トンガ・ケルマディック海溝沿いの

プレート境界地震活動と地球潮汐の関係

気象研究所地震津波研究部* 弘瀬冬樹 気象庁地震火山部** 前田憲二 気象庁気象大学校*** 上垣内修

Tidal forcing of interplate earthquakes along the Tonga-Kermadec Trench

Fuyuki Hirose

 * Seismology and Tsunami Research Department, Meteorological Research Institute, 1-1 Nagamine, Tsukuba, Ibaraki, 305-0052, Japan

Kenji Maeda

** Seismology and Volcanology Department, Japan Meteorological Agency, 1-3-4 Otemachi, Chiyoda-ku, Tokyo, 100-8122, Japan

Osamu Kamigaichi

*** Meteorological College, Japan Meteorological Agency, 7-4-81 Asahi-cho, Kashiwa, Chiba, 277-0852, Japan

* 〒305-0052 茨城県つくば市長峰 1-1

** 〒100-8122 東京都千代田区大手町 1-3-4

*** 〒277-0852 千葉県柏市旭町 7-4-81 気象庁気象大学校

1

Abstract

地球潮汐指標のレベルと位相角と、トンガ・ケルマディック海溝沿い 2 のプレート間地震の発生との関係の時空間変化を調査した. 潮汐指標として, 3 体積ひずみ ΔV , せん断応力 $\Delta \tau$, 法線応力 $\Delta \sigma$, およびクーロン破壊関数 ΔCFF 4 (見かけの摩擦係数 μ'は 0.1, 0.4 および 0.7 を計算)を用いた. 我々は, 地震 5 活動が Δτ ではなく Δσ と相関しており、潮汐応力が断層すべりを促進すると 6 きに地震が発生する傾向があることを発見した。潮汐応力レベルが正の値が 7 大きいと地震が発生しやすく、負の値が大きいと地震が抑制される傾向があ 8 9 る. トンガ・ケルマディック海溝沿いのプレート境界では μ'が比較的大きい と推定され、これは Δσ に対する間隙水圧の応答が弱いことを示唆している. 10 南緯 20~22 度および南緯 27~29 度付近の地震は特に,Δσ の影響を受けやす 11 い. G-R 則の b 値は, 最大潮汐主応力と最小潮汐主応力の差が大きい場合に減 12 少しており,岩石実験の結果と一致する. 13

14

15 Keywords: 地球潮汐, トンガーケルマディック海溝, プレート境界地震, 潮汐位相角, 16 潮汐歪/応力レベル

17

18 Keypoints

- 19 潮汐せん断応力よりも法線応力の方が地震のトリガーに寄与
- 20 潮汐指標値の絶対値が大きいほど、地震の選択性が顕著(指標値が大きな正の時
 21 に地震が起きやすく、大きな負で起きにくい)
- 22 潮汐の差応力が大きい時に G-R 則の b 値が低下する傾向

23

25 **§1.** はじめに

潮汐が微動活動から巨大地震までの様々なスケールの地震活動に対して影響を与 26 27 えている可能性が指摘されている [例えば, Tanaka et al., 2002a; Ide and Tanaka, 2014; Ide et al., 2016]. Tanaka et al. [2002a]はハーバード CMT 解カタログを用いて,全世界 28 で 1977-2000 年に発生した Mw 5.5 以上の 9,350 イベントと地球潮汐との統計を取っ 29 た. 断層タイプ・深さ・規模別で調査した結果, 逆断層型の地震(深さ 70 km 以浅, 30 Mw 5.5-6.9)で特に潮汐との相関が高いこと、せん断応力が最大になる少し前に地震 31 が起きる傾向にあることを示した. Ide and Tanaka [2014]は、岡山県沿岸直下の微動活 32 33 動が潮位の低下時に活発化することを見出した.さらに,微動や定常地震の活動度, 過去 1400 年間に発生した南海トラフ沿い巨大地震が、月の公転軌道の長期的変動に 34 起因する約 18.61 年周期とも相関があることを指摘した. Ide et al. [2016]は, 1976-35 2015年に全世界で発生した M 5.5 以上の地震(11,397個)と潮汐(特に約15日周期 36 で現れる大潮に注目)との関係を調査した結果,規模が小さいとその傾向はみえない 37 38 が, M_w 8.2 以上の巨大地震 12 例中 9 例(75%)が地震発生日を含む地震前 15 日間の 39 うち潮汐せん断応力の振幅が大きい上位 5 日間に発生していたことを報告した. こ れらの研究結果は、kPaオーダーの小さな潮汐応力の変化がプレート境界のすべりに 40 影響を与えうることを示唆しており、地震発生確率の変化を物理的な根拠を持って 41 推定可能であることが期待される. 42

