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Chapter 2

Governing Equations

In this chapter, the governing equations for the general ocean circulation are formulated. These equations are usually called
primitive equations. A discrete form of these equations is also presented to explain the fundamental solution methods.
The detailed numerical methods are presented in later chapters.

2.1 Formulation
2.1.1 Coordinate System
The fundamental purpose of developing this ocean circulation model (MRI.COM) is to use it for realistic simulations
of oceanic circulations in various circumstances. To achieve this, we must carefully choose a coordinate system before
formulating the governing equations.

In the lateral direction, the governing equations need to be formulated on a sphere. Originally, spherical coordinates
were adopted, and the equations were discretized on a geographical (latitude-longitude-depth) grid. A problem arises
for a global model because the North Pole is a singular point in the geographic coordinate system. Since the zonal grid
widths within five latitudinal degrees from the Pole become less than a tenth of those in middle to low latitudes, a short
time step is required owing to the limitation of the Courant-Friedrichs-Lewy (CFL) condition.∗ This becomes a burden
on performing long-term integration.

One simple means to remove this North Pole singularity is to shift both poles to land. In this case, one may use the
spherical coordinate program codes without major modification by only adjusting the Coriolis parameter. Unfortunately,
there are not many pairs of points on land that are symmetric about the Earth’s center.† Even if the most ideal pair with
poles on Greenland and Antarctica (near the Ross Sea) was chosen, it is only 5 degrees from the coastline to the newly
shifted pole. One might also be concerned that the Equator is not represented as a line on the shifted grid arrangement.‡

To resolve these issues, the model equations are represented on generalized orthogonal coordinates instead of spherical
coordinates. Users can select the coordinate system according to their purposes. For example, the resolution of a target
region can be intentionally enhanced by placing a pole of the distorted grid near the target region. Of course, a regional
model without the North Pole may be arranged on geographic coordinates since spherical coordinates are one form of
generalized orthogonal coordinates. Now our model equations are formulated on generalized orthogonal coordinates.
Chapter 20 summarizes the concepts and calculus related to generalized orthogonal coordinates.

In the vertical direction, the depth coordinate was adopted from the first stage of the development. No attempt has
been made to apply other options such as terrain following or density coordinates. In the earliest stage, the sea surface
was assumed to have a rigid-lid on it. Then, the sea surface was allowed to move freely. When the free surface was first
introduced, the movement of sea surface was absorbed in the first layer of the model. The problem with this treatment is that
it is not possible to take the first layer thickness thinner than about 4 meters whereas a finer vertical resolution is required
near the sea surface. This is because the contrast of mean sea level in the global ocean may reach 3 meters. To resolve this
problem, the upper several layers were allowed to undulate following the sea surface evolution as in the sigma-coordinate
model (Hasumi, 2006). A problem with this approach is that there is a transition in the vertical coordinate, which would
make analytical treatment awkward in some situations. For MRI.COM version 4, we have adopted a vertically rescaled
height coordinate system, where a sea level undulation is reflected throughout the water column (Adcroft and Campin,
2004). This vertical coordinate is named z∗ coordinate.

In this section, we first formulate the governing equations on Cartesian coordinates for brevity. Then a coordinate
transformation in the lateral direction is applied to the governing equations. Approximations and boundary conditions

∗ The time step, ∆t , needs to satisfy v∆t/∆x ≤ 1, where v is velocity and ∆x is the grid width.
† Greenland and Antarctica, China and Argentina, Kalimantan and Columbia.
‡ If the grid size is fine enough, the Kelvin wave in the shifted-pole model will propagate along the Equator as the theory suggests.
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2.1 Formulation

are discussed using equations on generalized orthogonal coordinates. Equations are further transformed to introduce
generalized vertical coordinates. Readers are referred to Griffies and Adcroft (2008) for the thorough discussion on the
formulation of primitive equations for ocean circulation models.

2.1.2 Primitive equations in Cartesian coordinates
a. General governing equations

Evolution of state variables of ocean circulation (v, ρ, θ, S, p), where v = (u, v,w) is the velocity vector, ρ is density, θ is
potential temperature, S is salinity, and p is pressure, is obtained by solving the following simultaneous equations written
in Cartesian coordinates.

Momentum equation in a vector form is

ρ
∂v
∂t
+ ρ(v · ∇)v + 2Ω × (ρv) = −ρ∇Φ − ρ∇ΦT − ∇p + ∇ · τ, (2.1)

whereΩ is the rotation vector of the Earth,Φ is the geopotential,ΦT is the tide producing potential, τ is the frictional stress
tensor. In the rest of this chapter, the tide producing potential is neglected for brevity. Implementation of tide producing
potential is thoroughly discussed in Chapter 6.

Mass conservation equation is
∂ρ

∂t
+ ∇ · (ρv) = 0. (2.2)

Equations for potential temperature and salinity are

ρ
∂θ

∂t
+ ρv · ∇θ = −∇ · (ρFθ ) + ρQθ (2.3)

and
ρ
∂S
∂t
+ ρv · ∇S = −∇ · (ρFS ) + ρQS, (2.4)

where Fθ,S are tracer fluxes due to subgrid-scale transport and mixing parameterizations and Qθ,S are sources of tracers
due to nudging, convective adjustment (Section 10.2), shortwave absorption (Section 14.3), etc. Here, tracer concentration
is expressed as concentration per unit mass of sea water.

Equation of state of sea water determines in situ density of sea water. Density is given as a function of potential
temperature, salinity, and pressure:

ρ = ρ(θ, S, p). (2.5)

The equation of state is usually given as a polynomial fit to the available measurements. A detailed description of this will
be presented in Chapter 4.

The above set is the most general set of equations governing the evolution of oceanic state.

b. Boussinesq approximation

Because the density of sea water varies only by 5% throughout the water column and the horizontal density variations are
less than 1%, most ocean general circulation models use the Boussinesq approximation. In the Boussinesq approximation,
the density (ρ) in the non-linear product of density times velocity (ρv) that appears in the momentum equation (2.1) is
replaced by a reference density (ρ0). The momentum equation becomes

∂v
∂t
+ (v · ∇)v + 2Ω × v = − ρ

ρ0
∇Φ − 1

ρ0
∇p +

1
ρ0
∇ · τ. (2.6)

Note that the in-situ density (ρ) is retained for the geopotential term.
Further, the sea water is treated as incompressible. Mass conservation equation (2.2) becomes the volume conservation

equation:
∇ · v = 0. (2.7)

The tracer concentrations are now concentration per unit volume instead of unit mass:

∂θ

∂t
+ v · ∇θ = −∇ · Fθ +Qθ, (2.8)
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Chapter 2 Governing Equations

and
∂S
∂t
+ v · ∇S = −∇ · FS +QS . (2.9)

The above expression is the most general form under the Boussinesq approximation. This form is used to formulate an
oceanic non-hydrostatic model and a quasi-hydrostatic model (Marshall et al., 1997).

2.1.3 Primitive equations in generalized orthogonal coordinates
We consider the momentum equation first. On a generalized orthogonal coordinate system (µ, ψ, r) whose unit vectors
are eµ, eψ , and er , the momentum equation for velocity v = ueµ + veψ + wer , where u = hµ µ̇, v = hψψ̇, w = hr ṙ , is
represented by

∂u
∂t
+ v · ∇u + fψw − f v = − 1

ρ0hµ

∂p
∂µ
− v

hµhψ

(
∂hµ
∂ψ

u −
∂hψ
∂µ

v

)
− w

hr hµ

(
∂hµ
∂r

u − ∂hr
∂µ

w

)
+ Fµ

fric, (2.10)

∂v

∂t
+ v · ∇v + f u − fµw = −

1
ρ0hψ

∂p
∂ψ
− w

hψhr

(
∂hψ
∂r

v − ∂hr
∂ψ

w

)
− u

hµhψ

(
∂hψ
∂µ

v −
∂hµ
∂ψ

u
)
+ Fψfric, (2.11)

∂w

∂t
+ v · ∇w + fµv − fψu = − 1

ρ0hr

∂p
∂r
− ρ

ρ0

∂Φ

∂r
− u

hr hµ

(
∂hr
∂µ

w −
∂hµ
∂r

u
)
− v

hψhr

(
∂hr
∂ψ

w −
∂hψ
∂r

v

)
+ Fr

fric, (2.12)

where hµ, hψ , and hr are scale factors, which measure the width in the original coordinate of the unit length in the new
coordinate. Metric terms appear on the r.h.s.. Ffric is frictional force obtained as the divergence of frictional stress tensor.
The radial distance from the Earth’s center is represented by r and the gravitational acceleration is in the negative direction
of r .

The Coriolis force is represented by

2Ω × v = (2Ωψw − 2Ωrv)eµ + (2Ωru − 2Ωµw)eψ + (2Ωµv − 2Ωψu)er, (2.13)

whereΩ = Ωµeµ+Ωψeψ+Ωrer is the rotation vector of the Earth. We designate fµ = 2Ωµ, fψ = 2Ωψ , and f = fr = 2Ωr .
We apply the following two approximations which are relevant to the momentum equation.

a. Shallow ocean approximation

Shallow ocean approximation employs the fact that the vertical thickness of the ocean is far smaller than the radius of the
Earth. Since the vertical scale of motion of a water particle is far smaller than the Earth’s radius (a), the radial distance r
as a scalar quantity is replaced by the Earth’s radius a. The new vertical coordinate (z) is the distance (positive upward)
from the geoid (sea surface height in the state of rest) and ∂/∂r is replaced by ∂/∂z. We set a constant vertical scale
factor hr (= hz = 1). Horizontal scale factors are independent of vertical coordinate (∂hµ/∂r = ∂hψ/∂r = 0). As a
result, to conserve angular momentum under this approximation, we drop the metric terms that involve w for the horizontal
components and all the metric terms for the vertical components.

We also assume that the gravitational acceleration is constant (g). This assumption results in a specific expression of
geopotential as Φ = gz.

b. Hydrostatic approximation

For horizontal motions with a scale larger than a few kilometers, hydrostatic balance is maintained in the vertical direction.
The vertical momentum equation becomes:

0 = −∂p
∂z
− ρg. (2.14)

By hydrostatic approximation, we must drop all the remaining Coriolis terms that do not involve f to conserve angular
momentum (Phillips, 1966).

