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General information of two metal oxide 

• Metal oxide sources in the atmosphere 
o Natural– volcano, soil, biomass burning  
o Anthropogenic- engineered, fuel, industrial pollution, firework, 

aircraft emission, hygroscopic flare 
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Aluminium oxide observed in the atmosphere 
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Space shuttle exhausted air at 2-7 km high with 
98.9% aluminum oxide in 0.3 µm diameter and 
below. (Cofer III et al., 1991) 

Linak et al., (2007):Fly-ash includes Al, Ca, Ti,Mg, 
and iron oxide is below 2.5 µm  

From wikipedia 

In Abidjan- a rural (Pasteur), an urban (Cocody), 
an industrial (Vridi) sites, particles are mostly 
smaller than 2.5 µm, aluminum, iron, calcium 
account for 56-79 µg/mg, 34-54 µg/mg and 31-37 
µg/mg. (Kouassi et al., 2010) 

Component Bituminous Subbituminous Lignite 
Al2O3 5-35 20-30 20-25 

Aluminium accounts for 8.3% of Earth crust;   
Corundum is the most common naturally occurring 
crystalline form of aluminium oxide.  
Industrial proposes 
 

Roadside: 23.1% in aluminum oxide  (Sanderson et al.,2016)  



Iron oxide observed in the atmosphere 

5 

Roadside: 52.6% iron in PM18, iron oxide‘s median 
diameter 27 and 37nm. (Sanderson et al.,2016)  

In urban background, iron oxide distributes in 25-116 nm 
(Belosi et al., 2013)  

Around iron and steel 
manufacturing facilities, iron 
oxide distributes 5-10 µm or 
less 5 µm. (Machemer, 2004) 

Iron oxide distributes 200-2400 nm 
in Tsukuba. (Adachi et al., 2016) 
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Iron accounts for 4.5% of Earth crust;   
Industrial proposes 
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(IPCC, AR5) 

 Anthropogenic forcing 

Fig 3. 



Aerosol─cloud─climate interaction 

NOx  O3 

Metal oxide 

Fig 4. Aerosol-cloud-climate interaction (J.-P. Chen 2004) 7 
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Ice nucleation 

http://www.iac.ethz.ch/groups/lohmann/research/lab/in 

hetero
g
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us 

Fig 5. Modes of ice formation in clouds (from ETH Zürich) 



 Ice nucleation active surface site (INAS) densities 
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 INAS density (ns) based on geometric aerosol size is a method to 
parameterize surface area-scaled immersion freezing activities (Connolly et 
al., 2009; Niemand et al., 2012) 
 

 postulates that ice crystal formation observed in experiments is a solely 
function of temperature (and ice saturation) 

 activated ice crystals (Nice) and CN was measured simultaneously during the 
expansion experiments, the activated fraction of aerosol particles as ice nuclei 
(fIN = Nice/Ncn) was obtained 

  dividing the activated fraction by the volume equivalent surface area of an 
individual particle (Sve) measured in advance for each experiment 

 on the assumption of a uniform distribution of ice nucleation sites and their 
size-independency over a given total aerosol surface area (Sve・Ncn).  



Reviewed articles – AIDA chamber 

• Hiranuma et al. (2014) used AIDA chamber, shown with 
immersion nucleation, tested surface irregularities of Fe2O3  
o The immersion mode ice nucleation efficiency of milled Fe2O3 

particles is almost an order of magnitude higher at −35.2  ̊C < T 
<−33.5  ̊C ( RHi = 125% ) than that of the cubic Fe2O3 particles, 
indicating a substantial effect of morphological irregularities on 
immersion mode freezing 
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Fig 8. Results in INAS form 



Reviewed articles – AIDA chamber 

• Saunders et al. (2010) used AIDA 
chamber, observed deposition 
nucleation of Fe2O3 at RHi ranging 
from 105% to 140% for 
temperatures below -53 ̊C.  
o Approximately 10% of amorphous 

Fe2O3 particles (modal diameter = 
30 nm) generated at RHi = 140% 
with an initial chamber 
temperature of    -91 ̊C. 

