第1章 火山活動評価手法の開発

1.1 力学的シミュレーション手法の開発

1.1.1 有限要素法による火山性地殻変動計算精度の確立 —茂木—山川モデルの再現—
Establishment of Precision of Calculation for Volcanic Crustal Deformation by FEM

- Reproduction of Mogi-Yamakawa’s Model Using FEM -

by

Takayuki Sakai¹, Tetsuya Yamamoto²*, Keiichi Fukui¹, Kenji Fujiwara²,
Akimichi Takagi¹ and Masaaki Churei³*

1. Seismology and Volcanology Research Department, Meteorological Research Institute, Tsukuba, Japan
2. Japan Meteorological Agency, Tokyo, Japan
3. Niigata Local Meteorological Observatory, Niigata, Japan
* Present affiliation: Magnetic Observatory, Ishioka, Japan

(Received June 14, 2006; Accepted December 20, 2006; Published July 10, 2007)

Abstract

Analytical solutions derived under very simplified conditions have been used to explain the crustal deformation around volcanoes. One example is Yamakawa’s solution (Yamakawa, 1955), which represents surface deformation caused by small enough spherical pressure source at some depth within a semi-infinite homogeneous elastic body. However, such solutions do not exactly hold true in a real volcano, due to the volcanic edifices that project from the earth’s surface, non-spherical pressure sources, inhomogeneous crustal structures, and so on. We use the finite element method (FEM) to create numerical models of a volcano for investigating crustal deformation of a real volcano. The size of the FE model or the setting of its boundary conditions will likely affect the precision of calculation for volcanic crustal deformation. Therefore, we reproduced Mogi-Yamakawa’s model (or Mogi’s model) using FE models of various model sizes and boundary conditions. We then quantitatively evaluated the influence of model size and boundary conditions on the precision of calculation. The results are as follows. As the FE model becomes larger, the results of FE analysis approach Yamakawa’s solution, which demonstrates an improved precision of calculation. However, the smallest possible FE model is recommended so far as the necessary precision of calculation is ensured, because a large model generally produces a large number of nodes which leads to an accelerative increase in calculation time. The boundary condition of fixing bottom and side surfaces of an FE model completely is recommended because the changes in precision of calculation with distance are similar for both vertical and horizontal displacements. The vertical and horizontal sizes of the FE model remarkably affect the precision of calculation for vertical and horizontal displacements, respectively.

* Corresponding author: Takayuki Sakai
Meteorological Research Institute,
1-1 Nagamine, Tsukuba, Ibaraki 305-0052, Japan.
E-mail: tsakai@mri-jma.go.jp
© 2007 by the Japan Meteorological Agency / Meteorological Research Institute
1. はじめに

火山における地殻変動を解釈するモデルとして、従来、いわゆる「茂木-川モデル」（または、単に「茂木モデル」）が多く用いられてきた。このモデルは、山川（1955）が提出した地球の圧力源による地表面変位の解析解（以下「山川の解」）を、茂木（1957）が福島の大火山灰火（1914年）前後の給与カルデラ周辺の地殻変動に適用したことからそう呼ばれている。

山川の解は、深さに対して充分小さな圧力源が半無限均質弾性体内に存在するという、非常に限定された条件下においてのみ精度良く成り立つ（山川、1955）。一方、現実の火山においては、地殻表面に突出する火山地形が存在するため、山川の解の前提条件はそもそも完全には成り立たない。また、火山体の下や周辺での不均質な構造が、自然地震の解析（例えば、山本・井田、1994；Ohmi and Lees, 1995）や人工地震探査（例えば、西、1997；Yamawaki et al., 2004）によって既に幾つかの火山で明らかになっているほか、検討例（例えば、Yang and Davis, 1988）やバイパス状（例えば、Bonaccorso and Davis, 1999）など球形以外の圧力源形状が想定される。あるいは、圧力源形状が球であっても、山川の解が精度良く成立しないような非常に浅い場所でそれが存在するような場合も想定される。そこで我々は、現実の火山における地殻変動の様子をより詳しく知るため、物体を仮想的に多数の要素（element）に分割して数値解を求める有限要素法（finite element method, 以下「FEM」）を用いて、実際の火山地形及び地球の速度構造を取り込んだ三次元の有限要素モデル（finite element model, 以下「FEMモデル」）を作成し、有限要素解析（finite element analysis, 以下「FEM解析」）あるいは、混在の恐れがない場合には単に「解析」とすることもある）を進めている。

その研究を始めるに当たり、FEMによる火山性地殻変動の計算精度を確認する必要があった。しかし、FEM自体は既に確立されている数値計算技術である。これは主に工学工学部門で使用され、自動車や航空機などの機械製品、ビルや橋梁などの構造物などの設計に広く用いられている計算手法である。このような工学工学部でのFEM解析は、通常、解析対象全体をモデリングして行なわれる。一方、FEMを火山性地殻変動の計算に適用する際には、火山周辺の数km〜数十km程度の範囲の局所的な地殻変動を計算するためにだけに固体地球全体をモデリングする必要はないと考えられ、実際、Dieterich and Becker (1975) や Bianchi et al. (1984) をはじめとする数多くの先行研究は、水平方向にも深さ方向にも固体地球の一部を切り取ったFEMモデルを作成して解析を行っている。ところで、そのように固体地球の一部のみをモデル化とするFEMモデルでは、モデルの影響が大きいことが予想され、精度計算精度を得るためにはモデル領域の大きさや境界条件の設定が重要となると考えられる。しかしながら、過去の研究の多くの中には程度大きなモデル領域を仮定して設定しているのみで、モデル領域の大きさや境界条件の設定が計算精度に与える影響についての定量的な検討はほとんどされていない。他方、一部のFEM流用ソフトウェアでは、有限要素インフィニティ要素と呼ばれる、有限要素の一部を無限遠に移動した特殊な要素を使用して無限領域を近似し、通常の有限要素近似と組み合わせて解析することもできる（例えば、駒田ほか、共編著、1938；小垣、1990）が、そのような要素を仮定したソフトウェアは少なく、あまり一般的ではない。