We also separately treat horizontal and vertical strain for calculating frictional stresses. The vertical stress is usually
parameterized as the vertical diffusion of momentum:

Ffric =
1
ρ0
∇ · τ = ∂

∂z

(
νV
∂u
∂z

)
+

1
ρ0
∇ · τhorizontal strain, (2.15)

where νV is the vertical viscosity (essentially vertical diffusion of momentum).
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2.1 Formulation

c. Equations solved by a standard version of MRI.COM

With the above approximations, the momentum equation is now written as:

∂u
∂t
+

1
hµhψ

{
∂(hψuu)
∂µ

+
∂(hµvu)
∂ψ

}
+
∂(wu)
∂z

+
v

hµhψ

(
∂hµ
∂ψ

u −
∂hψ
∂µ

v

)
− f v

= − 1
ρ0hµ

∂p
∂µ
+

1
ρ0

(∇ · τhorizontal strain)u +
∂

∂z

(
νV
∂u
∂z

)
, (2.16)

∂v

∂t
+

1
hµhψ

{
∂(hψuv)
∂µ

+
∂(hµvv)
∂ψ

}
+
∂(wv)
∂z

+
u

hµhψ

(
∂hψ
∂µ

v −
∂hµ
∂ψ

u
)
+ f u

= − 1
ρ0hψ

∂p
∂ψ
+

1
ρ0

(∇ · τhorizontal strain)v +
∂

∂z

(
νV
∂v

∂z

)
. (2.17)

Continuity equation is written as:

1
hµhψ

{
∂(hψu)
∂µ

+
∂(hµv)
∂ψ

}
+
∂w

∂z
= 0. (2.18)

The equations for potential temperature and salinity are written as:

∂θ

∂t
= − 1

hµhψ

{
∂(hψuθ)
∂µ

+
∂(hµvθ)
∂ψ

}
− ∂(wθ)

∂z
− ∇ · Fθ +Qθ, (2.19)

∂S
∂t
= − 1

hµhψ

{
∂(hψuS)
∂µ

+
∂(hµvS)
∂ψ

}
− ∂(wS)

∂z
− ∇ · FS +QS . (2.20)

2.1.4 Boundary conditions
a. Momentum equation

■ Upper surface (z = η): At the sea surface, momentum flux enters the ocean in the form of wind stress (or stress from
sea ice where sea ice exists):

νV
∂(u, v)
∂z

���z=η = (τµ, τψ)
ρ0

. (2.21)

Note that z is defined positive upward (the surface wind stress is positive into the ocean).
In the model algorithm, this is treated as a body force to the first level velocity,

(Fµ
surf, F

ψ
surf ) =

(τµ, τψ)
ρ0∆z 1

2

, (2.22)

where ∆z 1
2

is the thickness of the first layer, and τµ and τψ are zonal and meridional stress, respectively.
Surface fresh water flux is assumed to have zero velocity.

■ Bottom (z = −H): Bottom friction (τµ
b

in zonal and τψ
b

in meridional direction) exists at the sea floor (z = −H (µ, ψ)).

νV
∂(u, v)
∂z

���z=−H (µ,ψ)
= −

(τµ
b
, τ
ψ
b

)

ρ0
. (2.23)

In the model algorithm, this is treated as a body force to the bottom level (k = kbtm) velocity,

(Fµ
bottom, F

ψ
bottom) =

(τµ
b
, τ
ψ
b

)

ρ0∆zkbtm− 1
2

, (2.24)

where ∆zkbtm− 1
2

is the thickness of the bottom layer.

■ Side wall: No slip condition is applied (u = v = 0).
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Chapter 2 Governing Equations

b. Temperature and Salinity

■ Upper surface (z = η): At the sea surface, heat and fresh water are exchanged with atmosphere and sea ice. Salt is also
exchanged below sea ice. All these exchanges are expressed as surface fluxes and become surface boundary conditions.

The surface boundary conditions for temperature and salinity are expressed as follows:

κV
∂θ

∂z
���z=η = Fθ

surf, (2.25)

κV
∂S
∂z

���z=η = FS
surf, (2.26)

where surface flux (Fαsurf) is defined positive downward (positive into the ocean).

■ Bottom (z = −H): At the sea floor (z = −H (µ, ψ)), geothermal heating (Fθ
bottom) and sediment trap (FS

bottom) may affect
temperature and salinity:

κV
∂θ

∂z
���z=−H (µ,ψ)

= Fθ
bottom, κV

∂S
∂z

���z=−H (µ,ψ)
= FS

bottom, (2.27)

where bottom flux (Fαbottom) is defined positive upward (positive into the ocean).

■ Side wall: For any tracer, the adiabatic condition is applied at the side wall:

∂θ

∂n
= 0,

∂S
∂n
= 0, (2.28)

where n denotes the direction perpendicular to the wall. River discharge is expressed as a part of the surface fresh water
flux.

c. Continuity equation

■ Upper surface (z = η): At the sea surface, vertical velocity is generated because a water parcel moves following the
freely moving sea surface. Surface fresh water flux is explicitly incorporated into the boundary condition for the continuity
equation.

w =
dη
dt
− (P − E + R + I) =

∂η

∂t
+ u

1
hµ

∂η

∂µ
+ v

1
hψ

∂η

∂ψ
− (P − E + R + I), (2.29)

where P is precipitation, E is evaporation, R is river discharge, and I is fresh water exchange with sea ice component.

■ Bottom (z = −H): At the sea floor, vertical velocity is generated because the water parcel moves following the bottom
topography:

w = −
(
u

1
hµ

∂H
∂µ
+ v

1
hψ

∂H
∂ψ

)
. (2.30)

■ Evolution equation for sea surface height (η): Using these boundary conditions, we obtain evolution equation for sea
surface height η by vertically integrating the continuity equation (2.18),

∂η

∂t
+

1
hµhψ

{
∂(hψ (H + η)⟨u⟩)

∂µ
+
∂(hµ (H + η)⟨v⟩)

∂ψ

}
= P − E + R + I, (2.31)

where ⟨(u, v)⟩ = 1
H+η

∫ η

−H (u, v)dz.

d. Mixing at the surface boundary layer

Near the sea surface, strong vertical mixing may occur for stably stratified situations because of active turbulence. These
processes occur on a small scale (< several meters) and cannot be resolved in a large scale hydrostatic model with typical
horizontal and vertical resolutions. These processes are parameterized as enhanced vertical viscosity and diffusivity. The
user chooses whether to set a high vertical viscosity and diffusivity a priori or to use a surface boundary layer model.
MRI.COM supports several surface boundary layer models. In the surface boundary layer models, vertical viscosity and
diffusivity are calculated every time step. See Chapter 15 for details.
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2.1.5 Generalized vertical coordinates
From MRI.COM version 4, the standard choice for the vertical coordinate is z∗, which was first introduced by Adcroft and
Campin (2004). Before showing a specific expression of governing equations in z∗ coordinate, we consider generalized
vertical coordinates (s). Note that generalized vertical coordinates employed by ocean models are not orthogonal.
Horizontal velocities are not perpendicular to the vertical coordinate but perpendicular to the local gravitational field. The
generalized vertical coordinate surface s = s(µ, ψ, z, t) is expressed as a smooth function of the original coordinate and
time. We introduce a new scale factor zs , which measures the thickness in the original depth coordinate of the unit length
in the new coordinate:

zs ≡
∂z
∂s

���µψt
. (2.32)

We further introduce vertical velocity ṡ in generalized vertical coordinates.
Using a transformation rule presented by Adcroft and Campin (2004), we write the governing equations in generalized

vertical coordinates as follows:

∂(zsu)
∂t
+

1
hµhψ

{
∂(zshψuu)

∂µ
+
∂(zshµvu)

∂ψ

}
+
∂(zs ṡu)
∂s

+ zs
v

hµhψ

(
∂hµ
∂ψ

u −
∂hψ
∂µ

v

)
− zs f v

= −zs
1

ρ0hµ

∂p
∂µ
− zs

ρ

ρ0hµ

∂(gz)
∂µ

+ zs
1
ρ0

(∇ · τhorizontal strain)u + zs
1
zs

∂

∂s

( νV
zs

∂u
∂s

)
, (2.33)

∂(zsv)
∂t
+

1
hµhψ

{
∂(zshψuv)

∂µ
+
∂(zshµvv)

∂ψ

}
+
∂(zs ṡv)
∂s

+ zs
u

hµhψ

(
∂hψ
∂µ

v −
∂hµ
∂ψ

u
)
+ zs f u

= −zs
1

ρ0hψ

∂p
∂ψ
− zs

ρ

ρ0hψ

∂(gz)
∂ψ

+ zs
1
ρ0

(∇ · τhorizontal strain)v + zs
1
zs

∂

∂s

( νV
zs

∂v

∂s

)
, (2.34)

ρ
∂(gz)
∂s

+
∂p
∂s
= 0, (2.35)

∂zs
∂t
+

1
hµhψ

{
∂(zshψu)

∂µ
+
∂(zshµv)

∂ψ

}
+
∂(zs ṡ)
∂s

= 0, (2.36)

∂(zsθ)
∂t

+
1

hµhψ

{
∂(zshψuθ)

∂µ
+
∂(zshµvθ)

∂ψ

}
+
∂(zs ṡθ)
∂s

= −zs∇ · Fθ + zsQθ, (2.37)

∂(zsS)
∂t

+
1

hµhψ

{
∂(zshψuS)

∂µ
+
∂(zshµvS)

∂ψ

}
+
∂(zs ṡS)
∂s

= −zs∇ · FS + zsQS, (2.38)

and
ρ = ρ(θ, S, p). (2.39)

Evolution equation for sea surface height is obtained by vertically integrating the continuity equation (2.36) and
considering the boundary condition. It has the same form as in the depth coordinate system:

∂(η + H)
∂t

+
1

hµhψ

[
∂(hψU)
∂µ

+
∂(hµV )
∂ψ

]
= P − E + R + I, (2.40)

where

(U,V ) =
∫ s(z=η)

s(z=−H )
[zs (u, v)]ds. (2.41)

2.1.6 z∗ coordinate
a. Definition and boundary condition

Definition of the new vertical coordinate z∗ is as follows:

z∗ = σ(µ, ψ, z, t)H (µ, ψ) =
z − η(µ, ψ, t)

H (µ, ψ) + η(µ, ψ, t)
H (µ, ψ), (2.42)
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where z = −H (µ, ψ) is sea floor and η is the free surface displacement. σ is a symbol of the conventional terrain following
vertical coordinate. In z∗ coordinate, σ is further scaled by sea floor depth H (µ, ψ), which makes z∗ coordinate more
similar to the depth coordinate rather than the terrain following coordinate.

