

T1909 LEKIMA

RSMC Tokyo – Typhoon Center And Meteorological Research Institute, JMA

Track & Intensity of LEKIMA

- LEKIMA formed as a TS to the east of Luzon and continued on a northwestward track.
- Intensified by 55kt within 60 hours starting at 00UTC Aug. 6
- Peaked at 105kt at 12UTC Aug. 8
- Most intensified in 2019, tying with T1902 WUTIP

Track & Intensity of LEKIMA

Himawa-8 IR 2019-08-05 23:54UTC

HIMAWARI-8 IR images

East China Sea

Okinawa

Genesis of LEKIMA and S.W. monsoon activity

Atmospheric conditions

- Mid-level atmosphere was wetter than normal over much of the western Pacific
- In early August, the subtropical jet stream flowed in the distant north and vertical wind shear was weak around LEKIMA
- These atmospheric conditions were favorable for LEKIMA's intensification

Ocean conditions

 Ocean conditions were moderately favorable with SSTs at 29-30°C and TCHP above 50 along the LEKIMA's track

TIFS (intensity forecast guidance) results

- JMA forecasters primarily depend on Typhoon Intensity Forecast
 Scheme based on SHIPS (TIFS) for forecast guidance
- TIFS struggles with forecasting quick intensity changes, because it is a linear multiple regression statistical model.

What is TIFS ?

- TIFS predicts intensity changes exploiting statistical relationship btw TC intensity changes and environmental conditions.
- TIFS originates from SHIPS, adapted for the western North Pacific. (Many thanks to Dr. DeMaria)

Explanatory factors for TIFS (not exhaustive)

Variable name	Description
PERSISTENCE	Change in max sustained wind during the last 12 hours
SHEAR	Vertical wind shear between 200 and 850hPa levels
POTENTIAL	Difference between the latest TC intensity and its maximum potential intensity
TANGENTIAL	Tangential wind speed around the TC at 850hPa level
MAXWIND	The latest max sustained wind
TEMP200, TEMP250	Temperature at 200 and 250hPa
MID_RH	Relative humidity in the mid-troposphere
VOR850	Vorticity at 850hPa
DIV200	Divergent at 200hPa
MOTION	Zonal component of translation speed of the TC
ОНС	Ocean heat content
IR	Portion of cloud area with infrared irradiance below -30°C

TIFS by contribution factors

Doppler-Radar derived winds at 2km

- Post analysis using Ishigaki radar data
- During this period, Lekima had strong winds greater than 70 m/s at 2-km altitude and had concentric eyewalls.

Doppler-Radar derived tangential winds at 2km

- The radius of maximum wind is located at about 12km from the center
- The inner eyewall was very compact
- The maximum tangential wind speed reached 65 m/s
- The secondary eyewall developed and contracted between 60 and 90 km from the storm center

Doppler-radar derived maximum sustained winds

- 6-hourly Dvorak analysis gives constant CI numbers of 7.0 through the peak intensity period
- Doppler-radar provides information on intensity with high temporal resolution.