FEMによる火山性地殻変動の計算精度を確認するには、何らかの解析解が存在する状況をFEMモデルで再現し、その計算結果を解析解と比較すれば良い。Trasatti et al. (2003) は、エトナ火山の近似体形状及び構造を取り入れてFEM解析を行う上に当たり、その計算精度を確かめるため、地下に球形圧力源を仮定したFEMモデル（地表ないし地表）と火山の解との比較を行っている。彼らは、火山の深さDが1.5kmから19kmまでの4例の球形圧力源（半径aは0.6kmあるいは2km）について、水平方向、深さ方向とも200kmの大規模なメッシュ領域を設定して計算を行い、確かに山川の解に概ね良く一致する結果を示している。しかしながら、ここでは、解析結果が山川の解の変位曲線に極めて良く乗っている様子がグラフ上で思われずに示されているのみであり、計算精度についての具体的な数値は示されていない。また、モデル領域が200kmより小さい場合の計算精度については議論されていない。

2. 山川の解とFEMによる数値解

2.1 山川（1955）の球形圧力源による地表面変位の解

山川（1955）によると、剛性率μの半無限均質弾性体内部に球核（中心深さD、半径a）が存在し、その表面に5Pの圧力変化が加わった場合（Fig.1）、球圧力源の中心からの距離gがrの点にある地表面の上の点の変位u_rおよびradial方向の水平変位u_rは次の解析解で表される。ただし、ラメの定数はμに等しいとし、また、山川の解によるu_rおよびu_rを0であることを明確にするため、以下それぞれU_r(YMk)、U_r(YMk)と表記する。

\[U_r(YMk) = \frac{3a^2 \Delta P}{4 \mu} \left(\frac{D}{D^2 + r^2} \right)^{3/2} \] \quad (1)

\[U_r(YMk) = \frac{3a^2 \Delta P}{4 \mu} \left(\frac{r}{D^2 + r^2} \right)^{3/2} \] \quad (2)
なお、長軸については、原論文では鉛直下向きを正としているが、ここでは鉛直上向きを正として(1)式の符号を変え、\(U_{(YMK)} > 0 \)の場合に地表面の隆起を表すこととする。

この解は \(a/D \leq 1 \) の場合に、より具体的には \(a/D \leq 0.1 \)の場合に、充分に大きい近似を与える (山川, 1955)。

(1)(2)式より、

\[
\frac{U_{(YMK)}}{U_{r(YMK)}} = \frac{D}{r} \quad \cdots (3)
\]

という関係が成立つことから、地表面上の任意の地点は、Fig.1 に見られるように、球圧力源中心とその地点を結ぶ直線の延長線上に変位する。

\(\Delta P > 0 \)（隆起）の場合について、\(r \) と \(U_{r(YMK)} \)および \(U_{r(YMK)} \)との関係を Fig.2 に示す。横軸は \(D \) によって、また縦軸は \(U_{r(YMK)} \)の最大値（下記(4)式）によってそれぞれ規格化している。\(r = D \)において \(U_{r(YMK)} \)と \(U_{r(YMK)} \)は交点を持ち、大小関係が入れ替わる。\(U_{r(YMK)} \)は \(r \)に関する単調減少関数であり、\(r = 0 \)（球圧力源軸上）において、最大値

\[
U_{zMAX(YMK)} = \frac{3a^3 \Delta P}{4 \mu} \frac{1}{D^2} \quad \cdots (4)
\]

を取る。一方、\(U_{r(YMK)} \)については、最大値を取る地点を \(r_{MAX(YMK)} \)とすると、(2)式を \(r \)で微分することにより、

\[
r_{MAX(YMK)} = \frac{D}{\sqrt{2}} \approx 0.7071D \quad \cdots (5)
\]

において最大値

\[
U_{rMAX(YMK)} = \frac{3a^3 \Delta P}{4 \mu} \frac{1}{\sqrt{2}} \frac{1}{(3/2)^{3/2}} \frac{1}{D^2} \quad \cdots (6)
\]

を取ることが導かれる。

2.2 FEM の概念と使用ソフトウェア

FEM とは、物体の形状が複雑な場合など解析的に扱うことが困難である場合に、その物体を仮想的に多数の有限の大きさの要素に分割（meshing, 以下「メッシング」）して数値解を求める手法である。FEM の特長として、複雑な形状のモデルと不均質性媒質のいずれに対しても取り扱いが容易なことが挙げられる。このような特長は、差分法（finite difference method, 複雑な形状のモデルの扱いが困難）や境界要素法（boundary element method, 不均質な媒質の扱いが困難）など、他の解析手法には見られないものである。従って FEM は、火山地形という複雑な形状を一般に有し、かつ不均質な地下構造が想定される現実の火山をモデリングするのに対しても適用が容易であると考えられる。FEM では要素内部の変位は形状関数（shape function）と呼ばれる関数によって補間され、それぞれの要素についての要素マトリックスを作成した後に、物体全体についての境界条件を組み込みつつ全ての要素マトリックスを結合した全体マトリックスを作成し、それを解いて数値解を求められる。二次元 FE モデルの場合は三角形要素や四角形状要素、また三次元 FE モデルの場合は主として四面体要素や六面体要素とそれぞれ用いられ、それらの多角形や多面体の顶点は節点 (node) と呼ばれる。FEM 解析の基本的なテクニックとして、一般に、

- 解析対象の形状をできるだけ忠実に表現する
- 曲面部分や応力が集中する領域は細かくメッシングする
・縦接する要素の大きさを急激に変えず徐々に変化させる
・要素の形状を極端に扁平にしない

