑛
𝑢 − 𝑤𝑙𝑇𝑧𝑧

𝑛
𝑙

Δ𝑧𝑘− 1
2

}
+𝑂 (𝑤Δ𝑡Δ𝑧) +𝑂 (Δ𝑡2). (10.48)

The expression for the r.h.s. of (10.47) becomes

Δ𝑧𝑘− 1
2

𝑇𝑛+1
𝑘− 1

2
− 𝑇𝑛

𝑘− 1
2
−
Δ𝑧2

𝑘− 1
2

24
Δ𝑡
𝑤𝑢𝑇𝑧𝑧

𝑛
𝑢 − 𝑤𝑙𝑇𝑧𝑧

𝑛
𝑙

Δ𝑧𝑘− 1
2

+𝑂 (Δ𝑧3)
 +𝑂 (𝑤Δ𝑡Δ𝑧4) +𝑂 (Δ𝑧3Δ𝑡2). (10.49)

Based on (10.45) and (10.49), the discretized forecasting equation is expressed as follows:

𝑇𝑛+1
𝑘− 1

2
= 𝑇𝑛

𝑘− 1
2
− Δ𝑡
Δ𝑧𝑘− 1

2

𝑤𝑢𝑇
𝑛
𝑢 − 𝑤𝑙𝑇

𝑛
𝑙 −

Δ𝑧2
𝑘− 1

2

24
(𝑤𝑢𝑇𝑧𝑧

𝑛
𝑢 − 𝑤𝑙𝑇𝑧𝑧

𝑛
𝑙 )

 +𝑂 (𝛼Δ𝑧4) +𝑂 (Δ𝑧2Δ𝑡2), (10.50)

where

𝛼 ≡ 𝑤Δ𝑡
Δ𝑧

< 1, (10.51)

𝑇𝑧𝑧
𝑛
𝑙 = 2𝑐2 +𝑂 (Δ𝑧). (10.52)

The accuracy of equation (10.50) is max(𝑂 (Δ𝑧4), 𝑂 (Δ𝑧2Δ𝑡2)).
Note that MRI.COM adopts a flux limiter proposed by Leonard et al. (1994), which prevents unrealistic extrema, for the

vertical QUICKEST scheme.

10.4 UTOPIA for horizontal advection
The Uniformly Third Order Polynomial Interpolation Algorithm (UTOPIA; Leonard et al., 1993) is an advection scheme
that can be regarded as a multi-dimensional version of QUICKEST. In UTZQADVEC option, horizontally two-dimensional
advection is calculated using UTOPIA. Vertical advection is calculated separately using QUICKEST.

Since grid intervals could be variable in both zonal and meridional directions in MRI.COM, UTOPIA is formulated
based on a variable grid interval. It is assumed that the tracer cell is subdivided by the borderlines of the velocity cells
into four boxes with (almost) identical area.

Consider an equation of advection:

𝜕𝑇

𝜕𝑡
+ 1
ℎ𝜇ℎ𝜓

𝜕

𝜕𝜇
(ℎ𝜓𝑢𝑇) +

1
ℎ𝜇ℎ𝜓

𝜕

𝜕𝜓
(ℎ𝜇𝑣𝑇) = 0. (10.53)

Integrated over a tracer cell and for one time step,∫ 𝜓𝐿+Δ𝜓𝐿/2

𝜓𝐿−Δ𝜓𝐿/2
𝑑𝜓

∫ 𝜇𝐿+Δ𝜇𝐿/2

𝜇𝐿−Δ𝜇𝐿/2
𝑑𝜇(𝜒𝑛+1 − 𝜒𝑛) = −Δ𝑡 (𝑢𝑛𝑟𝑇𝑛

𝑟 Δ𝑦𝑟 − 𝑢𝑛𝑙 𝑇𝑛
𝑙 Δ𝑦𝑙 + 𝑣

𝑛
𝑢𝑇

𝑛
𝑢 Δ𝑥𝑢 − 𝑣𝑛𝑑𝑇𝑛

𝑑Δ𝑥𝑑), (10.54)

where 𝜒 ≡ ℎ𝜇ℎ𝜓𝑇 and 𝑇𝑛
𝑟 etc. on the r.h.s. are the face values described later. On the l.h.s. of (10.54), the second-order

interpolation of 𝜒 is used to integrate the terms. The Taylor expansion of 𝜒 about L is given as follows (see Figure 10.3
for the label of the point):

𝜒 = 𝜒𝐿 + 𝑎10 (𝜇 − 𝜇𝐿) + 𝑎20 (𝜇 − 𝜇𝐿)2 + 𝑎01 (𝜓 − 𝜓𝐿) + 𝑎02 (𝜓 − 𝜓𝐿)2 + 𝑎11 (𝜇 − 𝜇𝐿)(𝜓 − 𝜓𝐿). (10.55)

Then values at points E, W, N, and S are
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L EWWW

NNW

SW S SE

SS

u

r

dl

Figure10.3 Labels of tracer grid points (upper case characters) and faces (lower case characters).

𝜒𝐸 = 𝜒𝐿 + 𝑎10Δ𝜇𝑟 + 𝑎20Δ𝜇
2
𝑟 , (10.56)

𝜒𝑊 = 𝜒𝐿 − 𝑎10Δ𝜇𝑙 + 𝑎20Δ𝜇
2
𝑙 , (10.57)

𝜒𝑁 = 𝜒𝐿 + 𝑎01Δ𝜓𝑢 + 𝑎02Δ𝜓
2
𝑢 , (10.58)

𝜒𝑆 = 𝜒𝐿 − 𝑎01Δ𝜓𝑑 + 𝑎02Δ𝜓
2
𝑑 , (10.59)

where

Δ𝜓𝑢 ≡
Δ𝜓𝐿 + Δ𝜓𝑁

2
, (10.60)

Δ𝜓𝑑 ≡
Δ𝜓𝐿 + Δ𝜓𝑆

2
, (10.61)

Δ𝜇𝑟 ≡
Δ𝜇𝐿 + Δ𝜇𝐸

2
, (10.62)

Δ𝜇𝑙 ≡
Δ𝜇𝐿 + Δ𝜇𝑊

2
. (10.63)

Using these known values, the following parameters are obtained,

𝑎10 =
Δ𝜇𝑙

𝜒𝐸 − 𝜒𝐿
Δ𝜇𝑟

+ Δ𝜇𝑟
𝜒𝐿 − 𝜒𝑊

Δ𝜇𝑙
Δ𝜇𝑟 + Δ𝜇𝑙

, (10.64)

𝑎20 =

𝜒𝐸 − 𝜒𝐿
Δ𝜇𝑟

− 𝜒𝐿 − 𝜒𝑊
Δ𝜇𝑙

Δ𝜇𝑟 + Δ𝜇𝑙
, (10.65)

𝑎01 =
Δ𝜓𝑑

𝜒𝑁 − 𝜒𝐿
Δ𝜓𝑢

+ Δ𝜓𝑢
𝜒𝐿 − 𝜒𝑆
Δ𝜓𝑑

Δ𝜓𝑢 + Δ𝜓𝑑
, (10.66)

𝑎02 =

𝜒𝑁 − 𝜒𝐿
Δ𝜓𝑢

− 𝜒𝐿 − 𝜒𝑆
Δ𝜓𝑑

Δ𝜓𝑢 + Δ𝜓𝑑
. (10.67)

Substituting (10.55) into the l.h.s. of (10.54) yields

Δ𝜇𝐿Δ𝜓𝐿

[
𝜒𝑛+1𝐿 − 𝜒𝑛𝐿 +

Δ𝜇2
𝐿

12
(𝑎𝑛+120 − 𝑎

𝑛
20) +

Δ𝜓2
𝐿

12
(𝑎𝑛+102 − 𝑎

𝑛
02)

]
. (10.68)
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Using equation (10.53), the following approximation is allowed:

𝑎𝑛+120 − 𝑎
𝑛
20 = −Δ𝑡

[
ℎ𝜓𝑟𝑢

𝑛
𝑟𝑇

𝑛
𝜇𝜇𝑟 − ℎ𝜓𝑙𝑢𝑛𝑙 𝑇

𝑛
𝜇𝜇𝑙

Δ𝜇𝐿
+
ℎ𝜇𝑢𝑣

𝑛
𝑢𝑇

𝑛
𝜇𝜇𝑢 − ℎ𝜇𝑑𝑣𝑛𝑑𝑇

𝑛
𝜇𝜇𝑑

Δ𝜓𝐿

]
, (10.69)

𝑎𝑛+102 − 𝑎
𝑛
02 = −Δ𝑡

[
ℎ𝜓𝑟𝑢

𝑛
𝑟𝑇

𝑛
𝜓𝜓𝑟 − ℎ𝜓𝑙𝑢𝑛𝑙 𝑇

𝑛
𝜓𝜓𝑙

Δ𝜇𝐿
+
ℎ𝜇𝑢𝑣

𝑛
𝑢𝑇

𝑛
𝜓𝜓𝑢 − ℎ𝜇𝑑𝑣𝑛𝑑𝑇

𝑛
𝜓𝜓𝑑

Δ𝜓𝐿

]
, (10.70)

where𝑇𝑛
𝜇𝜇𝑟 is the value of the second order derivative at the right face r, whose expression is similar to that of 𝑐20 described

later. Therefore, under a suitable approximation,

𝑇𝑛+1
𝐿 = 𝑇𝑛

𝐿 −
Δ𝑡
Δ𝑆𝐿
(𝑢𝑛𝑟𝑇𝑛

𝑟 Δ𝑦𝑟 − 𝑢𝑛𝑙 𝑇𝑛
𝑙 Δ𝑦𝑙 + 𝑣

𝑛
𝑢𝑇

𝑛
𝑢 Δ𝑥𝑢 − 𝑣𝑛𝑑𝑇𝑛

𝑑Δ𝑥𝑑), (10.71)

where

𝑇𝑛
𝑙 = 𝑇𝑛

𝑙 −
Δ𝜇2

𝐿

24
𝑇𝑛
𝜇𝜇𝑙 −

Δ𝜓2
𝐿

24
𝑇𝑛
𝜓𝜓𝑙 , (10.72)

𝑇𝑛
𝑑 = 𝑇𝑛

𝑑 −
Δ𝜇2

𝐿

24
𝑇𝑛
𝜇𝜇𝑑 −

Δ𝜓2
𝐿

24
𝑇𝑛
𝜓𝜓𝑑 . (10.73)

Next, the expressions for 𝑇𝑛
𝑙 and 𝑇𝑛

𝑑 are required. The term 𝑇𝑛
𝑙 is the average over the hatched area of Figure 10.4, and

the values of 𝑇𝑛 are given as the second order interpolation about l of Figure 10.3. Similar operations will be used to
obtain the expression for 𝑇𝑛

𝑑 .

W L

ul∆t

vl∆t

Figure10.4 Area used to average tracer values for the face l

First, Taylor expansions of 𝑇𝑛 about l and d are written as follows:

𝑇𝑛 |l =𝑐00 + 𝑐10 (𝜇 − 𝜇𝑙) + 𝑐20 (𝜇 − 𝜇𝑙)2 + 𝑐01 (𝜓 − 𝜓𝐿) + 𝑐02 (𝜓 − 𝜓𝐿)2 + 𝑐11 (𝜇 − 𝜇𝑙)(𝜓 − 𝜓𝐿), (10.74)

𝑇𝑛 |d =𝑑00 + 𝑑10 (𝜇 − 𝜇𝑙) + 𝑑20 (𝜇 − 𝜇𝑙)2 + 𝑑01 (𝜓 − 𝜓𝐿) + 𝑑02 (𝜓 − 𝜓𝐿)2 + 𝑑11 (𝜇 − 𝜇𝑙)(𝜓 − 𝜓𝐿). (10.75)
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The 𝑇𝑛 values at eight points around l are,

𝑇𝑛
𝐿 = 𝑐00 + 𝑐10

Δ𝜇𝐿
2
+ 𝑐20

Δ𝜇2
𝐿

4
, (10.76)

𝑇𝑛
𝑊 = 𝑐00 − 𝑐10

Δ𝜇𝑊
2
+ 𝑐20

Δ𝜇2
𝑊

4
, (10.77)

𝑇𝑛
𝐸 = 𝑐00 + 𝑐10

(
Δ𝜇𝐿 +

Δ𝜇𝐸
2

)
+ 𝑐20

(
Δ𝜇𝐿 +

Δ𝜇𝐸
2

)2
, (10.78)

𝑇𝑛
𝑊𝑊 = 𝑐00 − 𝑐10

(
Δ𝜇𝑊 +

Δ𝜇𝑊𝑊

2

)
+ 𝑐20

(
Δ𝜇𝑊 +

Δ𝜇𝑊𝑊

2

)2
, (10.79)

𝑇𝑛
𝑁 = 𝑇𝑛

𝐿 + 𝑐01Δ𝜓𝑢 + 𝑐02Δ𝜓
2
𝑢 + 𝑐11

Δ𝜇𝐿
2

Δ𝜓𝑢 , (10.80)

𝑇𝑛
𝑆 = 𝑇𝑛

𝐿 − 𝑐01Δ𝜓𝑑 + 𝑐02Δ𝜓
2
𝑑 − 𝑐11

Δ𝜇𝐿
2

Δ𝜓𝑑 , (10.81)

𝑇𝑛
𝑁𝑊 = 𝑇𝑛

𝑊 + 𝑐01Δ𝜓𝑢 + 𝑐02Δ𝜓
2
𝑢 − 𝑐11

Δ𝜇𝑊
2

Δ𝜓𝑢 , (10.82)

𝑇𝑛
𝑆𝑊 = 𝑇𝑛

𝑊 − 𝑐01Δ𝜓𝑑 + 𝑐02Δ𝜓
2
𝑑 + 𝑐11

Δ𝜇𝑊
2

Δ𝜓𝑑 . (10.83)

To obtain all six coefficients, six of these equations (points) are used. The equations are chosen according to the following
flow direction.

𝑢𝑛𝑙 > 0, 𝑣𝑛𝑙 > 0⇒ L,W,WW, S,NW, SW (10.84)
𝑢𝑛𝑙 < 0, 𝑣𝑛𝑙 > 0⇒ L,W,E,N, S, SW (10.85)
𝑢𝑛𝑙 > 0, 𝑣𝑛𝑙 < 0⇒ L,W,WW,N,NW, SW (10.86)
𝑢𝑛𝑙 < 0, 𝑣𝑛𝑙 < 0⇒ L,W,E,N, S,NW (10.87)

From equations (10.76) and (10.77),

𝑐00 =
Δ𝜇𝑊𝑇

𝑛
𝐿 + Δ𝜇𝐿𝑇𝑛

𝑊

2Δ𝜇𝑙
− 𝑐20

Δ𝜇𝐿Δ𝜇𝑊
4

, (10.88)

𝑐10 =
𝑇𝑛
𝐿 − 𝑇𝑛

𝑊

Δ𝜇𝑙
− 𝑐20

Δ𝜇𝐿 − Δ𝜇𝑊
2

. (10.89)

When 𝑢𝑛𝑙 > 0, from (10.76) and (10.79),

𝑐20 =

𝑇𝑛
𝐿 − 𝑇𝑛

𝑊

Δ𝜇𝑙
−
𝑇𝑛
𝑊 − 𝑇𝑛

𝑊𝑊

Δ𝜇𝑙𝑙
Δ𝜇𝑙 + Δ𝜇𝑙𝑙

, (10.90)

where Δ𝜇𝑙𝑙 ≡
Δ𝜇𝑊 + Δ𝜇𝑊𝑊

2
.

Using equations (10.82) and (10.83),

𝑐02 =

𝑇𝑛
𝑁𝑊 − 𝑇𝑛

𝑊

Δ𝜓𝑢
−
𝑇𝑛
𝑊 − 𝑇𝑛

𝑆𝑊

Δ𝜓𝑑

Δ𝜓𝑢 + Δ𝜓𝑑
. (10.91)

When 𝑢𝑛𝑙 < 0, from (10.77) and (10.78),

𝑐20 =

𝑇𝑛
𝐸 − 𝑇𝑛

𝐿

Δ𝜇𝑟
−
𝑇𝑛
𝐿 − 𝑇𝑛

𝑊

Δ𝜇𝑙
Δ𝜇𝑟 + Δ𝜇𝑙

. (10.92)

Using equations (10.80) and (10.81),

𝑐02 =

𝑇𝑛
𝑁 − 𝑇𝑛

𝐿

Δ𝜓𝑢
−
𝑇𝑛
𝐿 − 𝑇𝑛

𝑆

Δ𝜓𝑑

Δ𝜓𝑢 + Δ𝜓𝑑
. (10.93)
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When 𝑣𝑛𝑙 > 0, from (10.81) and (10.83),

𝑐01 =
Δ𝜇𝑊 (𝑇𝑛

𝐿 − 𝑇𝑛
𝑆 ) + Δ𝜇𝐿 (𝑇

𝑛
𝑊 − 𝑇𝑛

𝑆𝑊 )
2Δ𝜇𝑙Δ𝜓𝑑

+ 𝑐02Δ𝜓𝑑 , (10.94)

𝑐11 =
𝑇𝑛
𝑆𝑊 − 𝑇

𝑛
𝑊 − 𝑇𝑛

𝑆 + 𝑇
𝑛
𝐿

Δ𝜇𝑙Δ𝜓𝑑
. (10.95)

When 𝑣𝑛𝑙 < 0, from (10.80) and (10.82),

𝑐01 =
Δ𝜇𝑊 (𝑇𝑛

𝑁 − 𝑇𝑛
𝐿 ) + Δ𝜇𝐿 (𝑇𝑛

𝑁𝑊 − 𝑇𝑛
𝑊 )

2Δ𝜇𝑙Δ𝜓𝑢
− 𝑐02Δ𝜓𝑢 , (10.96)

𝑐11 =
𝑇𝑛
𝑁 − 𝑇𝑛

𝐿 − 𝑇𝑛
𝑁𝑊 + 𝑇𝑛

𝑊

Δ𝜇𝑙Δ𝜓𝑢
. (10.97)

Next, using equation (10.75), the 𝑇𝑛 values at eight points around d are

𝑇𝑛
𝐿 = 𝑑00 + 𝑑01

Δ𝜓𝐿

2
+ 𝑑02

Δ𝜓2
𝐿

4
, (10.98)

𝑇𝑛
𝑆 = 𝑑00 − 𝑑01

Δ𝜓𝑆

2
+ 𝑑02

Δ𝜓2
𝑆

4
, (10.99)

𝑇𝑛
𝑁 = 𝑑00 + 𝑑01

(
Δ𝜓𝐿 +

Δ𝜓𝑁

2

)
+ 𝑑02

(
Δ𝜓𝐿 +

Δ𝜓𝑁

2

)2
, (10.100)

𝑇𝑛
𝑆𝑆 = 𝑑00 − 𝑑01

(
Δ𝜓𝑆 +

Δ𝜓𝑆𝑆

2

)
+ 𝑑02

(
Δ𝜓𝑆 +

Δ𝜓𝑆𝑆

2

)2
, (10.101)

𝑇𝑛
𝐸 = 𝑇𝑛

𝐿 + 𝑑10Δ𝜇𝑟 + 𝑑20Δ𝜇
2
𝑟 + 𝑑11

Δ𝜓𝐿

2
Δ𝜇𝑟 , (10.102)

𝑇𝑛
𝑊 = 𝑇𝑛

𝐿 − 𝑑10Δ𝜇𝑙 + 𝑑20Δ𝜇
2
𝑙 − 𝑑11

Δ𝜓𝐿

2
Δ𝜇𝑙 , (10.103)

𝑇𝑛
𝑆𝐸 = 𝑇𝑛

𝑆 + 𝑑10Δ𝜇𝑟 + 𝑑20Δ𝜇
2
𝑟 − 𝑑11

Δ𝜓𝑆

2
Δ𝜇𝑟 , (10.104)

𝑇𝑛
𝑆𝑊 = 𝑇𝑛

𝑆 − 𝑑10Δ𝜇𝑙 + 𝑑20Δ𝜇
2
𝑙 + 𝑑11

Δ𝜓𝑆

2
Δ𝜇𝑙 . (10.105)

From equations (10.98) and (10.99),

𝑑00 =
Δ𝜓𝑆𝑇

𝑛
𝐿 + Δ𝜓𝐿𝑇

𝑛
𝑆

2Δ𝜓𝑑
− 𝑑02

Δ𝜓𝐿Δ𝜓𝑆

4
, (10.106)

𝑑01 =
𝑇𝑛
𝐿 − 𝑇𝑛

𝑆

Δ𝜓𝑑
− 𝑑02

Δ𝜓𝐿 − Δ𝜓𝑆

2
. (10.107)

When 𝑣𝑛𝑑 > 0, from (10.98) and (10.101),

𝑑02 =

𝑇𝑛
𝐿 − 𝑇𝑛

𝑆

Δ𝜓𝑑
−
𝑇𝑛
𝑆 − 𝑇

𝑛
𝑆𝑆

Δ𝜓𝑑𝑑

Δ𝜓𝑑 + Δ𝜓𝑑𝑑
, (10.108)

where Δ𝜓𝑑𝑑 ≡
Δ𝜓𝑆 + Δ𝜓𝑆𝑆

2
.