The scaling factor zs = ∂z
∂z∗ is

∂z
∂z∗
=

H + η
H

. (2.43)

The vertical velocity in this coordinate system is expressed as w∗. This has the following relation with the vertical
velocity w of the depth coordinate z,

w∗ ≡ Dt z∗ =
H

H + η

(
w −

(
1 +

z∗

H

)
Dtη +

z∗η
H2 vh · ∇H

)
, (2.44)

where Dt represents the material time derivative operator in any coordinate system,

Dt ≡
∂

∂t
+ v · ∇ = ∂

∂t
+

u
hµ

∂

∂µ
+

v

hψ

∂

∂ψ
+

w

zs

∂

∂s
. (2.45)

Horizontal boundary conditions are unchanged by this coordinate transformation. Vertical boundary conditions need
some discussion.

Sea floor (z = −H) in z∗ coordinate is also −H .

z = −H (µ, ψ) ⇒ z∗ = −H (µ, ψ). (2.46)

Thus the kinematic boundary condition at sloping bottom is

wz=−H = −vh · ∇H ⇒ w∗z∗=−H = −vh · ∇H, (2.47)

where vh = (u, v, 0) is the horizontal component of velocity at z = −H (µ, ψ).
Sea surface (z = η) in z∗ coordinate is

z = η(x, y, t) ⇒ z∗ = 0. (2.48)

Sea surface is fixed in time in z∗ frame. In other words, model domain and grid cells are logically fixed in time. We do
not have to concern about the moving sea surface and vanishing of the first layer thickness §.

The kinematic boundary condition at the sea surface is

wz=η = Dtη − (P − E + R + I) ⇒ w∗z∗=0 = −
H

H + η
(P − E + R + I). (2.49)

For example, precipitation (P > 0) penetrates the ocean as a scaled downward vertical velocity.
The governing equations in z∗ vertical coordinate are in the same form as equations (2.33) through (2.40), with zs

replaced by zz∗ =
H+η
H .

b. Pressure gradient term

Horizontal momentum equations in generalized vertical coordinates (2.33), (2.34) involve both pressure gradient and
geopotential gradient term. Pressure gradient error appears when these terms do not cancel each other. That said, pressure
gradient error is not a big issue for z∗ coordinate because horizontal gradient of a constant z∗-surface is usually very small.
However, source of errors must be kept as small as possible. For this purpose, we first separate density into constant and
its deviation

ρ = ρ0 + ρ
′(x, y, z∗, t). (2.50)

Pressure is also separated in the same manner (p = p0 + p′) and the hydrostatic relation (2.35) is separated into two
equations

∂z∗p0 = −g
( H + η

H

)
ρ0 and p0(z∗ = 0) = 0, (2.51)

∂z∗p′ = −g
( H + η

H

)
ρ′ and p′(z∗ = 0) = pa, (2.52)

§ However, sea surface is not allowed to touch the see floor (H + η ≤ 0), which is a local problem. This is a restrictive condition inherent to this
coordinate system.
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where pa is atmospheric pressure¶. Specific expression for p0 is obtained by integrating (2.51)

p0(z∗) = p0(x, y, z, t) = −gρ0
H + η

H
z∗ = gρ0(η − z) = gρ0η − ρ0Φ. (2.53)

Rewriting pressure gradient term by using this, we have

1
ρ0
∇z∗ (p0 + p′) +

ρ

ρ0
∇z∗Φ = g∇η − ∇z∗Φ +

1
ρ0
∇z∗p′ +

ρ0 + ρ
′

ρ0
∇z∗Φ (2.54)

= g∇η + 1
ρ0
∇z∗p′ +

ρ′

ρ0
∇z∗Φ. (2.55)

It is noticed that time-independent terms are removed. Because geopotential is Φ = gz, the momentum equation is
expressed as

∂tvh + vh · ∇z∗vh + w∗∂z∗vh + f ẑ × vh + g∇η +
1
ρ0
∇z∗p′ +

gρ′

ρ0
∇z∗ z = F (2.56)

Perturbation pressure is obtained by integrating (2.52) as

p′(z∗) = pa + g
∫ 0

z∗
ρ′zz∗dz∗ = pa + g

∫ η

z(z∗)
ρ′dz. (2.57)

Then (2.56) becomes

∂tvh + vh · ∇z∗vh + w∗∂z∗vh + f ẑ × vh

+
1
ρ0
∇z∗ (pa + gρ0η)︸                  ︷︷                  ︸

fast

+
1
ρ0
∇z∗

(
g

∫ η

z(z∗)
ρ′dz

)
+
gρ′

ρ0
∇z∗ z︸                                      ︷︷                                      ︸

slow

= F. (2.58)

We separate the pressure gradient term into barotropic (fast) and baroclinic (slow) component in preparation for the
split-explicit solution method for equations of motion.

2.2 Numerical Methods
2.2.1 Discretization and finite volume method
To solve the primitive equations formulated in the previous section, the equations are projected on a discrete lattice and
then advanced for a discrete time interval.

Because primary choice of the vertical coordinate of MRI.COM is z∗, a logically fixed (but actually moving) Eulerian
lattice is arranged. A detailed description of the grid arrangement is given in Chapter 3. The equations are then volume
integrated over a discrete model grid cell. This approach is called a finite volume approach or sometimes a flux form
expression in this manual.

A vertically integrated expression for the primitive equations is useful for describing the solution procedure. These are
called semi-discrete equations (Griffies, 2004). The body force and metric terms will be simply multiplied by the grid
width. The material transport and subgrid-scale flux terms need some attention.

In this section the vertical coordinate of z∗ is written as a general symbol s. The material transport of any quantity α
that commonly appears in the prognostic equations,

∂(zsα)
∂t

+
1

hµhψ

{
∂(hψ zsuα)

∂µ
+
∂(hµzsvα)

∂ψ

}
+
∂(zs ṡα)
∂s

(2.59)

¶ Ice-loading effect (e.g., Campin et al., 2008) has not been included in MRI.COM
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is vertically integrated over a (k − 1
2 )-th grid cell bounded by sk−1 and sk to give∫ sk−1

sk

∂(zsα)
∂t

ds +
∫ sk−1

sk

1
hµhψ

{
∂(hψ zsuα)

∂µ
+
∂(hµzsvα)

∂ψ

}
ds +

∫ sk−1

sk

∂(zs ṡα)
∂s

ds

=
∂

∂t

( ∫ sk−1

sk

(zsα)ds
)
+

1
hµhψ

{
∂

∂µ

(∫ sk−1

sk

hψ zsuα ds
)
+

∂

∂ψ

(∫ sk−1

sk

hµzsvα ds
)}

−
(
zs
∂sk−1

∂t
+

zsu(sk−1)
hµ

∂sk−1

∂µ
+

zsv(sk−1)
hψ

∂sk−1

∂ψ
− zs ṡ(sk−1)

)
α(sk−1)

+
(
zs
∂sk
∂t
+

zsu(sk )
hµ

∂sk
∂µ
+

zsv(sk )
hψ

∂sk
∂ψ
− zs ṡ(sk )

)
α(sk ). (2.60)

The first line on the r.h.s. is expressed in a semi-discrete form as

∂

∂t

(
∆zα

)
k− 1

2
+

1
hµhψ

{
∂

∂µ

(
hψ∆zuα

)
k− 1

2
+

∂

∂ψ

(
hµ∆zvα

)
k− 1

2

}
, (2.61)

where any quantity is assumed to have a uniform distribution within a grid cell.
Using ṡ ≡ Dt s and (2.45), the last two lines are reduced to the difference between vertical advective fluxes:

the last two lines of (2.60) = zs ṡ(sk−1)α(sk−1) − zs ṡ(sk )α(sk ). (2.62)

For the sea surface (k = 1; s0 = 0) and the bottom (k = kbtm; skbtm = −H), kinematic conditions (2.49) and (2.47) are
used to give

the last two lines of (2.60) = −(P − E + R + I)α(0) − zs ṡ(s1)α(s1) (2.63)

at the surface and
the last two lines of (2.60) = zs ṡ(skbtm−1)α(skbtm−1) − 0 (2.64)

at the bottom (bottom term vanishes to give no advective fluxes through the sea floor).
Similarly, the vertical integral of the divergence of the subgrid-scale fluxes gives∫ sk−1

sk

1
hµhψ

{
∂(hψ zsFµ)

∂µ
+
∂(hµzsFψ)

∂ψ

}
ds +

∫ sk−1

sk

∂Fs

∂s
ds

=
1

hµhψ

{
∂

∂µ

(
hψ∆zFµ

)
k− 1

2
+

∂

∂ψ

(
hµ∆zFψ

)
k− 1

2

}
−

( Fµ (s)
hµ

∂s
∂µ
+

Fψ (s)
hψ

∂s
∂ψ
− Fs (s)

)
k−1
+

( Fµ (s)
hµ

∂s
∂µ
+

Fψ (s)
hψ

∂s
∂ψ
− Fs (s)

)
k
. (2.65)

In summary, the material transport and subgrid-scale flux parts are integrated for a vertical grid cell to give the
semi-discrete expression on the r.h.s.,∫ sk−1

sk

∂(zsα)
∂t

ds +
∫ sk−1

sk

1
hµhψ

{
∂(hψ zsuα)

∂µ
+
∂(hµzsvα)

∂ψ

}
ds +

∫ sk−1

sk

∂(zs ṡα)
∂s

ds

+

∫ sk−1

sk

1
hµhψ

{
∂(hψ zsFµ)

∂µ
+
∂(hµzsFψ)

∂ψ

}
ds +

∫ sk−1

sk

∂Fs

∂s
ds

=
∂

∂t

(
∆zα

)
k− 1

2
+

1
hµhψ

{
∂

∂µ

(
hψ∆zuα

)
k− 1

2
+

∂

∂ψ

(
hµ∆zvα

)
k− 1

2

}
+ zs ṡ(sk−1)α(sk−1) − zs ṡ(sk )α(sk )

+
1

hµhψ

{
∂

∂µ

(
hψ∆zFµ

)
k− 1

2
+

∂

∂ψ

(
hµ∆zFψ

)
k− 1

2

}
+ Fs (sk−1) − Fs (sk ). (2.66)

The quantity

Fαsurf = (P − E + R + I)α(0) +
( Fµ (s0)

hµ

∂s0

∂µ
+

Fψ (s0)
hψ

∂s0

∂ψ
− Fs (s0)

)
= (P − E + R + I)α(0) − Fs (0) (2.67)

taken from (2.63) and (2.65) may be regarded as a surface forcing term and corresponds to the surface flux (positive
downward) given in the previous section. The first term on the r.h.s. of (2.67) is the tracer transport by the fresh water
flux, and the second term is the microstructure flux calculated by subgrid-scale parameterizations such as bulk formula.
Similarly, geothermal heating may be incorporated as microstructure flux from the sea floor (Fh (−H) · ∇hH + Fs (−H)).
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2.2.2 Momentum equation
a. Mode splitting and explicit solution method for the barotropic mode

Here we consider to solve the momentum equation with hydrostatic and Boussinesq approximation. Equations are (2.33),
(2.34), and (2.35). To integrate these equations in time, we should know the instantaneous vector field, pressure, and
geopotential. For the vector field, we use one at the previous time level. We obtain the pressure field by integrating the
hydrostatic equation vertically, in which the sea surface height (z = η) is needed. The sea surface height is also needed for
geopotential. To obtain the surface height, we should solve vertically integrated continuity equation (2.40).