トンガ・ケルマディック海溝(Fig. 1a)沿いは世界でも有数の地震多発帯である. 43 44 1982 年 12 月にトンガ付近で発生した地震(M_w 7.5) については, Tanaka et al. [2002b] が解析を行っており,本震前に潮汐相関の指標 p 値 (詳しい定義は第3節を参照)が 45 低下し、本震後に増加する傾向を示した.このような特性から、p 値は地震予測の有 46 効なツールの可能性があると期待されている. 先行研究から十数年が経過し, 地震の 47 データ数は倍増している.この地域では、1982年12月の地震以外にもM7クラスの 48 プレート境界型地震が度々発生している(Fig. 1b, d). しかしながら,予備的調査の 49 50 結果,残りの M7 イベントについては p 値の前兆的な時間変化は不明瞭であった (こ れについては別論文で準備中). p 値は潮汐変化の位相に基づいているため、振幅の 51 52 情報が失われている. Ide et al. [2016]が示したように,振幅情報も重要なファクター と考えられる.そこで本研究では、この地域のプレート境界型地震活動と潮汐との基 53 礎的な関係についてより詳細に調査するため、40 年間のデータを用いて潮汐変化の 54

55 位相だけでなく振幅の情報も加味して検討した.このとき,荷重点からの角距離の刻
56 み幅(補遺 A-3 参照)を小さくし,先行研究よりも計算解像度を上げた.解析の結
57 果,先行研究[Tanaka et al., 2002b]でも指摘されていたことではあるが,せん断応力
58 よりも法線応力が地震のトリガーに寄与していることがより明確となった.p値に基

- 59 づく解析で生じる問題についても触れる.
- 60

61 **§2. データ**

解析対象領域は地震活動が活発なトンガ・ケルマディック海溝沿いの地域とし, 62 63 GCMT 解のデータ [Dziewonski et al., 1981; Ekström et al., 2012] を用いて、プレート 境界型の地震 661 個 (走向 150-230°, すべり角 55-125°, 深さ 70 km 以浅, 1977-2016 64 年, $M_w \ge 5.5$)を抽出した(Fig. 1, Table S1).本領域(Fig. 1aの破線)は, Flinn et al. 65 [1974]による地域分けに基づいて先行研究 [Tanaka et al., 2002b] が設定した解析エリ 66 アと同一である. 走向を 150-230°としたのは、トンガ・ケルマディック海溝の走向の 67 大部分が 180-200°であり、GCMT 解の誤差を考慮して±30°としたためである. すべ 68 69 り角については,先行研究 [Tanaka et al., 2002b] では,プレート境界型地震の条件を 60-120°としていたが、本研究では 55-125°と広げた. この変更の目的は、2006 年 5 70 月3日に南緯20°付近のプレート境界で発生したと考えられるこの地域最大クラスの 71 地震 (*M*_w 8.0, すべり角 123°) を解析に含めるためである.規模別頻度分布 (Fig. 1e) 72 から, M_w 5.5 以上は十分検知できていると考えられる. M_w 5.5 以上の 661 個のうち 73 74 深さが 10 km 未満の地震はなかった (Fig. 2). 南北方向 1 度毎の地震数をみると (Fig. 1c), 南緯 18-19°, 25-26°, 31-35°で地震数の低下が目立つ. 南緯 18-19°は山羊座海 75 山 [Crawford et al., 2003], 南緯 25–26°はルイビル海山列系の Mo'unga 海山 [Ballance 76 et al., 1989]が沈み込みつつある領域と対応しているようにみえる. 南緯 31-35°のア 77 ウターライズにはプチ海山群が分布している.それら低地震活動域で区分された3区 78 間の1度あたりの地震数は南側区間の方が大きい(南緯 15-18°:29 個/°, 南緯 19-79 80 25°:38 個/°, 南緯 26-31°:48 個/°). 時間変化をみると(Fig.1d), 断続的に発生し, 81 1985年付近の静穏化が目立つ.

82 この地域の震源決定精度は低く,深さ 15 km に固定された地震が多い(Fig. 2).上
83 記の条件を満たす地震(プレート境界型のメカニズム解を持つ地震)が必ずしもプレ
84 ート境界 [Hayes et al., 2012] に沿って分布していない(Fig. 2)が,先行研究 [Tanaka

85 et al., 2002b]に倣って、本論文でもプレート境界地震と見做して解析した.理論潮汐
86 を計算する際に用いる震源の位置と発生時間の情報は GCMT 解のカタログ値 (Fig. 2
87 のまま)とした.