From (10.104) and (10.105),

𝑑20 =

𝑇𝑛
𝑆𝐸 − 𝑇

𝑛
𝑆

Δ𝜇𝑟
−
𝑇𝑛
𝑆 − 𝑇

𝑛
𝑆𝑊

Δ𝜇𝑙
Δ𝜇𝑟 + Δ𝜇𝑙

. (10.109)

When 𝑣𝑛𝑑 < 0, from (10.99) and (10.100),

𝑑02 =

𝑇𝑛
𝑁 − 𝑇𝐿
Δ𝜓𝑢

−
𝑇𝑛
𝐿 − 𝑇𝑛

𝑆

Δ𝜓𝑑

Δ𝜓𝑢 + Δ𝜓𝑑
. (10.110)
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From (10.102) and (10.103),

𝑑20 =

𝑇𝑛
𝐸 − 𝑇𝑛

𝐿

Δ𝜇𝑟
−
𝑇𝑛
𝐿 − 𝑇𝑛

𝑊

Δ𝜇𝑙
Δ𝜇𝑟 + Δ𝜇𝑙

. (10.111)

When 𝑢𝑛𝑑 > 0, from (10.103) and (10.105),

𝑑10 =
Δ𝜓𝑆 (𝑇𝑛

𝐿 − 𝑇𝑛
𝑊 ) + Δ𝜓𝐿 (𝑇𝑛

𝑆 − 𝑇
𝑛
𝑆𝑊 )

2Δ𝜓𝑑Δ𝜇𝑙
+ 𝑑20Δ𝜇𝑙 , (10.112)

𝑑11 =
𝑇𝑛
𝐿 − 𝑇𝑛

𝑆 − 𝑇
𝑛
𝑊 + 𝑇𝑛

𝑆𝑊

Δ𝜓𝑑Δ𝜇𝑙
. (10.113)

When 𝑢𝑛𝑑 < 0, from (10.102) and (10.104),

𝑑10 =
Δ𝜓𝑆 (𝑇𝑛

𝐸 − 𝑇𝑛
𝐿 ) + Δ𝜓𝐿 (𝑇𝑛

𝑆𝐸 − 𝑇
𝑛
𝑆 )

2Δ𝜓𝑑Δ𝜇𝑟
− 𝑑20Δ𝜇𝑟 , (10.114)

𝑑11 =
𝑇𝑛
𝐸 − 𝑇𝑛

𝑆𝐸 − 𝑇
𝑛
𝐿 + 𝑇𝑛

𝑆

Δ𝜓𝑑Δ𝜇𝑟
. (10.115)

The value of 𝑇𝑛
𝑙 is the average of 𝑇𝑛 over the hatched area of Figure 10.4. Defining

𝜉𝑛𝑙 =
𝑢𝑛𝑙
ℎ𝜇𝑙

, 𝜂𝑛𝑙 =
𝑣𝑛𝑙
ℎ𝜓𝑙

, (10.116)

we have

𝑇𝑛
𝑙 =

1
𝜉𝑛𝑙 Δ𝑡Δ𝜓𝐿

[∫ 𝜓𝐿+Δ𝜓𝐿/2

𝜓𝐿−Δ𝜓𝐿/2

∫ 𝜇𝑙

𝜇𝑙−𝜉𝑛
𝑙
Δ𝑡
𝑇𝑛𝑑𝜇𝑑𝜓

+
∫ 𝜓𝐿−Δ𝜓𝐿/2

𝜓𝐿−Δ𝜓𝐿/2−𝜂𝑛
𝑙
Δ𝑡

∫ 𝜇𝑙+
𝜉𝑛
𝑙

𝜂𝑛
𝑙
(𝜓−𝜓𝐿+Δ𝜓𝐿/2)

𝜇𝑙−𝜉𝑛
𝑙
Δ𝑡

{𝑇𝑛 (𝜓) − 𝑇𝑛 (𝜓 + Δ𝜓𝐿)}𝑑𝜇𝑑𝜓


= 𝑐00 −
1
2
𝜂𝑛𝑙 Δ𝑡 𝑐01 +

[
1
12

Δ𝜓2
𝐿 +

1
3
(𝜂𝑛𝑙 Δ𝑡)

2
]
𝑐02

− 1
2
𝜉𝑛𝑙 Δ𝑡 𝑐10 +

1
3
(𝜉𝑛𝑙 Δ𝑡)

2𝑐20 +
1
3
𝜉𝑛𝑙 𝜂

𝑛
𝑙 Δ𝑡

2 𝑐11. (10.117)

Although the ranges of integrals in (10.117) assume 𝑢𝑛𝑙 > 0 and 𝑣𝑛𝑙 > 0, the result is independent of the signs of 𝑢𝑛𝑙 and 𝑣𝑛𝑙 .
Similarly,

𝑇𝑛
𝑑 = 𝑑00 −

1
2
𝜂𝑛𝑑Δ𝑡 𝑑01 +

1
3
(𝜂𝑛𝑑Δ𝑡)

2 𝑑02

− 1
2
𝜉𝑛𝑑Δ𝑡 𝑑10 +

[
1
12

Δ𝜇2
𝐿 +

1
3
(𝜉𝑛𝑑Δ𝑡)

2
]
𝑑20 +

1
3
𝜉𝑛𝑑𝜂

𝑛
𝑑Δ𝑡

2𝑑11, (10.118)

where
𝜉𝑛𝑑 =

𝑢𝑛𝑑
ℎ𝜇𝑑

, 𝜂𝑛𝑑 =
𝑣𝑛𝑑
ℎ𝜓𝑑

. (10.119)

Therefore,

𝑇𝑛
𝑙 = 𝑐00 −

1
2
𝜉𝑛𝑙 Δ𝑡 𝑐10 +

[
1
3
(𝜉𝑛𝑙 Δ𝑡)

2 −
Δ𝜇2

𝐿

12

]
𝑐20

− 1
2
𝜂𝑛𝑙 Δ𝑡 𝑐01 +

1
3
(𝜂𝑛𝑙 Δ𝑡)

2𝑐02 +
1
3
𝜉𝑛𝑙 𝜂

𝑛
𝑙 Δ𝑡

2 𝑐11, (10.120)

𝑇𝑛
𝑑 = 𝑑00 −

1
2
𝜂𝑛𝑑Δ𝑡 𝑑01 +

[
1
3
(𝜂𝑛𝑑Δ𝑡)

2 −
Δ𝜓2

𝐿

12

]
𝑑02

− 1
2
𝜉𝑛𝑑Δ𝑡 𝑑10 +

1
3
(𝜉𝑛𝑑Δ𝑡)

2𝑑20 +
1
3
𝜉𝑛𝑑𝜂

𝑛
𝑑Δ𝑡

2 𝑑11. (10.121)
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Finally, we describe how to derive the boundary conditions. Since the face values of the tracers are calculated through
the second order interpolation, the value of a tracer at a point over land is sometimes necessary. For that case, the value
should be appropriately decided by using the tracer values at the neighboring points in the sea. Since ocean models
generally assume that there is no flux of tracers across land-sea boundary, the provisional value over land should be given
so as not to create a normal gradient at the boundary.

When the face value of a tracer at boundary l is calculated, W and L are not land, but either N or S may be land, and
either NW or SW may be land. When N or S is land, the land-sea boundary runs at the center of L in the zonal direction.
It is reasonable to assume that the value of land grid N or S must not cause any meridional tracer gradient at L set by
second order interpolation using the values at grids N, L, and S. Thus, we set

(𝑇𝑛
𝑁 − 𝑇𝑛

𝐿 )Δ𝜓2
𝑑 = (𝑇𝑛

𝑆 − 𝑇
𝑛
𝐿 )Δ𝜓2

𝑢 . (10.122)

When NW or SW is a land grid, the following should be assumed.

(𝑇𝑛
𝑁𝑊 − 𝑇𝑛

𝑊 )Δ𝜓2
𝑑 = (𝑇𝑛

𝑆𝑊 − 𝑇
𝑛
𝑊 )Δ𝜓2

𝑢 (10.123)

When WW is a land grid,
(𝑇𝑛

𝑊𝑊 − 𝑇𝑛
𝑊 )Δ𝜇2

𝑙 = (𝑇𝑛
𝐿 − 𝑇𝑛

𝑊 )Δ𝜇2
𝑙𝑙 . (10.124)

When E is a land grid,
(𝑇𝑛

𝐸 − 𝑇𝑛
𝐿 )Δ𝜇2

𝑙 = (𝑇𝑛
𝑊 − 𝑇𝑛

𝐿 )Δ𝜇2
𝑟 . (10.125)

Similar boundary conditions are specified for face d.
Note that MRI.COM adopts a flux limiter proposed by Leonard et al. (1994), which prevents unrealistic extrema, for the

UTOPIA scheme.

10.5 Second Order Moment (SOM) scheme
10.5.1 Outline
The Second Order Moment (SOM) advection scheme by Prather (1986) seeks to improve the accuracy by treating the
tracer distribution within a grid cell, unlike the scheme that aims to calculate the tracer flux at the boundary of grid cells
with high accuracy. It is assumed that the distribution of tracer 𝑓 in a grid cell (0 ≤ 𝑥 ≤ 𝑋, 0 ≤ 𝑦 ≤ 𝑌, 0 ≤ 𝑧 ≤ 𝑍;
volume 𝑉 = 𝑋𝑌𝑍) can be represented using second order functions as follows:

𝑓 (𝑥, 𝑦, 𝑧) = 𝑎0 + 𝑎𝑥𝑥 + 𝑎𝑥𝑥𝑥2 + 𝑎𝑦𝑦 + 𝑎𝑦𝑦𝑦2 + 𝑎𝑧𝑧 + 𝑎𝑧𝑧𝑧2 + 𝑎𝑥𝑦𝑥𝑦 + 𝑎𝑦𝑧𝑦𝑧 + 𝑎𝑧𝑥𝑧𝑥. (10.126)

Prather (1986) expressed the above as a sum of orthogonal functions 𝐾𝑛 (𝑥, 𝑦, 𝑧);

𝑓 (𝑥, 𝑦, 𝑧) = 𝑚0𝐾0 + 𝑚𝑥𝐾𝑥 + 𝑚𝑥𝑥𝐾𝑥𝑥 + 𝑚𝑦𝐾𝑦 + 𝑚𝑦𝑦𝐾𝑦𝑦 + 𝑚𝑧𝐾𝑧 + 𝑚𝑧𝑧𝐾𝑧𝑧 + 𝑚𝑥𝑦𝐾𝑥𝑦 + 𝑚𝑦𝑧𝐾𝑦𝑧 + 𝑚𝑧𝑥𝐾𝑧𝑥 , (10.127)

where the orthogonal functions are given as follows:

𝐾0 = 1,
𝐾𝑥 (𝑥) = 𝑥 − 𝑋/2,
𝐾𝑥𝑥 (𝑥) = 𝑥2 − 𝑋𝑥 + 𝑋2/6,
𝐾𝑦 (𝑦) = 𝑦 − 𝑌/2,
𝐾𝑦𝑦 (𝑦) = 𝑦2 − 𝑌𝑦 + 𝑌2/6,
𝐾𝑧 (𝑧) = 𝑧 − 𝑍/2, (10.128)

𝐾𝑧𝑧 (𝑧) = 𝑧2 − 𝑍𝑧 + 𝑍2/6,
𝐾𝑥𝑦 (𝑥, 𝑦) = (𝑥 − 𝑋/2)(𝑦 − 𝑌/2),
𝐾𝑦𝑧 (𝑦, 𝑧) = (𝑦 − 𝑌/2)(𝑧 − 𝑍/2),
𝐾𝑧𝑥 (𝑧, 𝑥) = (𝑧 − 𝑍/2)(𝑥 − 𝑋/2),

and ∫
𝐾𝑚𝐾𝑛𝑑𝑉 = 0 (𝑚 ≠ 𝑛). (10.129)
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The constants for normalization are determined using∫
𝐾2
𝑥𝑑𝑉 = 𝑉𝑋2/12,

∫
𝐾2
𝑥𝑥𝑑𝑉 = 𝑉𝑋4/180,∫

𝐾2
𝑦𝑑𝑉 = 𝑉𝑌2/12,

∫
𝐾2
𝑦𝑦𝑑𝑉 = 𝑉𝑌4/180,∫

𝐾2
𝑧𝑑𝑉 = 𝑉𝑍2/12,

∫
𝐾2
𝑧𝑧𝑑𝑉 = 𝑉𝑍4/180,∫

𝐾2
𝑥𝑦𝑑𝑉 = 𝑉𝑋2𝑌2/144,

∫
𝐾2
𝑦𝑧𝑑𝑉 = 𝑉𝑌2𝑍2/144,

∫
𝐾2
𝑧𝑥𝑑𝑉 = 𝑉𝑍2𝑋2/144.

Accordingly, the moments are set by the following expressions:

𝑆0 =
∫

𝑓 (𝑥, 𝑦, 𝑧)𝐾0𝑑𝑉 = 𝑚0𝑉,

𝑆𝑥 = (6/𝑋)
∫

𝑓 (𝑥, 𝑦, 𝑧)𝐾𝑥 (𝑥)𝑑𝑉 = 𝑚𝑥𝑉𝑋/2,

𝑆𝑥𝑥 = (30/𝑋2)
∫

𝑓 (𝑥, 𝑦, 𝑧)𝐾𝑥𝑥 (𝑥)𝑑𝑉 = 𝑚𝑥𝑥𝑉𝑋
2/6,

𝑆𝑦 = (6/𝑌 )
∫

𝑓 (𝑥, 𝑦, 𝑧)𝐾𝑦 (𝑦)𝑑𝑉 = 𝑚𝑦𝑉𝑌/2,

𝑆𝑦𝑦 = (30/𝑌2)
∫

𝑓 (𝑥, 𝑦, 𝑧)𝐾𝑦𝑦 (𝑦)𝑑𝑉 = 𝑚𝑦𝑦𝑉𝑌
2/6,

𝑆𝑧 = (6/𝑍)
∫

𝑓 (𝑥, 𝑦, 𝑧)𝐾𝑧 (𝑧)𝑑𝑉 = 𝑚𝑧𝑉𝑍/2, (10.130)

𝑆𝑧𝑧 = (30/𝑍2)
∫

𝑓 (𝑥, 𝑦, 𝑧)𝐾𝑧𝑧 (𝑥)𝑑𝑉 = 𝑚𝑧𝑧𝑉𝑍
2/6,

𝑆𝑥𝑦 = (36/𝑋𝑌 )
∫

𝑓 (𝑥, 𝑦, 𝑧)𝐾𝑥𝑦 (𝑥, 𝑦)𝑑𝑉 = 𝑚𝑥𝑦𝑉𝑋𝑌/4,

𝑆𝑦𝑧 = (36/𝑌𝑍)
∫

𝑓 (𝑥, 𝑦, 𝑧)𝐾𝑦𝑧 (𝑦, 𝑧)𝑑𝑉 = 𝑚𝑦𝑧𝑉𝑌𝑍/4,

𝑆𝑧𝑥 = (36/𝑍𝑋)
∫

𝑓 (𝑥, 𝑦, 𝑧)𝐾𝑧𝑥 (𝑧, 𝑥)𝑑𝑉 = 𝑚𝑧𝑥𝑉𝑍𝑋/4.

All these moments are transported with the upstream advection scheme. The procedure is carried out in one direction
at a time. The second and third direction procedures use the results of the last procedure. For simplicity, we describe
the change of each moment caused by an advection procedure in one direction (𝑥) in a two dimensional plane (𝑥𝑦) in the
following. You may replace (𝑦,𝑌 ) with (𝑧, 𝑍) to derive a full set of formulas in the three dimensional space.

When velocity 𝑐 in the 𝑥 direction is positive, the right part of the grid cell,

𝑋 − 𝑐𝑡 ≤ 𝑥 ≤ 𝑋, 0 ≤ 𝑦 ≤ 𝑌, 0 ≤ 𝑧 ≤ 𝑍, (10.131)

is removed from the cell and added to the adjacent cell on the right during time interval 𝑡. This transported part is expressed
using superscript 𝑇 . The remaining part,

0 ≤ 𝑥 ≤ 𝑋 − 𝑐𝑡, 0 ≤ 𝑦 ≤ 𝑌, 0 ≤ 𝑧 ≤ 𝑍, (10.132)

is expressed by superscript 𝑅. New orthogonal functions 𝐾𝑇
𝑛 (𝐾𝑅

𝑛 ) are calculated in the part 𝑇 (𝑅) with the volume
𝑉𝑇 = 𝑐𝑡𝑌𝑍 (𝑉𝑅 = (𝑋 − 𝑐𝑡)𝑌𝑍). The orthogonal functions are given as follows:

𝐾𝑇
0 = 𝐾𝑅

0 = 1,

𝐾𝑇
𝑥 = 𝑥 − (2𝑋 − 𝑐𝑡)/2, 𝐾𝑅

𝑥 = 𝑥 − (𝑋 − 𝑐𝑡)/2,

𝐾𝑇
𝑥𝑥 = 𝑥2 − (2𝑋 − 𝑐𝑡)𝑥 + (𝑋 − 𝑐𝑡)𝑋 + (𝑐𝑡)2/6,

𝐾𝑅
𝑥𝑥 = 𝑥2 − (𝑋 − 𝑐𝑡)𝑥 + (𝑋 − 𝑐𝑡)2/6,
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𝐾𝑇
𝑦 = 𝐾𝑅

𝑦 = 𝑦 − 𝑌/2, (10.133)

𝐾𝑇
𝑦𝑦 = 𝐾𝑅

𝑦𝑦 = 𝑦2 − 𝑌𝑦 + 𝑌2/6,

𝐾𝑇
𝑥𝑦 = [𝑥 − (2𝑋 − 𝑐𝑡)/2] (𝑦 − 𝑌/2).

𝐾𝑅
𝑥𝑦 = [𝑥 − (𝑋 − 𝑐𝑡)/2] (𝑦 − 𝑌/2),

The basic quantities for calculating the moments are

𝑚𝑇
0 =𝑚0 + 𝐾̄𝑇

𝑥 𝑚𝑥 + 𝐾̄𝑇
𝑥𝑥𝑚𝑥𝑥 ,

𝑚𝑇
𝑥 =𝑚𝑥 + 2𝐾̄𝑇

𝑥 𝑚𝑥𝑥 ,

𝑚𝑇
𝑥𝑥 =𝑚𝑥𝑥 , (10.134)

𝑚𝑇
𝑦 =𝑚𝑦 + 𝐾̄𝑇

𝑥 𝑚𝑥𝑦 ,

𝑚𝑇
𝑦𝑦 =𝑚𝑦𝑦 ,

𝑚𝑇
𝑥𝑦 =𝑚𝑥𝑦 ,

and

𝑚𝑅
0 =𝑚0 + 𝐾̄𝑅

𝑥 𝑚𝑥 + 𝐾̄𝑅
𝑥𝑥𝑚𝑥𝑥 ,

𝑚𝑅
𝑥 =𝑚𝑥 + 2𝐾̄𝑅

𝑥 𝑚𝑥𝑥 ,

𝑚𝑅
𝑥𝑥 =𝑚𝑥𝑥 , (10.135)

𝑚𝑅
𝑦 =𝑚𝑦 + 𝐾̄𝑅

𝑥 𝑚𝑥𝑦 ,

𝑚𝑅
𝑦𝑦 =𝑚𝑦𝑦 ,

𝑚𝑅
𝑥𝑦 =𝑚𝑥𝑦 ,

where 𝐾̄ is the average of the new orthogonal function:

𝐾̄𝑇
𝑥 = (𝑋 − 𝑐𝑡)/2, 𝐾̄𝑅

𝑥 = −𝑐𝑡/2,

𝐾̄𝑇
𝑥𝑥 = (𝑋 − 𝑐𝑡) (𝑋 − 2𝑐𝑡)/6, 𝐾̄𝑅

𝑥𝑥 = 𝑐𝑡 (2𝑐𝑡 − 𝑋)/6.

The moments in the right part to be transported to the adjacent cell are expressed as follows:

𝑆𝑇0 =𝛼[𝑆0 + (1 − 𝛼)𝑆𝑥 + (1 − 𝛼)(1 − 2𝛼)𝑆𝑥𝑥],
𝑆𝑇𝑥 =𝛼2 [𝑆𝑥 + 3(1 − 𝛼)𝑆𝑥𝑥],
𝑆𝑇𝑥𝑥 =𝛼3𝑆𝑥𝑥 , (10.136)

𝑆𝑇𝑦 =𝛼[𝑆𝑦 + (1 − 𝛼)𝑆𝑥𝑦],
𝑆𝑇𝑦𝑦 =𝛼𝑆𝑦𝑦 ,

𝑆𝑇𝑥𝑦 =𝛼2𝑆𝑥𝑦 ,

where 𝛼 = 𝛼𝑇 = 𝑐𝑡/𝑋 = 𝑉𝑇 /𝑉 . The moments in the remaining part are expressed as follows:

𝑆𝑅0 = (1 − 𝛼) [𝑆0 − 𝛼𝑆𝑥 − 𝛼(1 − 2𝛼)𝑆𝑥𝑥] = 𝑆0 − 𝑆𝑇0 ,
𝑆𝑅𝑥 = (1 − 𝛼)2 (𝑆𝑥 − 3𝛼𝑆𝑥𝑥),
𝑆𝑅𝑥𝑥 = (1 − 𝛼)3𝑆𝑥𝑥 , (10.137)

𝑆𝑅𝑦 = (1 − 𝛼)(𝑆𝑦 − 𝛼𝑆𝑥𝑦) = 𝑆𝑦 − 𝑆𝑇𝑦 ,
𝑆𝑅𝑦𝑦 = (1 − 𝛼)𝑆𝑦𝑦 = 𝑆𝑦𝑦 − 𝑆𝑇𝑦𝑦 ,
𝑆𝑅𝑥𝑦 = (1 − 𝛼)2𝑆𝑥𝑦 .
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As the final step of the procedure, the orthogonal functions and moments transported from the adjacent cell and those
in the remaining part of the original cell are combined to create new united moments in the cell. Here, we consider
combinations of moments in the transported cell of the i-th grid point (𝑆𝑇𝑛,𝑖) and those in the remaining cell of the (i+1)-th
grid point (𝑆𝑅𝑛,𝑖+1). The calculation is terribly complex, and only the results are presented:

𝑆0 = 𝑆𝑅0,𝑖+1 + 𝑆𝑇0,𝑖 ,

𝑆𝑥 = 𝛼𝑆𝑇𝑥,𝑖 + (1 − 𝛼)𝑆𝑅𝑥,𝑖+1 + 3[𝛼𝑆𝑅0,𝑖+1 − (1 − 𝛼)𝑆𝑇0,𝑖],

𝑆𝑥𝑥 = 𝛼2𝑆𝑇𝑥𝑥,𝑖 + (1 − 𝛼)2𝑆𝑅𝑥𝑥,𝑖+1 + 5{𝛼(1 − 𝛼)(𝑆𝑅𝑥,𝑖+1 − 𝑆𝑇𝑥,𝑖) − (1 − 2𝛼) [𝛼𝑆𝑅0,𝑖+1 − (1 − 𝛼)𝑆𝑇0,𝑖]},

𝑆𝑦 = 𝑆𝑅𝑦,𝑖+1 + 𝑆𝑇𝑦,𝑖 ,

𝑆𝑦𝑦 = 𝑆𝑅𝑦𝑦,𝑖+1 + 𝑆𝑇𝑦𝑦,𝑖 ,

𝑆𝑥𝑦 = 𝛼𝑆𝑇𝑥𝑦,𝑖 + (1 − 𝛼)𝑆𝑅𝑥𝑦,𝑖+1 + 3[−(1 − 𝛼)𝑆𝑇𝑦,𝑖 + 𝛼𝑆𝑅𝑦,𝑖+1],

where
𝛼 = 𝛼𝑇𝑖 = 𝑉𝑇

𝑖 /(𝑉𝑇
𝑖 +𝑉𝑅

𝑖+1). (10.138)

When velocity 𝑐 in the 𝑥 direction is negative, the left part of the grid cell,

0 ≤ 𝑥 ≤ −𝑐𝑡, 0 ≤ 𝑦 ≤ 𝑌, 0 ≤ 𝑧 ≤ 𝑍, (10.139)

is removed (transported) from the cell and added to the adjacent cell on the left during time interval 𝑡. This part is now
expressed using superscript 𝑇 . The remaining part,

−𝑐𝑡 ≤ 𝑥 ≤ 𝑋, 0 ≤ 𝑦 ≤ 𝑌, 0 ≤ 𝑧 ≤ 𝑍, (10.140)

is expressed by superscript 𝑅. New orthogonal functions 𝐾𝑇
𝑖 (𝐾𝑅

𝑖 ) are calculated in the part 𝑇 (𝑅) with the volume
𝑉𝑇 = −𝑐𝑡𝑌𝑍 (𝑉𝑅 = (𝑋 + 𝑐𝑡)𝑌𝑍). The orthogonal functions are given as follows:

𝐾𝑇
0 = 𝐾𝑅

0 = 1,

𝐾𝑇
𝑥 = 𝑥 + 𝑐𝑡/2, 𝐾𝑅

𝑥 = 𝑥 − (𝑋 − 𝑐𝑡)/2,

𝐾𝑇
𝑥𝑥 = 𝑥2 + 𝑐𝑡𝑥 + (𝑐𝑡)2/6,

𝐾𝑅
𝑥𝑥 = 𝑥2 − (𝑋 − 𝑐𝑡)𝑥 + (𝑋2 − 4𝑋𝑐𝑡 + 𝑐2𝑡2)/6,

𝐾𝑇
𝑦 = 𝐾𝑅

𝑦 = 𝑦 − 𝑌/2, (10.141)

𝐾𝑇
𝑦𝑦 = 𝐾𝑅

𝑦𝑦 = 𝑦2 − 𝑌𝑦 + 𝑌2/6,

𝐾𝑇
𝑥𝑦 = (𝑥 + 𝑐𝑡/2)(𝑦 − 𝑌/2),

𝐾𝑅
𝑥𝑦 = [𝑥 − (𝑋 − 𝑐𝑡)/2] (𝑦 − 𝑌/2).