などが挙げられる（例えば、三好ほか、1998）。

FEMに関しては汎用ソフトウェアが多数商用化されており、今回の三次元FEモデル作成および解析にはANSYS, Inc.のANSYS Ver.7.0を使用した。三次元FEモデルにおいて球面などの曲面を扱う際は四面体要素が通常用いられる。今回より高い計算精度が得られるよう、形状関数が横断の二次関数で表される四面体要素（Fig.3）を用いた。この場合、Fig.3に見られるように、節点間に6個の中間節点（midside node）が配置され、要素内のある点の例えばx方向の変位uは次式で補間される（例えば、小川、1990）。

$$u = u_i (2L_i - 1)L_i + u_j (2L_j - 1)L_j$$
$$+ 4u_M L_i L_j + 4u_o L_o L_o + 4u_g L_o L_o$$

ここで、u_iからu_8はそれぞれ節点I～Lおよび中間節点M～Rにおけるx方向の変位であり、L_iからL_jは要素の体積によって規格化された体積座標変数と呼ばれる座標変数である。y方向およびz方向の変位については同様にして補間が行われる。

3. モデル領域の大きさが計算精度に及ぼす影響

以下の文脈では、FE解析によって得られたモデル地表面上の点の上下変位U_iおよび水平変位U_jをそれぞれU_{RFE}およびU_{TFE}と表記する。

図体球モデルの表面の曲率は無視し、地表面を平面とする。

以下に挙げる、ある球核（D=10km、a=1kmとする）の周りに円柱のモデル領域を考える。ただし、球核は円柱モデル領域の中心軸上に存在するものとする。

円柱モデル領域の半径をR、高さ（地表面からモデル底面までの深さ）をHとする。本節ではRとHを等しく設定し、その上でRおよびHの大きさを様々な変え、各FEモデルの解析結果と山川の解とを比較する。以下、RおよびHをある大きさ（km）に設定したFEモデルのことを、その大きさを冠して「〇〇kmモデル」と呼ぶ。例えば、R=H=100kmに設定したFEモデルのことを「100kmモデル」と呼ぶ。また、U_iおよびU_jについてはFE解析結果と山川の解との比較を取ったもの（つまり、U_{RFE} / U_{TLM}およびU_{TFE} / U_{TLM}）をそれぞれ「U_i比」および「U_j比」と呼ぶこととする。

球核のa/Dを0.1（=1km/10km）に設定したのは、山川の解が充分大きく成長する条件の下でFE解析結果が山川の解と比較するためである。この時、この球核の周りに設定されたモデル領域の大きさおよび境界条件の設定が適切であれば、FE解析結果は山川の解に良く一致するはずである。逆に、モデルの設定が適当でない場合には、FE解析結果は山川の解から乖離するはずである。従って、今回のU_i比およびU_j比はFEMによる火山性地殻変動の計算精度を表す値であり、それらが1に近いモデルほど計算精度の高い適切なモデルと言える。

FEモデルの媒質は山川の解に合わせて均質かつλ=μ（従ってポアソン比は0.25）とする。剛性率μの値として、茂木（1957）に従い40GPaを用いる（ただし、同論文では「μ=4×10^6」とのみ記されており単位の記載がないが、その単位はCgs単位系のdyne/cm^2である）。この値は上地殻の標準的な値である（例えば、大中・松浦、2002）。この時、ヤング率は100GPaとなる。球核の表面に加わる圧力変化ΔPは正（外向き）とし、その大きさは各モデルとも1000atm（=0.101325GPa）に統一する。

3.1 モデル領域が小さい場合

まず、RおよびHをD（=10km）の1.5倍の15kmに設定した「15kmモデル」について考察してみる。モデルの外周をFig.4-1に示す。これは円柱モデル領域のうち、方位角方向に90度に切断した、全体の1/4の領域に過ぎないが、軸対称モデルの場合の2つの切断面に対称境界条件を設定してFE解析を行うことにより、要素数および節点数を360度円柱モデルの場合の約1/4に減らしつつ360度円柱モデルと同じく同一解析結果を得ることができる。ANSYS Ver.7.0では、全体マトリックスを解くのに要するCPU時間は要素数および節点数のおよそ2乗に比例して增大するため、90度円柱モデルは360度円柱モデルの1/16程度の時間で計算を完了することができる。メッシュの設定は、球核（モデル中心）の表面のメッシュサイズを100m程度と充分に小さくし、また、地表面（モデル上面）のメッシュサイズを1000m程度とした。その結果、要素数は6979個、節点数は中間節点を含めて11505個となった。また、本節では、円柱モデル領域の底面および外周面（球圧力源直上からの水平距離r=15kmの円柱

Fig. 3 Three-dimensional, 10-Node tetrahedral element used in this finite element analysis (FEA). I, J, K and L are nodese, M, N, O, P and Q are midside nodes. The shape function of this element is represented by a quadratic function.
側面）に対する境界条件はいずれも完全固定（上下方向、水平方向の変位をいずれもゼロに拘束）とする。
なお、第5節で述べるように、この境界条件は今回の解析で我々が最も適当であると考える境界条件である。

このFEモデルの地表面上の節点の変位をU_{i}^{\text{FEM}} およびU_{i}^{\text{H}} を、山川の解と併せてFig.4-2(a)に示す。図中、
U_{i}^{\text{FEM}} およびU_{i}^{\text{H}}（中間節点を含めて500m間隔）
は丸印で、山川の解は実線で示してある。また、
Fig.4-2(b) にはU_{R}比およびU_{H}比を示す。なお、r=0km
（球面座標の原点）ではU_{i}^{\text{FEM}} もU_{i}^{\text{H}} とも0となるため、
U_{R}比は示していない。この15kmモデルの場合、r=15km
地点は円柱モデル領域の外周面上にあり、そこには完
全固定の境界条件を課しているため、U_{i}^{\text{FEM}} = U_{i}^{\text{H}} = 0
となる。そのための影響はモデル外線部のみならずモデル
中間部まで及び、U_{r} では10.5km以遠の地点で、U_{r}
では6.0km以遠の地点で、FE解析結果は山川の解より
小さい値を取る。逆に、モデル中心部では、特にU_{i}^{\text{FEM}}
で過剰な変位が目立つ、例えばr=0kmでのU_{i}比は
1.228となる。これは、完全固定の境界条件が課されている
モデル領域底面および外周面の影響と考えられる。
実際の地殻地球の場合には、圧力源による変位は無限
に伝播する。しかし、本計算では、圧力源によって
本来は外周に変位すべきモデル領域底面および外周
面の各点が完全固定されて変位できないことにより、
モデルの唯一の自由面である地表面（ただしその外周
端は完全固定）の中心部に変位が集中するものと考え
られる。一方、U_{i}^{\text{FEM}} の最大値は、山川の解の最大値
を取る距離（D=10km）を（5）式に代入して
\text{MAX}=7.071\text{km} よりやや小さい距離に現れている様子が見て
取れる。

