1. Observation Site

The multi-direction cosmic ray telescope is located inside the Upper Air Measuring Instruments Building of the Meteorological Research Institute, Tsukuba. This building has a flat-roof and is made with iron frames and 100 mm thick ALC (Autoclaved Light Weight Concrete, $\sim 0.55 \text{ g/cm}^3$). The building has an air conditioning system. Geographic and geomagnetic parameters of the observation site are given in Table 1.

Geographic	Latitude	36° 03' N	Longitude	140°08'E
	Altitude	22 m ab		
Geomagnetic	Latitude	26.3°	Longitude	207.6°

Table 1	Location of	Observation	Site

2. Multi-Directional Cosmic ray Meson Telescope

The multi-directional cosmic ray telescope contains 32 detectors. Fig.1 shows arrangement of these detectors. There are 4 layers, each containing 8 detectors. The four layers are named A, B, C, and D from top to bottom. In each layer, 4 detectors are aligned in the geographic east-west direction and 2 detectors are aligned in the geographic north-south direction. The detectors in the southern row are named 1, 2, 3, and 4 from west to east, and those in the northern row are named 5, 6, 7, and 8 from west to east. The detectors are, therefore, named A1,..., B1,..., C1,..., and D1,.... Lead (Pb) blocks (100 mm thickness) and 4.5 mm iron plates are set in the middle of the lower two layers C and D in order to absorb the soft component of cosmic rays. Each detector has 4 plastic scintillators (500 mm \times 500 mm \times 100 mm), making up a 1 m² effective area, set in the bottom of an iron plate box (1.2 mm thickness). These four plastic scintillators are viewed by a 5-inch photo-multiplier (HAMAMATSU R877).

3. Measuring System

A block diagram of the measuring system for the multi-directional cosmic ray telescope is presented in Fig.2. Signals from each photo-multiplier are amplified and are made into 0.5 microsecond rectangular pulses by a pulse shaper after passing through a discriminator. Seven components (vertical, 22°south, 22°north, 19°west, 19°east, 34°west, and 34°east) are constructed with signals from the 32 detectors. Twofold coincidence between the A layer and the B layer, i.e., T1 (A1, B1),....,T8 (A8, B8), and twofold

— 3 —

Tech. Rep. Meteorol. Res. Inst. No. 21 1987

Fig. 1 Arrangement of detectors in the multi-directional cosmic ray meson telescope at Tsukuba. West-East view and South-Nouth view.

Fig. 2 Block diagram of the measuring system for the multi-directional cosmic ray meson telescope.

- 5 -

Tech. Rep. Meteorol. Res. Inst. No. 21 1987

concidence between the C layer and the D layer, i.e., Hl (Cl, Dl),...,H8 (C8, D8), are made in the first stage. The total vertical component (soft component + hard component) has 4 channels T12, T34, T56, T78, made by mixing of T1,...., T8 and the hard vertical component has four channels H12, H34, H56, H78, made by mixing of H1,...,H8. The vertical component has 4 channels V1, V2, V3, V4, made by twofold coincidence between the upper 2 layers and the lower 2 layers. The other components have 2 channels for each. For example, 22° south component has 2 channels S1 and S2. S1 is made with twofold coincidence between T1 and H5 or twofold coincidence between T2 and H6 ((T1, H5) or (T2, H6)). The sum for each layer is made for monitoring the system and the outputs are called SMA, SMB, SMC, and SMD. The atmospheric pressure is measured by a barometer inside the building and the data are recorded in channel 32. The pressure data are occasionally checked by using the data from tha Aerological Observatory, separated by approximately 200 m. Scaling process is used in recording the data for convenience. Table 2 summarizes the channels for each component with scaling factor and cut-off rigidity. Cut-off rigidity for each component is calculated using the procedure by Shea et al. (1965). Asymptotic directions for 5 components are calculated using the procedure by Inoue et al. (1981), and the results are presented in Fig.3.

	C	hanne	1		С	omponent	Scaling Factor	Cut-off Rigidity GV
1- 4	SMA	SMB	SMC	SMD			1000	2790. 2. Jan 2010
5-8	T 12	T34	T56	T 78	vertical	(total)	100	11.33
['] 9-12	H12	H34	H56	H78	vertical	(hard)	100	11.33
13 - 16	V1	V2	V3	V4	vertical	l	100	11.33
17 - 18	S_1	S_2			south	22.0°	10	11.05
19 - 20	N1	N2			north	22.0°	10	11.20
21 - 22	W11	W12			west	18.7°	10	11.01
23 - 24	E11	$\mathrm{E}12$			east	18.7°	10	14.09
25 - 26	W21	W22			west	34.1°	10	9.10
27 - 28	E 21	E 22			east	34.1°	10	16.77
32					atmosp	heric pressure		

Table 2 Channels, Scaling Factor, Cut-Off Rigidity for Each Component

-6-

Asymptotic Direction For Each Component

Fig. 3 Asymptotic direction traces for five direction components. Rigidities are indicated by numbers.

