豊田 隆寛 / Takahiro Toyoda

事項 詳細
所属・職名 全球大気海洋研究部・第四研究室・主任研究官
連絡先 rotoyodatakahir
他HP http://researchmap.jp/page_ttoyoda
専門分野 海洋物理学、データ同化、モデリング、海氷、混合層、モード水
学位 博士(理学)、2005年3月、京都大学大学院理学研究科地球惑星科学専攻
受賞、広報等 受賞
  • 気象庁 長官表彰 受賞 「日本の気候変動2020編纂チーム」(2021年6月1日)
  • Balmaseda et al. (2015) が2015 IMarEST Denny Medal 受賞(2017年3月16日)
  • 気象庁 気象研究所 所長表彰 受賞(2016年2月1日)
  • (独)海洋研究開発機構 地球環境観測センター・地球環境フロンティア研究センター 平成20年度業績表彰 受賞(2009年3月16日)
  • GODAE Symposium on Ocean Data Assimilation and Prediction in Asia-Oceania, 16-18 October 2006, Beijing China にて審査委員賞(Jerry’s award)を受賞
公報
発表論文 主著論文
  • Toyoda, T., K. Sakamoro, T. Toyota, H. Tsujino, L. S. Urakawa, Y. Kawakami, A. Yamagami, K. K. Komatsu, G. Yamanaka, T. Tanikawa, R. Shimada, and H. Nakano: Improvements of sea ice thermodynamics with variable sea ice salinity and melt pond parameterizations in an OGCM, Ocean Modelling, accepted.
  • Toyoda, T., L. S. Urakawa, H. Aiki, H. Nakano, E. Shindo, H. Yoshimura, Y. Kawakami, A. Yamagami, Y. Ushijima, Y. Harada, C. Kobayashi, H. Tomita, T. Tozuka, and G. Yamanaka (2023): Effective generation mechanisms of tropical instability waves as represented by high-resolution coupled atmosphere-ocean prediction experiments, Scientific Reports, 13, 14742.
  • Toyoda, T., Y. Kitamura, R. Okada, K. Matsumura, K. K. Komatsu, K. Sakamoto, L. S. Urakawa, and H. Nakano (2022): Sea ice variability along the Okhotsk coast of Hokkaido based on long-term JMA meteorological observatory data, Okhotsk Sea and Polar Oceans Research, 6, 27-35.
  • Toyoda, T., K. Sakamoto, N. Usui, N. Hirose, K. Tanaka, T. Katsumata, D. Takahashi, M. Niki, K. Kutsuwada, T. Miyama, H. Nakano, L. S. Urakawa, K. K. Komatsu, Y. Kawakami, and G. Yamanaka (2021): Surface-layer circulations in Suruga Bay induced by intrusions of Kuroshio branch water, Frontiers in Marine Science, 8, 721500.
  • Toyoda, T., N. Kimura, L. S. Urakawa, H. Tsujino, H. Nakano, K. Sakamoto, G. Yamanaka, K. K. Komatsu, Y. Matsumura, and Y. Kawaguchi (2021): Improved representation of Arctic sea ice velocity field in ocean–sea ice models based on satellite observations, Climate Dynamics, 57, 2863-2887.
  • Toyoda, T., H. Nakano, H. Aiki, T. Ogata, Y. Fukutomi, Y. Kanno, L. S. Urakawa, K. Sakamoto, G. Yamanaka, and M. Nagura (2021): Energy flow diagnosis of ENSO from an ocean reanalysis, Journal of Climate, 34, 4023-4042.
  • Toyoda, T., T. Aoki, M. Niwano, T. Tanikawa, L. S. Urakawa, H. Tsujino, H. Nakano, K. Sakamoto, N. Hirose, and G. Yamanaka (2020): Impact of observation-based snow albedo parameterization on global ocean simulation results, Polar Science, 20, 100521.