このように、モデル領域が小さい場合は、完全固定
されているモデル領域底面および外周面の影響を強く
受け、山川の解を精度良く再現することはできない。

3.2 モデル領域を拡大した場合

次に、円柱形のモデル領域のR およびH を次に大
きくした場合の解析結果を示す。なお、本稿で扱う FE
モデルは全て上記の15kmモデルと同様の軸対称モデ
ルであり、対称境界条件を設定することが可能である
ことから、計算の効率化のため、本稿では以下の全て
のモデルについて1/4モデルを使用する。

3.2.1 大きなモデル領域を有する幾つかの FE
モデルの概要

R=H=30kmに設定した「30kmモデル」の解析結果
をFig.5に示す。なお、このモデルのメッシュの設定
は、上記の15kmモデルと同様、球面の表面のメッシュ
サイズを100m程度、地表面のメッシュサイズを1000m
程度とした。このFEモデルのr=30km地点は円柱モデ
ル領域の外周面上であり完全固定されているため、や
はりU_{i}^{\text{FEM}} = U_{i}^{\text{H}} = 0となる。しかしながら、15km
地点でのU_{i}比およびU_{H}比はそれぞれ0.899および0.853
となっており、先の15kmモデル（15km地点でのU_{R}比 =
U_{H}比 = 0）に比べれば格段の改善が見られる。また、r
Fig. 5 Comparison of results of FEA of “30km model” (R=H=30km) and Yamakawa’s solution. The point at r=30km on the FE model is completely fixed, so the displacements decrease to zero at that point. However, remarkable improvement in precision of calculation is recognized at r=15km when compared to the “15km model” (see Fig.4-2(a)).

Fig. 6 Comparison of results of FEA of “50km model” (R=H=50km) and Yamakawa’s solution. The horizontal axis (distance r) is shown as far as 30km. Some improvement in precision of calculation is recognized when compared to the “30km model” (see Fig.5). However, the result of FEA does not agree with Yamakawa’s solution so well.

Fig. 7-(a) Comparison of results of FEA of “150km model” (R=H=150km) and Yamakawa’s solution. The horizontal axis (distance r) is shown as far as 30km. The results of the FEA indicate agreement with Yamakawa’s solution throughout the graph.

Fig. 7-(b) Ur and Uz ratios of the “150km model”.

=0kmでのUs比も0.986と、15kmモデルの場合(1.228)に比べてずっと1に近い。このことから、高い計算精度を得るには、モデル個所近延および外周面の影響が弱まるよう十分大きな領域を有する FE モデルを用意し、その中心部の解析結果を用いれば良いと想定される。

そこで、以下では、高い計算精度を得ることを目的とするモデル中央部の範囲を、D（＝10km）の3倍の30km地点までと設定し、モデル個所を次第に大きくした場合に計算精度がどの程度まで高まるかを確かめる。そこで、高い計算精度を得ることを目的とする範囲をDの3倍までと設定したのは、Fig.2に見られるように、Usは最大となる地点を過ぎてからの減少率が小さく、Dの約3倍の距離で急激に最大値の約1/4まで減少することを考慮してのことである。実際の火山地震変動観測で

Uzの変化の様子の全体像を掴むには、この程度の距離までのデータを得ることが望ましく、従って FEM でもこの程度の距離まで高い計算精度を確保することが必要と考えられる。

R=H=50kmに設定した「50kmモデル」の解析結果を Fig.6 に示す。なお、このモデルについても、15kmモデルや30kmモデルと同様に、球核の表面のメッシュサイズを100m程度、地表面のメッシュサイズを1000m程度とした。横軸rは上で設定した目標に従い30kmまでを示す（図は省略したが、モデル外周上となるr = 50km地点では完全固定の境界条件によってやはりUr FEM = Uz FEM = 0 となっている）。先の30kmモデルでは、モデル外周上であり完全固定されているr = 30km地点に近付いても FE 解析結果と山川の解との乖離が大きかったが、この50kmモデルでは、30km地点でのUr比およびUz比はそれぞれ0.691および0.770に改善されている。しかしながら、目標の30km地点まで山川の解を精度良く再現するにはまだまだ遠い。

そこで、RおよびHをさらに大きく設定してみる。R = H = 150kmに設定した「150kmモデル」の解析結果を
Fig. 7-1(a)に、U_1 比および U_2 比を Fig. 7-1(b)に示す。30km 地点までの全域にわたって山川の解が精度良く再現されていることが分かる。30km 地点での U_1 比および U_2 比はそれぞれ 0.916 および 0.987 で、上記の 50km 模型と比較しても段階に改善されている。

ところで、150km モデルのようにモデル領域を大きくすると、必然的に節点数が増加し、計算時間が増大したり、場合によっては計算機の能力を超えてしまうため、節点数をなるべく減らす工夫が必要となってくる。この 150km モデルを作成する際にも、先述の FE 解析の基本的なテクニックに従い、節点数を減らす工夫を加えた。150km モデルの全体像およびモデル中心部の拡大図をそれぞれ Fig. 7-2(a)および Fig. 7-2(b)に示す。$r=30km$ までのモデル中心部については上記の各モデルと同じ設定で細かくメッシュし、それに達するモデル外周部についてはメッシュサイズを次第に粗くなるように設定した。本稿で扱う球圧力源モデルの場合、応力は球圧力源が存在するモデル中心部に集中するため、モデル外周部のメッシュをこのように粗くしてもモデル中心部の計算精度にはほとんど影響しない。この 150km モデルの場合、先の 15km モデルに比べてモデル領域の体積が 100 倍になっているのにに対し、要素数は 39131 個、節点数は中間節点を含めて 58227 個と、いずれも 15km モデルの 5 倍程度に抑えられていることに成功しており、従って計算時間も 15km モデルの場合の 25 倍（＝5²）程度に抑えられている。