The moments in the left part to be transported to the adjacent cell are expressed as follows:

𝑆𝑇0 =𝛼[𝑆0 − (1 − 𝛼)𝑆𝑥 + (1 − 𝛼) (1 − 2𝛼)𝑆𝑥𝑥],
𝑆𝑇𝑥 =𝛼2 [𝑆𝑥 − 3(1 − 𝛼)𝑆𝑥𝑥],
𝑆𝑇𝑥𝑥 =𝛼3𝑆𝑥𝑥 , (10.142)

𝑆𝑇𝑦 =𝛼[𝑆𝑦 − (1 − 𝛼)𝑆𝑥𝑦],
𝑆𝑇𝑦𝑦 =𝛼𝑆𝑦𝑦 ,

𝑆𝑇𝑥𝑦 =𝛼2𝑆𝑥𝑦 ,
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where 𝛼 = 𝛼𝑇 = −𝑐𝑡/𝑋 = 𝑉𝑇 /𝑉 . The moments in the remaining part are expressed as follows:

𝑆𝑅0 = (1 − 𝛼) [𝑆0 + 𝛼𝑆𝑥 − 𝛼(1 − 2𝛼)𝑆𝑥𝑥] = 𝑆0 − 𝑆𝑇0 ,
𝑆𝑅𝑥 = (1 − 𝛼)2 (𝑆𝑥 + 3𝛼𝑆𝑥𝑥),
𝑆𝑅𝑥𝑥 = (1 − 𝛼)3𝑆𝑥𝑥 , (10.143)

𝑆𝑅𝑦 = (1 − 𝛼) (𝑆𝑦 + 𝛼𝑆𝑥𝑦) = 𝑆𝑦 − 𝑆𝑇𝑦 ,
𝑆𝑅𝑦𝑦 = (1 − 𝛼)𝑆𝑦𝑦 = 𝑆𝑦𝑦 − 𝑆𝑇𝑦𝑦 ,
𝑆𝑅𝑥𝑦 = (1 − 𝛼)2𝑆𝑥𝑦 .

The following equations give combinations of moments in the remaining cell of the i-th grid point (𝑆𝑅𝑛,𝑖) and those in the
transported cell of the (i+1)-th grid point (𝑆𝑇𝑛,𝑖+1):

𝑆0 = 𝑆𝑅0,𝑖 + 𝑆𝑇0,𝑖+1,

𝑆𝑥 = 𝛼𝑆𝑇𝑥,𝑖+1 + (1 − 𝛼)𝑆𝑅𝑥,𝑖 − 3[𝛼𝑆𝑅0,𝑖 − (1 − 𝛼)𝑆𝑇0,𝑖+1],

𝑆𝑥𝑥 = 𝛼2𝑆𝑇𝑥𝑥,𝑖+1 + (1 − 𝛼)2𝑆𝑅𝑥𝑥,𝑖 + 5{−𝛼(1 − 𝛼) (𝑆𝑅𝑥,𝑖 − 𝑆𝑇𝑥,𝑖+1) − (1 − 2𝛼) [𝛼𝑆𝑅0,𝑖 − (1 − 𝛼)𝑆𝑇0,𝑖+1]},

𝑆𝑦 = 𝑆𝑅𝑦,𝑖 + 𝑆𝑇𝑦,𝑖+1,

𝑆𝑦𝑦 = 𝑆𝑅𝑦𝑦,𝑖 + 𝑆𝑇𝑦𝑦,𝑖+1,

𝑆𝑥𝑦 = 𝛼𝑆𝑇𝑥𝑦,𝑖+1 + (1 − 𝛼)𝑆𝑅𝑥𝑦,𝑖 − 3[−(1 − 𝛼)𝑆𝑇𝑦,𝑖+1 + 𝛼𝑆𝑅𝑦,𝑖],

where
𝛼 = 𝛼𝑇𝑖+1 = 𝑉𝑇

𝑖+1/(𝑉𝑅
𝑖 +𝑉𝑇

𝑖+1). (10.144)

The globally integrated tracer is conserved through these operations.

10.5.2 Flux limiter
Some limiters are necessary to guarantee that a tracer is positive (negative) definite.

a. Prather (1986)

Prather (1986) proposed to set limits for the moments related to the direction of advection. For instance, when the moments
are advected in the 𝑥 direction,

𝑆0 ≥ 0,
𝑆′𝑥 = min[+1.5𝑆0, max(−1.5𝑆0, 𝑆𝑥)], (10.145)
𝑆′𝑥𝑥 = min[2𝑆0 − |𝑆′𝑥 |/3,max(|𝑆′𝑥 | − 𝑆0, 𝑆𝑥𝑥)],
𝑆′𝑥𝑦 = min[+𝑆0,max(−𝑆0, 𝑆𝑥𝑦)] .

It should be noted that the application of this limiter does not completely guarantee that the tracer will be positive (negative)
definite.

b. Merryfield and Holloway (2003)

Flux limiters introduced by Morales Maqueda and Holloway (2006) (hereinafter MH06) extended that of Prather (1986)
(hereinafter PR86).

Let us consider the advection in the 𝑥 direction. As in PR86, MH06 consider the mean tracer distribution (𝜏(𝑥)) in the
𝑥 direction by integrating in the 𝑦 and 𝑧 direction within the grid cell (Equation (2.15) of MH06).

𝜏(𝑥) = 1
𝑌𝑍

∫ 𝑌

0

∫ 𝑍

0
𝑑𝑦 𝑑𝑧 𝜏(𝑥, 𝑦, 𝑧)

=
1
𝑉

[
𝑆0 − 𝑆𝑥 + 𝑆𝑥𝑥 + 2(𝑆𝑥 − 3𝑆𝑥𝑥)

𝑥

𝑋
+ 6𝑆𝑥𝑥

( 𝑥
𝑋

)2
]
, (10.146)
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where 𝑥, 𝑦, 𝑧 represent the position relative to the lower south-western corner of the grid cell and 𝑋 , 𝑌 , and 𝑍 are grid
widths in the 𝑥, 𝑦, and 𝑧 directions, respectively. 𝑉 is the volume of the grid cell.

First we consider the minimum value of 𝜏(𝑥). When 𝑆𝑥𝑥 is negative (region I), the minimum is taken either at 𝑥 = 0 or
𝑥 = 𝑋 because 𝜏(𝑥) is convex upward. Even when 𝑆𝑥𝑥 is positive, if the value of 𝑥 that gives the global minimum of the
quadratic function is not within 0 ≤ 𝑥 ≤ 𝑋 (region II), the minimum is taken either at 𝑥 = 0 or 𝑥 = 𝑋 . Otherwise (region
III), the minimum value is given as the global minimum of the quadratic function. These are summarized as follows:

𝑉 min 𝜏(𝑥) =

𝑆0 − |𝑆𝑥 | + 𝑆𝑥𝑥 , if 𝑆𝑥𝑥 ≤ 0 (region I),
𝑆0 − |𝑆𝑥 | + 𝑆𝑥𝑥 , if |𝑆𝑥 | ≥ 3𝑆𝑥𝑥 ≥ 0 (region II),
𝑆0 − 𝑆2

𝑥+3𝑆2
𝑥𝑥

6𝑆𝑥𝑥
, if 3𝑆𝑥𝑥 ≥ |𝑆𝑥 | (region III).

(10.147)

The line of 𝑉 min 𝜏(𝑥) = 0 is plotted in the ( |𝑆𝑥 |, 𝑆𝑥𝑥) space in Figure 10.5. If a pair of ( |𝑆𝑥 |, 𝑆𝑥𝑥) resides in the region
bounded by the blue line and the left vertical axis, the minimum value of 𝜏(𝑥) is positive.
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2S0
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S
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S0 - |Sx| + Sxx = 0

S0 - (S2
x + 3S2

xx)/(6Sxx) = 0

Figure10.5 Schematic to explain the flux limiter to avoid undershooting. This is a reproduction of Figure 3 of
Morales Maqueda and Holloway (2006). See text for explanation.

PR86 proposed to modify the moments so that the minimum of 𝜏 is positive. This is to improve the sign-definiteness of
the tracer. The limiters of MH06 are also based on this strategy. They proposed to modify the moments in the following
way,

𝑆′𝑥 = min
[
31/2𝑆0, max

[
−31/2𝑆0, 𝑆𝑥

] ]
,

𝑆′𝑥𝑥 =


min

[
𝑆0 +

(
𝑆2

0 −
𝑆′2𝑥
3

)1/2
, max

[��𝑆′𝑥 �� − 𝑆0, 𝑆𝑥𝑥
] ]
, if

��𝑆′𝑥 �� < 3
2𝑆0,

min
[
𝑆0 +

(
𝑆2

0 −
𝑆′2𝑥
3

)1/2
, max

[
𝑆0 −

(
𝑆2

0 −
𝑆′2𝑥
3

)1/2
, 𝑆𝑥𝑥

] ]
, if

��𝑆′𝑥 �� ≥ 3
2𝑆0,

(10.148)

𝑆′𝑥𝑦 = min
[
𝑆0, max[−𝑆0, 𝑆𝑥𝑦]

]
,

𝑆′𝑥𝑧 = min [𝑆0, max[−𝑆0, 𝑆𝑥𝑧]] .

Here, 𝑆′𝑥 , 𝑆′𝑥𝑥 , 𝑆′𝑥𝑦 are modified moments and it is assumed that 𝑆0 ≥ 0. This is slightly different from PR86 because an
approximation

√
3 ∼ 1.5 (see 10.145) was used in PR86.

This modification is explained using Figure 10.5. If a pair of (|𝑆𝑥 |, 𝑆𝑥𝑥) resides in the region that gives negative
minimum of 𝜏(𝑥), |𝑆𝑥 | is shifted along the horizontal axis so that it is less than 31/2𝑆0. Then 𝑆𝑥𝑥 is shifted along the
vertical axis so that the point is within the region that gives the minimum of 𝜏(𝑥) to be positive. The modification to
𝑆𝑥𝑦 , 𝑆𝑥𝑧 is designed so that a negative value of the tracer is avoided by these moments.
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MH06 proposed to extend the above modifications for setting the lower and upper bounds for the tracers to improve the
monotonicity. The lower and upper limit for 𝜏(𝑥) are set as 𝜏𝑎 and 𝜏𝑏 , respectively (𝜏𝑎 ≤ 𝜏(𝑥) ≤ 𝜏𝑏). The setting of the
lower limit is achieved by replacing 𝑆0 with 𝑆∗0 = 𝑆0 − 𝑉𝜏𝑎 in the above modification. For the upper limit, we interpret
the condition "the maximum of 𝜏(𝑥) must be less than 𝜏𝑏" as "the minimum of −𝜏(𝑥) must be more than −𝜏𝑏 ." In other
words, the condition is "the minimum of 𝜏𝑏 − 𝜏(𝑥) must be positive."

Using (10.146), 𝜏𝑏 − 𝜏(𝑥) may be expressed as follows:

𝜏𝑏 − 𝜏(𝑥) =
1
𝑉

[
𝑉𝜏𝑏 − 𝑆0 + 𝑆𝑥 − 𝑆𝑥𝑥 − 2(𝑆𝑥 − 3𝑆𝑥𝑥)

𝑥

𝑋
− 6𝑆𝑥𝑥

( 𝑥
𝑋

)2
]

=
1
𝑉

[
𝑆∗0 + 𝑆𝑥 − 𝑆𝑥𝑥 − 2(𝑆𝑥 − 3𝑆𝑥𝑥)

𝑥

𝑋
− 6𝑆𝑥𝑥

( 𝑥
𝑋

)2
]
, (10.149)

where 𝑆∗0 = 𝑉𝜏𝑏 − 𝑆0. Its minimum is obtained as follows:

𝑉 min [𝜏𝑏 − 𝜏(𝑥)] =

𝑆∗0 − |𝑆𝑥 | − 𝑆𝑥𝑥 , if 𝑆𝑥𝑥 ≥ 0 (region I),
𝑆∗0 − |𝑆𝑥 | − 𝑆𝑥𝑥 , if |𝑆𝑥 | ≥ −3𝑆𝑥𝑥 ≥ 0 (region II),
𝑆∗0 +

𝑆2
𝑥+3𝑆2

𝑥𝑥

6𝑆𝑥𝑥
, if − 3𝑆𝑥𝑥 ≥ |𝑆𝑥 | (region III).

(10.150)

Following Figure 10.5, this is visualized as Figure 10.6.
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Figure10.6 Schematic to explain the flux limiter to avoid overshooting. The region in ( |𝑆𝑥 |, 𝑆𝑥𝑥) space that may set
the upper bound on tracer distribution. The region bounded by the blue curve and the left vertical axis gives the tracer
value that does not exceed the upper bound.

The modification for the moments corresponding to (10.148) is expressed as follows:

𝑆′𝑥 = min
[
31/2𝑆∗0, max

[
−31/2𝑆∗0, 𝑆𝑥

] ]
,

𝑆′𝑥𝑥 =


min

[
𝑆∗0 −

��𝑆′𝑥 �� , max
[
−𝑆∗0 −

(
𝑆∗20 −

𝑆′2𝑥
3

)1/2
, 𝑆𝑥𝑥

] ]
, if

��𝑆′𝑥 �� < 3
2𝑆
∗
0,

min
[
−𝑆∗0 +

(
𝑆∗20 −

𝑆′2𝑥
3

)1/2
, max

[
−𝑆∗0 −

(
𝑆∗20 −

𝑆′2𝑥
3

)1/2
, 𝑆𝑥𝑥

] ]
, if

��𝑆′𝑥 �� ≥ 3
2𝑆
∗
0,

(10.151)

𝑆′𝑥𝑦 = min
[
𝑆∗0, max(−𝑆∗0, 𝑆𝑥𝑦)

]
,

𝑆′𝑥𝑧 = min
[
𝑆∗0, max(−𝑆∗0, 𝑆𝑥𝑧)

]
.

MH06 proposed three modification methods (Method A - C). MRI.COM adopts "Method B" of Morales Maqueda and
Holloway (2006) as proposed by Merryfield and Holloway (2003), which lays emphasis on monotonicity and suppresses
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numerical diffusion as well. In this method, the minimum and the maximum value among the three grid cells (𝑖−1, 𝑖, 𝑖 +1)
are set as the lower and the upper limit, respectively. Moments are adjusted using Eqs. (10.148) and (10.151). This
method does not guarantee exact monotonicity, but improves monotonicity of the zeroth moment.

10.5.3 Calculating SOM advection in MRI.COM
It should be noted that the coordinate system is not Cartesian in ocean models. Since the coordinate system covers a
spherical surface, the 𝑥 direction in a grid cell is not identical to that in the adjacent cell, for instance. Thus, the exact
conservation of moments cannot be realized. In addition, a tracer-cell including solid earth (sea floor or lateral boundary)
is not a cuboid, so the orthogonal functions cannot be defined precisely for such a cell. Nevertheless, the procedures
described in the previous subsection can be carried out using the volume of seawater in the non-cuboid grid cell, and the
zeroth moment 𝑆0 (total amount of the tracer) is conserved.

As indicated in the expressions in the previous subsections, the volume-integrated moments (𝑆𝑖) and the fraction of
volume to be removed (𝛼) are used in the SOM advection scheme. There are 10 moments for each tracer. The fraction 𝛼 is
calculated using volume transports, which are calculated in the subroutines continuity__diagnose_horizontal and
continuity__diagnose_vertical. Following Prather (1986), the procedures in three directions are executed in order,
not simultaneously. By default, the procedure in the meridional direction (advec_y) is called first, the zonal direction
(advec_x) next, and lastly the vertical direction (advec_z). The order of operations in the horizontal direction may be
flipped every time step if runtime option lsomstrang is set to be true (Strang splitting). This would improve the overall
accuracy of the serially executed advection operations (Skamarock, 2006). The change in the tracer value caused by SOM
advection is estimated in the subroutine tracer__adv and added to the variable trcal directly.

Usage

Model option SOMADVEC must be specified for compilation when the SOM advection scheme will be used for any tracer.
Namelist nml_somadv is required (see Table 10.2) at run time. You must also specify which tracer will use this scheme
as well as what kind of specifications will be used for that tracer. See Section 13.3.2 and Table 13.3 for details.

Table10.2 Variables defined in namelist nml_somadv

name explanation string or value
lsomstrang The order of calling x and y direction is

reversed every time step
.true. / .false.

lsommonitor flag to monitor the conservation of the
moments

.true. / .false.

10.6 Piecewise Parabolic Method (PPM) scheme
10.6.1 Outline
The Piecewise Parabolic Method (PPM; Colella and Woodward, 1984) scheme first expresses a local tracer distribution
within each model grid cell as a quadratic equation. These tracer distributions are then advected in a Lagrangian manner
and redistributed to the fixed model grid cells (Figure 10.7).

Here we consider a one-dimensional advection equation in the 𝜉 direction and assume that we know the mean value of
an arbitrary tracer in the 𝑗 grid at time 𝑡𝑛 (𝑎𝑛𝑗 ). Then we consider a polynomial that represents the local distribution of
the tracer in each grid cell and describes a set of these polynomials with 𝑎(𝜉). These polynomials satisfy the following
equation:

𝑎𝑛𝑗 =
1

Δ𝜉 𝑗

∫ 𝜉
𝑗+ 1

2

𝜉
𝑗− 1

2

𝑎(𝜉)𝑑𝜉, Δ𝜉 𝑗 = 𝜉 𝑗+ 1
2
− 𝜉 𝑗− 1

2
, (10.152)

where 𝜉 𝑗− 1
2

and 𝜉 𝑗+ 1
2

denote cell boundaries between the 𝑗 − 1 and 𝑗 grid cells and between the 𝑗 and 𝑗 + 1 grid cells,
respectively.

A solution of the advection equation at time 𝑡𝑛 + Δ𝑡 is described as 𝑎(𝜉 − 𝑢Δ𝑡) (Fig. 10.7b) with its initial distribution
𝑎(𝜉) (Fig. 10.7a). We can gain 𝑎𝑛+1𝑗 by integrating this solution as follows:

𝑎𝑛+1𝑗 =
1
Δ𝜉

∫ 𝜉
𝑗+ 1

2

𝜉
𝑗− 1

2

𝑎(𝜉 − 𝑢Δ𝑡)𝑑𝜉. (10.153)
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The specific form of the solution depends on a choice of polynomials. The piecewise parabolic method uses a locally
continuous quadratic polynomial in each grid cell as follows:

𝑎(𝜉) = 𝑎𝐿, 𝑗 + 𝑥(Δ𝑎 𝑗 + 𝑎6, 𝑗 (1 − 𝑥)), (10.154)

𝑥 =
𝜉 − 𝜉 𝑗− 1

2

Δ𝜉 𝑗
, 𝜉 𝑗− 1

2
≤ 𝜉 ≤ 𝜉 𝑗+ 1

2
.

The coefficients of this polynomial are defined with 𝑎𝑛𝑗 , lim𝜉→𝜉
𝑗− 1

2
𝑎(𝜉) = 𝑎𝐿, 𝑗 and lim𝜉→𝜉

𝑗+ 1
2
𝑎(𝜉) = 𝑎𝑅, 𝑗 as follows:

Δ𝑎 𝑗 = 𝑎𝑅, 𝑗 − 𝑎𝐿, 𝑗 , 𝑎6, 𝑗 = 6(𝑎𝑛𝑗 −
1
2
(𝑎𝐿, 𝑗 + 𝑎𝑅, 𝑗 )). (10.155)

The edge values such as 𝑎𝐿, 𝑗 and 𝑎𝑅, 𝑗 are calculated according to the following procedures. First, we interpolate a tracer
value at a cell interface using the surrounding cell averages. We use the indefinite integral of 𝑎 as 𝐴(𝜉) =

∫ 𝜉
𝑎(𝜉 ′, 𝑡𝑛)𝑑𝜉 ′

for this interpolation. This integral at a cell boundary is calculated as follows:

𝐴(𝜉 𝑗+ 1
2
) = 𝐴 𝑗+ 1

2
=

∑
𝑘≤ 𝑗

𝑎𝑛𝑘Δ𝜉𝑘 . (10.156)

Then we find a quartic polynomial through (𝐴 𝑗+𝑘+ 1
2
, 𝜉 𝑗+𝑘+ 1

2
), (𝑘 = 0,±1,±2) and calculate a tracer value at the interface

𝑎(𝜉 𝑗+ 1
2
) = 𝑎 𝑗+ 1

2
by 𝑎 𝑗+ 1

2
= 𝑑𝐴/𝑑𝜉 | 𝜉

𝑗+ 1
2
. The interpolated value 𝑎 𝑗+ 1

2
is described as follows:

𝑎 𝑗+ 1
2
= 𝑎𝑛𝑗 +

Δ𝜉 𝑗
Δ𝜉 𝑗 + Δ𝜉 𝑗+1

(𝑎𝑛𝑗+1 − 𝑎
𝑛
𝑗 ) +

1∑2
𝑘=−1 Δ𝜉 𝑗+𝑘

×
{ 2Δ𝜉 𝑗+1Δ𝜉 𝑗
Δ𝜉 𝑗 + Δ𝜉 𝑗+1

[ Δ𝜉 𝑗−1 + Δ𝜉 𝑗
2Δ𝜉 𝑗 + Δ𝜉 𝑗+1

−
Δ𝜉 𝑗+2 + Δ𝜉 𝑗+1
2Δ𝜉 𝑗+1 + Δ𝜉 𝑗

]
(𝑎𝑛𝑗+1 − 𝑎

𝑛
𝑗 ) (10.157)

− Δ𝜉 𝑗
Δ𝜉 𝑗−1 + Δ𝜉 𝑗
2Δ𝜉 𝑗 + Δ𝜉 𝑗+1

𝛿𝑎 𝑗+1 + Δ𝜉 𝑗+1
Δ𝜉 𝑗+1 + Δ𝜉 𝑗+2
Δ𝜉 𝑗 + 2Δ𝜉 𝑗+1

𝛿𝑎 𝑗

}
,

where the mean slope of tracer at the 𝑗 grid point 𝛿𝑎 𝑗 is

𝛿𝑎 𝑗 =
Δ𝜉 𝑗

Δ𝜉 𝑗−1 + Δ𝜉 𝑗 + Δ𝜉 𝑗+1

[2Δ𝜉 𝑗−1 + Δ𝜉 𝑗
Δ𝜉 𝑗+1 + Δ𝜉 𝑗

(𝑎𝑛𝑗+1 − 𝑎
𝑛
𝑗 ) +

Δ𝜉 𝑗 + 2Δ𝜉 𝑗+1
Δ𝜉 𝑗−1 + Δ𝜉 𝑗

(𝑎𝑛𝑗 − 𝑎𝑛𝑗−1)
]
. (10.158)

This expression is also suitable for MRI.COM because its tracer point is defined at the center of each unit cell. The
interpolation by Eq. (10.157) requires two effective tracer cells on both sides of the cell interface, respectively. For
example, we need [𝑎 𝑗−1, 𝑎 𝑗+2] for 𝑎 𝑗+ 1

2
. If a land cell exists in this range, 𝑎 𝑗+ 1

2
is calculated by distance weighted average

of the adjacent cells.
This cell boundary value 𝑎 𝑗+ 1

2
is usually modified by flux limiters described later to improve monotonicity, before it is

used as the edge values 𝑎𝐿, 𝑗+1 and 𝑎𝑅, 𝑗 . Because each edge value 𝑎𝐿, 𝑗+1 or 𝑎𝑅, 𝑗 is modified independently to each other,
𝑎(𝜉) is generally discontinuous at each cell boundary. If a lateral boundary of an ocean cell is completely in land (possible
in MRI.COM; see Chapter 3) or a vertical cell interface is at the land-sea boundary, the edge value there is set to the cell
average of the ocean cell.