88 なお、西経 170°、南緯 16.5°付近の地震(2003 年 10 月 7 日, M_w 6.1, Fig. 1a の×)
89 も冒頭の条件に合致するが、海溝から距離があり明らかにプレート境界で発生した
90 とは考えられないため、このイベントは解析から外した。

- 91 **Fig. 3** は,計算領域の南北4区間内で発生した地震の断層パラメータの分布である.
- 92 北部では走向 150-200°, 南部では 190-210°の走向を持つイベントが多く発生してい
- 93 る (Fig. 3a). 傾斜角は全域で 20-30°にピークを持つ (Fig. 3b). すべり角については,

94 北部では 65-75°と 85-95°に 2 つのピークを持ち, 中部では 85-95°, 南部では 95-105°
95 にピークを持つ (Fig. 3c).

96

97 **§3.** 解析手法

98 震源における理論潮汐応答は,固体潮汐と海洋潮汐荷重効果の和で表現できる.前
99 者は直接項,後者は間接項とも呼ばれる.両者を合わせたものを地球潮汐(本論では
100 簡単に潮汐)と呼ぶ.固体潮汐と海洋潮汐荷重効果はそれぞれ別のロジックで推定し
101 た(補遺 A-1 参照).このとき,海洋潮汐荷重効果は荷重点近傍では大きく変化する
102 ため,荷重点からの角距離の刻み幅(補遺 A-3 参照)を小さくし,先行研究[Tanaka
103 et al., 2002b]よりも計算解像度を上げた.

104 固体潮汐及び海洋潮汐荷重効果それぞれについて、各イベントの位置における歪 105 テンソル6成分の時系列を算出し,両者を合算した.算出のサンプリング間隔は3分 106 とし, 先行研究 [Tanaka et al., 2002b] の 10 分よりも時間分解能を上げた. 歪テンソ ル 6 成分から震源における体積歪(ΔV), 第 2 節で抽出した GCMT 解に基づいた断 107 層面上におけるせん断応力 ($\Delta \tau$),法線応力 ($\Delta \sigma$), ΔCFF の時系列を算出した (補遺 108 109 A-4 参照). このとき, ΔCFF の計算に用いる見かけの摩擦係数 µ'は, 0.1, 0.4, 0.7 の 3 110 ケースを考えた(以下, ΔCFF_(0.1), ΔCFF_(0.4)及び ΔCFF_(0.7)と示す).体積歪及び法線応 力については膨張・拡張を正、収縮・圧縮を負とした. せん断応力及び ΔCFF につい 111 ては断層すべりを促進する方向を正,抑制する方向を負とした.法線応力についても, 112 結果的に断層すべりを促進する方向が正,抑制する方向が負となっている.すなわち, 113 114 本研究では、イベントが各潮汐指標のどのタイミングで発生する傾向にあるのかを

115 把握するために、潮汐に起因する指標(以下、潮汐指標)として、 ΔV, Δτ, Δσ 及び

116 ΔCFF_(0.1, 0.4, 0.7)の6つを取り扱った.

- 117 1982 年 12 月 19 日に発生した M7.5 の地震 (深さ 29.2 km, 走向 198°, 傾斜角 22°,
- 118 すべり角 101°)の前後1日間における Δτ と Δσ の時系列を Fig. 4 に示す. Δτ は固体
- 119 潮汐, Δσ は海洋潮汐荷重効果の寄与が大きいことがわかる (Fig. 4a, b). 本解析では,
- 海洋潮汐荷重効果を計算する際,短周期潮汐16分潮(M2,S2,K1,O1,N2,P1,K2,Q1,M1,J1,OO1,2N2,Mu2,Nu2,L2,T2)及び長周期潮汐5分潮(Mtm,Mf,Mm,Ssa,Sa)から成る21分潮を考慮した(補遺A-1-2参照).長周期潮汐5分潮による寄与はかなり小さく(Fig.4c,dのLONGP),短周期潮汐16分潮(Fig.4c,dのSHORTP)による寄与がほとんどである。その中でも主要8分潮(M2,S2,K1,O1,N2,P1,K2,Q1:Fig.4c,dのMAJOR8)による寄与が大きい。さらに、主要8分潮の中では、M2分潮(主
- 126 太陰半日周潮) による寄与が群を抜いている (**Fig. 4e, f**).
- 127 Fig. 5 は、地震時における潮汐位相角と潮汐応力(歪)レベルの定義を示す、潮汐
 128 位相角は先行研究[例えば、Tsuruoka et al., 1995]と同様に、各時系列についてイベ
 129 ント前及び後の極小値の位相を-180°及び 180°、極小値間の極大値の位相を 0°、その
 130 間は等分割した位相と定義した、潮汐応力(歪)レベルはゼロ線を基準とした正負の
 131 符号を持つ指標値と定義した、これは後段の議論で値の正負を問題とするためであ
 132 る.
- 133 地震が特定の潮汐位相角に偏って発生しているかどうかについては、以下の式
 134 [Schuster, 1897] で評価されることが多い.