3.2.2 モデル領域の大きさと計算精度との関係

円柱形のモデル領域の R および H を次第に大きくした場合の計算精度の改善の様子を詳しく見ると、R および H を 12km から 200km まで徐々に変化させて FE モデルを作成し、解析を行った。なお、FEM では、同じソフトウェア上上の同じモデルであっても、メッシュングが異なれば解析結果に 0.2～0.3%程度の違いを生じることもあるが、ここではメッシュの違いが解析結果に及ぼす影響を可能な限り排除するため、各モデルのメッシュングに統一性を持たせた。特に、応力が集中するモデル中心部については全モデルに共通の 4 モデルと同一の設定でメッシュングを行った。また、モデル外周部以外についても、例えばモデル外周部の分割数を全モデルとも 5 分割とするなど、メッシュングに統一性を持たせるよう努めた。

R および H を次第に大きくした場合の、FE モデル中心部の幾つかの地点での U_1 比と U_2 比の改善の様子を Fig.8-1 に示す。U_1 比については、山川の解が最大値を取る =0km 地点（球圧力源直上）と、10km、20km、30km 地点での値を示し、U_2 比については、山川の解が最大値を取る =0.701km 地点（点S参照）と、10km、20km、30km 地点での値を示した。なお、FE 解析結果は中間節点も含めて 500m 間隔で算出されるが、$r=0.701km$ 地点での $U_{1(PEM)}$ は、(7)式の形状関数を使用する ANSYS の補間ツールによって求めた。

まず U_1 比について見ると、モデル領域が小さいほうが各地点での値が 1 には大きく異なることが多いが、モデル領域が大きくなるにつれて順調に 1 に収束していくことが分かる。特に、モデル中心部に位置し、モデル外周面の影響が小さい 0.701km および 10km 地点の U_1 比の 1 への収束は早い。なお、20km モデルでは 20km 地点での値が、また 30km モデルでは 30km 地点での値が 0 になっているのは、モデル領域の外周面を完全固定しているためである。

次に、U_2 比についても基本的には U_1 比と同様の傾向が見られ、モデル領域が大きくなるにつれてモデル中心部の 0km および 10km 地点は早く 1 に収束する。だが、20km および 30km 地点での 1 への収束は明らかに U_1 比より遅い。この理由については、現時点ではよく分からない。しかしながら、本稿の目的はその解明ではなく、FEM による火山性地殻変動の計算精度を確立することであるため、ここでは以上の解析結果を示すに止める。また、0km および 10km 地点での U_2 比と、7.071km 地点での U_1 比が、1 以上の値から 1 以下に一度下がった後に 1 に収束していくというやや複雑な変化を見せることも興味深い現象であるが、その理由の解明が必要である。
精度が確保される範囲内でのベクトル小さなモデル領域を設定するのが良いと考えられる。さらに、ANSYSではモデル領域を大きくするほどメモリングが次第に困難となる傾向もある（ANSYSでは一般的に、微細な形状が大きなモデル領域の中に存在する場合、両者の大き
さの比が小さくなるほどメッシングが困難となってい
く。
他方、各モデルの \(U_{\text{DEM}} \) が最大値を取る地点についても、先述の ANSYS の補間ツールを用いて 1m 単位で決定した。これを \(r_{\text{MAXIMUM}} \) とし、山川の解が最大値を	
取る地点 \(r_{\text{MAXIMUM}} = 7.071 \text{km} \) の比を Fig.9 に示す。
横軸はグラフの見やすさを考慮して対数目盛で示した。
\(R \) および \(H \) が小さい場合は、先述の 15km モデル（Fig.4-2(a) 参照）でも見られたように、\(r_{\text{MAXIMUM}} \) の
より小さい距離に現れ、従って両者の比は 1 より小さいが、\(R \) および \(H \) が 80km になると \(r_{\text{MAXIMUM}} \) と 1%以内で一致するようになり、最終的に約 0.5%の精度で
\(r_{\text{MAXIMUM}} \) に一致する。なお、\(U_{\text{DEM}} \) については、いずれのモデルでも山川の解と同様に \(r = 0 \text{km} \) （球圧力源直上）で最大値を取る。

4. FE モデルの相似則と計算精度のまとめ
ここでは \(D = 10 \text{km} \), \(a = 1 \text{km} \) という一つの具体的な球圧力源を用いて計算を進めてきたが、FE モデルで
は各部の比率を保つつつモデル全体の大きさを変えた場合に相似則が成り立つため、\(D \) が 10km 以外の FE モデルについても、前節で見た \(D = 10 \text{km} \) の各 FE モデルの解析結果からその計算精度を知ることができる。

具体系を挙げると、\(D \) および \(a \) をそれぞれ、これまでの各モデルの 1/2 の 5km および 0.5km にすると同時に、円柱モデル領域の \(R \) および \(H \) を前記の「150km モデル」 \((D=10 \text{km}, a=1 \text{km}) \) の 1/2 の 75km とした FE モデルを作成して解析を行うと、例えば \(r = 15 \text{km} \) 地点での \(U_{1,2,3} \) 是、150km モデルの \(r = 30 \text{km} \) 地点での \(U_{1,2,3} \) は 0.916 と等しくなる。同様に、他の地点での \(U_{1,2,3} \) は \(U_{1,2,3} \) も、150km モデル上の対応する地点 \((r \text{の2倍}) \) 地点での値に一致しており、従って相似則が成り立っている。

Table 1. \(U_r \) ratio and \(U_r \) ratio at some points on various FE models when \(R \) and \(H \) are changed from 1.2D to 10D.