  • Toyoda, T., K. Iwamoto, L. S. Urakawa, H. Tsujino, H. Nakano, K. Sakamoto, G. Yamanaka, Y. Komuro, S. Nishino, and J. Ukita (2019): Incorporation of satellite-derived thin-ice data into a global OGCM simulation, Climate Dynamics, 53, 7113-7130.
  • Toyoda, T., et al. (2019): Effects of inclusion of adjoint sea ice rheology on backward sensitivity evolution using an adjoint ocean-sea ice model, Monthly Weather Review, 147, 2145-2162.
  • Toyoda, T., and S. Okamoto (2017): Physical forcing of late summer chlorophyll a blooms in the oligotrophic eastern North Pacific, Journal of Geophysical Research: Oceans, 122, 1849-1861.
  • Toyoda, T., et al. (2017): Interannual‑decadal variability of wintertime mixed layer depths in the North Pacific detected by an ensemble of ocean syntheses, Climate Dynamics, 49, 891-907.
  • Toyoda, T., et al. (2017): Intercomparison and validation of the mixed layer depth fields of global ocean syntheses, Climate Dynamics, 49, 753-773.
  • Toyoda, T., et al. (2016): Data assimilation of sea ice concentration into a global ocean–sea ice model with corrections for atmospheric forcing and ocean temperature fields, Journal of Oceanography, 72, 235-262.
  • Toyoda, T., et al. (2015): An improved simulation of the deep Pacific Ocean using optimally estimated vertical diffusivity based on the Green’s function method, Geophysical Research Letters, 42, 9916-9924.
  • Toyoda, T., et al. (2015): Improvements to a global ocean data assimilation system through the incorporation of Aquarius surface salinity data, Quarterly Journal of the Royal Meteorological Society, 141, 2750–2759.
  • Toyoda, T., T. Awaji, S. Masuda, N. Sugiura, H. Igarashi, Y. Sasaki, Y. Hiyoshi, Y. Ishikawa, S.-I. Saito, S. Yoon, T. In, and M. J. Kishi (2013): Improved state estimations of lower trophic ecosystems in the global ocean based on a Green's function approach, Progress in Oceanography, 119, 90-107.
  • Toyoda, T., Y. Fujii, T. Yasuda, N. Usui, T. Iwao, T. Kuragano, and M. Kamachi (2013): Improved analysis of seasonal-interannual fields using a global ocean data assimilation system, Theoretical and Applied Mechanics Japan, 61, 31-48.
  • Toyoda, T., et al. (2011): Impact of the assimilation of sea ice concentration data on an atmospheric-ocean-sea ice coupled simulation of the Arctic Ocean climate, Scientific Online Letters on the Atmosphere, 7, 037-040.
  • Toyoda, T., T. Awaji, S. Masuda, N. Sugiura, H. Igarashi, T. Mochizuki, and Y. Ishikawa (2011): Interannual variability of North Pacific eastern subtropical mode water formation in the 1990s derived from a 4-dimensional variational ocean data assimilation experiment, Dynamics of Atmospheres and Oceans, 51, 1-25.
  • Toyoda, T., S. Masuda, N. Sugiura, T. Mochizuki, H. Igarashi, M. Kamachi, Y. Ishikawa, and T. Awaji (2009): A possible role for unstable coupled waves affected by resonance between Kelvin waves and seasonal warming in the development of the strong 1997–1998 El Nino, Deep Sea Research I, 56, 495-512.
  • Toyoda, T., T. Awaji, Y. Ishikawa, and T. Nakamura (2004): Preconditioning of winter mixed layer in the formation of North Pacific eastern subtropical mode water, Geophysical Research Letters, 31, L17206.
共著論文
  • Yagamami, A., M. Kajino, T. Maki, and T. Toyoda (2023): Spatiotemporal variations in summertime Arctic aerosol optical depth caused by synoptic-scale atmospheric circulation in three reanalyses. Journal of Geophysical Research, 128, e2022JD038007.
  • Sakamoto, K., H. Nakano, T. Toyoda, L. S. Urakawa, and H. Tsujino (2023): Average coastal residence time distribution estimated by a 2-km resolution Japanese coastal model. Journal of Oceanography, accepted.