$$p = \exp\left(-\frac{D^2}{N}\right) \tag{1}$$

$$D = \sqrt{\left(\sum_{i=1}^{N} \cos\psi_i\right)^2 + \left(\sum_{i=1}^{N} \sin\psi_i\right)^2}$$
(2)

135 ここで、Nはイベント数、 ψ_i はi番目のイベントの潮汐位相角である.式(1)はレイリ 136 一分布の相補累積分布関数であり、2次元のランダムウォークによってN(N ≥ 10) 137 歩進んだ時に距離D以上となる確率に相当する.このとき、Nが 10個以上あれば式(1) 138 の近似が十分とされている[Heaton, 1975].統計学的には、p値は「イベントが潮汐 139 位相角に無関係に発生する」という帰無仮説を棄却する危険率を表す.p値は 0-1 (0-

140 100%)の値をとり, p 値が小さいほどイベント発生時の潮汐位相角の偏りが顕著であ

141 ることを示す. 一般的には, p 値が 5%以下の場合に有意な相関があるとされるケー

142 スが多く [Tanaka et al., 2002a], 本研究でもそれに倣った.

ここで, p 値に関する性質を紹介する. Fig. 6 は, 661 個の人工的な潮汐位相角の 143 144 分布を示している. 各 bin には, 各 bin の中心の潮汐位相角値(例えば, -20-0°区間 であれば一律-10°)を持たせている.まず, Fig. 6a-c では, -20-0°区間に顕著な突出 145 がみられるが、p 値が 5%以下となるのは Fig.6c のみである. Fig.6b のように、他区 146 間に比べておよそ2倍(=9.98/5.30)の差があってもp値は5%以下とならない. Fig. 147 148 6d は Fig. 6a の-180--140°区間と 140-180°区間の個数を減らす代わりに、-60--20°区 149 間と 0-40°区間の個数をその分増やしたものである. この時の p 値は 4.23%となり, 有意な相関があると判定される. Fig. 6e は Fig. 6a の-180--100°区間の個数を減らす 150 代わりに,-100--20°区間の個数をその分増やしたものである.この時のp値は 3.90% 151 となり、有意な相関があると判定される. Fig. 6f は Fig. 6c の-160--20°区間と 0-180° 152 153 区間の個数を減らす代わりに、-180--160°区間の個数をその分増やしたものである. 154 Fig. 6c と比べて、-20-0°区間のピークがより強調される結果となるが、その区間と 160°の差を持つ-180--160°区間でも局所的なピークを持つことにより、p値は 19.89% 155 156 となり、相関がないと判定される.以上のことから、p 値が小さくなるためには、一 区間が突出するだけでなく、その区間から離れた区間の個数が少ないことが求めら 157 れる(正弦波近似はひとつの目安である). p 値は潮汐による地震の促進だけでなく 158 159 抑制も考慮した指標と言える.

160潮汐位相角に基づく p 値解析についてはひとつ注意すべき点がある. ある 2 つの161潮汐成分 (例えば $\Delta \sigma \ge \Delta \tau$) において,ある周期 (例えば, Fig. 4e, f で示したような162M2 分潮) が卓越していた場合,一方の成分 (例えば $\Delta \sigma$) が地震のトリガーを真に支163配していたとしても、別の成分 (例えば $\Delta \tau$) も潮汐相関が高いと判定されてしまう164ことがある. ただし、たとえ p 値が小さくても (一見、高い潮汐相関を示しても),165断層面上でのすべりを抑制するタイミングで地震数がピークを持つようであれば、

166 物理的には矛盾しているため、潮汐との相関は無いと判断すべきであろう、潮汐応力167 レベルを併用する価値はある.