• Conditions studied in the 
chamber which correspond to 
cirrus cloud formation in the 
upper troposphere. 
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[ns (-83 ̊C )=10(3.33×Sice)+8.16] 

Fig 7. calculated number of active sites 
per unit area of material that become 
active at the given sice for the iron 
oxide aerosol experiments as indicated. 
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0.1% of the total number of injected aerosol 
particles had nucleated ice  
(i.e. formed 5 μm crystals) 

Yakobi-Hancock et al.(2013 ) using a CFDC at −40.0±0.3℃ and particles size-selected at 200 nm. 

Reviewed articles – CFDC 



Summary of reviewed articles 

Nucleation 
mode 

Particle 
size  

Results 

Hiranuma et al. 
(2014)  

Immersion 
(AIDA 
chamber) 

modal 
diameter = 
1 µm 

milled Fe2O3 INAS~1E10 at −35.2  ̊C 
< T <−33.5  ̊C ( RHi = 125% )  

Saunders et al. 
(2010)  

Deposition 
(AIDA 
chamber) 

modal 
diameter = 
30 nm 

Fe2O3 at RHi ranging from 105% to 
140% for temperatures below -53 ̊C. 

Yakobi-Hancock 
et al. (2013)  

Deposition 
(CFDC) 

200 nm -40℃, 1%, RHi=143.2% (Al2O3) 
RHi=148.8% (Fe2O3) 

Archuleta et al. 
(2005)  

Deposition 
(CFDC) 

50,100,200 
nm 

200nm, 1%, RHi ~140%  
-45 (Al2O3) -60 ̊C (Fe2O3) 

Table 2. Summary of reviewed articles 

(Upper layer)  

(larger particle)  
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Aerosol 
(source) 

Purity 
wt% 

Density 
(g cm-3) 

Other content Average surface 
(μm2) 

Al2O3 

(APPIE) 
99% up 3.9 unknown 1.61E-12 

(11/17) 

Fe2O3#1 

(TETSUGEN) 

99.24% 5.2 H2O 0.1%, Cl 0.073%, SO4 
0.04% 

1.22E-12 
(11/09) 

Fe2O3#2 

(TETSUGEN) 

99.05% 5.2 H2O 0.06%, Cl 0.04%, SO4 
0.02% 

3.85E-13 
(11/16) 
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8.04E-13 
(2/13) 

( m2 ) 

Table 4. Material information 



type method Mean 
diameter Aave 

Al2O3 chamber 0.50 1.6E-12 
Al2O3 CFDC 0.34 4.9E-13 

Fe2O3 #1 chamber 0.37 8.0E-13 
Fe2O3 #2 chamber 0.30 3.9E-13 

Size distribution in the exp. 
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Fig 10. Particle size distribution 

Table 5. Material information 



Hygroscopicity measurement system 

Activated Fraction(AF) 
AF = CCN/CN  

 Critical Dry diameter: AF = 0.5 

Particle 
generator 
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Kappa 

17 

Fig.12 Kappa in experiments. 

The results indicated that the hygroscopicity (κ-value) 
were around 0.01, which are comparable to that of 
surrogates of mineral dust particles, and less than the 
average κ-value of atmospheric aerosols. 

 



Cloud Particles 

Laser sensor 

CAS 

CPI 

Welas OPC 
Operational Ranges 
Pressure: 1000 ～ 30hPa 
Wall Temperature: +30 ～ -100 ℃ 
Ascent Rate: 0 ～ 30m/s 

SMPS 
(MODEL3936, TSI) 

OPC 
(KC-01E, RION)  

CCN Counter 
(CCN-200, DMT) 

Aerosol Particles 

IN Counter 
(MRI) 

 
Device specifications 
Size range:  
10nm～（aerosol）～1μm 
                     ～ （drop/Ice）～100μm 
Data: Aerosol size spectra,  
           CCN activity spectra 
           Cloud particle size distribution 

Aerosol and Cloud particles measurements 

data：Onset, Time evolution of size 
       distribution and concentration, 
       Particle shape and Habit image 
       and Depolarization ratio 18 