The rise and fall of the sea level causes external gravity waves whose phase speed is two orders of magnitude greater
than that of other waves. This will impose tight limits on the time intervals due to the CFL condition. We want to separate
or remove external gravity waves, because they are usually not important when a target phenomenon has a longer time
scale.

Historically, external gravity waves were removed from the model by prohibiting the vertical movement of the sea
surface (rigid-lid approximation). In this case, the vertically integrated equations result in a vorticity equation in the form
of the Poisson equation, solved by relaxation methods. The surface pressure is then diagnostically obtained as the pressure
pushing up the lid.

After the sea surface was allowed to move vertically, the problem of fast external modes was resolved by separating the
barotropic mode from the baroclinic mode. The barotropic mode is solved explicitly with a short time step. The baroclinic
mode can take a longer time step by reflecting a state of the barotropic mode in which high-frequency components are
filtered out. Since this free surface option is more suitable for parallel computation than the rigid-lid approximation, only
the free surface option is supported by MRI.COM. The essence of the split-explicit free surface formulation is explained
below. See Chapter 6 for details.

b. Barotropic mode

If we put

U =
∫ 0

−H
zsuds =

N∑
k=1

uk− 1
2
∆zk− 1

2
, V =

∫ 0

−H
zsvds =

N∑
k=1

vk− 1
2
∆zk− 1

2
, (2.68)

and separate fast and slow modes of the pressure gradient as in (2.58), then the vertically summed semi-discrete momentum
equations are

∂U
∂t
− f V = − (η + H)

ρ0hµ

∂(pa + gρ0η)
∂µ

+ X, (2.69)

∂V
∂t
+ f U = − (η + H)

ρ0hψ

∂(pa + gρ0η)
∂ψ

+ Y, (2.70)

where pa is the atmospheric pressure at sea surface. Density ρ has been separated into mean ρ0 and perturbation ρ′, and

X = − ∇H ·
( N∑
k=1

(∆z(u, v)u)k− 1
2

)
−

N∑
k=1

[ v

hµhψ

(
∂hµ
∂ψ

u −
∂hψ
∂µ

v

)]
k− 1

2
∆zk− 1

2

−
N∑
k=1

[ 1
ρ0

1
hµ

∫ 0

s
k− 1

2

zsgρµds′
]
∆zk− 1

2
− g

ρ0hµ

N∑
k=1

[
ρ′zµ

]
∆zk− 1

2
+

N∑
k=1

(∆zFµ
horz)k− 1

2
+ Fµ

surf∆z 1
2
+ Fµ

bottom∆zN− 1
2

(≡
N∑
k=1

Fµ ), (2.71)

Y = − ∇H ·
( N∑
k=1

(∆z(u, v)v)k− 1
2

)
+

N∑
k=1

[ u
hµhψ

(
∂hµ
∂ψ

u −
∂hψ
∂µ

v

)]
k− 1

2
∆zk− 1

2

−
N∑
k=1

[ 1
ρ0

1
hψ

∫ 0

s
k− 1

2

zsgρψds′
]
∆zk− 1

2
− g

ρ0hψ

N∑
k=1

[
ρ′zψ

]
∆zk− 1

2
+

N∑
k=1

(∆zFψhorz)k− 1
2
+ Fψsurf∆z 1

2
+ Fψbottom∆zN− 1

2

(≡
N∑
k=1

Fψ ). (2.72)
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The vertically integrated continuity equation is given by

∂η

∂t
+

1
hµhψ

( ∂(hψU)
∂µ

+
∂(hµV )
∂ψ

)
= (P − E + R + I). (2.73)

We solve these equations for U , V , and η with a short time step constrained by the phase speed of the external gravity
waves. On returning (U, V ) to the baroclinic mode, the effect of high-frequency phenomena with time scale shorter than
the baroclinic time step is filtered out by a weighted averaging, which is symbolically expressed as follows:

⟨U⟩n+1 =Un + ∆tcl f ⟨⟨V ⟩⟩n+ 1
2 − ∆tcl

⟨⟨ (η + H)
ρ0hµ

∂(pa + ρ0gη)
∂µ

⟩⟩n+ 1
2
+ ∆tclXn, (2.74)

⟨V ⟩n+1 =V n − ∆tcl f ⟨⟨U⟩⟩n+ 1
2 − ∆tcl

⟨⟨ (η + H)
ρ0hψ

∂(pa + ρ0gη)
∂ψ

⟩⟩n+ 1
2
+ ∆tclY n, (2.75)

where ⟨·⟩n+1 ≡ ∑M∗
m=1 bm(·)m− 1

2 and ⟨⟨·⟩⟩n+ 1
2 ≡ ∑M∗

m=1 bm
∑m

m′=1(·)m′− 1
2 , with m ∈ {1, M∗} representing the barotropic time

level, n representing the baroclinic time level, ∆tcl being the baroclinic time step, and bm being weighting factors explained
in Chapter 6.

c. Baroclinic mode

To solve the baroclinic mode, we can omit to obtain absolute pressure by using the method described below.
Velocity is decomposed into a barotropic component and a baroclinic component as follows:

u =û + ū, (2.76)
v =v̂ + v̄, (2.77)

where ū and v̄ are barotropic components and û and v̂ are baroclinic components.
We consider updating a new velocity (u′, v′) using a momentum equation where the fast pressure gradient term is

dropped:

u
′

k− 1
2
∆zn+1

k− 1
2
− un

k− 1
2
∆zn

k− 1
2

∆tcl
= f [vk− 1

2
∆zk− 1

2
]n+

1
2 + Fn

µ , (2.78)

v
′

k− 1
2
∆zn+1

k− 1
2
− vn

k− 1
2
∆zn

k− 1
2

∆tcl
= − f [uk− 1

2
∆zk− 1

2
]n+

1
2 + Fn

ψ , (2.79)

where

Fn
µ = −∇H ·

(
∆z(u, v)u

)
k− 1

2
−

[ v

hµhψ

(
∂hµ
∂ψ

u −
∂hψ
∂µ

v

)]
k− 1

2
∆zk− 1

2

−
[ 1
ρ0

1
hµ

∫ 0

s
k− 1

2

zsgρµds′
]
∆zk− 1

2
− g

ρ0hµ

N∑
k=1

[
ρ′zµ

]
∆zk− 1

2
+ (∆zFµ

horz)k− 1
2
− Fµ

vertk−1 + Fµ
vertk, (2.80)

Fn
ψ = −∇H ·

(
∆z(u, v)v

)
k− 1

2
+

[ u
hµhψ

(
∂hµ
∂ψ

u −
∂hψ
∂µ

v

)]
k− 1

2
∆zk− 1

2

−
[ 1
ρ0

1
hψ

∫ 0

s
k− 1

2

zsgρψds′
]
∆zk− 1

2
− g

ρ0hψ

N∑
k=1

[
ρ′zψ

]
∆zk− 1

2
+ (∆zFψhorz)k− 1

2
− Fψvertk−1 + Fψvertk . (2.81)

Summing over the whole water column gives∑N
k=1(u

′

k− 1
2
∆zn+1

k− 1
2
) −∑N

k=1(un

k− 1
2
∆zn

k− 1
2
)

∆tcl
= f

N∑
k=1

[vk− 1
2
∆zk− 1

2
]n+

1
2 + Xn, (2.82)

∑N
k=1(v

′

k− 1
2
∆zn+1

k− 1
2
) −∑N

k=1(vn
k− 1

2
∆zn

k− 1
2
)

∆tcl
= − f

N∑
k=1

[uk− 1
2
∆zk− 1

2
]n+

1
2 + Y n. (2.83)
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Xn and Y n are removed by using the equations from the barotropic mode (2.74), (2.75) to give∑N
k=1(⟨u⟩n+1∆zn+1

k− 1
2
) −∑N

k=1(u
′

k− 1
2
∆zn+1

k− 1
2
)

∆tcl
= f ⟨⟨V ⟩⟩n+ 1

2 − f
N∑
k=1

[vk− 1
2
∆zk− 1

2
]n+

1
2 −

⟨⟨ (η + H)
ρ0hµ

∂(pa + ρ0gη)
∂µ

⟩⟩n+ 1
2 ,

(2.84)∑N
k=1(⟨v⟩n+1∆zn+1

k− 1
2
) −∑N

k=1(v
′

k− 1
2
∆zn+1

k− 1
2
)

∆tcl
= − f ⟨⟨U⟩⟩n+ 1

2 + f
N∑
k=1

[uk− 1
2
∆zk− 1

2
]n+

1
2 −

⟨⟨ (η + H)
ρ0hψ

∂(pa + ρ0gη)
∂ψ

⟩⟩n+ 1
2 .