Now we can calculate tracer fluxes at the cell boundaries and the cell average at the next time step with these edge values
𝑎𝐿, 𝑗 and 𝑎𝑅, 𝑗 . Averages of advected tracer crossing lateral cell boundaries are calculated by the following equations:

𝑓 𝑎
𝑗+ 1

2 ,𝐿
(𝑦) = 1

𝑦

∫ 𝜉
𝑗+ 1

2

𝜉
𝑗+ 1

2
−𝑦
𝑎(𝜉)𝑑𝜉 (10.159)

𝑓 𝑎
𝑗+ 1

2 ,𝑅
(𝑦) = 1

𝑦

∫ 𝜉
𝑗+ 1

2
+𝑦

𝜉
𝑗+ 1

2

𝑎(𝜉)𝑑𝜉. (10.160)

For the PPM scheme, these are described as follows:

𝑓 𝑎
𝑗+ 1

2 ,𝐿
(𝑦) = 𝑎𝑅, 𝑗 −

𝑥

2

(
Δ𝑎 𝑗 −

(
1 − 2

3
𝑥
)
𝑎6, 𝑗

)
, for 𝑥 =

𝑦

Δ𝜉 𝑗

𝑓 𝑎
𝑗+ 1

2 ,𝑅
(𝑦) = 𝑎𝐿, 𝑗+1 +

𝑥

2

(
Δ𝑎 𝑗+1 +

(
1 − 2

3
𝑥
)
𝑎6, 𝑗+1

)
, for 𝑥 =

𝑦

Δ𝜉 𝑗+1

(10.161)
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ξj+¹⁄₂ξj ξj+1ξj-¹⁄₂

ξj+¹⁄₂ξj ξj+1ξj-¹⁄₂

ξj+2ξj-1

∆ξj

aj

aj+1

aj+2

aj-1
(a)

(b)

Figure10.7 Schematic of PPM scheme. (a) An initial state. (b) The model is advanced in time and the initial profile
in (a) is shifted to the right.

If a lateral boundary is completely in land or a vertical cell interface is at the land-sea boundary, Δ𝑎 𝑗 and 𝑎6, 𝑗 in Eq.
(10.161) in the corresponding direction are forced to zero. So, the equations above are simplified to

𝑓 𝑎
𝑗+ 1

2 ,𝐿
(𝑦) = 𝑎𝑅, 𝑗 ,

𝑓 𝑎
𝑗− 1

2 ,𝑅
(𝑦) = 𝑎𝐿, 𝑗 .

(10.162)

The new cell average 𝑎𝑛+1𝑗 is described in the flux form that guarantees the tracer conservation as follows:

𝑎𝑛+1𝑗 = 𝑎𝑛𝑗 + 𝑢
Δ𝑡
Δ𝜉 𝑗
(𝑎̄ 𝑗− 1

2
− 𝑎̄ 𝑗+ 1

2
), (10.163)
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where

𝑎̄ 𝑗+ 1
2
=


𝑓 𝑎
𝑗+ 1

2 ,𝐿
(𝑢Δ𝑡), if 𝑢 ≥ 0

𝑓 𝑎
𝑗+ 1

2 ,𝑅
(−𝑢Δ𝑡), if 𝑢 ≤ 0.

(10.164)

10.6.2 Flux limiter
The following two flux limiters are implemented to enhance monotonicity.

a. Colella and Woodward (1984)

The flux limiter proposed by Colella and Woodward (1984) modifies the tracer gradient in Eq. (10.158) as follows:

𝛿𝑚𝑎 𝑗 =min( |𝛿𝑎 𝑗 |, 2|𝑎𝑛𝑗+1 − 𝑎
𝑛
𝑗 |, 2|𝑎𝑛𝑗 − 𝑎𝑛𝑗−1 |)sgn(𝛿𝑎 𝑗 )

if (𝑎𝑛𝑗+1 − 𝑎
𝑛
𝑗 ) (𝑎𝑛𝑗 − 𝑎𝑛𝑗−1) > 0 (10.165)

= 0 otherwise

This allows us to express steeper gradients when we treat discontinuous tracer distributions.
The edge values 𝑎𝐿, 𝑗+1 and 𝑎𝑅, 𝑗 are normally assigned 𝑎 𝑗+ 1

2
. However, an interpolation function occasionally exceeds

the range of 𝑎𝐿, 𝑗 and 𝑎𝑅, 𝑗 within the 𝑗-th grid cell. In that case, we make the following adjustments.

• Make the interpolation function a constant if 𝑎𝑛𝑗 exceeds the range of 𝑎𝐿, 𝑗 and 𝑎𝑅, 𝑗 .
• Adjust edge values to satisfy a condition to prevent overshoot of the interpolation function, which may occur when
𝑎𝑛𝑗 is in the range of 𝑎𝐿, 𝑗 and 𝑎𝑅, 𝑗 but close enough to one side. The condition is |Δ𝑎 𝑗 | ≥ |𝑎6, 𝑗 |.

Specifically, edge values are modified as follows:

𝑎𝐿, 𝑗 → 𝑎𝑛𝑗 , 𝑎𝑅, 𝑗 → 𝑎𝑛𝑗 if (𝑎𝑅, 𝑗 − 𝑎𝑛𝑗 ) (𝑎𝑛𝑗 − 𝑎𝐿, 𝑗 ) < 0 (10.166)

𝑎𝐿, 𝑗 → 3𝑎𝑛𝑗 − 2𝑎𝑅, 𝑗 if (𝑎𝑅, 𝑗 − 𝑎𝐿, 𝑗 )
(
𝑎𝑛𝑗 −

1
2
(𝑎𝐿, 𝑗 + 𝑎𝑅, 𝑗 )

)
>
(𝑎𝑅, 𝑗 − 𝑎𝐿, 𝑗 )2

6
(10.167)

𝑎𝑅, 𝑗 → 3𝑎𝑛𝑗 − 2𝑎𝐿, 𝑗 if −
(𝑎𝑅, 𝑗 − 𝑎𝐿, 𝑗 )2

6
> (𝑎𝑅, 𝑗 − 𝑎𝐿, 𝑗 )

(
𝑎𝑛𝑗 −

1
2
(𝑎𝐿, 𝑗 + 𝑎𝑅, 𝑗 )

)
(10.168)

Equation (10.167) is applied when 𝑎𝑅, 𝑗 ∼ 𝑎𝑛𝑗 , and Eq. (10.168) is applied when 𝑎𝐿, 𝑗 ∼ 𝑎𝑛𝑗 .

b. Lin et al. (1994)

The flux limiter proposed by Lin et al. (1994) adjust the tracer slope in Eq. (10.158) as follows:

𝛿𝑚𝑎 𝑗 = min(|𝛿𝑎 𝑗 |, 2𝛿𝑎min
𝑗 , 2𝛿𝑎max

𝑗 ) sgn(𝛿𝑎 𝑗 ), (10.169)

where

𝛿𝑎max
𝑗 = max(𝑎 𝑗−1, 𝑎 𝑗 , 𝑎 𝑗+1) − 𝑎 𝑗 , (10.170)

𝛿𝑎min
𝑗 = 𝑎 𝑗 −min(𝑎 𝑗−1, 𝑎 𝑗 , 𝑎 𝑗+1). (10.171)

Edge values are modified as follows:

𝑎𝐿, 𝑗 ←𝑎 𝑗 −min( |𝛿𝑚𝑎 𝑗 |, |𝑎𝐿, 𝑗 − 𝑎 𝑗 |) sgn(𝛿𝑚𝑎 𝑗 ), (10.172)
𝑎𝑅, 𝑗 ←𝑎 𝑗 +min(|𝛿𝑚𝑎 𝑗 |, |𝑎𝑅, 𝑗 − 𝑎 𝑗 |) sgn(𝛿𝑚𝑎 𝑗 ). (10.173)

10.6.3 Extension to multiple dimensions with time-splitting algorithm
An advection scheme is commonly developed for one dimensional problems. There are two ways to extend it to multiple
dimensions: one is based on a completely three-dimensional advection algorithm and the other is to apply the one-
dimensional scheme to each dimensions in turn. The latter is called the time-splitting method. MRI.COM adopts the
time-splitting method implemented in GFDL-MOM.
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The following finite difference equations describe an one-dimensional advection equation for an arbitrary tracer 𝜙 and
the equation of continuity in a generalized vertical coordinate 𝑟, which adopt the Euler forward scheme in time:

(𝑧𝑟𝜙)𝑡+Δ𝑡 = (𝑧𝑟𝜙)𝑡 − 𝐹𝑥 (𝜙𝑡 ) (10.174)

(𝑧𝑟 )𝑡+Δ𝑡 = (𝑧𝑟 )𝑡 − 𝐹𝑥 (𝐼), (10.175)

where 𝑧𝑟 is cell thickness, the right superscript denotes time and the vector 𝐼 ≡ 1. The second term in the right hand side
𝐹𝑥 denotes flux divergence and is described as follows:

𝐹𝑥 (𝜙) = (Δ𝑡/Δ𝑥) [ 𝑓 (𝜙)𝑥+Δ𝑥/2 − 𝑓 (𝜙)𝑥−Δ𝑥/2] . (10.176)

The flux 𝑓 is calculated by a product of a volume transport (𝑧𝑟𝑢)𝑥±Δ𝑥/2 and a tracer value 𝜙𝑥±Δ𝑥/2 at a cell boundary. The
tracer values at cell boundaries are calculated by interpolation or integration. Both the tracer advection equation and the
equation of continuity must use the same volume transports at cell boundaries.

The volume conservation equation (the equation of continuity) is extended to three dimensions as follows:

(𝑧𝑟 )𝑡+Δ𝑡 = (𝑧𝑟 )𝑡 − 𝐹𝑥 (𝐼) − 𝐹𝑦 (𝐼) − 𝐹𝑧 (𝐼). (10.177)

The finite difference equation of the one-dimensional tracer advection equation (10.174) is extended to multiple
dimensions according to the following time-splitting method implemented in GFDL-MOM.

(𝑧𝑟 )𝑡+Δ𝑡 = (𝑧𝑟 )𝑡 − 𝐹𝑥 (𝐼) − 𝐹𝑦 (𝐼) − 𝐹𝑧 (𝐼) (10.178)
(𝑧𝑟𝜙)∗ = (𝑧𝑟𝜙)𝑡 − 𝐹𝑥 (𝜙𝑡 ) + 𝐹𝑥 (𝐼)𝜙𝑡 , (10.179)

𝜙∗ = (𝑧𝑟𝜙)∗/(𝑧𝑟 )𝑡 , (10.180)
(𝑧𝑟𝜙)∗∗ = (𝑧𝑟𝜙)∗ − 𝐹𝑦 (𝜙∗) + 𝐹𝑦 (𝐼)𝜙𝑡 , (10.181)

𝜙∗∗ = (𝑧𝑟𝜙)∗∗/(𝑧𝑟 )𝑡 , (10.182)

(𝑧𝑟𝜙)𝑡+Δ𝑡 = (𝑧𝑟𝜙)∗∗ − 𝐹𝑧 (𝜙∗∗) − {𝐹𝑥 (𝐼) + 𝐹𝑥 (𝐼)}𝜙𝑡 , (10.183)

𝜙𝑡+Δ𝑡 = (𝑧𝑟𝜙)𝑡+Δ𝑡/(𝑧𝑟 )𝑡+Δ𝑡 . (10.184)

A feature of this method is that 𝐹𝑥 (𝐼)𝜙𝑡 and 𝐹𝑦 (𝐼)𝜙𝑡 are added in the right hand side of Eqs. (10.179) and (10.181).
Each additional term puts back (removes) a change in the tracer content due to volume flux divergence (convergence) in
the corresponding direction with a tracer value 𝜙𝑡 at the initial time (𝑡 = 𝑡). This process improves numerical stability
when the volume flux divergence/convergence in each direction is large. The total tracer content in the cell is conserved
by adding −𝐹𝑥 (𝐼)𝜙𝑡 − 𝐹𝑦 (𝐼)𝜙𝑡 in the right hand side of Eq. (10.183). We gain the following equation by taking the sum
of Eqs. (10.179), (10.181) and (10.183):

(𝑧𝑟𝜙)𝑡+Δ𝑡 = (𝑧𝑟𝜙)𝑡 − 𝐹𝑥 (𝜙𝑡 ) − 𝐹𝑦 (𝜙∗) − 𝐹𝑧 (𝜙∗∗). (10.185)

This clearly shows the tracer content conservation.

10.6.4 Usage
Users must compile the model with the option PPMADVEC and specify adv_scheme%name = ”ppm” in namelist
nml_tracer_data of tracers to be advected with the PPM advection scheme. Two flux limiters are available as already
noted; the monotonic scheme proposed by Lin et al. (1994) and the original limiter of Colella and Woodward (1984)
(Table 10.3). Users may also specify whether to use the Strang splitting method which changes the order of horizontal
advections every time step and whether to output a special monitor for PPM scheme (Table 10.4).

10.7 MPDATA scheme
10.7.1 Outline
This section explains the MPDATA scheme. In the MPDATA scheme (e.g., Smolarkiewicz and Margolin, 1998), advection
for 𝑇 is first solved by using the original volume transport, 𝑈𝑇 , 𝑉𝑇 ,𝑊𝑇 , to obtain a temporary value (𝑇 (1) ) using the
upstream scheme. Using this temporary value, an anti-diffusive volume transport (𝑈 (1) , 𝑉 (1) , 𝑊 (1) ) is computed. Here,
the superscript (1) means that it is the first approximation to the error to be subtracted. This set of transports is used to
compute a value of the next time step using the upstream scheme starting from the above temporary value.
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Table10.3 Namelist nml_tracer_data.

variable name units description usage
adv_scheme%name character select advection scheme for that tracer = "ppm"　
adv_scheme%limiter_ppm_org logical Use correction introduced by Colella and Wood-

ward (1984) for monotonicity
default = .false.

adv_scheme%limiter_ppm_lin logical Use correction introduced by Lin et al. (1994) for
monotonicity

default = .true.

Table10.4 Namelist nml_ppmadv.

variable name units description usage
lppmmonitor logical monitor domain integrated volume and tracer default = .false.
lppmstrang logical use Strang splitting default = .false.

Original dimensionless form of the anti-diffusive velocity given by Smolarkiewicz and Margolin (1998) is written as
follows (their equation 16):

U (1) ≡𝑢
(1)𝛿𝑡

𝛿𝑥
= |U|(1 −U)𝐴(1) −UV𝐵 (1) −UW𝐶 (1) , (10.186)

V (1) ≡𝑣
(1)𝛿𝑡

𝛿𝑦
= |V|(1 −V)𝐵 (1) −VW𝐶 (1) −VU𝐴(1) , (10.187)

W (1) ≡𝑤
(1)𝛿𝑡

𝛿𝑧
= |W|(1 −W)𝐶 (1) −WU𝐴(1) −WV𝐵 (1) , (10.188)

whereU, V, andW are the dimensionless velocity based on the original flow field and 𝐴(1) , 𝐵 (1) , and 𝐶 (1) are defined
as

𝐴(1) ≡
[
𝛿𝑥

2𝑇
𝜕𝑇

𝜕𝑥

] (1)
, (10.189)

𝐵 (1) ≡
[
𝛿𝑦

2𝑇
𝜕𝑇

𝜕𝑦

] (1)
, (10.190)

𝐶 (1) ≡
[
𝛿𝑧

2𝑇
𝜕𝑇

𝜕𝑧

] (1)
. (10.191)

In MRI.COM, we formulate them by using the set of original volume transports𝑈𝑇 , 𝑉𝑇 ,𝑊𝑇 . Considering the definition
of the volume transport (10.8) to (10.10), the dimensionless form of volume transports can be written as

U𝑖+ 1
2 , 𝑗 ,𝑘−

1
2
=

2𝑈𝑇
𝑖+ 1

2 , 𝑗 ,𝑘−
1
2
Δ𝑡

Δ𝑥𝑖+ 1
2 𝑗Δ𝑦𝑖+ 1

2 , 𝑗

(
Δ𝑧𝑖+ 1

2 , 𝑗−
1
2 ,𝑘−

1
2
+ Δ𝑧𝑖+ 1

2 , 𝑗+
1
2 ,𝑘−

1
2

) , (10.192)

V𝑖, 𝑗+ 1
2 ,𝑘−

1
2
=

2𝑉𝑇
𝑖, 𝑗+ 1

2 ,𝑘−
1
2
Δ𝑡

Δ𝑥𝑖, 𝑗+ 1
2
Δ𝑦𝑖, 𝑗+ 1

2

(
Δ𝑧𝑖− 1

2 , 𝑗+
1
2 ,𝑘−

1
2
+ Δ𝑧𝑖+ 1

2 , 𝑗+
1
2 ,𝑘−

1
2

) , (10.193)

W𝑖, 𝑗 ,𝑘 =
𝑊𝑇

𝑖, 𝑗,𝑘Δ𝑡

Δ𝑧𝑖, 𝑗 ,𝑘 (areat)𝑖, 𝑗 ,𝑘+ 1
2

. (10.194)
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The 𝐴(1) through 𝐶 (1) terms at (𝑖 + 1
2 , 𝑗 , 𝑘 −

1
2 ), which are needed to calculate𝑈 (1)

𝑖+ 1
2 , 𝑗 ,𝑘−

1
2
, are

𝐴(1)
𝑖+ 1

2 , 𝑗 ,𝑘−
1
2
=
Δ𝑥𝑖+ 1

2 , 𝑗
𝛿𝑥𝑇

(1)
𝑖+ 1

2 , 𝑗 ,𝑘−
1
2

2𝑇 (1)
𝑖+ 1

2 , 𝑗 ,𝑘−
1
2

𝑥

+ 𝜖
(10.195)

𝐵 (1)
𝑖+ 1

2 , 𝑗 ,𝑘−
1
2
=
Δ𝑦𝑖+ 1

2 , 𝑗
𝛿𝑦𝑇

(1)
𝑖+ 1

2 , 𝑗 ,𝑘−
1
2

𝑥 𝑦

2𝑇 (1)
𝑖+ 1

2 , 𝑗 ,𝑘−
1
2

𝑦 𝑥
𝑦

+ 𝜖

(10.196)

𝐶 (1)
𝑖+ 1

2 , 𝑗 ,𝑘−
1
2
=
Δ𝑧𝑖+ 1

2 , 𝑗 ,𝑘−
1
2
𝛿𝑧𝑇

(1)
𝑖+ 1

2 , 𝑗 ,𝑘−
1
2

𝑥 𝑧

2𝑇 (1)
𝑖+ 1

2 , 𝑗 ,𝑘−
1
2

𝑧 𝑥
𝑧

+ 𝜖

(10.197)

where 𝜖 is a small number that prevents zero division when tracer values reach zero. The finite difference and averaging
operators are defined as follows (definitions in 𝑦 and 𝑧 directions are the same):

𝛿𝑥𝐴𝑖 ≡
𝐴𝑖+ 1

2
− 𝐴𝑖− 1

2

Δ𝑥𝑖
, 𝛿𝑥𝐴𝑖+ 1

2
≡ 𝐴𝑖+1 − 𝐴𝑖

Δ𝑥𝑖+ 1
2

,

𝐴𝑖
𝑥 ≡

𝐴𝑖+ 1
2
+ 𝐴𝑖− 1

2

2
, 𝐴𝑖+ 1

2

𝑥 ≡ 𝐴𝑖+1 + 𝐴𝑖
2

. (10.198)

The 𝐴(1) through 𝐶 (1) terms should be estimated at (𝑖, 𝑗 + 1
2 , 𝑘 −

1
2 ) for 𝑉 (1)

𝑖, 𝑗+ 1
2 ,𝑘−

1
2

and (𝑖, 𝑗 , 𝑘) for𝑊 (1)𝑖, 𝑗 ,𝑘 .
Then anti-diffusive volume transport is written as

𝑈 (1)
𝑖+ 1

2 , 𝑗 ,𝑘−
1
2
=

���𝑈𝑇
𝑖+ 1

2 , 𝑗 ,𝑘−
1
2

��� (1 −U𝑖+ 1
2 , 𝑗 ,𝑘−

1
2
)𝐴(1)

𝑖+ 1
2 , 𝑗 ,𝑘−

1
2
−𝑈𝑇

𝑖+ 1
2 , 𝑗 ,𝑘−

1
2
V𝑖+ 1

2 , 𝑗 ,𝑘−
1
2

𝑥 𝑦

𝐵 (1)
𝑖+ 1

2 , 𝑗 ,𝑘−
1
2
−𝑈𝑇

𝑖+ 1
2 , 𝑗 ,𝑘−

1
2
W𝑖+ 1

2 , 𝑗 ,𝑘−
1
2

𝑥 𝑧

𝐶 (1)
𝑖+ 1

2 , 𝑗 ,𝑘−
1
2
,

(10.199)

𝑉 (1)
𝑖, 𝑗+ 1

2 ,𝑘−
1
2
=

���𝑉𝑇
𝑖, 𝑗+ 1

2 ,𝑘−
1
2

��� (1 −V𝑖, 𝑗+ 1
2 ,𝑘−

1
2
)𝐵 (1)

𝑖, 𝑗+ 1
2 ,𝑘−

1
2
−𝑉𝑇

𝑖, 𝑗+ 1
2 ,𝑘−

1
2
U𝑖, 𝑗+ 1

2 ,𝑘−
1
2

𝑥 𝑦

𝐴(1)
𝑖, 𝑗+ 1

2 ,𝑘−
1
2
−𝑉𝑇

𝑖, 𝑗+ 1
2 ,𝑘−

1
2
W𝑖, 𝑗+ 1

2 ,𝑘−
1
2

𝑦 𝑧

𝐶 (1)
𝑖, 𝑗+ 1

2 ,𝑘−
1
2
,
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𝑊 (1)𝑖, 𝑗 ,𝑘 =
���𝑊𝑇

𝑖, 𝑗,𝑘

��� (1 −W𝑖, 𝑗 ,𝑘 )𝐶 (1)𝑖, 𝑗 ,𝑘 −𝑊
𝑇
𝑖, 𝑗,𝑘U𝑖+ 1

2 , 𝑗 ,𝑘

𝑥 𝑧

𝐴(1)𝑖, 𝑗 ,𝑘 −𝑊
𝑇
𝑖, 𝑗,𝑘V𝑖+ 1

2 , 𝑗 ,𝑘

𝑦 𝑧

𝐵 (1)𝑖, 𝑗 ,𝑘 . (10.201)

10.7.2 Gauge transformation and flux limiter
Original MPDATA scheme is positive definite and cannot be used for tracers that take negative value. This can be avoided
by adding some constant for the temporary value, 𝑇 (1) .