  • Tozuka, T., T. Toyoda, and M. F. Cronin (2023): Role of mixed layer depth in Kuroshio Extension decadal variability. Geophysical Research Letters, e2022GL101846.
  • Komatsu, K. Kensuke, Y. Takaya, T. Toyoda, and H. Hasumi (2023): A submonthly scale causal relation between snow cover and surface air temperature over the autumnal Eurasian continent, Journal of Climate, 36, 4863-4877.
  • Nakano, H., L. S. Urakawa, K. Sakamoto, T. Toyoda, Y. Kawakami, and G. Yamanaka (2023): Long-term sea-level variability along the coast of Japan during the 20th century revealed by a 1/10° OGCM, Journal of Oceanography, 79, 123-143.
  • Kawakami, Y., H. Nakano, L. S. Urakawa, T. Toyoda, K. Sakamoto, G. Yamanaka, and S. Sugimoto (2023): Cold- versus warm-season-forced variability of the Kuroshio and North Pacific subtropical mode water, Scientific Reports, 13, 256.
  • Nomura, D., et al. (2022): Atmosphere-sea ice-ocean interaction study in Saroma-ko Lagoon, Hokkaido, Japan 2021, Bulletin of Glaciological Research, 40, 1-17.
  • Komatsu, K. K., Y. Takaya, T. Toyoda, and H. Hasumi (2022): Exploring response of Eurasian temperature to Barents-Kara sea ice and Warm-Arctic Cold-Eurasia pattern: analysis of multi-model seasonal predictions, Geophisical Research Letters, 49, e2021GL097203.
  • Kawakami, Y., et al. (2022): Interactions between ocean and successive typhoons in the Kuroshio region in 2018 in atmosphere-ocean coupled simulations, Journal of Geophysical Research: Oceans, 127, e2021JC018203.
  • Keen, A., et al. (2021): An inter-comparison of the mass budget of the Arctic sea ice in CMIP6 models, The Cryoshpere, 15, 951-982.
  • Yamanaka, G., H. Nakano, K. Sakamoto, T. Toyda, S. Urakawa, S. Nishikawa, T. Wakamatsu, H. Tsujino, and Y. Ishikawa (2021): Projected climate change in the western North Pacific at the end of the 21st century from ensemble simulations with a high-resolution regional ocean model, Journal of Oceanography, 77, 539-560.
  • Aiki, N., Y. Fukutomi, Y. Kanno, T. Ogata, T. Toyoda, and H. Nakano (2021): The energy flux of three-dimensional waves in the atmosphere: Exact expression for a basic model diagnosis with no equatorial gap, Journal of the Atmospheric Sciences, 78, 3745-3758.
  • Nakano, H., et al. (2021): Effects of eddies on the subduction and movement of water masses that reach the 137◦E section using Lagrangian particles in an eddy-resolving OGCM, Jounal of Oceanography, 77, 283-305.
  • Kosugi, N., N. Hirose, T. Toyoda, and M. Ishii (2021): Rapid freshening of Japan Sea Intermediate Water in the 2010s, Jounal of Oceanography, 77, 269-281.
  • Urakawa, L. S., et al. (2020): The sensitivity of a depth-coordinate model to diapycnal mixing induced by practical implementations of the isopycnal tracer diffusion scheme, Ocean Modelling, 154, 101693.
  • Mugo, R., S.-I. Saitoh, H. Igarashi, T. Toyoda, S. Masuda, T. Awaji, and Y. Ishikawa (2020): Identification of skipjack tuna (Katsuwonus pelamis) pelagic hotspots applying a satellite remote sensing-driven analysis of ecological niche factors: A short-term run. PLoS ONE, 15, e0237742.
  • Notz, D., et al. (2020): Arctic sea ice in CMIP6, Geophysical Research Letters, 47, e2019GL086749.
  • Jackson, L. C., et al. (2019): The mean state and variability of the North Atlantic circulation: A perspective from ocean reanalyses, Journal of Geophysical Research: Oceans, 124, 9141-9170.