168 地球モデルの物性境界の深さにおける潮汐応答を計算する場合,本プログラムで
 169 は上側の層の物性を用いる(補遺 A-2 参照).一方, Tanaka et al. [2002a, b]では下側の

層の物性を用いる.本解析領域では、Fig. 2 で示されるように深さ 15.0 km に固定さ 170 171 れた地震が多数ある(207 個). 上層の物性を採用した場合と下層の物性を採用した 場合の結果を比較すると、どちらの層であっても Δσの位相角はほとんど変わらない 172 (最大でも 2°)が、Δτの位相角は大きく異なる(207 個中 113 個(= 55%)のイベント 173 174 が 20°以上の位相角差を持つ).本研究と先行研究 [Tanaka et al., 2002b]の潮汐位相 角分布の結果がやや異なっているのは,計算解像度(地表鉛直点荷重に対するグリー 175 ン関数の刻み幅、計算セルサイズ)・時間分解能の違いの他に、物性境界の地震の処 176 理の違いに起因すると考えられる.ただし、下層を採用した場合であっても、Δτよ 177 178 りも Δσの方が地震のトリガーに寄与しているという結論(後述)は変わらない.

179

180 **§ 4. 結果**

全 661 イベントのうち規模上位の 3 イベント (M_w 7.5, 8.0, 7.6) それぞれの発生前 181 後1日間における潮汐指標の時系列を Fig. 7 に示す.体積歪と法線応力の応答曲線 182 183 の形状は概ね似ている.これは補遺 A-4 の式(A6)からも期待される.一方,せん断応 184 力は極大・極小の相対的な差や周期が体積歪や法線応力とは異なる. せん断応力の振 幅は法線応力の 1/10–1/5 程度であるため, ΔCFF については, μ'=0.1–0.2 であれば両 185 186 者の寄与は概ね等しくなるが、μ'>0.2 だと法線応力の影響が強まり、法線応力の分 布と似てくる. 例示した 3 イベント時の Δσ (青線)の潮汐レベルはいずれも正であ 187 る.これは、断層すべりを促進する方向に潮汐応力が働いているタイミングで地震が 188 発生していることを意味する. Δτ (赤線) は 1982 年 M 7.5 では潮汐レベルが正のタ 189 イミングで発生している.一方,2006 年 M8.0 と 2009 年 M 7.6 では負のタイミング 190 191 で発生している.後者は、断層すべりを抑制する方向に潮汐応力が働いているタイミ ングで地震が発生しており、潮汐トリガーに寄与していないことを意味している. 192 Fig. 7 の各パネルには、地震発生時の潮汐位相角を記してある. Δσ やそれと親和性 193 194 の高い ΔV や ΔCFF_(0.4,0.7)では,約 12 時間と約 24 時間の周期が認められ,潮汐位相角 195 は同程度の値となる.一方、Δτ は約 24 時間周期の変化が目立ち、潮汐位相角は他成 分と大きく異なる. ΔCFF_(0.1)は Δσ と Δτ の寄与が概ね等しく,潮汐位相角は両者の平 196 197 均的な値になる.

198 規模上位の 3 イベントの理論曲線からおおよその特徴は読み取れた. さらに包括
199 的な特徴を把握するため,全 661 個のイベントの潮汐位相角についても調査した.

- Fig. 8 は、潮汐指標間の地震発生時の位相角の関係を示している. 最初に、ΔV、Δσ、 200 201 ΔCFF (0.4, 0.7)については、指標間の違いは小さい(Fig. 8a-c, f, g, j). そのため、こ れらは Δσ で代表できる.次に,Δτ に対して Δσ はばらつきつつも,ある位相差を持 202 った右肩上がりの関係が認められる(Fig. 8i). このように両者に弱い相関(相関係数 203 204 0.27) がみられるのは、基本的に M2 分潮の周期が卓越すること(Fig. 4e, f) による 205 と考えられる. 最後に、 $\Delta CFF_{(0,1)}$ に対する $\Delta \sigma$ (Fig. 8h) や $\Delta \tau$ (Fig. 8o) のばらつき は、 $\Delta \tau$ に対する $\Delta \sigma$ より小さい.以上のことから、6 成分のうち、 $\Delta \sigma$ 、 $\Delta \tau$ 、 $\Delta CFF_{(0.1)}$ 206 の3成分で代表できることがわかる.これ以降は,主にこれら3成分の結果について 207 208 述べる.
- 潮汐指標毎の位相角とレベルの関係を Fig. 9 に示す. 例えば, Δσ についてみると 209 (Fig. 9b), 位相角が-90-90°の範囲であればレベルは概ね正を示し, 位相角が-180--210 90°及び 90-180°の範囲であればレベルは概ね負を示す. 一方, Δτ や ΔCFF_(0.1)につい 211 てみると(Fig. 9a, c), 位相角が-90-90°の範囲であっても負のレベルを示すイベント 212 213 が多くみられ, 位相角とレベルが必ずしも線形関係にはないことがわかる. 位相角が 214 極大 (0°)・極小 (±180°) 付近では, レベルそのもののばらつきが大きい (Fig. 9d-f). このように、先行研究でしばしば用いられてきた位相角だけでは地震活動と潮汐と 215 の関係を明らかにするには不十分と考えられる. そこで本研究では, 両方を用いて解 216
- 217218

219 **§5. 議論**

220 **5-1.** 潮汐位相角の特徴

析を行い、総合的に解釈を行った.