The monotonicity of MPDATA scheme can be obtained by using a non-oscillatory option proposed by Smolarkiewicz
and Grabowski (1990). In this option, an anti-diffusive volume transport has the upper limit given as follows:[

𝑈 (1)
𝑖+ 1

2 , 𝑗 ,𝑘−
1
2

]mon
=


min(1, 𝛽𝑜𝑢𝑡

𝑖, 𝑗 ,𝑘− 1
2
, 𝛽𝑖𝑛

𝑖+1, 𝑗 ,𝑘− 1
2
)𝑈 (1)

𝑖+ 1
2 , 𝑗 ,𝑘−

1
2

if 𝑈 (1)
𝑖+ 1

2 , 𝑗 ,𝑘−
1
2
> 0,

min(1, 𝛽𝑜𝑢𝑡
𝑖+1, 𝑗 ,𝑘− 1

2
, 𝛽𝑖𝑛

𝑖, 𝑗 ,𝑘− 1
2
)𝑈 (1)

𝑖+ 1
2 , 𝑗 ,𝑘−

1
2

if 𝑈 (1)
𝑖+ 1

2 , 𝑗 ,𝑘−
1
2
< 0,

(10.202)

[
𝑉 (1)
𝑖, 𝑗+ 1

2 ,𝑘−
1
2

]mon
=


min(1, 𝛽𝑜𝑢𝑡

𝑖, 𝑗 ,𝑘− 1
2
, 𝛽𝑖𝑛

𝑖, 𝑗+1,𝑘− 1
2
)𝑉 (1)

𝑖, 𝑗+ 1
2 ,𝑘−

1
2

if 𝑉 (1)
𝑖, 𝑗+ 1

2 ,𝑘−
1
2
> 0,

min(1, 𝛽𝑜𝑢𝑡
𝑖, 𝑗+1,𝑘− 1

2
, 𝛽𝑖𝑛

𝑖, 𝑗 ,𝑘− 1
2
)𝑉 (1)

𝑖+ 1
2 , 𝑗 ,𝑘−

1
2

if 𝑉 (1)
𝑖, 𝑗+ 1

2 ,𝑘−
1
2
< 0,

(10.203)

[
𝑊 (1)𝑖, 𝑗 ,𝑘

]mon
=


min(1, 𝛽𝑜𝑢𝑡

𝑖, 𝑗 ,𝑘+ 1
2
, 𝛽𝑖𝑛

𝑖, 𝑗 ,𝑘− 1
2
)𝑊 (1)𝑖, 𝑗 ,𝑘 if 𝑊 (1)𝑖, 𝑗 ,𝑘 > 0,

min(1, 𝛽𝑜𝑢𝑡
𝑖, 𝑗 ,𝑘− 1

2
, 𝛽𝑖𝑛

𝑖, 𝑗 ,𝑘+ 1
2
)𝑊 (1)𝑖, 𝑗 ,𝑘 if 𝑊 (1)𝑖, 𝑗 ,𝑘 < 0,

(10.204)
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where

𝛽𝑖𝑛
𝑖, 𝑗 ,𝑘− 1

2
≡
𝑇max
𝑖, 𝑗 ,𝑘− 1

2
− 𝑇 (1)

𝑖, 𝑗 ,𝑘− 1
2

𝐴𝑖𝑛
𝑖, 𝑗 ,𝑘− 1

2
+ 𝜖

, (10.205)

𝛽𝑜𝑢𝑡
𝑖, 𝑗 ,𝑘− 1

2
≡
𝑇 (1)
𝑖, 𝑗 ,𝑘− 1

2
− 𝑇min

𝑖, 𝑗 ,𝑘− 1
2

𝐴𝑜𝑢𝑡
𝑖, 𝑗 ,𝑘− 1

2
+ 𝜖 , (10.206)

𝑇max
𝑖, 𝑗 ,𝑘− 1

2
= max

(
𝑇𝑖, 𝑗 ,𝑘− 1

2
, 𝑇𝑖+1, 𝑗 ,𝑘− 1

2
, 𝑇𝑖−1, 𝑗 ,𝑘− 1

2
, 𝑇𝑖, 𝑗+1,𝑘− 1

2
, 𝑇𝑖, 𝑗−1,𝑘− 1

2
, 𝑇𝑖, 𝑗 ,𝑘+ 1

2
, 𝑇𝑖, 𝑗 ,𝑘− 3

2
,

𝑇 (1)
𝑖, 𝑗 ,𝑘− 1

2
, 𝑇 (1)

𝑖+1, 𝑗 ,𝑘− 1
2
, 𝑇 (1)

𝑖−1, 𝑗 ,𝑘− 1
2
, 𝑇 (1)

𝑖, 𝑗+1,𝑘− 1
2
, 𝑇 (1)

𝑖, 𝑗−1,𝑘− 1
2
, 𝑇 (1)

𝑖, 𝑗 ,𝑘+ 1
2
, 𝑇 (1)

𝑖, 𝑗 ,𝑘− 3
2

)
,

(10.207)

𝑇min
𝑖, 𝑗 ,𝑘− 1

2
= min

(
𝑇𝑖, 𝑗 ,𝑘− 1

2
, 𝑇𝑖+1, 𝑗 ,𝑘− 1

2
, 𝑇𝑖−1, 𝑗 ,𝑘− 1

2
, 𝑇𝑖, 𝑗+1,𝑘− 1

2
, 𝑇𝑖, 𝑗−1,𝑘− 1

2
, 𝑇𝑖, 𝑗 ,𝑘+ 1

2
, 𝑇𝑖, 𝑗 ,𝑘− 3

2
,

𝑇 (1)
𝑖, 𝑗 ,𝑘− 1

2
, 𝑇 (1)

𝑖+1, 𝑗 ,𝑘− 1
2
, 𝑇 (1)

𝑖−1, 𝑗 ,𝑘− 1
2
, 𝑇 (1)

𝑖, 𝑗+1,𝑘− 1
2
, 𝑇 (1)

𝑖, 𝑗−1,𝑘− 1
2
, 𝑇 (1)

𝑖, 𝑗 ,𝑘+ 1
2
, 𝑇 (1)

𝑖, 𝑗 ,𝑘− 3
2

)
,

(10.208)

and 𝐴𝑖𝑛 and 𝐴𝑜𝑢𝑡 are the absolute values of the total incoming and outgoing advection flux at the T-box.

10.7.3 Usage
Model option MPDATAADVEC must be specified for compilation when MPDATA will be used for any tracer. At run time,
you must specify which tracer will use this scheme as well as what kind of specifications will be used for that tracer. See
Section 13.3.2 and Table 13.3 for details.
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Chapter 11

SGS parameterization of lateral mixing of tracers

This chapter explains subgrid-scale parameterizations for horizontal mixing of tracers.

11.1 Introduction and Formulation
Historically, a harmonic diffusion operator is applied in each direction of the model coordinates to express mixing of
tracers. In the real ocean, transport and mixing would occur dominantly along neutral (isopycnal) surfaces. Thus,
horizontal mixing along a constant depth surface is generally inappropriate since neutral surfaces are generally slanting
relative to a constant depth surface. Neutral physics schemes are devised as substitutes for the harmonic scheme in the
horizontal direction, while the harmonic scheme continues to be used for vertical diffusion.

By default, the diffusion operator mixes a tracer in each direction of the model coordinates with the harmonic scheme.
For horizontal diffusion, the biharmonic scheme can be used instead of the harmonic scheme. Using (24.22) and (24.23),
the harmonic-type diffusivity is represented for the horizontal diffusion, Eq. (9.6), as follows:

D𝐻 (𝑇) = −
1

ℎ𝜇ℎ𝜓

{
𝜕 (ℎ𝜓𝑧𝑠𝐹𝑇

𝜇 )
𝜕𝜇

+
𝜕 (ℎ𝜇𝑧𝑠𝐹𝑇

𝜓 )
𝜕𝜓

}
=

1
ℎ𝜇ℎ𝜓

{
𝜕

𝜕𝜇

(
ℎ𝜓𝑧𝑠𝜅𝐻

ℎ𝜇

𝜕𝑇

𝜕𝜇

)
+ 𝜕

𝜕𝜓

(
ℎ𝜇𝑧𝑠𝜅𝐻

ℎ𝜓

𝜕𝑇

𝜕𝜓

)}
, (11.1)

where 𝜅𝐻 is the horizontal diffusion coefficient. When the biharmonic-type is selected for horizontal diffusion, the above
Laplacian operation is repeated twice reversing its sign after the first operation.

When the neutral physics schemes are selected, the advection-diffusion equation for any tracer (𝑇) is expressed as follows
(Gent and McWilliams, 1990):

𝐷𝑇

𝐷𝑡
+ ∇𝐻 ·

[
𝑇
𝜕

𝜕𝑧
(𝜅𝑇 ∇𝐻 𝜌/𝜌𝑧)

]
+ 𝜕

𝜕𝑧

[
𝑇∇𝐻 · (−𝜅𝑇 ∇𝐻 𝜌/𝜌𝑧)

]
= D(𝑇) +𝑄𝑇 , (11.2)

where the first term on the r.h.s. is the isopycnal diffusion, whose form is given by

D(𝑇) = ∇ · (𝜅𝐼K∇𝑇), (11.3)

where

K =
1

𝜌2
𝑥 + 𝜌2

𝑦 + 𝜌2
𝑧

©­«
𝜌2
𝑦 + 𝜌2

𝑧 −𝜌𝑥𝜌𝑦 −𝜌𝑥𝜌𝑧
−𝜌𝑥𝜌𝑦 𝜌2

𝑥 + 𝜌2
𝑧 −𝜌𝑦𝜌𝑧

−𝜌𝑥𝜌𝑧 −𝜌𝑦𝜌𝑧 𝜌2
𝑥 + 𝜌2

𝑦

ª®¬ (11.4)

=
1

1 + (𝜌𝑥/𝜌𝑧)2 + (𝜌𝑦/𝜌𝑧)2
©­«

1 + (𝜌𝑦/𝜌𝑧)2 −(𝜌𝑥/𝜌𝑧)(𝜌𝑦/𝜌𝑧) −𝜌𝑥/𝜌𝑧
−(𝜌𝑥/𝜌𝑧)(𝜌𝑦/𝜌𝑧) 1 + (𝜌𝑥/𝜌𝑧)2 −𝜌𝑦/𝜌𝑧

−𝜌𝑥/𝜌𝑧 −𝜌𝑦/𝜌𝑧 (𝜌𝑥/𝜌𝑧)2 + (𝜌𝑦/𝜌𝑧)2
ª®¬ , (11.5)

(Redi, 1982). In the above, the Cartesian notation is used for simplicity. The subscript 𝑥 represents 𝜕/(ℎ𝜇𝜕𝜇) 𝑦 represents
𝜕/(ℎ𝜓𝜕𝜓), and 𝑧 represents 𝜕/(𝑧𝑠𝜕𝑠), The isopycnal diffusion coefficient is represented by 𝜅𝐼 . Diapycnal diffusion is not
considered here.

The second and third terms on the l.h.s. of (11.2) have the form of advection terms with a transport velocity vector
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(𝑢𝑇 , 𝑣𝑇 , 𝑤𝑇 ):

𝑢𝑇 ≡
𝜕

𝜕𝑧

(
𝜅𝑇

1
ℎ𝜇

𝜕𝜌

𝜕𝜇
/𝜕𝜌
𝜕𝑧

)
, (11.6)

𝑣𝑇 ≡
𝜕

𝜕𝑧

(
𝜅𝑇

1
ℎ𝜓

𝜕𝜌

𝜕𝜓
/𝜕𝜌
𝜕𝑧

)
, (11.7)

𝑤𝑇 ≡ −
1

ℎ𝜇ℎ𝜓

{ 𝜕
𝜕𝜇

(
𝜅𝑇
ℎ𝜓

ℎ𝜇

𝜕𝜌

𝜕𝜇
/𝜕𝜌
𝜕𝑧

)
+ 𝜕

𝜕𝜓

(
𝜅𝑇
ℎ𝜇

ℎ𝜓

𝜕𝜌

𝜕𝜓
/𝜕𝜌
𝜕𝑧

)}
, (11.8)

(Gent and McWilliams, 1990). This velocity can be understood as the advection caused by the thickness diffusion of an
isopycnal layer, where 𝜅𝑇 is often referred to as thickness diffusivity.

Note that these could be rewritten as
G(𝑇) = ∇ · (𝜅𝑇 A∇𝑇) (11.9)

with

A =
©­«

0 0 −𝜌𝑥/𝜌𝑧
0 0 −𝜌𝑦/𝜌𝑧

𝜌𝑥/𝜌𝑧 𝜌𝑦/𝜌𝑧 0

ª®¬ . (11.10)

Comparing with (11.5), we notice that the isopycnal diffusion and the thickness diffusion terms are combined to yield a
concise form (Griffies, 1998) and (11.2) can be rewritten as:

𝐷𝑇

𝐷𝑡
= ∇ · {(𝜅𝐼K − 𝜅𝑇 A)∇𝑇} +𝑄𝑇 . (11.11)

Three types of lateral diffusion, harmonic horizontal diffusion (default), biharmonic horizontal diffusion (TRCBIHARM
option), and isopycnal diffusion (ISOPYCNAL option), are available in MRI.COM. When isopycnal diffusion (Redi, 1982)
is selected, the parameterization scheme for eddy induced advection by Gent and McWilliams (1990) (GM scheme) is
used with it (see Section 11.4 for details of this parameterization).

The following is a guide to selecting a horizontal diffusion scheme. Biharmonic diffusion is appropriate for a high reso-
lution model that can resolve eddies because it is more scale-selective than harmonic diffusion and does not unnecessarily
suppress disturbances in resolved scales. On the other hand, biharmonic diffusion is not recommended in eddy-less models
because this would result in numerical instability. Harmonic horizontal diffusion is also not recommended because this
scheme would cause unrealistic cross-isopycnal (diapycnal) mixing as mentioned above. Instead, both isopycnal diffusion
and the GM scheme should be used there. Using an anisotropic GM scheme can maintain the meso-scale eddy structures
and swift currents by restricting the direction of diffusion, and thus may be usable even for a high resolution model.

The finite difference expression of (11.11) is given by taking the finite volume approach as follows:

𝑇𝑛+1
𝑖, 𝑗 ,𝑘− 1

2
Δ𝑉𝑛+1

𝑖, 𝑗 ,𝑘− 1
2
= 𝑇𝑛−1

𝑖, 𝑗 ,𝑘− 1
2
Δ𝑉𝑛−1

𝑖, 𝑗 ,𝑘− 1
2
+ 2Δ𝑡 {FXD𝑖− 1

2 , 𝑗 ,𝑘−
1
2
− FXD𝑖+ 1

2 , 𝑗 ,𝑘−
1
2
+ FYD𝑖, 𝑗− 1

2 ,𝑘−
1
2
− FYD𝑖, 𝑗+ 1

2 ,𝑘−
1
2

+ FZD𝑖, 𝑗 ,𝑘 − FZD𝑖, 𝑗 ,𝑘−1} + (other terms). (11.12)

Usually, fluxes due to diffusion are explicitly represented using a starting time level of the temporal discretization. However,
when the flux is very large relative to the grid size and the time step interval, which would often occur for vertical fluxes,
an implicit scheme is used. These issues are discussed in Chapter 23.

11.2 Horizontal diffusion
11.2.1 Laplacian diffusion
Harmonic horizontal diffusion assumes that the diffusion flux is a product of the gradient of tracer and the diffusion
coefficient (𝜅𝐻 ). The finite difference expressions for the fluxes are given as follows:

FXD𝑖+ 1
2 , 𝑗 ,𝑘−

1
2
= − 𝜅𝐻Δ𝑦𝑖+ 1

2 , 𝑗
Δ𝑧𝑖+ 1

2 , 𝑗 ,𝑘−
1
2

𝑦
𝛿𝑥𝑇𝑖+ 1

2 , 𝑗 ,𝑘−
1
2
, (11.13)

FYD𝑖, 𝑗+ 1
2 ,𝑘−

1
2
= − 𝜅𝐻Δ𝑥𝑖, 𝑗+ 1

2
Δ𝑧𝑖, 𝑗+ 1

2 ,𝑘−
1
2

𝑥
𝛿𝑦𝑇𝑖, 𝑗+ 1

2 ,𝑘−
1
2
, (11.14)
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where

𝛿𝑥𝑇𝑖+ 1
2 , 𝑗 ,𝑘−

1
2
≡
𝑇𝑖+1, 𝑗 ,𝑘− 1

2
− 𝑇𝑖, 𝑗 ,𝑘− 1

2

Δ𝑥𝑖+ 1
2 , 𝑗

, (11.15)

𝛿𝑦𝑇𝑖, 𝑗+ 1
2 ,𝑘−

1
2
≡
𝑇𝑖, 𝑗+1,𝑘− 1

2
− 𝑇𝑖, 𝑗 ,𝑘− 1

2

Δ𝑦𝑖, 𝑗+ 1
2

. (11.16)

11.2.2 Biharmonic diffusion
Biharmonic horizontal diffusion (TRCBIHARM option) assumes that the diffusion flux is proportional to the gradient of the
Laplacian of tracer. The finite difference expressions for the fluxes are given as follows:

FXD𝑖+ 1
2 , 𝑗 ,𝑘−

1
2
=
√
𝜅𝑏 Δ𝑦𝑖+ 1

2 , 𝑗
Δ𝑧𝑖+ 1

2 , 𝑗 ,𝑘−
1
2

𝑦
𝛿𝑥 [Lap(𝑇)]𝑖+ 1

2 , 𝑗 ,𝑘−
1
2
, (11.17)

FYD𝑖, 𝑗+ 1
2 ,𝑘−

1
2
=
√
𝜅𝑏 Δ𝑥𝑖, 𝑗+ 1

2
Δ𝑧𝑖, 𝑗+ 1

2 ,𝑘−
1
2

𝑥
𝛿𝑦 [Lap(𝑇)]𝑖, 𝑗+ 1

2 ,𝑘−
1
2
, (11.18)

where 𝜅𝑏 is diffusivity coefficient and

Lap(𝑇)𝑖, 𝑗 ,𝑘− 1
2
=
Δ𝑥𝑖, 𝑗Δ𝑦𝑖, 𝑗
Δ𝑉𝑖, 𝑗 ,𝑘− 1

2

(𝛿𝑥
√
𝜅𝑏 Δ𝑧𝑖, 𝑗 ,𝑘− 1

2

𝑦
𝛿𝑥𝑇𝑖, 𝑗 ,𝑘− 1

2
+ 𝛿𝑦
√
𝜅𝑏 Δ𝑧𝑖, 𝑗 ,𝑘− 1

2

𝑥
𝛿𝑦𝑇𝑖, 𝑗 ,𝑘− 1

2
). (11.19)

11.2.3 Specification of coefficient
The diffusion coefficient of horizontal diffusion is specified using the namelists listed on Tables 11.1 and 11.2. This must
be zero if ISOPYCNAL option is selected, unless the horizontal diffusion is applied intentionally. By using SMAGHD option,
the diffusion coefficient can be given based on the horizontal viscosity coefficient according to the Smagorinsky scheme
(Section 8.3.3).

Table11.1 Namelist nml_tracer_diff_horz

variable name units description usage
diff_horz_cm2ps cm2 s−1 Laplacian diffusion coefficient (𝜅𝐻 ) if not TRCBIHARM
diff_horz_cm4ps cm4 s−1 Biharmonic diffusion coefficient (𝜅𝑏) if TRCBIHARM
file_diff_horz_2d character 2D distribution of diffusion coefficient is read from

this file

Table11.2 Namelist nml_grid_size_change_mix_coefs

variable name units description usage
l_grid_size_change_mix_coefs logical the given coefficient is multiplied by the

fraction of the local grid size to 100 km.