(2.85)

where ⟨u⟩n+1 = ⟨U⟩n+1/(ηn+1 + H) and ⟨v⟩n+1 = ⟨V ⟩n+1/(ηn+1 + H).
This is combined with (2.78) and (2.79) to give(

u
′

k− 1
2
− u′

z
+ ⟨u⟩n+1

)
∆zn+1

k− 1
2
− un

k− 1
2
∆zn

k− 1
2

∆tcl
= f

[
vk− 1

2
∆zk− 1

2

]n+ 1
2 − f [v]n+ 1

2
z

∆zn+1
k− 1

2
+ f ⟨⟨v⟩⟩n+ 1

2∆zn+1
k− 1

2

−
∆zn+1

k− 1
2

ηn+1 + H

⟨⟨ (η + H)
ρ0hµ

∂(pa + ρ0gη)
∂µ

⟩⟩n+ 1
2
+ Fn

µ (2.86)(
v
′

k− 1
2
− v′

z
+ ⟨v⟩n+1

)
∆zn+1

k− 1
2
− vn

k− 1
2
∆zn

k− 1
2

∆tcl
= − f

[
uk− 1

2
∆zk− 1

2

]n+ 1
2
+ f [u]n+ 1

2
z

∆zn+1
k− 1

2
− f ⟨⟨u⟩⟩n+ 1

2∆zn+1
k− 1

2

−
∆zn+1

k− 1
2

ηn+1 + H

⟨⟨ (η + H)
ρ0hψ

∂(pa + ρ0gη)
∂ψ

⟩⟩n+ 1
2
+ Fn

ψ , (2.87)

where (...)
z

denotes the thickness weighted vertical average.
Since f [v]n+ 1

2
z

∆zn+1
k− 1

2
∼ f ⟨⟨v⟩⟩n+ 1

2∆zn+1
k− 1

2
, f [u]n+ 1

2
z

∆zn+1
k− 1

2
∼ f ⟨⟨u⟩⟩n+ 1

2∆zn+1
k− 1

2
, and the fourth terms on the r. h. s. are

the surface pressure gradient, we may regard u′ − u′
z
+ ⟨u⟩n+1 and v′ − v′z + ⟨v⟩n+1 as the real updated velocity for time

level n + 1, the baroclinic component is expressed as û = u′ − u′ and v̂ = v′ − v′.
To summarize, we first solve for (u′, v′) using (2.78) and (2.79), and then compute the baroclinic component by û = u′−u′

and v̂ = v′ − v′. The absolute velocity is obtained by u = û + ū and v = v̂ + v̄.

2.2.3 Continuity equation
The vertical component of velocity is obtained by vertically integrating the continuity equation (2.36) from top to bottom.
By using a flux form (setting α = 1 in the r.h.s. of (2.66)), the surface boundary condition (2.49) may be naturally included.
The vertical integration for the k-th vertical level is performed as follows:

(zs ṡ)k = (zs ṡ)k−1 +
[
∆sk− 1

2
(∂t zs)k− 1

2

]
+

1
hµhψ


∂
(
hψ∆zk− 1

2
uk− 1

2

)
∂µ

+
∂
(
hµ∆zk− 1

2
vk− 1

2

)
∂ψ

 , (2.88)

where ∆zk− 1
2

is the width of the (k − 1
2 )-th layer and ∆sk− 1

2
is the logical width of s of the (k − 1

2 )-th layer. Note also that
∂t zs is independent of depth.

2.2.4 Temperature and salinity equation
We solve for potential temperature instead of in situ temperature, because the potential temperature is conserved through
vertical movement.
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a. A semi-discrete expression

The equation for potential temperature and salinity is an advection-diffusion equation (2.37) and (2.38). Its semi-discrete
expression is as follows:

∂

∂t
(θk− 1

2
∆zk− 1

2
) = − ∇H ·

(
∆zhψuθ, ∆zhµvθ

)
k− 1

2
− (zs ṡθ)k−1 + (zs ṡθ)k

− ∇H ·
(
∆zhψFθ

µ , ∆zhµFθ
ψ

)
k− 1

2
− Fθ

s k−1 + Fθ
s k +Qθ

∆zk− 1
2
, (2.89)

∂

∂t
(Sk− 1

2
∆zk− 1

2
) = − ∇H ·

(
∆zhψuS, ∆zhµvS

)
k− 1

2
− (zs ṡS)k−1 + (zs ṡS)k

− ∇H ·
(
∆zhψFS

µ , ∆zhµFS
ψ

)
k− 1

2
− FS

s k−1 + FS
s k +QS

∆zk− 1
2
. (2.90)

Several options for discretizing each term on the r.h.s. are detailed in Chapters 8 through 10.

b. Treating the unstably stratified layer

Since the hydrostatic approximation is used, an unstable stratification should be removed somehow. Generally, we assume
that vertical convection occurs instantaneously to remove unstable stratification. We call this convective adjustment, which
is explained in Section 10.2.

One might also choose to mix tracers by setting the local vertical diffusion coefficient to a large value such as
10 000 cm2 s−1 where stratification is unstable. In this case, the tracer equation should be solved using the partial implicit
method, which is described in Section 19.5.

2.3 Appendix
2.3.1 Acceleration method
It usually takes several thousand years before the global thermohaline circulation reaches a steady state under (quasi-)steady
forcing. The limiting factor for the time step is the phase speed of external gravity waves (∼ 200 m/s) for the barotropic
mode and that of internal gravity waves (∼ a few m/s) for the baroclinic mode. A several-thousand-year integration will
not be a workable exercise as long as we are restricted by this criterion in determining the time step. Bryan (1984) proposed
a method to accelerate the ocean’s convergence to equilibrium. In this method, the phase speed of waves is reduced by
modifying the governing equations, and a thermally balanced state is quickly reached by reducing the specific heat.

Specifically, they are achieved by multiplying a constant to the tendency terms (α for momentum and γ for tracers) to
increase inertia and to reduce specific heat. When a steady state is reached in these equations, we expect that the same
balance as the undistorted equations will be obtained, because the only difference between the distorted and undistorted
equations are tendency terms, which are expected to be zero in the steady state.

The modified momentum equation is given by

α
∂u
∂t
+

1
hµhψ

{
∂(hψuu)
∂µ

+
∂(hµvu)
∂ψ

}
+
∂(wu)
∂z

+
v

hµhψ

(
∂hµ
∂ψ

u −
∂hψ
∂µ

v

)
− f v

= − 1
ρ0hµ

∂p
∂µ
+

1
ρ0

(∇ · τhorizontal strain)u +
∂

∂z

(
νV
∂u
∂z

)
, (2.91)

α
∂v

∂t
+

1
hµhψ

{
∂(hψuv)
∂µ

+
∂(hµvv)
∂ψ

}
+
∂(wv)
∂z

+
u

hµhψ

(
∂hψ
∂µ

v −
∂hµ
∂ψ

u
)
+ f u

= − 1
ρ0hψ

∂p
∂ψ
+

1
ρ0

(∇ · τhorizontal strain)v +
∂

∂z

(
νV
∂v

∂z

)
. (2.92)

The modified temperature and salinity equations are given by

γ
∂θ

∂t
= − 1

hµhψ

{
∂(hψuθ)
∂µ

+
∂(hµvθ)
∂ψ

}
− ∂(wθ)

∂z
− ∇ · Fθ +Qθ, (2.93)

γ
∂S
∂t
= − 1

hµhψ

{
∂(hψuS)
∂µ

+
∂(hµvS)
∂ψ

}
− ∂(wS)

∂z
− ∇ · FS +QS . (2.94)

Here, equations are written in depth (z) coordinate for brevity.
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2.3 Appendix

These modifications are equivalent to changing time to t ′ = t/α and the Brunt-Vaisala frequency to N ′2 = N2α/γ. In
this case, the equivalent depth for the n-th mode of the vertical mode decomposition becomes H

′
n = Hn/α.

The dispersion relation for the free inertia-gravity waves becomes:

ω2 =
f 2

α2 +
(gHn

α

)
(k2 + l2). (2.95)

Since the angular frequency ω is inversely proportional to α1/2, the phase speed becomes low for large α. The model
can be run with a long time step.

The dispersion relation for Rossby waves becomes:

ω = −βk
[
α(k2 + l2) +

f 2

gHn

]−1
. (2.96)

Again, a large α yields a low phase speed.
In standard practice, a value from several tens to a few hundred is used as α, a value of one is used near the sea surface,

and a value about a tenth is used near the bottom as γ.
It should be noted that when α is too large, the model field is prone to baroclinic instability. Since this should not occur

in nature, an integration of the model should be performed carefully by checking outputs during the integration.

2.3.2 Physical constants
On Table 2.1, we list basic physical constants used for MRI.COM. These are defined in param.F90. Physical constants or
formulae used to calculate surface fluxes and sea ice processes are explained in Chapters 14 and 17, respectively.

Table2.1 Physical constants used in the model

value variable name in MRI.COM
radius of the Earth 6375.0 × 105 cm RADIUS

acceleration due to gravity 981.0 cm · s−2 GRAV
angular velocity of the Earth’s rotation π/43 082.0 radian · s−1 OMEGA

the absolute temperature of 0 ◦C 273.15 K TAB
the average density of sea water 1.036 g · cm−3 RO

the specific heat of sea water 3.99 × 107 erg · g−1 · K−1 CP
(1.0 erg · g−1 · K−1

= 1.0 × 10−4 J · kg−1 · K−1)
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Chapter 3

Spatial grid arrangement

The model ocean domain is defined as a three-dimensional aggregate of rectangular grid cells limited by surfaces of
constant values on model’s logical coordinate system. Just above the bottom, vertical thickness of the cell can be locally
changed (so called partial cell). The horizontal and vertical lengths of the cells are regarded as the horizontal and vertical
grid sizes, respectively. In MRI.COM, the grid size can be varied spatially in each direction (variable grid size). Note that
the introduction of z∗ coordinate results in the temporally variable actual vertical grid sizes, though the logical grid size
is fixed in time.