<table>
<thead>
<tr>
<th>(R) and (H)</th>
<th>2D</th>
<th>3D</th>
</tr>
</thead>
<tbody>
<tr>
<td>(U_r) ratio</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(r = 0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(U_r) ratio</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(r = D)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(r = 2D)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(r = 3D)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(r = 0.7071)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(r = D)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(r = 2D)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(r = 3D)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

—10—
の1/2 (75kmモデルの場合)あるいは2倍 (300kmモデルの場合)とした。

このように FE モデルでは相似則が成り立つことから、D = 10km の圧力源に関しても解析を行った第 3 節の結果を、D が10km以外の場合にも一般化することが可能である。そこで、Fig. 8-1 およびFig. 8-2 に示した全 34 倍の FE モデルの解析結果を、R および H をある大きさ (D に対する相対値) に設定した場合の、モデル上
のいくつかの地点 (D に対する相対値) での U は比および
H は比として Table1 にまとめた。なお、先述のように、
FEM では同じソフトウェア上の同じモードでもメッシ
ングが異なるため解析結果に 0.2 〜 0.3%程度の遅れが生
じることがあり、ここに示した値は必ずしも絶対的な
値ではないが、これらは先にも述べたようにメッシ
ングによる影響を持たせた各モデルの解析結果による値であ
り、モデル領域の大きさが火山性地殻変動の計算精度
に与える影響を、メッシングの違いの影響を受けるこ
となく踏まえて考えられる。このことか
ら、Table1 では計算精度の値を小数点以下4桁で示し、
モデル領域を大きくした場合に計算精度が向上してい
るようにより詳しく見られるようにした。

FEM で火山性地殻変動の計算を行う場合には、
Table1 を参照にして、圧力源及びどの程度の距離範囲
でどの程度の計算精度を必要とするかに応じてモデル
領域の大きさを設定すれば良い。しかしながら、前
に述べたように、モデル領域を大きくすればほど精度
が向上するが、メッシングが次第に困難となると
それに伴って計算時間も加
速度的に増大するため、必要とした計算精度が確保
される範囲内でできるだけ小さなモデル領域を設定
するのが有利である。一定の計算精度を保し、しかもメッシ
ングが比較的容易であり、計算時間も比較的短く済むモデル
領域として、R および H が D の 15 〜 20 倍程
度のモデル領域が最も適当であると我々は考える。そ
の程度の大きさのモデル領域を設定して解析を行い、
その中心部 (R = 3D 程度まで) の解析結果を用いること
により、火山性地殻変動解析にとっては充分な
精度の解析結果が、比較的少ないメッシング労力およ
び計算時間によって得られるであろう。

なお、Table1 の値に対してスプライン関数などを適
用することにより、ある大きさのモデルの任意の水平
距離 r の地点での計算精度を知ることも可能である
よう。

5. モデル外周面の境界条件が計算精度に及ぼす
影響

これまで解析した各 FE モデルの外周面に対する境
界条件は、いずれもモデル底面と同様に完全固定 （上
下方向、水平方向の変位をいずれもゼロに拘束）とし
た。この境界条件は、地殻変動解析でしばしば適用さ
れる「充分遠方の地点は変位しない」という考え方
に合致することから、観測値や解析例との比較において
扱いやすい利点を持ち、また、拘束条件が最も多く、
一般に解を最も安定的に求めやすいことから、これま
での先行研究でよく用いられている境界条件である。
この境界条件をここでは「境界条件①」と呼ぶことにす
る。
一方、モデル外周面に対して、例えば以下の 3 番の
境界条件を課すこともできる：

② 全方向自由
③ 水平方向のみ自由（上下方向の変位をゼロに拘束）
④ 上下方向のみ自由（水平方向の変位をゼロに拘束）

これらの 3 境界条件を境界条件①と比較し、どの境
界条件が最も優れているかが検討することが、先述の 30km
モデルから 150km モデルまでの各モデルに対し、底面
は完全固定とした上で、外周面に上記②〜④の境界
条件を与えて解析を行った。なお、各モデルに①〜④の
境界条件を課した場合の計算時間はほぼ同じであり、
特に目立った差は認められなかった。

解析結果の例として、50km モデルおよび 150km モ
デルの外周面に①〜④の境界条件を与えた場合の H と
R との比较をFig. 10-1 およびFig. 10-2 に示す。なお、
両図では縦軸のスケールが大きく異なることに注意さ
されたい。
いずれの比も r が大きくなるに従って 1 から離れていく傾向にあるが、50 km モデルでは、U_r 比については境界条件③（完全固定）が最も遠方まで 1 に近い値を保っており、U_r 比については境界条件③（水平方向のみ自由）が最も 1 に近い。次に、150 km モデルでは、50 km モデルの場合に比べると 4 境界条件間の差は非常に小さいが、まず U_r 比については 50 km モデル同様、境界条件③が最も良い。一方、U_r 比については、境界条件①よりも境界条件③の方が僅かながらも最も 1 に近くなっている。他のモデルについても U_r 比を見てみると、100 km 以下の各モデルでは境界条件①の方が 1 に近いが、110 km 以上の各モデルでは境界条件③の方が 1 に近くになっている。

このように、4 つの境界条件の中では、境界条件①および③が他の条件に比較して優れている。

次に、r の増加に伴う U_r 比と U_r 比の変化の様子に注目する。Fig.10-1 および Fig.10-2 より、境界条件①は、r の増加に伴う U_r 比と U_r 比の変化の様子が一様である（r の増加につれて徐々に減少）という特徴を有していることが分かる。これは U_r 比と U_r 比の両者を同時にベクトル的に捉える場合に有利性がある。なぜなら、山川の解においては、地表面上の任意の地点が地表圧力源中心とその地点を結ぶ延長線と交差する位置（r）における変位を考えることになるからである。
いる場合などはそのような状況も発生し得よう。
一方、境界条件に関しては、特に \(U_r \) の計算精度に関して、モデル領域の大きさにかかわらず最も優れており、境界条件に関して拘束条件が少ないため、ソフトウェアやモデル領域の大きさ、メッシュングによっては解が不安定になる可能性もあるかもしれないが、解が安定に求められるならば、\(U_r \) に関して非常に高い計算精度を必要とする場合（特に、モデル領域を比較的小規模に固定できない場合）にはこの境界条件を用いるのが良いであろう。