  • Hirose, N., N. Usui, K. Sakamoto, H. Tsujino, G. Yamanaka, H. Nakano, S. Urakawa, T. Toyoda, Y. Fujii, and N. Kohno (2019): Development of a new operational system for monitoring and forecasting coastal and open-ocean states around Japan, Ocean Dynamics, 69, 1333-1357.
  • Sakamoto, K., H. Tsujino, H. Nakano, S. Urakawa, T. Toyoda, N. Hirose, N. Usui, and G. Yamanaka (2019): Development of a 2-km resolution ocean model covering the coastal seas around Japan for operational application, Ocean Dynamics, 69, 1181-1202.
  • Uotila, P., et al. (2019): An assessment of ten ocean reanalyses in the polar regions, Climate Dynamics, 52, 1613-1650.
  • Nakano, H., H. Tsujino, K. Sakamoto, S. Urakawa, T. Toyoda, and G. Yamanaka (2018): Identification of the fronts from the Kuroshio Extension to the Subarctic Current using absolute dynamic topographies in the satellite altimetry products, Journal of Oceanography, 74, 393-420.
  • Takaya, Y., et al. (2017): Japan Meteorological Agency/Meteorological Research Institute‑Coupled Prediction System version 2 (JMA/MRI‑CPS2): atmosphere–land–ocean–sea ice coupled prediction system for operational seasonal forecasting, Climate Dynamics, 50, 751-765.
  • Usui, N., et al. (2017): Four-dimensional variational ocean reanalysis: a 30-year high-resolution dataset in the western North Pacific (FORA-WNP30), Jounal of Oceanography, 73, 205-233.
  • Igarasi, H., et al. (2017): Possible link between interannual variation of neon flying squid (Ommastrephes bartramii) abundance in the North Pacific and the climate phase shift in 1998/1999, Progress in Oceanography, 150, 20-34.
  • Chevallier, M., et al. (2017): Erratum to: Intercomparison of the Arctic sea ice cover in global ocean–sea ice reanalyses from the ORA-IP project, Climate Dynamics, 49, 1137-1138.
  • Chevallier, M., et al. (2017): Intercomparison of the Arctic sea ice cover in global ocean–sea ice reanalyses from the ORA-IP project, Climate Dynamics, 49, 1107-1136.
  • Shi, L., et al. (2017): An assessment of upper ocean salinity content from the Ocean Reanalyses Inter-comparison Project (ORA-IP), Climate Dynamics, 49, 1009-1029.
  • Valdivieso, M., et al. (2017): An assessment of air–sea heat fluxes from ocean and coupled reanalyses, Climate Dynamics, 49, 983-1008.
  • Fujii, Y., et al. (2017): Enhancement of the southward return flow of the Atlantic Meridional Overturning Circulation by data assimilation and its influence in an assimilative ocean simulation forced by CORE‑II atmospheric forcing, Climate Dynamics, 49, 869-889.
  • Palmer, M. D., et al. (2017): Ocean heat content variability and change in an ensemble of ocean reanalyses, Climate Dynamics, 49, 909-930.
  • Storto, A., et al. (2017): Steric sea level variability (1993–2010) in an ensemble of ocean reanalyses and objective analyses, Climate Dynamics, 49, 709-729.
  • Noh, Y., H. Ok, E. Lee, T. Toyoda, and N. Hirose (2016): Parameterization of Langmuir circulation in the ocean mixed layer model using LES and its application to the OGCM, Journal of Physical Oceanography, 46, 57-78.
  • Doi, T., et al. (2015): Multidecadal change in the dissolved inorganic carbon in a long-term ocean state estimation, Journal of Advances in Modeling Earth Systems, 7, 1885-1900.
  • Nishikawa, H., et al. (2015): Wind-induced stock variation of the neon flying squid (Ommastrephes bartramii) winter–spring cohort in the subtropical North Pacific Ocean, Fisheries Oceanography, 24, 229-241.