3.1 Horizontal grid arrangement
MRI.COM adopts somewhat unique horizontal grid arrangement, which is illustrated in Figure 3.1a. Horizontal compo-
nents of velocity and bottom depth are defined at the center of the grid cell (×), and tracers such as temperature and salinity,
density, and sea-surface height (SSH) are defined at the four corners of the cell (◦). Hereafter, for simplicity, the velocity
point is referred to as the U-point; the grid cell centered on the U-point, the U-cell (Figure 3.1c); the tracer point as the
T-point; and the grid cell centered on the T-point, the T-cell (Figure 3.1c). The T-cells are staggered from the U-cells by a
half grid size and consists of partial cells along the coast lines (Figure 3.2). The coast lines are defined by the periphery
of the U-cells, i.e., the lines connecting the T-points. This type of horizontal grid arrangement is called Arakawa’s B-grid
arrangement (Arakawa, 1972). Although Arakawa’s B-grid arrangement is also used in MOM (NOAA-GFDL, USA) and
COCO (AORI of U. Tokyo and JAMSTEC, Japan), the primary cell is the T-cell in those models and the coast lines are
defined by the lines connecting the U-points (Figure 3.1b).

In the case of the variable grid size, the T-points are defined just at the centers of the T-cells as seen in Figure 3.1c,
but the U-points are not at the centers of the U-cells. The U-points are arranged so that the U-cell boundary stands at the
mid-point between two neighboring U-points.

See Section 3.6.2 for the placement and numbering of the grid at the edge of the model domain.

o : θ, S, η

x : u, v, H

U-cell boundary
T-cell boundary

o : θ, S, η

x : u, v, H

o : θ, S, η

x : u, v, H

Figure3.1 Horizontal grid arrangement. (a) MRI.COM (◦ : θ, S, η, × : u, v, H), (b) MOM and COCO (◦ : θ, S, η, H ,
× : u, v), (c) Variable grid size in MRI.COM
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3.2 Vertical grid arrangement

(b)

Vi+1/2, j-1/2

Vi+1/2, j+1/2Vi-1/2, j+1/2

Vi--2, j-1/2Vi-3/2, j-1/2

Vi-3/2, j+1/2

Ti-1, j Ti, j Ti+1, j

Ti-1, j-1 Ti, j-1 Ti+1, j-1

Ti-1, j+1 Ti, j+1 Ti+1, j+1Ti-2, j+1

(a)

Ti-2, j

Figure3.2 Horizontal grid lattices in relation to topography. (a) Tracer lattice. (b) Velocity lattice. Land distribution
(shade) is common for (a) and (b).

3.2 Vertical grid arrangement
A variable grid size is usually used for the vertical grid arrangement, i.e., fine near the surface and coarse at depth. As
illustrated in Figure 3.3a, tracers (◦) and velocity (×) are defined at just the mid-depth level of the cell, and the vertical
mass fluxes W (△, 2) are defined at the boundary of the cell. There are two kinds of W , one for the T-cell (WT ; △) and
another for the U-cell (WU ; 2). Their horizontal locations are the T-points and the U-points depicted in Figure 3.1a.

In order to express the gentle bottom slope as smoothly as possible, the thickness of the deepest U-cell at each horizontal
location is variable (so called partial cell), with a limitation that it must exceed a fraction of around 10 percent of the
nominal thickness of the layer to avoid violating the vertical CFL condition (Figure 3.3b). Otherwise, as presented in
Figure 3.3c, the gentle bottom slope is expressed by wide, flat bottoms and cliffs here and there with height of vertical grid
size ∆z. In these regions, the vertical velocity is concentrated at the cliffs, resulting in relatively strong fictitious horizontal
currents there.

(a)

(b) (c)

k-1
k-1/2

k

k+1/2

k+1

k+3/2

○ θ, S

× u, v

WT

□ WU

dz(k)

dz(k+1)

dz(k+2)

= Δzk-1/2

0

k sea suface
1/2
1

dz(1) = Δz1/2

KM-1/2
KM

dz(KM) = ΔzKM-1/2

= Δzk+1/2

= Δzk+3/2

Figure3.3 Vertical grid arrangement. (a) Placement and numbering of vertical grid. (b) Smooth bottom slope with
partial bottom cells. (c) Stair-like bottom slope.
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Chapter 3 Spatial grid arrangement

3.3 Indices and symbols
The conventions for indexing and the definitions of symbols used in finite difference expressions of the equations throughout
this document are given here.

The actual distance corresponding to an increment of ∆µ in the zonal direction of generalized orthogonal coordinates
is expressed as follows:

∆x ≡ hµ∆µ, (3.1)

where hµ is the scaling factor. The actual meridional distance is defined similarly:

∆y ≡ hψ∆ψ. (3.2)

The vertical distance is expressed by ∆z. For a discretized grid cell, the horizontal area is expressed by either ∆S or ∆A
(= ∆x∆y) and the volume is expressed by ∆V (= ∆x∆y∆z).

The subscript indices expressing the horizontal grid position in the finite difference expression of the equations are
usually integers for the T-points, i.e., (i, j) and are increased by a half for the U-points (i + 1

2, j + 1
2 ) (Figure 3.2). In some

cases vice versa, with a notice.
In the vertical subscript index for the finite difference expression, the upper level of a grid cell, where the vertical mass

flux is defined, is numbered as k (k = 0 being the sea surface), the levels of the T-point and U-point are numbered as k − 1
2

(Figure 3.3a). In some cases, the T-point and U-point levels may be numbered as k, with a notice.

3.4 Calculation of horizontal grid cell area and width
When equations are solved in MRI.COM, the temporal variations of physical quantities are calculated as a budget of their
fluxes through the boundaries of the U-cells or T-cells (finite volume method). For this method, it is necessary to know
the area and volume of the grid cells. These are numerically calculated for generalized orthogonal coordinate grids and
analytically for geographic coordinate grids.

3.4.1 Generalized orthogonal coordinates
The longitude and latitude (λ, ϕ) of grid points on the sphere are defined by user as a function of the model coordinates
(µ, ψ),

λ = λ(µ, ψ), ϕ = ϕ(µ, ψ).

For example, the distance from a T-point (µ(i), ψ( j)) to a point a half grid size to the east (µ(i + 1
2 ), ψ( j)) (variable name

in the model: dx_bl; Figure 3.4a) is approximated numerically as follows taking µ1 = µ(i), µ2 = µ(i+ 1
2 ), and ψ1 = ψ( j):

M∑
m=1

L
[
λ
(
µ1 + (m − 1)δµ, ψ1

)
, ϕ

(
µ1 + (m − 1)δµ, ψ1

)
, λ

(
µ1 + mδµ, ψ1

)
, ϕ

(
µ1 + mδµ, ψ1

)]
. (3.3)

Here, L[λ1, ϕ1, λ2, ϕ2] is the distance between the two points (λ1, ϕ1) and (λ2, ϕ2) on the sphere along a great circle and
δµ = (µ2 − µ1)/M (divided by M ∼ 20 between µ1 and µ2).

Similarly, a quarter grid area (a_bl; Figure 3.4b) surrounded by four points (µ(i), ψ( j)), (µ(i + 1
2 ), ψ( j)), (µ(i +

1
2 ), ψ( j + 1

2 )), and (µ(i), ψ( j + 1
2 )) is, taking ψ2 = ψ( j + 1

2 ) and δψ = (ψ2 − ψ1)/N (divided by N ∼ 20 between ψ1 and
ψ2), calculated as:

N∑
n=1

M∑
m=1

L
[
λ
(
µ1 + (m − 1)δµ, ψ1 +

(
n − 1

2
)
δψ

)
, ϕ

(
µ1 + (m − 1)δµ, ψ1 +

(
n − 1

2
)
δψ

)
,

λ
(
µ1 + mδµ, ψ1 +

(
n − 1

2
)
δψ

)
, ϕ

(
µ1 + mδµ, ψ1 +

(
n − 1

2
)
δψ

)]
×

L
[
λ
(
µ1 +

(
m − 1

2
)
δµ, ψ1 + (n − 1)δψ

)
, ϕ

(
µ1 +

(
m − 1

2
)
δµ, ψ1 + (n − 1)δψ

)
,

λ
(
µ1 +

(
m − 1

2
)
δµ, ψ1 + nδψ

)
, ϕ

(
µ1 +

(
m − 1

2
)
δµ, ψ1 + nδψ

)]
. (3.4)
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3.4 Calculation of horizontal grid cell area and width

As depicted in Figure 3.4, (a_bl)i, j is the area of the lower left quarter of the central U-point. Those for the lower right
(a_br)i, j , upper left (a_tl)i, j , and upper right (a_tr)i, j quarters are obtained similarly.

The unit area centered on U-point ((areau)i, j) is then expressed as:

(areau)i, j = (a_bl)i, j + (a_br)i, j + (a_tl)i, j + (a_tr)i, j, (3.5)

and the area centered on T-point ((areat)i, j) as

(areat)i, j = (a_bl)i, j + (a_br)i−1, j + (a_tl)i, j−1 + (a_tr)i−1, j−1. (3.6)

Following the conventions for indexing introduced in Section 3.3, the above equations are expressed in later chapters as
follows:

(areau)i+ 1
2 , j+

1
2
= (a_bl)i+ 1

2 , j+
1
2
+ (a_br)i+ 1

2 , j+
1
2
+ (a_tl)i+ 1

2 , j+
1
2
+ (a_tr)i+ 1

2 , j+
1
2
, (3.7)

(areat)i, j = (a_bl)i+ 1
2 , j+

1
2
+ (a_br)i− 1

2 , j+
1
2
+ (a_tl)i+ 1

2 , j−
1
2
+ (a_tr)i− 1

2 , j−
1
2
. (3.8)

3.4.2 Geographic coordinates
For grids in the geographic coordinate system, we use more precise and computationally lighter analytical solutions. Let
us examine the situation of T-cell divided in quarters (Figure 3.4). The area of the northeastern quarter (anhft, the
same as that of the northwestern quarter) is obtained by the latitudinal integration of the thick line in Figure 3.4b, where
∆ϕ = ϕ( j + 1

2 ) − ϕ( j − 1
2 ).

Using the latitude of T-point ϕ( j), the zonal width of the grid unit for T-points ∆λ = λ(i+ 1
2 ) − λ(i− 1

2 ), and the Earth’s
radius a, the length of the thick line along the latitude circle (∆s) is expressed as:

∆s = a
∆λ

2
cos ϕ. (3.9)

Integrating this in the latitudinal direction, we obtain the following.