イベント 661 個の潮汐位相角ヒストグラムを Fig. 10 に示す. Δτ 以外の潮汐指標は 221 0°付近にピークを持っており、レベルが極大となるタイミングで地震が発生しやすい 222 ことを示している. p 値で評価すると、ΔCFF_(0.1)は 15.31%と比較的大きいが、それ以 223 外の潮汐指標の p 値は 4%以下であり、ΔCFF_{(0.1}以外の潮汐指標が地震トリガーと関 224 225 連していることを示唆する.しかし、Δτのp値については§3でも述べたように注意 が必要である.Δτは最小の p 値(1.76%)であることから、地震活動との相関が一見 226 示唆されるが、最頻値を示す-80--100°区間で発生した地震活動のほとんどが断層す 227 べりを抑制するタイミングに対応しており(Fig. 10a),物理的に矛盾している.すな 228 わち, Δτ との高相関は見かけ上のものであり, ΔCFF_(0.1)だけでなく Δτ も地震トリガ 229

230 ーを支配していないと考えられる.

231 5-2. 潮汐応力レベルの特徴

259

次に、潮汐応力レベルの特徴について述べる. 地震発生時のレベル値の頻度分布を 232 Fig. 11 の灰棒で示す. Δσ は正の時(断層すべりを促進する方向に潮汐応力がかかる 233 タイミング), Δτ と ΔCFF_(0.1)は負の時(断層すべりを抑制するタイミング)に地震が 234 多く発生している.ただし,**Fig. 7e** の Δτ(赤線)や **Fig. 7f** の ΔCFF_(0.1)(橙線)のよ 235 うに、バックグラウンド潮汐の正と負の出現率が同じとは限らない. 地震がランダム 236 に発生していれば、バックグラウンド潮汐の正負と同じ出現率となるが、 地震がレベ 237 238 ルの正負に依存していれば,異なる出現率となる.そこで,バックグラウンド潮汐の 応力レベルの出現率分布(破棒.各地震の発生前後183日間の指標変化の15分値か 239 らなる 23,225,557 個のデータに基づく)と比較した. 両線の分布が大きく乖離してい 240 れば地震は潮汐と関係している可能性が高くなる. 灰棒と破棒の比を菱形で示して 241 いる.いずれの成分もレベル値が正の時の比が1より大きく,正の時に地震が選択的 242 243 に発生している可能性が浮上する. ここでバックグラウンド潮汐の出現率と地震発 244 生時の出現率に有意な差があるかどうか, 「地震がレベルの符号に無関係に発生する」 という帰無仮説を立て、自由度1のカイ二乗検定で検定した.その結果、カイ二乗値 245 はそれぞれ 2.00 (Δτ), 6.24 (Δσ), 4.22 (ΔCFF_(0.1))となった. Δτ は有意水準 10%で 246 も帰無仮説を棄却できないが、ΔσとΔCFF_(0.1)は有意水準 5%で帰無仮説を棄却でき、 247 「地震が潮汐の影響を受けて選択的に発生すること」が示唆される. 248

249 Fig.12 は, Fig. 11 の区分を 10 区間に分けたものである. 菱形はバックグラウンド 潮汐の出現率に対する地震発生時の出現率の比である。比は多少ばらついているが、 250 いずれの成分も回帰直線は右肩上がりであり、レベルの絶対値が大きいほど、 地震の 251 選択性が顕著である(レベルが大きな正の時に地震が起きやすく,大きな負で起きに 252 くい). ただし, Δτ については, 大きな負でも地震を抑制する効果は小さい (Fig. 12a). 253 10 区間に分けた場合についても、自由度9のカイ二乗検定を行った.その結果、カ 254 255 イニ乗値はそれぞれ 2.98 ($\Delta \tau$), 19.25 ($\Delta \sigma$), 15.28 ($\Delta CFF_{(0.1)}$) となった. $\Delta \sigma$ は有意 水準 5% (2.5%でも) で帰無仮説 「地震がレベル値に無関係に発生する」を棄却でき, 256 「地震が潮汐レベル値に影響を受けて選択的に発生すること」が示唆される.一方, 257 Δτ や ΔCFF_(0.1)は有意水準 5%で帰無仮説を棄却できない(ただし, ΔCFF_(0.1)について 258

9

は有意水準 10%であれば帰無仮説を棄却できる). これらのことから, Δτ がこの地域

260 のプレート境界型地震活動のトリガー(特に抑制)に影響している可能性は低い. Fig.