  • Balmaseda, M. A., et al. (2015): Ocean Reanalyses Intercomparison Project (ORA-IP), Journal of Operational Oceanography, 8, s80-s97.
  • Kuragano, T., et al. (2014): Seasonal barotropic sea surface height fluctuation in relation to regional ocean mass variation, Journal of Oceanography, 70, 45-62.
  • Sakamoto, T. T., et al. (2012): MIROC4h—A new high-resolution atmosphere-ocean coupled general circulation model, Journal of the Meteorological Society of Japan, 90, 325-359.
  • Kouketsu, S., et al. (2011): Deep ocean heat-content changes estimated from observation and reanalysis data and their influence on sea level change, Journal of Geophysical Research, 116, C03012.
  • Masuda, S., et al. (2010): Simulated rapid warming of abyssal North Pacific waters, Science, 329, 319.
  • Mochizuki, T., et al. (2010): Pacific decadal oscillation hindcasts relevant to near-term climate prediction, Preceedings of the National Academy of Sciences of the United States of America, 107, 1833-1837.
  • Igarashi, H., T. Awaji, T. Toyoda, S. Masuda, N. Sugiura, Y. Sasaki, Y. Hiyoshi, M. Sakai, T. Ichii, and Y. Ishikawa (2010): An optimal synthesis of observations and models by data assimilation: applications to climate analysis and fishery assessment, IEEE eartthzine.
  • Masuda, S., et al. (2009): Temporal evolution of the equatorial thermocline associated with the 1991–2006 ENSO, Journal of Geophysical Research, 114, C03015.
  • Sugiura, N., T. Awaji, S. Masuda, T. Toyoda, H. Igarashi, Y. Ishikawa, M. Ishii, and M. Kimoto (2009): Potential for decadal predictability in the North Pacific region, Geophysical Research Letters, 36, L20701.
  • Mochizuki, T., N. Sugiura, T. Awaji, and T. Toyoda (2009): Seasonal climate modeling over the Indian Ocean by employing a 4D-VAR coupled data assimilation approach, Journal of Geophysical Research, 114, C11003.
  • Ishikawa, Y., T. Awaji, T. Toyoda, T. In, K. Nishina, T. Nakamura, S. Shima, and S. Masuda (2009): High-resolution synthetic monitoring by a 4-dimensional variational data assimilation system in the northwestern North Pacific, Jounal of Oceanography, 78, 237-248.
  • Sugiura, N., et al. (2008): Development of a four-dimensional variational coupled data assimilation system for enhanced analysis and prediction of seasonal to interannual climate variations, Journal of Geophysical Research, 113, C10017.
  • Masuda, S., et al. (2006): Interannual variability of temperature inversions in the subarctic North Pacific, Geophysical Research Letters, 33, L24610.
  • Nakamura, T., T. Toyoda, Y. Ishikawa, and T. Awaji (2006): Effects of tidal mixing at the Kuril Straits on North Pacific ventilation: Adjustment of the intermediate layer revealed from numerical experiments, Journal of Geophysical Research, 111, C04003.
  • Nakamura, T., T. Toyoda, Y. Ishikawa, and T. Awaji (2006): Enhanced ventilation in the Okhotsk Sea through tidal mixing at the Kuril Straits, Deep-Sea Research I, 53, 425-448.
  • Nakamura, T., T. Toyoda, Y. Ishikawa, and T. Awaji (2004): Tidal mixing in the Kuril Straits and Its Impact on Ventilation in the North Pacific Ocean, Jounal of Oceanography, 60, 411-423.
  • Ishikawa, Y., T. Awaji, N. Komori, and T. Toyoda (2004): Application of sensitivity analysis using an adjoint model for short-range forecasts of the Kuroshio path south of Japan, Journal of Oceanography, 60, 293-301.
  • Awaji, T., S. Masuda, Y. Ishikawa, N. Sugiura, T. Toyoda, and T. Nakamura (2003): State estimation of the North Pacific ocean by a four-dimensional variational data assimilation experiment, Journal of Oceanography, 59, 931-943.