(anhft)i, j =
∫ ϕ+

∆ϕ
2

ϕ
∆sadϕ =

a2∆λ

2

∫ ϕ+
∆ϕ
2

ϕ
cos ϕdϕ =

a2∆λ

2

{
sin

(
ϕ +
∆ϕ

2

)
− sin ϕ

}
=a2
∆λ cos

(
ϕ +
∆ϕ

4

)
sin
∆ϕ

4

=a2
∆λ

(
cos ϕ cos

∆ϕ

4
− sin ϕ sin

∆ϕ

4

)
sin
∆ϕ

4

=a2
∆λ cos ϕ cos

∆ϕ

4
sin
∆ϕ

4

(
1 − tan ϕ tan

∆ϕ

4

)
=

a2

2
∆λ cos ϕ sin

∆ϕ

2

(
1 − tan ϕ tan

∆ϕ

4

)
. (3.10)

Similarly, the area of the southeastern quarter of the T-cell (variable name in the model: ashft, the same as that of the
southwestern quarter) is expressed as:

(ashft)i, j =
a2

2
∆λ cos ϕ sin

∆ϕ

2

(
1 + tan ϕ tan

∆ϕ

4

)
. (3.11)

At the north and the south poles, where ϕ = ±90◦, we obtain the following by changing (3.10) and (3.11) to the following
forms.

(anhft)i, j =
a2

2
∆λ sin

∆ϕ

2

(
cos ϕ − sin ϕ tan

∆ϕ

4

)
(3.12)

(ashft)i, j =
a2

2
∆λ sin

∆ϕ

2

(
cos ϕ + sin ϕ tan

∆ϕ

4

)
. (3.13)
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Chapter 3 Spatial grid arrangement

(a)

(b)

anhfti-1, j

ashfti-1, j ashfti, j

a_bri, j

a_tli, j a_tri, j

anhfti, j

a_bli, j

∆s

Ui, j

Ti, j

dy_tli, j dy_tri, j

dx_tri, jdx_tli, j

dy_bli, j

dx_bli, j dx_bri, j

dy_bri, j

dy_tli, j-1

dx_tli, j-1

dx_tri-1, j

dy_bri-1, j

dx_bri-1, j

dy_tri, j-1dy_tri-1, j-1

dx_tri-1, j-1

Ui, j

Ti, j

U-cell boundary
T-cell boundary

Figure3.4 Variables that define a grid unit. (a) Distance. (b) Area. Grid indices (i, j) follow the convention described in Section 3.3.

At the north pole:

(anhft)i, j =0 (3.14)

(ashft)i, j =
a2

2
∆λ sin

∆ϕ

2
tan
∆ϕ

4
. (3.15)

At the south pole:

(anhft)i, j =
a2

2
∆λ sin

∆ϕ

2
tan
∆ϕ

4
(3.16)

(ashft)i, j =0. (3.17)

In our model

(a_bl)i, j = (anhft)i, j, (a_br)i, j = (anhft)i+1, j,

(a_tl)i, j = (ashft)i, j+1, (a_tr)i, j = (ashft)i+1, j+1,

and the areas of the grid cells centered on the U-points and T-points are calculated by (3.5) and (3.6).
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3.5 Calculation of vertical cell thickness

3.5 Calculation of vertical cell thickness
a. Distribute sea level variation to the four sub-divided parts of a T-cell

If the sea level variation ηi, j is known at a T-point, the thickness of four divided cells that comprise a T-cell is determined
as follows:

(dzu_bl)i+ 1
2 , j+

1
2 ,k−

1
2
= (ηi, j + Hi+ 1

2 , j+
1
2
)

(dzu_cnst)i+ 1
2 , j+

1
2 ,k−

1
2

Hi+ 1
2 , j+

1
2

(3.18)

(dzu_tl)i+ 1
2 , j−

1
2 ,k−

1
2
= (ηi, j + Hi+ 1

2 , j−
1
2
)

(dzu_cnst)i+ 1
2 , j−

1
2 ,k−

1
2

Hi+ 1
2 , j−

1
2

(3.19)

(dzu_br)i− 1
2 , j+

1
2 ,k−

1
2
= (ηi, j + Hi− 1

2 , j+
1
2
)

(dzu_cnst)i− 1
2 , j+

1
2 ,k−

1
2

Hi− 1
2 , j+

1
2

(3.20)

(dzu_tr)i− 1
2 , j−

1
2 ,k−

1
2
= (ηi, j + Hi− 1

2 , j−
1
2
)

(dzu_cnst)i− 1
2 , j−

1
2 ,k−

1
2

Hi− 1
2 , j−

1
2

, (3.21)

where H is the depth of sea floor and dzu_cnst is the logical definition of vertical cell thickness in z∗ frame, which does
not vary in time. Volume of the four cells becomes

(volu_bl)i+ 1
2 , j+

1
2 ,k−

1
2
= (a_bl)i+ 1

2 , j+
1
2
(dzu_bl)i+ 1

2 , j+
1
2 ,k−

1
2

(3.22)
(volu_tl)i+ 1

2 , j−
1
2 ,k−

1
2
= (a_tl)i+ 1

2 , j−
1
2
(dzu_tl)i+ 1

2 , j−
1
2 ,k−

1
2

(3.23)
(volu_br)i− 1

2 , j+
1
2 ,k−

1
2
= (a_br)i− 1

2 , j+
1
2
(dzu_br)i− 1

2 , j+
1
2 ,k−

1
2

(3.24)
(volu_tr)i− 1

2 , j−
1
2 ,k−

1
2
= (a_tr)i− 1

2 . j−
1
2
(dzu_tr)i− 1

2 , j−
1
2 ,k−

1
2
. (3.25)

Using these, the new volume of T-cells and U-cells is obtained. There is no leak in volume by using this method. Figure
3.5 illustrates the procedure.

z

x

η

Figure3.5 Illustration of a vertical slice through a set of grid cells in the x-z plane for z∗ coordinate. The center point
in each cell (•) is a velocity point. The cross (×) is a tracer point.
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Chapter 3 Spatial grid arrangement

b. U-cell

Thickness of a U-cell (dzu) is obtained by dividing U-cell’s volume by U-cell’s horizontal area. U-cell’s volume is a sum
of the four sub-divided cells whose volume varies following sea level variation on T-cells where they belong to. Using
(3.22) through (3.25), we have,

(volu)i+ 1
2 , j+

1
2 ,k−

1
2
= (volu_bl)i+ 1

2 , j+
1
2 ,k−

1
2
+ (volu_br)i+ 1

2 , j+
1
2 ,k−

1
2

+ (volu_tl)i+ 1
2 , j+

1
2 ,k−

1
2
+ (volu_tr)i+ 1

2 , j+
1
2 ,k−

1
2
. (3.26)

Then the thickness is computed by

(dzu)i+ 1
2 . j+

1
2 ,k−

1
2
≡ (volu)i+ 1

2 , j+
1
2 ,k−

1
2

/
(areau)i+ 1

2 , j+
1
2
, (3.27)

that is, the thickness of a U-cell is the average of the thickness of the four sub-divided T-cells.

c. T-cell

Volume of a T-cell is also calculated as a sum of the four sub-divided cells. Using (3.22) through (3.25), we have

(volt)i, j,k− 1
2
= (volu_bl)i+ 1

2 , j+
1
2 ,k−

1
2
+ (volu_tl)i+ 1

2 , j−
1
2 ,k−

1
2

+ (volu_br)i− 1
2 , j+

1
2 ,k−

1
2
+ (volu_tr)i− 1

2 , j−
1
2 ,k−

1
2
. (3.28)

Because horizontal cross section of a T-cell is not uniform vertically owing to the presence of partial cells, thickness of a
T-cell cannot be determined identically. Here, the thickness dzt_cnst is determined as the difference between top and
bottom face of the T-cell,

(dzt_cnst)i, j,k− 1
2
= max

(
(dzu_cnst)i+ 1

2 , j+
1
2 ,k−

1
2
, (dzu_cnst)i+ 1

2 , j−
1
2 ,k−

1
2
,

(dzu_cnst)i− 1
2 , j+

1
2 ,k−

1
2
, (dzu_cnst)i− 1

2 , j−
1
2 ,k−

1
2

)
. (3.29)

d. Depth anomalies

We defined vertical cell thickness of four divided cells that comprise a T-cell by (3.18) through (3.21). In the same manner,
we may define the anomalies of the actual depth at the center and bottom of the four divided cells, with −η at the sea
surface (s = 0). Note that depth is defined positive downward.

For the center,

(dpu_bl)i+ 1
2 , j+

1
2 ,k−

1
2
= −

Hi+ 1
2 , j+

1
2
− (dpu_cnst)i+ 1

2 , j+
1
2 ,k−

1
2

Hi+ 1
2 , j+

1
2

ηi, j (3.30)

(dpu_tl)i+ 1
2 , j−

1
2 ,k−

1
2
= −

Hi+ 1
2 , j−

1
2
− (dpu_cnst)i+ 1

2 , j−
1
2 ,k−

1
2

Hi+ 1
2 , j−

1
2

ηi, j (3.31)

(dpu_br)i− 1
2 , j+

1
2 ,k−

1
2
= −

Hi− 1
2 , j+

1
2
− (dpu_cnst)i− 1

2 , j+
1
2 ,k−

1
2

Hi− 1
2 , j+

1
2

ηi, j (3.32)

(dpu_tr)i− 1
2 , j−

1
2 ,k−

1
2
= −

Hi− 1
2 , j−

1
2
− (dpu_cnst)i− 1

2 , j−
1
2 ,k−

1
2

Hi− 1
2 , j−

1
2

ηi, j (3.33)

and for the bottom,

(depu_bl)i+ 1
2 , j+

1
2 ,k
= −

Hi+ 1
2 , j+

1
2
− (depu_cnst)i+ 1

2 , j+
1
2 ,k

Hi+ 1
2 , j+

1
2

ηi, j (3.34)

(depu_tl)i+ 1
2 , j−

1
2 ,k
= −

Hi+ 1
2 , j−

1
2
− (depu_cnst)i+ 1

2 , j−
1
2 ,k

Hi+ 1
2 , j−

1
2

ηi, j (3.35)

(depu_br)i− 1
2 , j+

1
2 ,k
= −

Hi− 1
2 , j+

1
2
− (depu_cnst)i− 1

2 , j+
1
2 ,k

Hi− 1
2 , j+

1
2

ηi, j (3.36)

(depu_tr)i− 1
2 , j−

1
2 ,k
= −

Hi− 1
2 , j−

1
2
− (depu_cnst)i− 1

2 , j−
1
2 ,k

Hi− 1
2 , j−

1
2

ηi, j, (3.37)
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where dpu_cnst is the logical depth at the center of a U-cell (dashed line in Figure 3.3a) and depu_cnst is the logical
depth at the bottom of a U-cell (solid line in Figure 3.3a).