11.3 Isopycnal diffusion
In isopycnal diffusion, the diffusion flux is expressed by high diffusivity along the isopycnal surface 𝜅𝐼 , low diffusivity
across the isopycnal surface 𝜅𝐷 , and their product with the gradient of tracer in each direction. Using diffusion tensor K,
each flux component is written as 𝐹𝑚 (𝑇) = −𝐾𝑚𝑛𝜕𝑛𝑇 , and then

K =
𝜅𝐼

1 + 𝑆2
©­«

1 + 𝑆2
𝑦 + 𝜖𝑆2

𝑥 (𝜖 − 1)𝑆𝑥𝑆𝑦 (1 − 𝜖)𝑆𝑥
(𝜖 − 1)𝑆𝑥𝑆𝑦 1 + 𝑆2

𝑥 + 𝜖𝑆2
𝑦 (1 − 𝜖)𝑆𝑦

(1 − 𝜖)𝑆𝑥 (1 − 𝜖)𝑆𝑦 𝜖 + 𝑆2

ª®¬ , (11.20)
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where

S = (𝑆𝑥 , 𝑆𝑦 , 0) =
©­­­«−

𝜕𝜌

𝜕𝑥
𝜕𝜌

𝜕𝑧

,−

𝜕𝜌

𝜕𝑦

𝜕𝜌

𝜕𝑧

, 0
ª®®®¬ , (11.21)

𝑆 = | S |, (11.22)

𝜖 =
𝜅𝐷
𝜅𝐼

(11.23)

(Redi, 1982). This diffusion tensor is rewritten as the sum of horizontal diffusion tensor and a difference from the horizontal
diffusion:

K = 𝜅𝐼
©­«

1 0 0
0 1 0
0 0 0

ª®¬ + 𝜅𝐼

1 + 𝑆2
©­«
(𝜖 − 1)𝑆2

𝑥 (𝜖 − 1)𝑆𝑥𝑆𝑦 (1 − 𝜖)𝑆𝑥
(𝜖 − 1)𝑆𝑥𝑆𝑦 (𝜖 − 1)𝑆2

𝑦 (1 − 𝜖)𝑆𝑦
(1 − 𝜖)𝑆𝑥 (1 − 𝜖)𝑆𝑦 𝜖 + 𝑆2

ª®¬ . (11.24)

The finite difference method is based on Cox (1987) except for the small isopycnal slope approximation. The finite
difference form of three components of the gradient of tracer in calculating the east-west component of flux FXD𝑖+ 1

2 , 𝑗 ,𝑘−
1
2

is given as follows (see Figure 11.1):

(𝛿𝑥𝑇)𝑖+ 1
2 , 𝑗 ,𝑘−

1
2
= 𝛿𝑥𝑇𝑖+ 1

2 , 𝑗 ,𝑘−
1
2
, (11.25)

(𝛿𝑦𝑇)𝑖+ 1
2 , 𝑗 ,𝑘−

1
2
= 𝛿𝑦𝑇𝑖+ 1

2 , 𝑗 ,𝑘−
1
2

𝑥𝑦
, (11.26)

(𝛿𝑧𝑇)𝑖+ 1
2 , 𝑗 ,𝑘−

1
2
= 𝛿𝑧𝑇𝑖+ 1

2 , 𝑗 ,𝑘−
1
2

𝑥𝑧
. (11.27)

Similarly, the north-south component FYD𝑖, 𝑗+ 1
2 ,𝑘−

1
2

is given by

(𝛿𝑥𝑇)𝑖, 𝑗+ 1
2 ,𝑘−

1
2
= 𝛿𝑥𝑇𝑖, 𝑗+ 1

2 ,𝑘−
1
2

𝑥𝑦
, (11.28)

(𝛿𝑦𝑇)𝑖, 𝑗+ 1
2 ,𝑘−

1
2
= 𝛿𝑦𝑇𝑖, 𝑗+ 1

2 ,𝑘−
1
2
, (11.29)

(𝛿𝑧𝑇)𝑖, 𝑗+ 1
2 ,𝑘−

1
2
= 𝛿𝑧𝑇𝑖, 𝑗+ 1

2 ,𝑘−
1
2

𝑦𝑧
, (11.30)

and the vertical component FZD𝑖, 𝑗 ,𝑘 is given by

(𝛿𝑥𝑇)𝑖, 𝑗 ,𝑘 = 𝛿𝑥𝑇𝑖, 𝑗 ,𝑘
𝑥𝑧
, (11.31)

(𝛿𝑦𝑇)𝑖, 𝑗 ,𝑘 = 𝛿𝑦𝑇𝑖, 𝑗 ,𝑘
𝑦𝑧
, (11.32)

(𝛿𝑧𝑇)𝑖, 𝑗 ,𝑘 = 𝛿𝑧𝑇𝑖, 𝑗 ,𝑘 . (11.33)

The density gradient in the calculation of each component of the diffusion tensor can be obtained by replacing 𝑇 in
the above equations with 𝜌. However, density is calculated at the reference level 𝑘 − 1

2 for the east-west and north-south
components, and at the reference level 𝑘 for the vertical component.

In addition, the upper bound on the isopycnal slope 𝑆max (slope_clip_iso in namelist nml_isopy_slope_clip, Table
11.4) is set because a nearly vertical isopycnal slope and the resultant low horizontal diffusivity could cause numerical
instability. If |S| > 𝑆max, 𝜕𝑧𝜌 in all flux components is replaced so as to satisfy |S| = 𝑆max.

The vertical flux due to the third diagonal component of the diffusion tensor (11.20) is

FZD𝑖, 𝑗 ,𝑘 = (areat)𝑖, 𝑗 ,𝑘
𝜅𝐼 (𝜖 + 𝑆2)

1 + 𝑆2 𝛿𝑧𝑇𝑖, 𝑗 ,𝑘 . (11.34)

Thus the effective vertical diffusivity 𝜅eff is

𝜅eff =
𝜅𝐷 + 𝜅𝐼 𝑆2

1 + 𝑆2 . (11.35)

For a steep isopycnal slope 𝑆 ∼ 1/100 and a canonical value of isopycnal diffusion coefficient 𝜅𝐼 ∼ 107 cm2 s−1 and a
typical value of diapycnal diffusion coefficient 𝜅𝐷 ∼ 10−1 cm2 s−1,

𝜅eff ∼ 103 cm2 s−1. (11.36)

This is a fairly large value which warrants use of an implicit scheme (Section 23.5). In MRI.COM, this term is separated
from other terms and solved with other vertical diffusion terms using an implicit method.

– 126 –



Chapter 11 SGS parameterization of lateral mixing of tracers

Ti, j+1 Ti+1, j+1

Ti, j

Ti, j-1

Ti+1, j

Ti+1, j-1

Figure11.1 The way of calculating the gradient at the circle (𝑖 + 1
2 , 𝑗 , 𝑘 −

1
2 ) in isopycnal diffusion: the east-west

gradient is indicated by an arrow through the circle, and the north-south gradient is given by averaging four arrows in
the vertical direction.

Griffies et al. (1998) noted a problem in the finite difference expression of the isopycnal diffusion as implemented in
the GFDL-model by Cox (1987). The problem is that the down-gradient orientation of the diffusive fluxes along the
neutral directions does not necessarily guarantee the zero isoneutral diffusive flux of locally referenced density (e.g.,
potential temperature when it is the only active tracer). This is caused by the nature of the finite difference method and
the non-linearity of the equation of state. Griffies et al. (1998) proposed a remedy, but this remains to be implemented in
MRI.COM.

11.3.1 Tapering isopycnal diffusion tensor
We set an upper bound on the isopycnal slope used to evaluate isopycnal tracer diffusion terms in MRI.COM in order to
prevent numerical instability around steep isopycnal slopes as noted above. Griffies (2004) shows that such slope clipping
could lead to an unrealistically large tracer flux. Another method to prevent numerical instability is to introduce a tapering
factor to isopycnal diffusion tensor by specifying ISOTAPER option. This tapering factor 𝑓 is a product of two kinds of
factors ( 𝑓 = 𝑓steep 𝑓surface) introduced in the subsequent sections. The equation 11.24 is rewritten as follows:

K = 𝑓hdiag𝜅𝐼
©­«

1 0 0
0 1 0
0 0 0

ª®¬ + 𝑓 𝜅𝐼

1 + 𝑆2
©­«
(𝜖 − 1)𝑆2

𝑥 (𝜖 − 1)𝑆𝑥𝑆𝑦 (1 − 𝜖)𝑆𝑥
(𝜖 − 1)𝑆𝑥𝑆𝑦 (𝜖 − 1)𝑆2

𝑦 (1 − 𝜖)𝑆𝑦
(1 − 𝜖)𝑆𝑥 (1 − 𝜖)𝑆𝑦 𝜖 + 𝑆2

ª®¬ . (11.37)

By default, the factor 𝑓hdiag is set to unity. This means that the isopycnal diffusion is rendered the horizontal diffusion
as the factor 𝑓 reduces to zero. One may apply the tapering factor 𝑓 to the horizontal diagonal terms by setting
l_apply_hdiag = .true. in namelist nml_tracer_diff_isopy_taper (Table 11.5). Note that the tapering factor is
defined at each cell boundary where isopycnal diffusion flux is calculated and 𝜖 = 𝜅𝐷/( 𝑓 𝜅𝐼 ) in Eq. 11.37.

a. Around steep isopycnal slopes
Danabasoglu and McWilliams (1995) propose a factor that uses a hyperbolic tangent to exponentially taper isopycnal
diffusion in steep slope regions as follows:

𝑓steep =
1
2

{
1 + tanh

(
𝑆center − |S|
𝑆width

)}
. (11.38)
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Two parameters 𝑆center and 𝑆width, which determine a transitional region, are given by center_transition and
width_transition in namelist nml_tracer_diff_isopy_taper, respectively (Table 11.5).

b. Around the sea surface
The vertical displacement of a water parcel due to mesoscale eddy stirring (𝐷) is approximately calculated as follows:

𝐷 = 𝑅 |S|, (11.39)

where 𝑅 is the internal deformation radius and |S| is the isopycnal slope. If the depth of the water parcel (𝑑) is shallower
than 𝐷, the boundary constrains its displacement and eddy diffusive fluxes (Griffies, 2004). The other factor 𝑓surface
proposed by Large et al. (1997) introduces this constraint to the isopycnal diffusion tensor and is calculated as follows:

𝑓surface =
1
2

{
1 + sin 𝜋

(
𝑟 − 1

2

)}
, (11.40)

where 𝑟 = max(0,min(1, 𝑑/𝐷)). Eddy diffusivity is tapered off to zero toward the sea surface in the region where
0 ≤ 𝑑 ≤ 𝐷. In MRI.COM, the reference level of the depth 𝑑 is set at the boundary layer depth (BLD): 𝑑 = −𝑧 − BLD. In
MRI.COM, the surface mixed layer depth (MLD) is treated as the BLD (see also the next section). This means that the
eddy diffusivity is tapered to zero within the mixed layer. The upper boundary of this tapering region can be changed to a
constant level by setting upper_level_isotaper_m in namelist nml_tracer_diff_isopy_taper (Table 11.5).

11.3.2 Specification of coefficient
The diffusion coefficients of isopycnal diffusion and GM parameterization explained in the next section are specified
using the namelist listed on Table 11.3. We can use different slope maximal limits for isopycnal diffusion and GM
parameterization that are specified using the namelist listed on Table 11.4. Configurations of surface tapering for the
isopycnal diffusion scheme with ISOTAPER option are specified using the namelist listed on Table 11.5.

Table11.3 Namelist nml_tracer_diff_isopy

variable name units description usage
diff_isopy_cm2ps cm2 sec−1 isopycnal diffusion coefficient if ISOPYCNAL
diff_diapy_cm2ps cm2 sec−1 diapycnal diffusion coefficient if ISOPYCNAL
diff_thick_cm2ps cm2 sec−1 coefficient of GM parameterization if ISOPYCNAL

Table11.4 Namelist nml_isopy_slope_clip

variable name units description usage
slope_clip_iso 1 maximum slope of isopycnal surface for isopy-

cnal diffusion
if ISOPYCNAL

slope_clip_gm 1 maximum slope of isopycnal surface for GM
parameterization

if ISOPYCNAL

Table11.5 Namelist nml_tracer_diff_isopy_taper

variable name units description usage
l_apply_hdiag logical apply tapering factors to horizontal diago-

nal terms (default = .false.)
if ISOTAPER

center_transition 1 center of the transition region of tapering
with hyperbolic tangent (default = 0.005)

if ISOTAPER

width_transition 1 width of the transition region of tapering
with hyperbolic tangent (default = 0.001)

if ISOTAPER

ai_min cm2 sec−1 lower limit of horizontal isopycnal diffu-
sion coefficient when l_apply_hdiag =
.true. (default = 0.0)

if ISOTAPER

Continued on next page

– 128 –



Chapter 11 SGS parameterization of lateral mixing of tracers

Table 11.5 – continued from previous page
variable name units description usage

upper_level_isotaper_m m BLD for the sine taper (default = mixed
layer depth (−1.0))

if ISOTAPER

l_explicit_vdif logical handle the vertical diffusion term explicitly
(default = .false.)

if ISOTAPER

11.4 Gent and McWilliams parameterization for eddy-induced transport
11.4.1 General features
The Gent and McWilliams (1990) parameterization represents transports of tracers due to disturbances smaller than the
grid size, assuming that a flux proportional to the gradient of the layer thickness exists along the isopycnal surface. The
isopycnal diffusion stated above does not produce any flux when the isopycnal surface coincides with the isotherm and
isohaline surface. This parameterization, however, produces fluxes in such a case, and acts to decrease the isopycnal slope.

Flux convergence due to diffusion is expressed as follows:

𝑅(𝑇) = 𝜕𝑚 (𝐽𝑚𝑛𝜕𝑛𝑇) (11.41)

Diffusion tensor 𝐽𝑚𝑛 is expressed as the sum of the symmetric component 𝐾𝑚𝑛 = (𝐽𝑚𝑛 + 𝐽𝑛𝑚)/2 and the anti-symmetric
component 𝐴𝑚𝑛 = (𝐽𝑚𝑛 − 𝐽𝑛𝑚)/2. Isopycnal diffusion has the form of a symmetric diffusion tensor. Convergence of a
skew flux caused by the anti-symmetric component 𝐹𝑚

skew = −𝐴𝑚𝑛𝜕𝑛𝑇 is as follows:

𝑅𝐴(𝑇) = 𝜕𝑚 (𝐴𝑚𝑛𝜕𝑛𝑇)
= 𝜕𝑚 (𝐴𝑚𝑛)𝜕𝑛𝑇
= 𝜕𝑛 (𝜕𝑚𝐴𝑚𝑛𝑇), (11.42)

where 𝐴𝑚𝑛𝜕𝑚𝜕𝑛𝑇 = 0 and 𝜕𝑚𝜕𝑛𝐴𝑚𝑛 = 0 are used. If we set a virtual velocity 𝑢𝑛∗ ≡ −𝜕𝑚𝐴𝑚𝑛, then the flux due to the
anti-symmetric component could be regarded as the advection due to this virtual velocity u∗. In this case, the flux is
Fadv = u∗𝑇 and 𝑅𝐴(𝑇) = −u∗ · ∇𝑇 since u∗ is divergence free by definition.

The Gent and McWilliams parameterization for eddy-induced transport velocity is given by

u∗ = −
𝜕

𝜕𝜌
(𝜅GM∇𝜌ℎ)

/ 𝜕ℎ

𝜕𝜌
, (11.43)

where ℎ is the depth of the neutral surface (𝜌 = const). This velocity is expressed in the depth coordinate as

u∗ =
(
−𝜕𝑧 (𝜅GM𝑆𝑥), −𝜕𝑧 (𝜅GM𝑆𝑦), ∇ℎ · (𝜅GMS)

)
(11.44)

where
S = (𝑆𝑥 , 𝑆𝑦 , 0) =

(
−𝜌𝑥/𝜌𝑧 ,−𝜌𝑦/𝜌𝑧 , 0

)
. (11.45)

(Gent et al., 1995).
Griffies (1998) showed that the tendency of a tracer due to this parameterization might be expressed using an anti-

symmetric diffusion tensor A

A =
©­«

0 0 −𝜅GM𝑆𝑥
0 0 −𝜅GM𝑆𝑦

𝜅GM𝑆𝑥 𝜅GM𝑆𝑦 0

ª®¬ , (11.46)

so that
𝜕𝑇

𝜕𝑡
= · · · + ∇ · (A∇𝑇). (11.47)

The flux due to advection can be expressed using a vector streamfunction,

Ψ = 𝜅GMẑ × S = (−𝜅GM𝑆𝑦 , 𝜅GM𝑆𝑥 , 0), (11.48)

which produces u∗ in (11.44):
Fadv = u∗𝑇 = 𝑇 (∇ ×Ψ).
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The skew diffusive expression for the flux using tensor A in (11.46) is

Fskew = −A∇𝑇 = −(∇𝑇) ×Ψ = Fadv − ∇ × (𝑇Ψ).
Thus, the convergence of the flux expressed in tensorial form matches that of the advective expression. In other words, the
Gent and McWilliams parameterization is realized by only adding A to the tensor of the isopycnal diffusion K (Griffies,
1998).

11.4.2 Dependency of coefficient on space and time
By default, the diffusivity coefficient for the Gent-McWilliams parameterization is constant both in time and space, whose
value, [𝜅GM]ref , is given by diff_thick_cm2ps in namelist nml_tracer_diff_isopy (Table 11.3). However, it may
be dependent on local horizontal grid size by specifying a namelist (see the next paragraph). Several parameterization
may be used by choosing GMVAR option. User should specify one of l_visbeck, l_eden, l_danabasoglu to be .true.
in namelist nml_gmvar_select (Table 11.8).

a. Simple scheme

If l_grid_size_change_mix_coefs = .true. in namelist nml_grid_size_change_mix_coefs (Table 11.7), the co-
efficient may be dependent on the horizontal grid size according to the following formula

𝜅GM = [𝜅GM]ref ×min(Δ𝑥,Δ𝑦)/(100 km), (11.49)

where Δ𝑥 and Δ𝑦 are local zonal and meridional grid sizes of a U-cell, respectively.

b. Visbeck et al. (1997)

To use the method proposed by Visbeck et al. (1997), specify l_visbeck = .true. in namelist nml_gmvar_select.
Visbeck et al. (1997) proposed to give the GM coefficient 𝜅GM as

𝜅GM = 𝛼
𝑀2

𝑁
𝑙2, (11.50)

where 𝛼 = 0.015,
𝑀2 =

𝑔

𝜌0
∇𝐻 𝜌 , 𝑁2 = − 𝑔

𝜌0

𝜕𝜌

𝜕𝑧
,

and 𝑙 the horizontal length scale of the baroclinic zone, 𝑔 acceleration of gravity, 𝜌0 reference density.
Specifically in our model,

𝑀2 =
𝑔

𝜌0𝐷

[(∫ −𝐻0

−𝐻1

𝜕𝜌

𝜕𝑥
𝑑𝑧

)2

+
(∫ −𝐻0

−𝐻1

𝜕𝜌

𝜕𝑦
𝑑𝑧

)2] 1
2

, (11.51)

and
𝑁2 =

𝑔 [𝜎0 (𝐻1) − 𝜎0 (𝐻0)]
𝜌0𝐷

, (11.52)

where 𝐻0 = 100 m, 𝐻1 = 2000 m, 𝐷 = 𝐻1 − 𝐻0, and 𝜎0 is the potential density. Lower limit for 𝑁 is set so that
𝑁2 ≥ 10−9 s−1.

Using the following formula for the phase speed of the 1st baroclinic mode gravity wave (Sueyoshi and Yasuda, 2009)

𝑐1 =
1
𝜋

∫ 0

−𝐻𝐵

(
− 𝑔
𝜌0

𝜕𝜎0

𝜕𝑧

) 1
2

𝑑𝑧, (11.53)

where 𝐻𝐵 is the depth of sea floor, deformation radius 𝜆1 is calculated as follows:

𝜆1 = min
(
𝑐1

𝑓
, 4 × 104

)
m. (11.54)

Using a factor 𝑟 = 7, GM coefficient is determined as follows:

𝜅GM = 𝛼
𝑀2

𝑁
(𝑟𝜆1)2 . (11.55)

Lower and upper limits for the coefficient are set as follows:

300 ≤ 𝜅GM ≤ 1500 m2 s−1. (11.56)
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c. Eden and Greatbatch (2008)

To use the method proposed by Eden and Greatbatch (2008), specify l_eden = .true. in namelist nml_gmvar_select.
Eden and Greatbatch (2008) and Eden et al. (2009) proposed that the thickness diffusivity is given by

𝜅GM = 𝑐𝐿2𝜎. (11.57)

The eddy length scale 𝐿 is given as the minimum of the Rossby radius 𝐿𝑟 and Rhines scale 𝐿Rhi. This choice for 𝐿 was
found to be consistent with independent estimates of eddy length scales from satellite observations and high-resolution
model results (Eden, 2007) and with theoretical considerations (Theiss, 2004). 𝐿Rhi is estimated from variables of the
coarse resolution model as

𝐿Rhi =
𝜎

𝛽
(11.58)

(Eden and Greatbatch, 2008), while 𝐿𝑟 is given by

𝐿𝑟 = min
[
𝑐1

| 𝑓 | ,
√
𝑐1

2𝛽

]
, (11.59)

where 𝑐1 denotes the 1st baroclinic gravity wave speed calculated approximately as eq. (11.53). Considering the thermal
wind relation in mid-latitudes, Eden and Greatbatch (2008) proposed that the inverse eddy time scale 𝜎 is given by

𝜎 = 𝑓 (Ri + 𝛾)− 1
2 . (11.60)

Here, Ri = 𝑁2 |𝜕𝑧𝑢ℎ |−2 denotes the local Richardson number. 𝛾(> 0) is introduced to prevent the singularity as 𝑁 → 0,
which acts effectively as an upper limit for 𝜎 and consequently for 𝜅GM. The default values of 𝛾 and 𝑐 in eq. (11.57), are
200 and 2, respectively.

d. Danabasoglu and Marshall (2007)

To use the method proposed by Danabasoglu and Marshall (2007), l_danabasoglu = .true. in namelist
nml_gmvar_select.

Danabasoglu and Marshall (2007), guided by Ferreira et al. (2005) and Ferreira and Marshall (2006), proposed to
specify the vertical variation of 𝜅GM using

𝜅GM =
[ 𝑁2

𝑁2
ref

]
[𝜅GM]ref , (11.61)

where 𝑁 is the local buoyancy frequency and [𝜅GM]ref is the constant reference value of 𝜅GM within the surface diabatic
layer. 𝑁ref is the reference buoyancy frequency obtained just below the diabatic layer, in other words, the first stable 𝑁2

below surface diabatic layer. The ratio 𝑁2/𝑁2
ref is set to 1 for all shallower depths. Between the depth at which 𝑁2 = 𝑁2

ref
and the ocean bottom, we also ensure that

𝑁min ≤
𝑁2

𝑁2
ref
≤ 1.0, (11.62)

where 𝑁min is the lower limit specified by the user (ratio_bvf_min in namelist nml_gmvar_danabasoglu).

11.4.3 Surface tapering
By default, no specific modification is applied to the eddy-induced transport velocity of the Gent-McWilliams parameter-
ization near the surface and the bottom, except for limiting the isopycnal slope to a specified value (slope_clip_gm in
namelist nml_isopy_slope_clip). This may result in too strong transport velocity in the first vertical level of the model
(sea surface). The problem may be overcome by tapering the transport in the surface mixed layer, where the transport
is made nearly or completely uniform in the vertical direction. This is realized by choosing either SLIMIT or GMTAPER
option.

a. Simple scheme

By choosing SLIMIT option, the Gent-McWilliams coefficient (𝜅GM) is linearly reduced from the value at the base of
mixed layer to zero at the sea surface within the mixed layer,

𝜅GM (𝑧) = 𝜅GM (𝑧 = −MLD) × (−𝑧/MLD) for −MLD ≤ 𝑧 ≤ 0, (11.63)

where MLD is the depth of the mixed layer. The MLD is defined as the level at which the local potential density is larger
than the surface density by a specified value, given by the user (default value is 0.03 kg m−3).
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b. Danabasoglu et al. (2008)

By choosing GMTAPER option, a practical scheme proposed by Danabasoglu et al. (2008) is used. This scheme modifies
the Gent-McWilliams vector stream function for eddy induced transport velocity near the surface, aiming to implement a
near-surface parameterization proposed by Ferrari et al. (2008). Concept of the near-surface parameterization is as follows
(Danabasoglu et al., 2008):

• In the turbulent boundary layer (BL), the eddy-induced velocity is set parallel to the boundary and has no vertical
shear, as expected in the mixed layer.