なお、Fig.10-1とFig.10-2との比較から分かる通り、\(R \) および \(H \) が大きくなるほど境界条件の違いによる解析結果の差異は徐々に小さくなっていく。これは、モデル領域が大きくなりモデル外周面までの距離が大きくなるほど、そこから得られる境界条件がモデル中心部の変位に及ぼす影響が小さくなるためと考えられる。

6. モデル領域の \(R \) と \(H \) が等しくない場合の計算精度

前節までの議論では、円柱形のモデル領域の半径 \(R \) と高さ \(H \) を等しく設定したが、後に \(R \) と \(H \) のそれぞれが計算精度にどのような影響を及ぼしているかについて考察するために、\(R \) と \(H \) が等しくない場合についても FE モデルを作成して解析を行う。

以下では、球面圧力源 \(D=10\text{km}, a=1\text{km} \) とし、\(R \) あるいは \(H \) のいずれかを 150km（絶対の値を、\(R=H \) の場合には一定の計算精度を有するモデル領域の大きさ）に固定した上で、もう一方を 12km から 150km まで徐々に変化させる。モデル底面および外周面は完全固定とする。なお、前節までの \(R \) と \(H \) が等しい FE モデルを、本節では「\(R=H \) モデル」と呼ぶ。

6.1 \(H \) を 150km に固定して \(R \) を変化させた場合

まず、\(H \) を 150km に固定し、\(R \) を 12km から 150km まで変化させた各モデルについて、モデル上のいくつかの地点での \(U_r \) 比と \(U_r \) 比をFig.11 に示す。横軸には \(R \) を取っている。また、Fig.11 には、Fig.8-1に示した \(R=H \) モデルの解析結果の一部も重ねて示す（灰色のマ
6.2 Rを150kmに固定してHを変化させた場合

次に、Rを150kmに固定し、Hを12kmから150kmまで次第に変化させた各モデルについて、解析結果のまとめをFig.12に示す。横軸にはHを取っている。また、ここでもR=Hのモデルの解析結果（Fig.8-1）を重ねて示す。例えば、横軸Hが50kmの所では、H=50km、R=150kmの円柱モデルの計算精度と、R=H=50kmモデルの計算精度とを比較していることになる。

R=Hモデルの場合は、モデル外周の固定条件により、20kmモデルではR=20km地点での変位が0に、また、30kmモデルでは30km地点での変位が0になるが、ここで解析した各モデルはRがいずれも150kmと比較的長く、Hが小さいR=12kmのモデルの場合でも20kmおよび30km地点でR=Hモデルの場合よりもやや早いか特徴が見られる。

一方、Uz, Urについて見ると、Rが小さい場合はr=0.707kmおよび10km地点での値がR=Hモデルと大きく異なるものの、Rが約30km以上になると、どの地点でもR=Hモデルとほぼ同じ値を取りつつ1へと収束していく。

![Fig. 12](image-url) Uz, Ur ratios at some points when R is fixed at 150km and H is changed from 12km to 150km (D=10km, a=1km). Those in case of R=H are also indicated on the graph.
てずっと早い。これは、上述のように、\(H \) が小さいモデルでも \(r = 20km \) および 30km 地点の地表面が変位することが不可能であるためである。

一方、\(U_i \)について見ると、\(H \) が小さいうちは上述の理由により、\(R = H \) モデルとの差が見られないものの、\(H \) が 50km 以上の \(U_i \)の 1 への収束の様子は \(R = H \) モデルの場合とはほぼ同じである。

6.3 \(R \) と \(H \) のそれぞれが \(U_i \) と \(U_i \) の計算精度に与える影響

以上の結果をまとめると、\(H \) を充分大きな値に固定して \(R \) を次に大きくした場合には、\(U_i \) の 1 への収束は \(R = H \) モデルの場合より早くなるが、\(U_i \) の 1 への収束の様子は \(R = H \) モデルとはほぼ同じである。一方、\(R \) を充分大きな値に固定して \(H \) を次に大きくした場合には、\(U_i \) の 1 への収束は \(R = H \) モデルの場合より早くなるが、\(U_i \) の 1 への収束の様子は \(R = H \) モデルとはほとんど同じである。

従って、\(U_i \) の計算精度は主に \(H \) の大きさによって、また、\(U_i \) の計算精度は主に \(R \) の大きさによって決定されていると言える。

このことから、例えば \(U_i \)についてのみ計算精度の高い \(H \) 計算結果が必要な場合に、\(R \) だけを充分な大きさにし、\(H \) は節点数を少なくするために幅を小さくするなどという設定も考えられる訳ではない。しかしながら、今回採用したのは表面面積かつ等斜の条件のみであり、今後 \(R \) モデルで実際の火山形状や速度構造を導入する場合、\(H \) が十分な大きさでないことが \(U_i \) の計算精度にどのような影響を及ぼすかは不明である。特に、深部にまで及ぶ層構造を導入する場合などは、\(H \) が小さいことが \(U_i \) の計算精度に大きな影響を及ぼす可能性を考えられる。\(H \) モデル作成の際にはやはり、\(R \), \(H \) とも \(D \) に対して充分な大きさに設定して \(H \) 地面および外周面の影響をできるだけ排除し、\(U_i \) と \(U_i \) とも計算精度を確保することが望ましいと考えられる。