The depth anomaly of a T-point is obtained as an area average. For example, at the center,

(dpt)i, j,k− 1
2
=

{
(a_bl)i+ 1

2 , j+
1
2
(dpu_bl)i+ 1

2 , j+
1
2 ,k−

1
2
+ (a_tl)i+ 1

2 , j−
1
2
(dpu_tl)i+ 1

2 , j−
1
2 ,k−

1
2

+ (a_br)i− 1
2 , j+

1
2
(dpu_br)i− 1

2 , j+
1
2 ,k−

1
2
+ (a_tr)i− 1

2 . j−
1
2
(dpu_tr)i− 1

2 , j−
1
2 ,k−

1
2

}/
(areat)i, j,k+ 1

2
(3.38)

and for the bottom,

(dept)i+ 1
2 , j+

1
2 ,k
=

{
(a_bl)i+ 1

2 , j+
1
2
(depu_bl)i+ 1

2 , j+
1
2 ,k
+ (a_tl)i+ 1

2 , j−
1
2
(depu_tl)i+ 1

2 , j−
1
2 ,k

+ (a_br)i− 1
2 , j+

1
2
(depu_br)i− 1

2 , j+
1
2 ,k
+ (a_tr)i− 1

2 . j−
1
2
(depu_tr)i− 1

2 , j−
1
2 ,k

}/
(areat)i, j,k+ 1

2
. (3.39)

In the above calculation, we use only full cells, that is, we do not include partial cells except for the bottom cell (k = ktbtm).
This is reflected in the use of (areat)i, j,k+ 1

2
instead of (areat)i, j,k− 1

2
.

Using this, the variable thickness of a T-cell is calculated as follows:

(dzt)i, j,k− 1
2
= (dept)i, j,k − (dept)i, j,k−1 + (dzt_cnst)i, j,k− 1

2
. (3.40)

3.6 Usage
3.6.1 Choice of horizontal coordinate system
For horizontal coordinate system, either spherical or generalized orthogonal curvilinear coordinates must be chosen.

a. Spherical coordinates

For a model that does not include the North Pole, spherical coordinates with geographical longitude-latitude axes will be
a standard choice.

If spherical coordinates are chosen, model option SPHERICAL must be added to the list of options (the line start with
OPTIONS =) specified in configure.in.

The geographical position of north and south pole should not be necessarily at the Earth’s North and South Pole. If the
model’s north pole is displaced, this is specified by namelist nml_poles (Table 3.1).

Table3.1 Namelist nml_poles for SPHERICAL option. The geographical location of the model’s south pole is
determined automatically by the specification of the north pole.

variable name units description usage
north_pole_lon degree geographical longitude of north pole default is 0°
north_pole_lat degree geographical latitude of north pole default is 90°N

b. Generalized orthogonal curvilinear coordinates

Singularity at the North Pole may be avoided by coordinate transformation within the framework of generalized orthogonal
curvilinear coordinates.

Two options are available:

• Tripolar grid (TRIPOLAR) combining geographical lat-lon south of around 60◦N and transformed coordinates to the
north.

• Joukowski conversion (JOT) applied to the whole sphere of the Earth.

When either TRIPOLAR or JOT option is chosen, that option must be added to the list of options (the line start
with OPTIONS =) specified in configure.in. In addition, namelist nml_poles must be specified, but in this case the
geographical locations of the two new singular points instead of the Earth’s North and South Pole should be given (Table
3.2). See Chapter 20 for details.
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Table3.2 Namelist nml_poles for TRIPOLAR or JOT option. See also Figure 3.6b for the locations of the two singilar
points to be specified.

variable name units description usage
north_pole_lon degree geographical longitude of one of the two new

singular points
specification is required

north_pole_lat degree geographical latitude of one of the two new
singular points

specification is required

south_pole_lon degree geographical longitude of the other of the two
new singular points

specification is required

south_pole_lat degree geographical latitude of the other of the two
new singular points

specification is required

3.6.2 Definition of model domain
To determine the model domain, the region of interest must be first filled with U-cells, where sea floor depths are given.
This is the lightly shaded region of Figure 3.6, which is called the core region. For a closed basin model, this core region
must be surrounded by land cells (Figure 3.6a). For a model domain with cyclic boundary condition (Figure 3.6b), two
halo U-cells must be added to both western and eastern sides. When a zonally cyclic condition is used, CYCLIC option
must be specified in configure.in. For a tri-pole model with TRIPOLAR or JOT option, three U-cells must be added as
halos to the northern end of the core region. The total number of grid points (imut and jmut) must include halo cells.

The total numbers of grid points in the three directions (imut, jmut, and km) must be given to configure.in. Minimum
information that must be given to configure.in for compiling a global tri-polar grid model will look like as follows.

An example specification given to configure.in for a global tri-polar grid model� �
OPTIONS="TRIPOLAR CYCLIC"
IMUT=364
JMUT=368
KM=60� �
Further horizontal grid information is given to the model by namelist at run time. It is necessary to specify the western

and southern end of model’s core region and the X and Y axis grid spacing. They are given by namelist nml_horz_grid
(Table 3.3). When the horizontal grid spacing is given by a file, the file is read by the model at run time as follows.

Format of horizontal grid spacing data (file_dxdy_tbox_deg).� �
real(8) :: dxtdeg(imut), dytdeg(jmut)
integer(4),parameter :: lun = 10
open(lun, file=file_dxdy_tbox_deg, form=unformatted )
read( lun ) i, j
if ( ( i == imut ).and.( j == jmut ) ) then
read( lun ) dxtdeg
read( lun ) dytdeg

end if
close(lun)� �

Here, dxtdeg and dytdeg are longitudinal and latitudinal width of T-cells, respectively (Figure 3.6c). Note that they
can vary only in the direction of their own axis.

The vertical water column is filled by U-cells with specified thickness. The start point of the vertical grid is always set
to be zero (sea surface). The vertical grid index increases downward and the vertical grid width (∆zk− 1

2
= dz(k)) is given

either by a file or a namelist. Which one to select is determined by namelist nml_vert_grid (Table 3.4) at run time.
When the vertical grid spacing is given by a file, the file is read by the model at run time as follows.
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Table3.3 Namelist nml_horz_grid

variable name units description usage
lon_west_end_of_core model longitude

in degree
the longitude of the western end
of model’s main region

specification is required

lat_south_end_of_core model latitude in
degree

the latitude of the southern end
of model’s main region

specification is required

dx_const_deg degree uniform X-axis grid spacing default is zero
dy_const_deg degree uniform Y-axis grid spacing default is zero
file_dxdy_tbox_deg character X and Y axis grid spacing are

given by this file
If either X or Y axis grid spacing
is not uniform, prepare this file.

Format of vertical grid spacing data (file_dz_cm).� �
real(8) :: dz(km)
integer(4),parameter :: lun = 10
open(lun, file=file_dz_cm, form=unformatted)
read(lun) k
if ( k == km ) then
read(lun) dz

endif
close(lun)� �

Table3.4 Namelist nml_vert_grid

variable name units description usage
file_dz_cm character vertical grid spacing is given by this file If the vertical grid spacing is not uniform,

prepare this file. dz_const_cm must not
be given.

dz_const_cm cm uniform vertical grid spacing default is zero

3.6.3 Grid cell area and line elements
When spherical coordinates are chosen (SPHERICAL), grid cell area and line elements are calculated analytically by the
model (Section 3.4.2). When generalized orthogonal curvilinear coordinates are chosen (TRIPOLAR or JOT), they should
be read from file (Section 3.4.1). The file name must be given by namelist nml_grid_scale (Table 3.5).

Table3.5 Namelist nml_grid_scale

variable name units description usage
file_scale character grid cell area and line elements are given

by this file
specification is required for TRIPOLAR or
JOT.

The file that contains the grid cell and line elements (see also Figure 3.4 for positions) is read by the model at run time
as follows.
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Figure3.6 Illustration to explain how to determine the model domain and how to give information to the model.
Schematic of a model with (a) closed domain, (b) zonally cyclic (CYCLIC) and northern end folding (TRIPOLAR or
JOT) conditions. The light shades are model’s region of interest (core region). The dark shades are land that must be
attached around the core region. The white cells in (b) are halos. (c) Definition of the most basic arrays (dxtdeg and
dytdeg) that define grid spacing. Grid indices (i, j) follow array indices in program codes. The indices of the T-points
in the vicinity of boundaries are shown in (a) and (b).
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Format of grid cell area and line elements (file_scale; if not SPHERICAL)� �
real(8) :: a_bl(imut,jmut), a_br(imut,jmut), a_tl(imut,jmut), a_tr(imut,jmut)
real(8) :: dx_bl(imut,jmut), dx_br(imut,jmut), dx_tl(imut,jmut), dx_tr(imut,jmut)
real(8) :: dy_bl(imut,jmut), dy_br(imut,jmut), dy_tl(imut,jmut), dy_tr(imut,jmut)
integer(4),parameter :: lun = 10
open(unit=lun, file=file_scale, form=unformatted)
read(unit=lun) a_bl ! U-box area of bottom-left 1/4 grid
read(unit=lun) a_br ! U-box area of bottom-right 1/4 grid
read(unit=lun) a_tl ! U-box area of top-left 1/4 grid
read(unit=lun) a_tr ! U-box area of top-right 1/4 grid
read(unit=lun) dx_bl ! U-box length of bottom-left 1/4 grid
read(unit=lun) dx_br ! U-box length of bottom-right 1/4 grid
read(unit=lun) dx_tl ! U-box length of top-left 1/4 grid
read(unit=lun) dx_tr ! U-box length of top-right 1/4 grid
read(unit=lun) dy_bl ! U-box length of bottom-left 1/4 grid
read(unit=lun) dy_br ! U-box length of bottom-right 1/4 grid
read(unit=lun) dy_tl ! U-box length of top-left 1/4 grid
read(unit=lun) dy_tr ! U-box length of top-right 1/4 grid
close(lun)� �
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