• There is an eddy diffusion of buoyancy along the boundary as well as along isopycnals.
• In the interior the parameterization satisfies the adiabatic constraint as in the original scheme.
• The two forms are matched through a transition layer that separates the quasi-adiabatic interior with isopycnically

oriented eddy fluxes from the near boundary regions.

Two vertical length scales must be estimated to implement this parameterization: the boundary layer depth (BLD) and
the transition layer thickness (TLT). Their sum is defined as the diabatic layer depth (DLD), over which the upper-ocean
eddy fluxes depart from their interior formulas. In MRI.COM, the surface mixed layer depth (MLD) is treated as the BLD.
The MLD is defined as the level at which the local potential density is larger than the surface density by a specified value,
given by the user (default value is 0.03 kg m−3). The TLT is defined by the range of isopycnals that can be lifted into the
boundary layer by eddy heaving, which is given by the product of the internal deformation radius (𝑅) and the isopycnal
slope (|S|):

𝐷 = 𝑅 |S|. (11.64)

Thus we calculate 𝐷 at each grid point and the DLD is obtained as follows:

DLD = BLD + 𝐷. (11.65)

Now the near-surface expression for the eddy-induced vector streamfunction is given in the following. The streamfunction
is split into its boundary layer, ΨBL, and transition layer, ΨTL, expression as follows:

ΨBL =
𝜂 − 𝑧

𝜂 + BLD
Ψ0 for − BLD ≤ 𝑧 ≤ 𝜂 (11.66)

and
ΨTL =

( 𝑧 + BLD
TLT

)2
Φ +

( 𝜂 − 𝑧
𝜂 + BLD

)
Ψ0 for − DLD ≤ 𝑧 < −BLD (11.67)

The two functions Ψ0 and Φ are chosen such that Ψ and its vertical derivative are continuous across the base of BLD
and the base of TLT. These constraints then yield

Ψ0 =
𝜂 + BLD

2(𝜂 + BLD) + TLT
(2Ψ𝐼 + TLT𝜕𝑧Ψ𝐼 ) (11.68)

and
Φ = − TLT

2(𝜂 + BLD) + TLT
(Ψ𝐼 + (𝜂 + DLD)𝜕𝑧Ψ𝐼 ), (11.69)

where Ψ𝐼 is the interior eddy-induced streamfunction at the base of the transition layer given by the Gent-McWilliams
parameterization,

Ψ𝐼 = −𝜅GM
z × ∇𝐻 𝜌
𝜕𝑧𝜌

at 𝑧 = −DLD. (11.70)

In the implementation, to evaluate both Ψ𝐼 and 𝜕𝑧Ψ𝐼 at 𝑧 = −DLD, Ψ𝐼 are evaluated at the vertical grid points that
straddle 𝑧 = −DLD.

Danabasoglu et al. (2008) also showed that the model solutions are not very sensitive to their transition layer
thickness. Whether the transition layer is included or not may be specified by l_transition_layer in namelist
nml_gm_transition.
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11.4.4 Anisotropic Gent-McWilliams scheme
An anisotropic GM scheme (Smith and Gent (2004), GMANISOTROP option), which gives greater diffusivity only in the
direction of the current vector, is also available. Using unit vector n̂ = (𝑛𝑥 , 𝑛𝑦) in an arbitrary direction, the two-dimensional
anisotropic diffusion tensor is defined as follows:

K2 =

(
𝐿 𝑀
𝑀 𝑁

)
=

(
𝜅𝐴𝑛

2
𝑥 + 𝜅𝐵𝑛2

𝑦 𝜅𝐵𝑛𝑥𝑛𝑦
𝜅𝐵𝑛𝑥𝑛𝑦 𝜅𝐵𝑛

2
𝑥 + 𝜅𝐴𝑛2

𝑦

)
, (11.71)

where 𝜅𝐴 is the diffusivity in the n̂ direction, and 𝜅𝐵 is that in the direction normal to n̂. This is applied to the anti-symmetric
tensor in the Gent-McWilliams scheme, and the following expression is obtained (Smith and Gent, 2004),

A′ = ©­«
0 0 −𝐿𝑆𝑥 − 𝑀𝑆𝑦
0 0 −𝑀𝑆𝑥 − 𝑁𝑆𝑦

𝐿𝑆𝑥 + 𝑀𝑆𝑦 𝑀𝑆𝑥 + 𝑁𝑆𝑦 0

ª®¬ . (11.72)

In the choice of GMANISOTROP option, n̂ is set in the direction of the local horizontal velocity. The value of 𝜅𝐴 is read
from namelist nml_tracer_diff_isopy (variable name diff_thick_cm2ps). The ratio of 𝜅𝐵/𝜅𝐴 is read from namelist
nml_gmanisotrop (variable name cscl_isotrop). The default value of cscl_isotrop is set to 1/2.
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11.4.5 Usage Summary
How to specify the overall behavior of the Gent-McWilliams parameterization is summarized as follows.

a. Model options

Model options related to the GM parameterization are listed on Table 11.6

Table11.6 List of model options related to GM parameterization.

option name description usage
GMVAR Coefficient of GM parameterization is allowed to vary specify nml_gmvar
SLIMIT Linearly reduce the coefficient of GM parameterization

from the bottom of the mixed layer to the sea surface
cannot be used with GMTAPER

GMTAPER Taper GM vector stream function near the sea surface cannot be used with SLIMIT,
GMANISOTROP, AFC

GMANISOTROP An-isotropic horizontal variation of GM parameterization specify nml_gmanisotrop
AFC Calculate additional flux by using horizontal gradients of

density and velocity (Hirabara et al., 2010)
cannot be used with TRCBIHARM

b. Spatial dependency

The diffusion coefficient of GM parameterization may be grid size dependent by using the namelist listed on Table 11.7.

Table11.7 Namelist nml_grid_size_change_mix_coefs

variable name units description usage
l_grid_size_change_mix_coefs logical the given coefficient is multiplied by the

fraction of the local grid size to 100 km.
default = .false.

Overall behavior of GM parameterization with GMVAR option should be specified by using the namelists listed on Tables
11.8 through 11.12.

Table11.8 Namelist nml_gmvar_select for GMVAR

variable name units description usage
l_visbeck logical use Visbeck et al. (1997) choose only one of the three options
l_eden logical use Eden and Greatbatch (2008) choose only one of the three options
l_danabasoglu logical use Danabasoglu and Marshall (2007) choose only one of the three options

Table11.9 Namelist nml_gmvar_visbeck for GMVAR

variable name units description usage
start_depth cm density gradients are averaged from start_depth l_visbeck = .true.
base_depth cm density gradients are averaged to base_depth l_visbeck = .true.
cscl_gmvar 1 parameter for GM diffusivity calculation l_visbeck = .true.
upper_limit cm2 sec−1 upper limit of thickness diffusivity l_visbeck = .true.
lower_limit cm2 sec−1 lower limit of thickness diffusivity l_visbeck = .true.
lcalc_defrad logical flag whether deformation radius is calculated or

not
l_visbeck = .true.

defrad_const cm upper limit of deformation radius when
lcalc_defrad = .true.
constant horizontal length scale when
lcalc_defrad = .false.

l_visbeck = .true.

length_factor 1 [horizontal length scale] = [deformation radius] ×
length_factor

l_visbeck = .true.
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Table11.10 Namelist nml_gmvar_eden for GMVAR

variable name units description usage
c_EG 1 In this parameterization, Thickness diffusivity is

parameterized as c_EG × 𝐿2 × sigma_EG.
l_eden = .true.

gamma_EG 1 sigma_EG = 𝑓 /(Ri + gamma_EG) l_eden = .true.
upper_limit cm2 sec−1 upper limit of thickness diffusivity l_eden = .true.
lower_limit cm2 sec−1 lower limit of thickness diffusivity l_eden = .true.

Table11.11 Namelist nml_gmvar_danabasoglu for GMVAR

variable name units description usage
ratio_bvf_min 1 Lower bound for the squared buoyancy frequency

relative to the reference value (default = 0.1)
l_danabasoglu = .true.

ratio_bvf_max 1 Upper bound for the squared buoyancy frequency
relative to the reference value (default = 1.0)

l_danabasoglu = .true.

Table11.12 Namelist nml_gm_transition

variable name units description usage
l_transition_layer logical include transition layer into diabatic

layer (default = .false.)
effective when l_danabasoglu =
.true.

c. Anisotropic scheme

Behavior of GMANISOTROP option should be specified using the namelist listed on Table 11.13.

Table11.13 Namelist nml_gm_anisotrop

variable name units description usage
cscl_isotrop 1 factor for anisotropy in GM diffusivity if GMANISOTROP
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Chapter 12

SGS parameterization of vertical mixing of
tracers

This chapter explains subgrid-scale parameterizations of vertical mixing of tracers.

12.1 Vertical diffusion
The following is the equation from the advection-diffusion equation (9.4) with only the time-varying term and vertical
diffusion term (D𝑉 (𝑇)),

𝜕 (𝑧𝑠𝑇)
𝜕𝑡

= D𝑉 (𝑇). (12.1)

Vertical diffusion term takes the form of Laplacian and the vertical diffusion flux is proportional to the vertical gradient
of tracer. The vertical diffusion, Eq. (9.6),

D𝑉 (𝑇) = −
𝜕𝐹𝑇

𝑧

𝜕𝑠
=
𝜕

𝜕𝑠

( 𝜅𝑉
𝑧𝑠

𝜕𝑇

𝜕𝑠

)
. (12.2)

Here, 𝜅𝑉 is the vertical diffusion coefficient.
These equations yield the finite difference form as follows:

𝑇𝑛+1
𝑖, 𝑗 ,𝑘− 1

2
Δ𝑉𝑛+1

𝑖, 𝑗 ,𝑘− 1
2
=𝑇𝑛−1

𝑖, 𝑗 ,𝑘− 1
2
Δ𝑉𝑛−1

𝑖, 𝑗 ,𝑘− 1
2
+ 2Δ𝑡 (FZD𝑖, 𝑗 ,𝑘 − FZD𝑖, 𝑗 ,𝑘−1), (12.3)

FZD𝑖, 𝑗 ,𝑘 = − 𝜅𝑧 (areat)𝑖, 𝑗 ,𝑘+ 1
2
𝛿𝑧𝑇𝑖, 𝑗 ,𝑘 , (12.4)

where the use of (areat)𝑖, 𝑗 ,𝑘+ 1
2

implies that the flux occurs only through the oceanic part of the grid interface and

𝛿𝑧𝑇𝑖, 𝑗 ,𝑘 ≡
𝑇𝑖, 𝑗 ,𝑘− 1

2
− 𝑇𝑖, 𝑗 ,𝑘+ 1

2

Δ𝑧𝑘
. (12.5)

Note that, for simplicity, the change of the grid thickness at the bottom and fluctuations of the surface height are not
considered in the grid distance Δ𝑧𝑘 when calculating the gradient.

In most realistic simulations, a backward (implicit) scheme is used in the time integration (VVDIMP option; Section 23.5)
because high diffusivity is expected owing to the choice of parameterizations needed for realistic simulations. Otherwise,
a forward scheme is used.

12.1.1 Specification of coefficient
Background vertical diffusivity, which is horizontally uniform, a function of depth, and fixed in time, should be always
given. Additionally, non-time-varying, a three dimensional distribution can be set by selectingVMBG3D option to incorporate
locally enhanced mixing processes in the climatology induced by interaction between the bottom topography and tidal
currents (e.g., St. Laurent et al., 2002). With this choice, three dimensional distributions for vertical diffusivity and
viscosity should be prepared in advance. Tables 12.1 and 12.2 summarizes how to give background vertical diffusivity.
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Table12.1 Namelist nml_diff_vert_bg. Specify only one of the two variables

variable name units description usage
diff_vert_bg_cm2ps cm2 s−1 vertically uniform value of back-

ground vertical diffusivity
Usable only if a vertically uniform
value is intended

file_diff_vert_1d_cm2ps file having vertical 1D distribution cannot be specified with the above

Table12.2 Namelist nml_vmbg3d. Specify when VMBG3D is selected

variable name units description usage
file_vmix_3d file having 3D distribution
imvm east-west data size
jmvm north-south data size
l_vmintpol logical interpolate input data to model grid points
slatvm latitude of the southern end only if l_vmintpol = .true.
slonvm longitude of the western end only if l_vmintpol = .true.
dlatvm uniform grid spacing in the meridional direction only if l_vmintpol = .true.
dlonvm uniform grid spacing in the zonal direction only if l_vmintpol = .true.

In addition to the static background profiles, the following processes give time-varying vertical diffusivity coefficients
at every model time step.

• Surface mixed layer models (TURBULENCE option).
• Vertical component of isopycnal diffusion (ISOPYCNAL option).
• Enhanced diffusivity (= 1.0 m2 s−1 = 104 cm2 s−1) where the stratification is unstable (DIFAJS option).
• Enhanced diffusivity around rivermouths to avoid too low salinity if the model receives river run-off option (RUNOFF

option). This scheme is especially needed when positive salinity is not guaranteed by a tracer advection algorithm.
See Table 12.3 for how to specify the mixing.

The vertical diffusion for "this" time step is taken as the largest of the above estimations.（合計ではない).

Table12.3 Namelist nml_vmix_river. Specify when RUNOFF is selected

variable name units description usage
l_enhance_vmix_rivmouth logical diffusivity is enlarged around the

rivermouth
default = .false.

diff_max_vmixriv_cm2ps cm2 sec−1 maximum value of the enlarged dif-
fusivity (= 𝜅rivmax)

default = 1 × 104 cm2 sec−1

depth_max_vmixriv_cm cm vertical diffusion is enlarged from
surface to this depth, this is also used
by subroutine salinity_limit

default = 30 × 102 cm

para_vmixriv_1 1 parameter for the enlarged vertical
diffusion formula (= 𝑎). See below.

default = 10

para_vmixriv_2 1 parameter for the enlarged verti-
cal diffusion formula (= 𝑏). En-
larged diffusion is calculated as
𝜅riv = min(𝑎log10 𝑊river+𝑏 , 𝜅rivmax),
where 𝑊river is river discharge rate
in cm sec−1

default = 7

12.2 Convective adjustment
Convective adjustment is realized by replacing the density (temperature and salinity) that is statically unstable (the upper
density exceeds the lower density) in a water column with the averaged density between neighboring levels (neutralization),
considering that interior convection occurs in that place. Most of the realistic phenomena represented by the convective
adjustment include the developing mixed layer due to surface cooling during winter. Convective adjustment also includes
the case in which dense bottom water flows out the sill and flows down along the slope. Moreover, the convective adjustment
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includes the practical effect that it suppresses disturbances caused by the numerical calculation error and smoothes the
distribution.

In general, there are three numerical schemes for convective adjustment.

1. In the simplest one, adjustment is done for a pair of two neighboring levels, and then for a pair of another two
neighboring levels. By repeating this procedure, it attempts to neutralize the density in the unstable part. This
procedure is simple at each step, but it has a defect that the finite-time repetition does not necessarily guarantee
reaching the complete averaged value. Therefore, this scheme is not used in MRI.COM.

2. In the second scheme, adjustment is done by assigning a high vertical diffusivity between the two levels that are
statically unstable and by solving the vertical diffusion term using an implicit method. This method cannot remove
the unstable condition completely in one procedure. However, it has good calculation efficiency for the case where
the model has a high vertical diffusivity already due to the mixed layer or isopycnal diffusion schemes and thus
needs an implicit method to solve it. In MRI.COM, this scheme is invoked by specifying DIFAJS option. The
vertical diffusivity between the unstable grid points is set to 104 cm2 s−1. This scheme is the most standard used in
ocean models worldwide.

3. In the third scheme, the unstable part is first neutralized. The stability at the top and bottom of the neutralized
column is then reexamined. If the unstable condition remains, the part including the already-neutralized column
is re-neutralized. This procedure continues until the instability at the top and bottom of the neutralized column
disappears. This method can remove the unstable part completely and thus is called "Complete Convection," but
it requires a number of iterations, the vertical level size minus one, at maximum. The third method, which is the
default scheme in MRI.COM, is explained below (Ishizaki, 1997).

12.2.1 Algorithm
In order to minimize the judgment process ("IF" statement) and replace it by arithmetic calculation, this scheme defines
two integer indices, 𝛼𝑘 and 𝛽𝑘 , at the layer boundaries, and six real variables TU𝑘 , TL𝑘 , SU𝑘 , SL𝑘 , VU𝑘 , and VL𝑘 , (𝑘 =
1,KM − 1), in addition to the vertical rows of temperature, salinity, and density 𝑇𝑘 , 𝑆𝑘 , 𝑅𝑘 , (𝑘 = 1

2 ,KM − 1
2 ) (KM is the

number of levels; see Figure 12.1). The level at the vertical boundary of a T-cell corresponds to the integer 𝑘 . The index
𝛼𝑘 indicates an unstable part within a water column: 𝛼𝑘 = 1 if it is unstable at the level between 𝑘 − 1

2 and 𝑘 + 1
2 , and

𝛼𝑘 = 0 if it is neutral or stable. The index 𝛽𝑘 memorizes the mixed part: 𝛽𝑘 = 1 at the boundary where it is neutral as a
result of mixing, and 𝛽𝑘 = 0 elsewhere. Variables TU𝑘 , SU𝑘 , and VU𝑘 and TL𝑘 , SL𝑘 , and VL𝑘 are temperature, salinity
and volume accumulated by multiplying 𝛼 above the level 𝑘 and below the level 𝑘 , respectively, and are expressed by the
following recursive relation.

VU1 =𝛼1𝑉 1
2
,

VU2 =𝛼2 (𝑉1+ 1
2
+ 𝛼1𝑉 1

2
) = 𝛼2 (𝑉1+ 1

2
+ VU1),

· ··,
VU𝑘 =𝛼𝑘 (𝑉𝑘− 1

2
+ VU𝑘−1),

· ··,
VUKM−1 =𝛼KM−1 (𝑉KM−1− 1

2
+ VUKM−2), (12.6)

and

VLKM−1 =𝛼KM−1𝑉KM− 1
2
,

VLKM−2 =𝛼KM−2 (𝑉KM−1− 1
2
+ 𝛼KM−1𝑉KM− 1

2
) = 𝛼KM−2 (𝑉KM−1− 1

2
+ VLKM−1),

· ··,
VL𝑘 =𝛼𝑘 (𝑉𝑘+ 1

2
+ VL𝑘+1),

· ··,
VL1 =𝛼1 (𝑉1+ 1

2
+ VL2), (12.7)
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where 𝑉𝑘+ 1
2

denotes a volume of the cell at the level 𝑘 + 1
2 . In a similar way, other quantities are expressed as follows:

TU1 = 𝛼1𝑇1
2
𝑉 1

2
, TU𝑘 = 𝛼𝑘 (𝑇𝑘− 1

2
𝑉𝑘− 1

2
+ TU𝑘−1),

SU1 = 𝛼1𝑆 1
2
𝑉 1

2
, SU𝑘 = 𝛼𝑘 (𝑆𝑘− 1

2
𝑉𝑘− 1

2
+ SU𝑘−1),

TLKM−1 = 𝛼KM−1𝑇KM− 1
2
𝑉KM− 1

2
, 𝑇𝐿𝑘 = 𝛼𝑘 (𝑇𝑘+ 1

2
𝑉𝑘+ 1

2
+ TL𝑘+1),

SLKM−1 = 𝛼KM−1𝑆KM− 1
2
𝑉KM− 1

2
, 𝑆𝐿𝑘 = 𝛼𝑘 (𝑆𝑘+ 1

2
𝑉𝑘+ 1

2
+ SL𝑘+1), (12.8)

where 𝑇𝑘+ 1
2

and 𝑆𝑘+ 1
2

are temperature and salinity at the level 𝑘 + 1
2 .
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Figure12.1 Reference vertical grid points in Section 12.2

According to this definition, if 𝛼𝑘 = 1 and elsewhere 0, we get

VU𝑘 + VL𝑘 = 𝑉𝑘− 1
2
+𝑉𝑘+ 1

2
,

TU𝑘 + TL𝑘 = 𝑇𝑘− 1
2
𝑉𝑘− 1

2
+ 𝑇𝑘+ 1

2
𝑉𝑘+ 1

2
,

SU𝑘 + SL𝑘 = 𝑆𝑘− 1
2
𝑉𝑘− 1

2
+ 𝑆𝑘+ 1

2
𝑉𝑘+ 1

2
,

indicating a volume and accumulated temperature and salinity in an unstable part and

TM𝑘− 1
2 ,𝑘+

1
2
=

TU𝑘 + TL𝑘

VU𝑘 + VL𝑘
,

SM𝑘− 1
2 ,𝑘+

1
2
=

SU𝑘 + SL𝑘

VU𝑘 + VL𝑘
, (12.9)

are volume averaged temperature and salinity, respectively.
If the level 𝑘 constitutes a series of the unstable part, the same equation holds for the averaged temperature and salinity.

For example, let 𝛼𝑘−1 = 𝛼𝑘 = 1 and 𝛼𝑘−2 = 𝛼𝑘+1 = 0,
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VU𝑘−1 + VL𝑘−1 = VU𝑘 + VL𝑘

= 𝑉𝑘−1− 1
2
+𝑉𝑘− 1

2
+𝑉𝑘+ 1

2
,

TU𝑘−1 + TL𝑘−1 = TU𝑘 + TL𝑘

= 𝑇𝑘−1− 1
2
𝑉𝑘−1− 1

2
+ 𝑇𝑘− 1

2
𝑉𝑘− 1

2
+ 𝑇𝑘+ 1

2
𝑉𝑘+ 1

2
,

SU𝑘−1 + SL𝑘−1 = SU𝑘 + SL𝑘

= 𝑆𝑘−1− 1
2
𝑉𝑘−1− 1

2
+ 𝑆𝑘− 1

2
𝑉𝑘− 1

2
+ 𝑆𝑘+ 1

2
𝑉𝑘+ 1

2
, (12.10)

and

TM𝑘−1− 1
2 ,𝑘+

1
2
=

TU𝑘−1 + TL𝑘−1

VU𝑘−1 + VL𝑘−1
=

TU𝑘 + TL𝑘

VU𝑘 + VL𝑘
,

SM𝑘−1− 1
2 ,𝑘+

1
2
=

SU𝑘−1 + SL𝑘−1

VU𝑘−1 + VL𝑘−1
=

SU𝑘 + SL𝑘

VU𝑘 + VL𝑘
. (12.11)

These are averages of the three layer, 𝑘 − 1 − 1
2 , 𝑘 − 1

2 , and 𝑘 + 1
2 .

12.2.2 Numerical procedure
In summary, numerical procedures are summarized as follows.

[1] Density is calculated at the intermediate depth between adjacent levels using (A) upper level temperature and salinity
and (B) lower level ones. If the density using (A) is larger than using (B), 𝛼(𝛼1) is replaced by 1, otherwise by 0. At this
stage, 𝛽(𝛽0) is set to 0, where the superscript denotes the number of the iteration.