261 12b の矢印は、バックグラウンド潮汐に対するイベントの出現率が比較的大きい Δσ

262 > 4.8 kPa(小さい Δσ < -4.8 kPa)を示す.詳しくは後述(5-5-2節)する.

263 Tanaka et al. [2002a]は、全世界的にみれば、逆断層型の浅い(深さ 70 km 以浅)中 264 規模地震 (M_w <7.0) は $\Delta \tau$ との相関が高いことを示した.一方、本解析から、トンガ 265 ーケルマディック海溝沿いの地震は $\Delta \sigma$ に有意に影響を受けていることが確認でき 266 た.なお、この結果は、Tanaka et al. [2002b]の結果と整合的である。これらのことか 267 ら、 $\Delta \tau$ と $\Delta \sigma$ のどちらが地震のトリガリングに影響するかには地域性があることが 268 示唆される.

269 **5-3.** G-R 則の b 値との関係

270 各イベントが発生したタイミングにおける指標値の符号が正となるグループと負 271 となるグループの 2 つに分け,各グループに属する地震活動の G-R 則 [Gutenberg 272 and Richter, 1944] の b 値を求めた (Fig. 13).その結果,符号が負のグループに比 273 べて正のグループの b 値の方が小さくなる傾向を示した。特に $\Delta \tau$, $\Delta \sigma$ では 2 つのグ 274 ループの b 値は標準偏差を考慮しても重ならない。ここではより厳密な検定を行う。 275 2 グループの b 値差の有意性検定については、Utsu [1999]の式(33)

 $\Delta AIC = -2(N_1 + N_2) \ln(N_1 + N_2)$

$$+2N_{1}\ln\left(N_{1}+N_{2}\frac{b_{1}}{b_{2}}\right)+2N_{2}\ln\left(N_{1}\frac{b_{2}}{b_{1}}+N_{2}\right)-2$$
(3)

276 が利用できる.ここで、 $N_1 \ge N_2$ はそれぞれグループ1 とグループ2の地震数、 $b_1 \ge b_2$ 277 はそれぞれグループ1 とグループ2のb値である. $\Delta AIC > 2$ であれば有意な差、 $\Delta AIC >$ 278 5であれば極めて有意な差があると判定される.本検定の結果、**Fig. 13** で示す3 成分 279 とも ΔAIC は2未満であった.より具体的に示すと、 $\Delta \tau$ については $\Delta AIC = 1.30$ ($N_1 =$ 280 411, $b_1 = 1.320$, $N_2 = 250$, $b_2 = 1.142$)、 $\Delta \sigma$ については $\Delta AIC = 0.49$ ($N_1 = 291$, $b_1 = 1.338$, 281 $N_2 = 370$, $b_2 = 1.182$)、そして $\Delta CFF_{(0.1)}$ については $\Delta AIC = -1.77$ ($N_1 = 377$, $b_1 = 1.267$, 282 $N_2 = 284$, $b_2 = 1.220$)であった.そのため、統計的には有意な差はないと判定される.

283 Schorlemmer et al. [2005]は、全世界の b 値をメカニズム解別に推定し、逆断層型(す
284 べり角 45–135°)は 0.9 程度、横ずれ断層型は 1.0 程度、正断層型は 1.2 程度であるこ
285 とを示した、期間・領域・深さ・すべり角の条件は異なるが、本研究で求めたトンガ・
286 ケルマディック海溝沿いの地震活動の b 値は 1.246 (Fig. 1e)で、世界の逆断層型の

平均値(0.9)よりも大きい. G-R 則の b 値は差応力(最大主応力-最小主応力)に 287 反比例するという指摘があること[Scholz, 2015]から、本解析領域のプレート境界面 288 289 にかかる差応力が世界標準値よりも小さいことを示唆している.661 イベント時の差 応力が、中央値よりも大きいグループと小さいグループの2つに分け、各グループに 290 291 属する地震活動の b 値を求めた(Fig. 14). その結果, 差応力が大きいグループの b 292 値の方が小さくなった.これは、Scholz [2015]の指摘を支持する.ここでも式(3)を用 いた検定を行った結果、ΔAIC > 5 となり、極めて有意な差があると判断できる。潮 293 汐応力は僅か数 kPa の変化であるが,大小様々なアスペリティに対して,広域に同時 294 に数時間にわたって影響を及ぼすため、カスケードアップ[Noda et al., 2013] しやす 295 くなり、大きめの地震へと成長するために、結果的に b 値が小さくなるのではなかろ 296 うか. 潮汐による差応力の擾乱が地震規模の嵩上げ(破壊が開始した後のすべりの成 297 長)に寄与している可能性は否定できない.なお,地震規模と差応力の相関係数は 298 299 0.14 であった.