その他著作
  • 豊田ら (2023): 気象研海洋モデルにおける海氷熱力学過程の改良について, 月刊海洋, 55, 197-202.
  • 川上ら (2023): 黒潮域における台風通過時の海面水温変化 ー気象庁気象研究所の大気海洋結合モデル実験からー, 月刊海洋, 55, 188-196.
  • 豊田ら (2021): 海洋再解析を用いたENSOのエネルギーフロー診断, 月刊海洋, 53, 535-540.
  • 中野ら (2021): 粒子追跡と渦解像モデルを用いた, 東経137°に到達する水塊に対する中規模渦の働き, 月刊海洋, 53, 531-534.
  • 豊田, 木村, 浦川, 辻野, 中野, 坂本, 辻野, 山中 (2020): 海洋・海氷シミュレーションにおける海氷速度データの利用, 月刊海洋, 52, 42-47.
  • 藤井ら (2020): 全球結合予測のための海洋データ同化システムの開発, 平成30年度「異常気象と長期変動」研究集会報告.
  • 豊田, 岩本, 浦川, 辻野, 中野, 坂本, 辻野, 山中, 小室, 西野, 浮田 (2019): 衛星観測の薄氷データを用いた海洋・海氷シミュレーションの改善, 月刊海洋, 51, 121-127.
  • 豊田, 広瀬, 浦川, 碓氷, 藤井, 中野, 坂本, 辻野, 山中, 堤 (2018): 海氷アジョイントモデルを用いた海洋・海氷場の解析に向けて, 月刊海洋, 50, 127-132.
  • 豊田, 岡本 (2017): 北太平洋東部で夏の終わり頃に間欠的に起こるブルームの物理環境について, 月刊海洋, 49, 278-286.
  • 藤井ら (2017): 日本の海洋データ同化研究 ─20年間の功績と今後の展望─, 海の研究, 26, 15-43.
  • 釜堀ら (2017): 2016年春季「極域・寒冷域研究連絡会」の報告―極域における気象庁客観解析データの再現性と利用―, 天気, 64, 113-117.
  • 豊田ら (2016): 北太平洋冬季混合層深の経年から十年規模変動, 月刊海洋, 48, 177-185.
  • 轡田, 豊田, 吉田 (2016): 総論:「海洋変動と熱・物質循環」「グローカルな大気海洋相互作用:海と空をつなぐもの」, 月刊海洋, 48, 153-161.
  • 豊田ら (2015): Aquarius衛星海面塩分データの海洋再解析における太平洋表層へのインパクト, 月刊海洋, 47, 172-180.
  • 豊田, 吉田, 田中 (2015): 総論:北太平洋を中心とする循環と水塊形成, 月刊海洋, 47, 131-134.
  • 前田ら (2015): 研究会「長期予報と大気大循環」の報告 ENSOとその影響 我々はどこまで理解し,予測できているのか?, 天気, 62, 225-228.
  • Ishikawa, Y., T. Awaji, M. Ikeda, and T. Toyoda (2014): Coupling of physical and bio-geochemical process and monitoring ocean circulation using data assimilation system, Western Pacific Air-Sea Interaction Study, 237-241.
  • 小川ら (2014): MOVE/MRI.COM-WNP 再解析データに見られた黒潮流路変動と瀬戸内海水位変動との関係, 測候時報, 81, S1-S15.
  • Toyoda, T., et al. (2014): Mixed layer depth intercomparison among global ocean sysntheses/reanalyses, CLIVAR Exhanges, 64, 22-24. (同号に他共著9編)
  • 五十嵐ら (2011): 気候変動に伴う水産資源・海況変動予測技術の革新と実利用化. 土木学会論文集G(環境), 67, 9-15.
  • 五十嵐ら (2009): 海洋環境変動の把握技術と水産資源変動解析に果たす役割, 水産海洋研究, 73, 22-43.
  • 淡路ら (2009): データ同化 観測・実験とモデルを融合するイノベーション, 京都大学学術出版会.