After this preprocessing, the following procedure (represented by n-th) is repeated until the instability is removed.
[2] Based on equations (12.6) to (12.8), VU, TU, SU, VL, TL, and SL are calculated using 𝛼𝑛 for a water column that

includes an unstable part.
[3] The vertical mean TM and SM are calculated for the unstable part using equation (12.9) and substituted for the

original values of 𝑇 and 𝑆. This change modifies the density at the intermediate depth in [1].
[4] The value of 𝛼𝑛 is stored in 𝛽𝑛. 𝛽𝑛 = 1 is set if 𝛼𝑛 = 1, or 𝛼𝑛 = 0 and 𝛽𝑛−1 = 1, and otherwise 𝛽𝑛 = 0. This is

presented by the following:
𝛽𝑛𝑘 = 𝛼𝑛

𝑘 + 𝛽
𝑛−1
𝑘 (1 − 𝛼

𝑛
𝑘 ). (12.12)

[5] The static stability is judged only for 𝛽𝑛𝑘 = 0. Let 𝛼𝑛+1
𝑘 = 1 if statically unstable, and 0 otherwise. If there is no

unstable part, the procedure for that water column is completed.
[6] For a water column which still includes an unstable part, modification for 𝛼𝑛+1

𝑘 is done using 𝛽𝑛𝑘 by the following.
After the procedure [2], any instability will be found only at the bottom of the part that is neutral as a result of prior mixing.
In that case, the neutral part must be treated as an unstable part, that is, 𝛼𝑛+1

𝑘 = 1. On the other hand, no more procedure
is needed if the upper and lower end is stable, giving 𝛼𝑛+1

𝑘 = 0. This is done by a recursive formula going down and up in
the following.

𝛾1 = 𝛼 (𝑛+1)1 , 𝛾𝑘 = 𝛼 (𝑛+1)𝑘 + (1 − 𝛼 (𝑛+1)𝑘 )𝛽 (𝑛)𝑘 𝛾𝑘−1

𝛼 (𝑛+1)KM−1 = 𝛾KM−1, 𝛼 (𝑛+1)𝑘 = 𝛾𝑘 + (1 − 𝛾𝑘 )𝛽 (𝑛)𝑘 𝛼 (𝑛+1)𝑘+1 , (12.13)

where 𝛾 is a work variable, but may be treated as 𝛼 itself in a FORTRAN program. Then, the procedure goes back to [2].
Table 12.4 shows an example of the case with six levels. Static instability is removed after the three-time iteration. The

second column of 𝛼 in the table is the result of the corrected 𝛼𝑛+1
𝑘 using 𝛽𝑛𝑘 based on equation (12.13), as described in [6].

Note that 𝛽0
𝑘 = 0, though there is no description in the table.
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12.2 Convective adjustment

Table12.4 Example of the convective adjustment procedure

n k 𝛼 VU VL VU+VL TU+TL 𝛽

1 1 1 V 1
2

V1 1
2
+ V2 1

2
V 1

2
+ V1 1

2
+ V2 1

2
T 1

2
V 1

2
+ T1 1

2
V1 1

2
+ T2 1

2
V2 1

2
1

2 1 1 V 1
2
+ V1 1

2
V2 1

2
V 1

2
+ V1 1

2
+ V2 1

2
T 1

2
V 1

2
+ T1 1

2
V1 1

2
+ T2 1

2
V2 1

2
1

1 3 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0
5 1 1 V4 1

2
V5 1

2
V4 1

2
+ V5 1

2
T4 1

2
V4 1

2
+ T5 1

2
V5 1

2
1

1 0 1 V 1
2

V1 1
2
+ V2 1

2
+ V3 1

2
V 1

2
+ V1 1

2
+ V2 1

2
+ V3 1

2

3∑
𝑘=0

T𝑘+ 1
2
V𝑘+ 1

2
1

2 0 1 V 1
2
+ V1 1

2
V2 1

2
+ V3 1

2
V 1

2
+ V1 1

2
+ V2 1

2
+ V3 1

2

3∑
𝑘=0

T𝑘+ 1
2
V𝑘+ 1

2
1

2 3 1 1 V 1
2
+ V1 1

2
+ V2 1

2
V3 1

2
V 1

2
+ V1 1

2
+ V2 1

2
+ V3 1

2

3∑
𝑘=0

T𝑘+ 1
2
V𝑘+ 1

2
1

4 0 0 0 0 0 0 0
5 0 0 0 0 0 0 1

1 0 1 V 1
2

V1 1
2
+ V2 1

2
+ V3 1

2
+ V4 1

2
+ V5 1

2

5∑
𝑘=0

V𝑘+ 1
2

5∑
𝑘=0

T𝑘+ 1
2
V𝑘+ 1

2
1

2 0 1 V 1
2
+ V1 1

2
V2 1

2
+ V3 1

2
+ V4 1

2
+ V5 1

2

5∑
𝑘=0

V𝑘+ 1
2

5∑
𝑘=0

T𝑘+ 1
2
V𝑘+ 1

2
1

3 3 0 1 V 1
2
+ V1 1

2
+ V2 1

2
V3 1

2
+ V4 1

2
+ V5 1

2

5∑
𝑘=0

V𝑘+ 1
2

5∑
𝑘=0

T𝑘+ 1
2
V𝑘+ 1

2
1

4 1 1 V 1
2
+ V1 1

2
+ V2 1

2
+ V3 1

2
V4 1

2
+ V5 1

2

5∑
𝑘=0

V𝑘+ 1
2

5∑
𝑘=0

T𝑘+ 1
2
V𝑘+ 1

2
1

5 0 1 V 1
2
+ V1 1

2
+ V2 1

2
+ V3 1

2
+ V4 1

2
V5 1

2

5∑
𝑘=0

V𝑘+ 1
2

5∑
𝑘=0

T𝑘+ 1
2
V𝑘+ 1

2
1
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Chapter 13

Tracer Package Structure and Usage

MRI.COM handles a wide variety of tracers, including physical variables for temperature and salinity, ecosystem model
variables, and passive tracers. The user can individually specify initial values, advection schemes, body and surface
forcings, etc. for each tracer. This chapter provides an overview of the program as well as common methods for their
specification.

13.1 Program package structure
Program packages relevant to tracers are listed as follows.

13.1.1 Tracer equation
Core/tracer_ctl.F90: Controller of this package
Core/tracer.F90: Main program of this package
Core/tracer_vars.F90: Setting of tracer attributes
Core/upc_adv.F90: Upcurrent advection scheme
Core/quick_adv.F90: QUICK advection scheme (QUICKADVEC)
Core/utzq_adv.F90: Combination of UTOPIA and QUICKEST advection scheme (UTZQADVEC)
Core/som_adv.F90: Second order moment advection scheme (SOMADVEC)
Core/mpdata_adv.F90: MPDATA advection scheme (MPDATAADVEC)
Core/ppm_adv.F90: PPM advection scheme (PPMADVEC)
+Vvdimp/trcimp.F90: Solver of the vertical diffusion part using the implicit method (VVDIMP)
+Isopycnal/ipcoef.F90: Calculation of tensor components of neutral physics parameterization (ISOPYCNAL)
+Isopycnal/ipycmix.F90: Calculation of tendency due to neutral physics parameterization (ISOPYCNAL)

13.1.2 Vertical mixing coefficients
Core/vmixcoef_ctl.F90: Controller of the vertical mixing package
Core/vmixcoef.F90: Main program of the vertical mixing package
Core/vmixcoef_vmbg.F90: Estimation of background vertical diffusion coefficient
Core/vmixcoef_vars.F90: Declaration of variables
+Runoff/vmixcoef_rivermouth.F90: Estimation of vertical mixing coefficient around the river mouth

13.1.3 Stratification and convective adjustment
Core/strat_adjust_ctl.F90: Controller of stratification and adjustment package
Core/stratification.F90: Main program of calculation of stratification
Core/cnvajs.F90: Main program of convective adjustment
Core/strat_adjust_vars.F90: Declaration of variables

13.1.4 Reference state and restoring coefficient
Core/restore_cond_ctl.F90: Controller of reference state and restoring coefficient
Core/restore_cond.F90: Main program of reference state and restoring coefficient
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13.2 Handling the initial state

Core/force_data.F90: Service package that handles external forcing data

13.1.5 Passive tracers
Core/ptrc_ctl.F90: Controller of passive tracer evolution
Core/ptrc.F90: Main program of passive tracer evolution that mainly treats surface sources and sinks
Core/ptrc_subp.F90: Sub package of passive tracer evolution that describes internal sources and sinks
+Ptrc/cfc.F90, sf6.F90, etc. Sub package of passive tracer evolution that describes specialized processes

of particular tracers

13.2 Handling the initial state
How to determine the initial state for temperature and salinity is specified in namelist nml_tracer_run and nml_restart.
Parameters are listed on Table 13.1.

Table13.1 Namelist nml_tracer_run

variable name units description usage
l_rst_tracer_in logical .true. : Read restart files specified by

nml_restart for the initial condition.
Default is the same as l_rst_in
of nml_run_ini_state.

.false.: Start condition depends on the
l_rst_uni_strati

l_rst_uni_strati logical .false.: Start from 3D-distribution at the
starting time of reference data following
nml_tracer_data.

if l_rst_tracer_in = .false.

.true. : Start from uniform stratification
created by the reference data following
nml_tracer_data. Time average is con-
ducted based on start_rec_uni_strati
and end_rec_uni_strati.

start_rec_uni_strati
end_rec_uni_strati

integer uniform stratification is created by the av-
erage from start_rec_uni_strati data
record to end_rec_uni_strati record.

if l_rst_uni_strati = .true.

13.3 Configuration of tracers
The attributes of each tracer such as name, advection scheme, restoring condition, reference data, and restoring coefficients,
are specified using a structural type (type_tracer_data defined in tracer_vars.F90). The contents of this structural
type are specified by namelist nml_tracer_data, which should be repeatedly defined as many times as the number of
tracers that should be calculated. Tables 13.2 through 13.8 list the variables.

13.3.1 Name
List of effective names is found in subroutine tracer_vars__set_num_and_name of tracer_vars.F90

Table13.2 Namelist nml_tracer_data

variable name units description usage
name character Name of tracer. Two tracers are necessary:

"Potential Temperature" and "Salinity."
Case sensitive. For example, "potential
temperature" is not correct.

13.3.2 Advection scheme
Following can be specified as the name of the advection scheme (adv_scheme%name).

• "upc" : weighted UP-Current advection scheme (always available)
• "quick" : QUICK advection scheme (QUICKADVEC)

– 144 –



Chapter 13 Tracer Package Structure and Usage

• "utzq" : UTOPIA + ZQUICKEST schemes with ultimate limiter (UTZQADVEC)
• "som" : Second-Order Moment advection scheme (SOMADVEC)
• "ppm" : Picewise Parabolic advection scheme (PPMADVEC)
• "mpdata" : MPDATA advection scheme (MPDATAADVEC)

Table13.3 Namelist nml_tracer_data related to advection scheme

variable name units description usage
adv_scheme%name character Name of the advection

scheme used for the correc-
tor phase.

Different advection
schemes can be set
for individual tracers.

adv_scheme%limiter_som_org logical Use flux limiter for SOM
by Prather (1986)

SOMADVEC

adv_scheme%limiter_som_Merryfield03 logical Use flux limiter for SOM
by Merryfield and Hol-
loway (2003)

SOMADVEC

adv_scheme%lrstin_som logical The SOM initial state of
moments is read from file

SOMADVEC

adv_scheme%lrstout_som logical The SOM final state of mo-
ments is written to file

SOMADVEC

adv_scheme%limiter_ppm_org logical Use flux limiter for PPM
by Colella and Woodward
(1984)

PPMADVEC

adv_scheme%limiter_ppm_lin logical Use flux limiter for PPM by
Lin et al. (1994)

PPMADVEC

adv_scheme%limiter_mpdata_nonoscillatory logical Apply flux limiter for MP-
DATA

MPDATAADVEC

adv_scheme%eps_lim_mpdata same as
tracer
unit

Very small value to avoid
zero division

MPDATAADVEC

adv_scheme%min_value_mpdata same as
tracer
unit

Minimum value for tracer MPDATAADVEC

adv_scheme_predictor%name character Name of the advection
scheme used for the predic-
tor phase. Only active trac-
ers (𝜃&S) need to be con-
figured.

Since accuracy is
not so demanding,
QUICKADVEC is rec-
ommended due to its
small computational
cost.

13.3.3 Restoring condition
The following are variables related to the restoring condition for a tracer.

Table13.4 Namelist nml_tracer_data related to restoring condition

variable name units description usage
restore_conf%l_surf_restore logical restore condition at the surface is applied or not default = .false.
restore_conf%l_body_restore logical restore condition in the interior is applied or not default = .false.

13.3.4 Reference data
a. Three dimensional reference state for restoring

When the field of a tracer is restored to a reference state, the attributes of the reference state should be given by the variables
listed on Table 13.5. This reference state is also used to produce an initial state for that tracer when its restart file is not
available (See Table 13.1).
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Table13.5 Namelist nml_tracer_data related to reference values for body forcing and initial condition

variable name units description usage
trcref_conf%file_data character a file name that contains reference

values for body forcing and initial
condition.

trcref_conf%file_data_grid character a file name of grid needed if linterp = .true.
trcref_conf%imfrc integer grid size of data in x direction
trcref_conf%jmfrc integer grid size of data in y direction
trcref_conf%kmfrc integer grid size of data in z direction
trcref_conf%interval integer regular time interval of data positive value : unit is sec

−1 : monthly
−999 : steady forcing

trcref_conf%num_data_max integer the number of record contained in the
file

trcref_conf%ifstart integer,
dimension

(6)

[ymdhms] of the first record of the
input file

1999,1,1,0,0,0 when the first
record is the average value of
Jan 1999 and its data interval
is monthly.

trcref_conf%lrepeat logical climatological data is repeatedly used default = .false.
trcref_conf%linterp logical interpolate horizontally or not default = .false.
trcref_conf%linterp_v logical interpolate vertically or not default = .false.
trcref_conf%ilinear integer interpolation method 1 : linear, 2 : spline
trcref_conf%luniform logical data is horizontally uniform or not default = .false.
trcref_conf%luniform_v logical data is vertically uniform or not default = .false.
trcref_conf%ldouble logical input data is double or not default = .false.
trcref_conf%iverbose integer standard output of progress 1 : extensive, 0 : minimum
trcref_conf%ldefined logical the input data is defined or not default = .false.

Format of tracer reference / restoring data is shown in the following.
Format of tracer reference / restoring data (trcref(_surf)_conf%file_data)� �

integer(4), parameter :: imn = 12, nu = 99
integer(4) :: imfrc, jmftc, kmfrc ! data size
character(128) :: file_data, fname_grid
real(4) :: ttlev(imfrc,jmfrc,kmfrc,imn)
real(8) :: alonf(imfrc), alatf(jmfrc), dpf(kmfrc)
logical :: linterp, linterp_v

! main data
open (unit=nu,file=file_data,access=direct,recl=4*imfrc*jmfrc*kmfrc)
do m = 1, imn
write(unit=nu,rec=m) ttlev(:,:,:,m)

end do
close(nu)

! longitude/latitude of main data
if (linterp) then ! If input data is horizontally interpolated in the model.
open (unit=nu,file=file_grid)
write(nu) alonf, alatf
if (linterp_v) then ! If input data is vertically interpolated in the model.
write(nu) dpf

end if
close(nu)

end if� �
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b. Two dimensional reference state for surface restoring

When the surface field of a tracer is intended to be restored to a reference state, the attributes of the surface reference state
should be given by the variables listed on Table 13.6.

Table13.6 Namelist nml_tracer_data related to reference values for surface restoring forcing.

variable name units description usage
trcref_surf_conf%file_data character a file name that contains refer-

ence values for surface restor-
ing forcing

trcref_surf_conf%file_data_grid character a file name of grid needed if linterp = .true.
trcref_surf_conf%imfrc integer grid size of data in x direction
trcref_surf_conf%jmfrc integer grid size of data in y direction
trcref_surf_conf%interval integer regular time interval of data positive value : unit is sec

−1 : monthly
−999 : steady forcing

trcref_surf_conf%num_data_max integer the number of record contained
in the file

trcref_surf_conf%ifstart integer,
dimension

(6)

[ymdhms] of the first record of
the input file

1999,1,1,0,0,0 when the first
record is the average value of
Jan 1999 and its data interval
is monthly.

trcref_surf_conf%lrepeat logical climatological data is repeat-
edly used

default = .false.

trcref_surf_conf%linterp logical interpolate horizontally or not default = .false.
trcref_surf_conf%ilinear integer interpolation method 1 : linear, 2 : spline
trcref_surf_conf%luniform logical data is horizontally uniform or

not
default = .false.

trcref_surf_conf%ldouble logical input data is double or not default = .false.
trcref_surf_conf%iverbose integer standard output of progress 1 : extensive, 0 : minimum
trcref_surf_conf%ldefined logical the input data is defined or not default = .false.

13.3.5 Restoring coefficient
a. Coefficient for three dimensional restoring

When the field of a tracer is restored to a reference state, the attributes of the file that contains restoring coefficients should
be given by the variables listed on Table 13.7. Units of restoring coefficient is sec−1.

Table13.7 Namelist nml_tracer_data related to restoring coefficient for body forcing.

variable name units description usage
rstcoef_conf%file_data character a file name that contains restoring

coefficient for body forcing.
rstcoef_conf%file_data_grid character a file name of grid needed if linterp = .true.
rstcoef_conf%imfrc integer grid size of data in x direction
rstcoef_conf%jmfrc integer grid size of data in y direction
rstcoef_conf%kmfrc integer grid size of data in z direction
rstcoef_conf%interval integer regular time interval of data positive value : unit is sec

Continued on next page
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Table 13.7 – continued from previous page
variable name units description usage

−1 : monthly
−999 : steady forcing

rstcoef_conf%num_data_max integer the number of record contained in
the file

rstcoef_conf%ifstart integer,
dimension

(6)

[ymdhms] of the first record of the
input file

1999,1,1,0,0,0 when the first
record is the average value of
Jan 1999 and its data interval
is monthly.

rstcoef_conf%lrepeat logical climatological data is repeatedly
used

default = .false.

rstcoef_conf%linterp logical interpolate horizontally or not default = .false.
rstcoef_conf%linterp_v logical interpolate vertically or not default = .false.
rstcoef_conf%ilinear integer interpolation method 1 : linear, 2 : spline
rstcoef_conf%luniform logical data is horizontally uniform or not default = .true.
rstcoef_conf%luniform_v logical data is vertically uniform or not default = .false.
rstcoef_conf%ldouble logical input data is double or not default = .true.
rstcoef_conf%iverbose logical standard output of progress 1 : extensive 0 : minimum
rstcoef_conf%ldefined logical the input data is defined or not default = .false.

Note that the default settings for luniform and ldouble are differ from those of the other attributes.

b. Coefficient for surface restoring

When the surface field of a tracer is intended to be restored to a reference state, the attributes of the file that contains surface
restoring coefficients should be given by the variables listed on Table 13.6. Units of the surface restoring coefficient is
sec−1.

Table13.8 Namelist nml_tracer_data related to restoring coefficient for surface restoring forcing.

variable name units description usage
rstcoef_surf_conf%file_data character a file name that contains

restoring coefficient for for
surface restoring forcing.

rstcoef_surf_conf%file_data_grid character a file name of grid needed if linterp = .true.
rstcoef_surf_conf%imfrc integer grid size of data in x direction
rstcoef_surf_conf%jmfrc integer grid size of data in y direction
rstcoef_surf_conf%interval integer regular time interval of data positive value : unit is sec

−1 : monthly
−999 : steady forcing

rstcoef_surf_conf%num_data_max the number of record con-
tained in the file

rstcoef_surf_conf%ifstart integer,
dimension

(6)

[ymdhms] of the first record
of the input file

1999,1,1,0,0,0 when the first
record is the average value of
Jan 1999 and its data interval
is monthly.

rstcoef_surf_conf%lrepeat logical climatological data is repeat-
edly used

default = .false.

rstcoef_surf_conf%linterp logical interpolate horizontally or
not

default = .false.

rstcoef_surf_conf%ilinear integer interpolation method 1 : linear, 2 : spline
rstcoef_surf_conf%luniform logical data is horizontally uniform

or not
default = .false.

rstcoef_surf_conf%ldouble logical input data is double or not default = .false.
rstcoef_surf_conf%iverbose logical standard output of progress 1 : extensive, 0 : minimum
rstcoef_surf_conf%ldefined logical the input data is defined or not default = .false.
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13.3.6 Example
Following is an example of namelist nml_tracer_data for Salinity. Some systems may not allow blank lines or comment
lines in a namelist. In this case, you should delete them.

&nml_tracer_data
name="Salinity",

! advection scheme
adv_scheme%name="som",
adv_scheme%limiter_som_org=.false.,
adv_scheme%limiter_som_Merryfield03=.true.,
adv_scheme%lrstin_som=.false.,
adv_scheme%lrstout_som=.true.,
adv_scheme_predictor%name="quick",

! restore_condition
restore_conf%l_surf_restore=.true.
restore_conf%l_body_restore=.false.

! trcref
trcref_conf%file_data=’../data/file_sclim.grd’,
trcref_conf%file_data_grid=’dummy.d’,
trcref_conf%imfrc=184,
trcref_conf%jmfrc=152,
trcref_conf%kmfrc=51,
trcref_conf%interval=-1,
trcref_conf%ifstart=1947,12,1,0,0,0,
trcref_conf%num_data_max=14,
trcref_conf%lrepeat=.false.,
trcref_conf%linterp=.false.,
trcref_conf%ilinear=1,
trcref_conf%iverbose=1,

! rstcoef
rstcoef_conf%ldefined=.false.,

! trcref_surf
trcref_surf_conf%file_data=’../data/file_ssurf.grd’,
trcref_surf_conf%file_data_grid=’dummy.d’,
trcref_surf_conf%imfrc=184,
trcref_surf_conf%jmfrc=152,
trcref_surf_conf%interval=-1,
trcref_surf_conf%ifstart=1947,12,1,0,0,0,
trcref_surf_conf%num_data_max=14,
trcref_surf_conf%lrepeat=.false.,
trcref_surf_conf%linterp=.false.,
trcref_surf_conf%ilinear=1,
trcref_surf_conf%iverbose=1

! rstcoef_surf
rstcoef_surf_conf%file_data=’../data/rstcoef_surf_s.grd’,
rstcoef_surf_conf%file_data_grid=’dummy.d’,
rstcoef_surf_conf%imfrc=1,
rstcoef_surf_conf%jmfrc=1,
rstcoef_surf_conf%interval=-999,
rstcoef_surf_conf%num_data_max=1,
rstcoef_surf_conf%iverbose=1,
rstcoef_surf_conf%luniform=.true.,
rstcoef_surf_conf%ldouble=.true.,
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