その一方、\(R \) および \(H \) のそれぞれが \(D \) に対して充分な大きさ（概ね 10 以上の）を有してくれれば、必ずしも \(R \) と \(H \) を等しく設定しないことも良いようである。例えば、Fig.11 の \(U_i \)の図からも分かるように、\(H \) を \(R \) より大きく設定すると、20km および 30km 地点での \(U_i \) の計算精度を \(R = H \) モデルより改善できる場合がある（ただし、\(H \) と \(R \) とどのように設定したか、同地点での \(U_i \) の計算精度には及ばない）。あるいは、入力値のレベルが地形データや速度構造データの範囲を超えない程度で \(R \) と \(H \) を等しく設定することができない場合でも、\(R \) と \(H \) のそれぞれが \(D \) に対して十分な大きさを有していれば、充分な計算精度が得られるはずである。あるモデル領域の計算精度を詳しく知りたい場合には、本稿で扱ったように、\(R \) の計算精度は若干小さいが、\(H \) はモデル計算に影響を及ぼす計算精度を考慮した上で \(U_i \) と \(U_i \) の計算精度を試みる必要があると考えられる。

7. まとめ

FEM を用いて火山性地表変動を計算する際に、モデル領域の大きさや境界条件が計算精度に及ぼす影響について定量的に評価するため、茂木-山川モデルを \(R \) モデルで再現し、山川（1955）の解析結果と比較を行った。中心浅さ \(D \) に対して半径 \(a \) が十分小さい圧力源の周辺に円柱形のモデル領域を設定し、その大きさや境界条件を様々な変えて \(R \) と \(H \) 解析を行った結果、以下のことが示唆された。

1) \(R \) モデル領域を水平方向にも深さ方向にも大きくするほど、\(H \) 計算結果は山川の解に近づき、計算精度が向上することが示唆された。

2) しかしながら、モデル領域を大きくするほど一見節点数が多くなり、計算時間が加速的に増大する場合においても、必要な計算精度が確保される範囲内であることが示唆される。具体的には、均一なモデル領域の半径および深さを 15 〜 20 km に設定し、その中心部（距離 \(r = 3D \) 程度まで）の \(R \) 計算結果を用いるのが最も適当である。

3) \(R \) モデル領域を十分大きさければ、外周面の境界条件を変えても \(H \) 計算結果にそれほど大きな影響は生じないが、計算精度の距離変化のセルが上部変位と水平変位で同じになることから、外周面完全固定の境界条件が最も良いと考えられる。

4) 上部変位の計算精度は主にモデル領域の深さ方向の大きさによって、また、水平変位の計算精度は主にモデル領域の水平方向の大きさによって決定される。

なお、本稿では、\(R \) 計算精度の基本的な値として上部地盤の標準的な値 40GPa を用いたが、標準的な上部地盤に比べて一般に地表面速度が遅い火山の山体の剛性率はこれより低い値であると考えられることに注意が必要である。剛性率を低くした場合、変位量は剛性率に比例して増大する。

\section*{謝辞}

気象研究所地震火山研究部の伊藤秀美部長（現気象気象台）からは、本稿の執筆に際して終始お励ましを頂き、また原稿に対して貴重なご意見を頂きました。厚くお礼申し上げます。同研究部の山里・平田長および北川准之氏（現気象庁）には原稿を丁寧に読んで頂き、適切なコメントを頂きました。2 名の匿名査読者および編集委員の山本正則氏からのご指摘は本稿の改善にとって非常に有益でした。以上の方々に深く感謝致します。本研究は気象研究所特別研究「火山活動評価手法の開発研究」（平成 13 〜 17 年度）に関連して行われたものである。特別研究の実施に際してお世話頂きました関係諸官に謝意を表します。
参考文献

茂木清夫, 1957：複層の噴火と近辺の地殻変動との関係．火山, 1, 9-18.
西原隆, 1997：構造探査データを用いた島嶼火山体の内部の3D構造解析．火山, 42, 165-170.
鷹津久一郎・宮本光男・山田嘉明・山本節之・川井忠彦共著, 1983：有限要素法ハンドブックⅡ応用編．培風館, 1109pp.
山川宣男, 1955：内部力による半無限弾性体の変形について．地震, 8, 84-98.
山本圭吾・井田嘉明, 1994：やや遠州地質を用いた薩摩島火山群の3次元P波速度構造解析．東京大学地震研究所報告, 69, 267-289.

有限要素法による火山性地殻変動の計算精度の確立
—茂木—山川モデルの再現—

坂井孝行（気象研究所地震火山研究部）・山本哲也*（気象庁）
福井敬一（気象研究所地震火山研究部）・藤原健治（気象庁）
高木邦充（気象研究所地震火山研究部）・中村正明†（新潟地方気象台）

火山における地殻変動を解釈する場合、半無限均質弾性体内の充填可能な微圧力源による地表面変位を表す山川（1955）による解析解など、非常に単純化された状況から導出された解析解が用いられている。しかしながら、現実の火山においては、地表面に突出する火山の存在や、火山以外の圧力源の状況、あるいは不均質な大地殻などのため、そのような解析解は厳密には成立立たないと、そこで我々は、現実の火山における地殻変動の様子をより詳しく見るため、有限要素法（FEM）を用いて数値モデルを作成し、計算を進めている。その際、モデル領域の大きさや境界条件の設定などが火山性地殻変動の計算精度に影響を及ぼすことが予想される。そこで、本研究では、茂木—山川モデルをFEモデルで再現し、モデル領域の大きさや境界条件が火山性地殻変動の計算精度に及ぼす影響について数値的に評価した。その結果、以下のようになり得られた。モデル領域の大きさを大きくするほど、FE解析結果は山川の解に近付き、火山性地殻変動の計算精度を高めることができる。しかしながら、モデル領域を大きくするほど一般に節点数が増大するため、計算時間が急激的に増加することが必要、な計算精度が確保される範囲内でできることが小さくモデル領域を設定するのが良い。境界条件については、計算精度の距離変化の様子が上下変位と水平変位で最も類似することから、モデル領域の極端と外周面を完全固定するのが最も良いと考えられる。モデル領域の深さ方向の大きさは上下変位の計算精度に、また、モデル領域の水平方向の大きさは水平変位の計算精度に大きな影響を及ぼす。

* 現所属：地質気象調査

† 現所属：気象研究所