  • 秋山ら (2006): 日欧先端科学セミナー「気候変動」参加報告, 天気, 53, 915-918.
  • 杉浦ら (2005): 共生プロジェクトにおける結合同化-地球環境フロンティア-, 月刊海洋, 423, 666-673.
  • 豊田 (2005): 海洋大循環モデルを用いた北太平洋の表層・中層における水塊構造と循環の解析, 博士論文, 京都大学.
  • 淡路ら (2004): 地球共生プロジェクト「フル結合四次元データ同化システム研究」, 月刊海洋, 号外36, 115-124.
  • 淡路, 石川, 中村, 豊田 (2003): 数値モデリングによる海洋循環の状態推定, 京都大学学術情報メディアセンター研究開発部シンポジウム報告集, 1, 1-19.
  • 淡路ら (2003): 四次元変分法データ同化モデルによる北太平洋循環構造の推定, 月刊海洋, 号外32, 147-160.
  • 中村, 淡路, 豊田, 石川 (2003): 海洋大循環モデルに見られた沿岸親潮, 沿岸海洋研究, 41, 13-22.
  • 中村, 豊田, 石川, 根田, 淡路, 滝沢, 印 (2003): クリル列島域における水塊形成/交換流のモデリング, 月刊海洋, 号外32, 168-182.
  • 石川, 淡路, 豊田, 杉浦, 増田, 蒋, 小守 (2003): 海洋データ同化からみたブイデータの有効性, 海の研究, 12, 321-322.
  • 石川, 淡路, 豊田 (2002): データ同化の最前線と生態系モデルへのインパクト, 水産海洋研究, 66, 55-57.
  • 淡路, 杉浦, 馬場, 石川, 増田, 堀内, 蒲地, 小守, 蒋, 豊田, 中村 (2001): データ同化研究の発展と多目的活用に向けて, 月刊海洋, 33, 617-624.
  • 石川, 淡路, 飯田, 印, 豊田 (2001): 海洋混合層のデータ同化について, 月刊海洋, 33, 83-87.
担当課題 経常研究 外部資金
  • 科学研究費助成事業 特別研究員奨励費 「夏季の北極低気圧の理解と短期~季節内スケールの北極大気予測精度向上に関する研究」(代表:山上晃央), 令和4-6年度, 受入研究者.
  • 科学研究費助成事業 基盤研究(A) 「大気と海洋の波動エネルギー循環のシームレス解析による熱帯・中緯度相互作用の解明」(代表:相木秀則), 令和4-8年度, 研究分担者.
  • 科学研究費助成事業 基盤研究(B) 「西岸境界流と内側沿岸循環の力学的相互作用」(代表:田中潔), 令和2-5年度, 研究分担者.
  • 科学研究費助成事業 基盤研究(C) 「大気ー積雪ー海氷系放射伝達モデルの開発と気候モデル用海氷アルベドスキームの高度化」(代表:谷川朋範), 令和2-4年度, 研究分担者.
  • 科学研究費助成事業 基盤研究(A) 「大気と海洋の波動エネルギーのライフサイクル解析による熱帯気候変動メカニズムの解明」(代表:相木秀則), 平成30-令和3年度, 研究分担者.
  • 東京大学大気海洋研究所 学際連例研究 「海氷モデル力学パラメータに対する観測・理論・数値的要請の融合」, 令和2-3年度, 研究代表者.
  • 科学研究費助成事業 若手研究(B) 「薄氷から厚氷までの全海氷データ同化による北極海熱・水輸送解析と気候変動予測の改善」, 平成28-令和2年度, 研究代表者.
  • 東京大学大気海洋研究所 国際沿岸海洋研究センター共同利用研究集会 「海洋変動と熱・物質循環」, 平成27年度, 研究代表者.
  • 東京大学大気海洋研究所 国際沿岸海洋研究センター共同利用研究集会 「北太平洋を中心とする循環と水塊過程」, 平成26年度, 研究代表者.