MRI Dynamic Cloud Chamber Aerosol Buffer Tank 
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 date type Conc. 
(#/cc) 

ascent 
rate (m/s) Tini Tdini TLCL AFmax Aave INASmax 

161117 Al2O3 1360 5 5 -13.3 -16.9 0.0043 1.6E-12 2.7E+09 

161118 Al2O3 2940 5 5 -8.7 -11.5 0.0425 1.6E-12 2.6E+10 

170106 Al2O3 1600 5 5 -6.5 -8.9 0.0205 1.6E-12 1.3E+10 

170110 Fe2O3 
 #1 4200 5 5 -5.2 -7.5 0.0006 1.2E-12 4.9E+08 

170111 Fe2O3 
 #1 8640 5 5 -10.5 -13.6 0.0014 1.2E-12 1.1E+09 

170112 Fe2O3 
#2 3580 5 -5 -13.9 -15.7 0.0031 3.9E-13 7.9E+09 

170113 Fe2O3 
 #2 2880 5 -5 -11 -12.5 0.0042 3.9E-13 1.1E+10 
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Table 6. Exp. information 

MRI dynamic cloud chamber exp. 



Fig 15. MRI dynamic chamber exp. 
21 

Al2O3 Fe2O3#1 



Activation fraction 

Fig 16. Activation fraction 
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INAS 

Fig 17. Results in INAS form 

AF: Al2O3 > Fe2O3 #2 > Fe2O3 #1 
Particle size (Surface) : Al2O3 > Fe2O3 #1 > Fe2O3 #2 
INAS : Al2O3 > Fe2O3 #2 > Fe2O3 #1  



NX Illite 
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Fig 18. Previous results in INAS form 



Previous study using MRI chamber 

 

Fig 19. (a) Size distribution of cellulose (b) Rsults in INAS form 
Hiranuma et al. (2015)  

(b)  (a)  

cellulose (セルロース) 

ice nucleation by cellulose becomes significant (>0.1 l-1) below 
about -21 C, temperatures relevant to mixed-phase clouds. 



Discussion for cloud chamber exp. 

• Coolant temperature issue (not low enough) 
• Around -20℃, the ice crystal can be observed in cloud 

chamber exp. 
• Which is the dominated mechanism, condensation or 

immersion freezing? 
• Size issue, Al2O3 has broad size distribution inside the cloud 

chamber. 
• Size matters more than chemistry for cloud-nucleating ability (Dusek et al., 2006) 
o More particles are large than 0.2 µm of Al2O3 
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Fig 20. MRI IN Counter 

IN measurement employed 
Temperature:: -10 ～ -35 ℃ 
Relative humidity:  
  SSi ～ 0 % to SSw ～ +15 % 
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type Mean 
diameter Aave 

Al2O3 0.34 4.9E-13 
Fe2O3 #1 0.35 4.8E-13 
Fe2O3 #2 0.28 3.0E-13 

CFDC-type IN counter exp. 

Cut-off 1µm 

Table 7. Material information 



CFDC-type IN counter exp. 

Fig.22 CFDC-type INC results 
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Discussion  

• Is the metal oxide efficient enough as CCN/IN ? 
o Real atmospheric condition, particle size distribution 

 

• How is the difference between laboratory and reality ? 
o Internal/external mixing 
o mixed-phase clouds 

 
• Uncertainties during the experiment processes. 
• We suggest a series of future studies investigating the 

ice nucleation activity of metal oxide in greater detail 
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Conclusion and ongoing work 

 
• Kappa of three metal oxide particles are around 0.01-0.04 
• Ice nucleation by two metal oxide becomes significant below 

about -20/-25 ℃, temperatures relevant to mixed-phase clouds. 
• Al2O3 seems to have better IN ability than Fe2O3 both in cloud 

chamber exp. and CFDC-type INc exp. 
o Onset temperature is around -20℃ in cloud chamber exp. 
o Ability is like illite. 
o Onset temperature is around -30℃ in CFDC-type INc exp. 

 

• Parcel model (Chen and Lamb,1994 )– using kappa and INAS for 
parameterization (Yamashita et al., 2011, 2013; Hoose and 
Möhler, 2012) 
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Thanks for listening. 
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