4. Data

Hourly counting rates from each channel and hourly average pressure value are recorded. Pressure-corrected counting rates are obtained by the following:

 $C_{p} = C / \exp(\beta (P - P_{B})) \qquad \beta < 0$

 C_{p} pressure-corrected counting rate

C raw counting rate

 β pressure coefficient

P pressure

 P_B basic pressure (1000 mb)

For simplicity, 1000 mb is adopted for P_{B} . Pressure coefficient are obtained from the data of 1984 and summarized in Table 3.

-7-

Tech. Rep. Meteorol. Res. Inst. No. 21 1987

vertical (all)	– 0.176 %∕mb
vertical (hard)	-0.150
vertical	-0.154
22° south and north	-0.157
19° west and east	- 0.157
34° west and east	- 0.162

Table 3 Pressure Coefficients

The component data are represented using the natural logarithmic representation by Wada (1957) as follows.

 $C_F = 10^2 \times Ln(C_p / C_o) + 15.00 \%$

 C_F relative intensity

C_p pressure-corrected counting rate

C_o base counting rate

The relative intensity is presented in percentages and 15.00 % is artificilly added to make all values positive. There were several troubles in the system and level changes caused by adjustment of the instruments in the observation period. Some channels are excluded to obtain the component data. Table 4 summarizes the channels used and Table 5 summarizes base counting rates.

ř

-8-

Tech. Rep. Meteorol. Res. Inst. No. 21 1987

			vert	ical		-	sou 2	ith 2°	soi 2	ıth 2°	ea 1	lst 9°	we	est 9°.	ea 3	ıst 4°		est 4°
83 1	1 T12 T56	T34 T78	H12 H56	H34 H78	V1 V3	V2 V4	S1	S2	N1	N2	E11	E12	W11	W12	E21	E22		W22
83 5 2	5																	
	T12	T34 T78	H12 H56			V2 V4	S1	S2		N2	E11		W11		E21	E22	W21	W22
83 12 3	1																	
	T12	T34 T78	H12 H56			V2 V4	S1			N2	E11	•	W11		E21		W21	W22
84 12 2	1																	
	T12	T34 T78	H12			V2 V4	S1			N2	E11		W11		E21		W21	W22
84 12 3) · · ·																	
	T12 T56	Т34 Т78	H12 H56	H34	V1 V3	V2	S1			N2	E11		W11		E21		W21	W22
85 7 2	1																	
	T12 T56	T34	H56	H34	V3 .	V2	S1				E11				E21			W22
86 12 3	1																	
	T12 T56	T34	H56	H34	V3	V2	S1				E11				E21			W22
86 1	7																	
	T12 T56	T34 T78	H12 H56	H34 H78	V1 V3	V2 V4	S1	S2	N1	N2	E11	E12	W11	W12	E21	E22	W21	W22

Table 4 Cannels Used For Component

		vertical		$\operatorname{south}_{22^\circ}$	nouth 22°	east 19°	west 19°	east 34°	west 34°
1983 1 1	·								
	5335	4377	263	1454	1179	2758	2206	571	502
1983 5 25					•.				
	5563	4848	311	1567	1556	2953	2853	587	525
1983 12 31									
	5678	4848	311	1567	1556	2953	2982	587	537
1984 10 21			·. ·						
	5678	4719	311	1567	1556	2953	2875	587	537
1984 12 30	- 400	1007	011		1550	0004	0004	505	
1005 5 01	5683	4907	311	1644	1556	2904	2934	587	545
1985 7 21	5700	4005	914	1670		0040		E00	597
1095 19 21	5706	4990	514	1072		2942		990	521
1065 12 51	5844	1005	390	1703	_	2087		602	535
1086 1 7	0044	-000	040	1100		2001		002	000
1000 1 1	5735	4824	329	1598	1556	2894	2856	591	562

Table 5 Base Count Rates

Acknowledgments

Useful discussion with Dr. H. Ueno, Nagoya University, is gratefully acknowledged. The calculation of cosmic ray asymptotic direction was carried out by Ms. A. Inoue, the Institute of Physical and Chemical Research. Ms. K. Hoshi provided aid in preparing this manuscript.

References

- Inoue, A., M. Wada, and I. Kondo, 1981: Bulletin of the Institute of Space and Astronautical Science, Special Issue, No. 1, 79.
- Shea, M. A., D. F. Smart, and F. G. McCracken, 1965: A Study of vertical cut off rigidities using sixth degree simulations of the geomagnetic field, J. Geophys. Res., 70, 4117.

Wada, M., 1957: J. Sci. Res. Inst., 51, 201.