300 5-4. 間隙水圧に関する情報

301 ΔCFF については,見かけの摩擦係数 µ'を 0.1, 0.4, 0.7 とした場合を考えた. ΔCFF 302 と地震活動との相関の度合いから見かけの摩擦係数を推定でき、プレート境界面の 303 間隙水圧に関する情報が得られると期待される. 補遺の式 A7 ($\Delta CFF = \Delta \tau + \mu' \Delta \sigma$) 304 を書き換えると、 $\Delta CFF = \Delta \tau + \mu_0 (\Delta \sigma + \Delta p)$ と表せる.ここで、 μ_0 は静摩擦係数、 Δp は 305 間隙水圧である. 成熟した断層の場合, Δp α –Δσと考えられる[Cocco and Rice, 2002] 306 ため、 $\Delta p = -k\Delta\sigma$ とおくと、 $\mu' = \mu_0(1-k)$ と表される.したがって、プレート境界面 307 における間隙水圧の Δσ に対する応答が強ければ (則ちk~1のとき), 見かけの摩擦係 数は小さく(μ'~0)なり、ΔCFF に対する Δτ の寄与が優勢となる.反対に、間隙水 308 圧の $\Delta \sigma$ に対する応答が弱ければ ($k\sim 0$ のとき), $\mu' \sim \mu_0$ となり, $\Delta \tau$ に比べてもともと 309 絶対値が一桁程度大きい Δσ の方が ΔCFF に対して寄与が大きくなる. ここまでみて 310 きたように、 $\Delta \tau や \Delta CFF_{(0,1)}$ よりも $\Delta \sigma$ の方が地震のトリガーに寄与している. このこ 311 312 とから、トンガ・ケルマディック海溝沿いのプレート境界面は、他の地域に比べ見か けの摩擦係数が相対的に大きく、その原因のひとつとして、間隙水圧の Δσ に対する 313 応答が弱いことが示唆される.トンガ・ケルマディック海溝沿いでは,流体の寄与が 314 示唆されるスロー地震が発生したという報告はない [Obara and Kato, 2016]. このこ 315 とは、この地域のプレート境界面での間隙水圧の影響が弱いことを支持する. 316

317 **5-5. テクトニックとの関係**

318 **5-5-1.** テクトニック背景

319 Ide [2013]は、海溝軸から 200 km 以内の背景地震の発生率がプレート収束速度に比 例して南から北にかけて増加することを示した. 沈み込むスラブの曲率は, ニュージ 320 ーランドへ南下するに従って徐々に小さくなる [Nishikawa and Ide, 2015]. Nishikawa 321 322 and Ide [2015]は、沈み込み帯で発生する背景地震の活動度 [Ide, 2013] はスラブの折 れ曲がりに比例しており, 折れ曲がりに関連した流体が関与していると指摘した. 一 323 方,第2節で述べたように、プレート境界地震(Fig. 1c:ただし、背景地震と余震活 324 325 動との切り分けはしていない)についてみれば逆センスであることがわかる(5-5-2 節でも触れる). 326

ラウ海盆 (Fig. 15a) は東西に 6.5–10 cm/y で中央海嶺型の拡大を続けている [Taylor 327 et al., 1996; Turner and Hawkesworth, 1998; Fujiwara et al., 2001]. 一方, ラウ海盆の南 328 329 側の背弧海盆であるハブルトラフはリフティングによって東西に 6 cm/y で拡大して 330 いる [Parson and Wright, 1996]. ケルマディック海溝の東方沖にはルイビル海山列が 331 北北西-南南東方向に伸びている(Fig. 15a).海溝とルイビル海山列との衝突帯は 5Ma から 18 cm/y で南下し、その移動距離は 1000 km (~10°) に達する [Ballance et 332 al., 1989]. この絶え間ない海山列の衝突により、トンガ海溝は本来の位置(ケルマデ 333 334 ィック海溝の北方延長)より西方へ押しやられている [Lallemand et al., 1992]. Scholz and Small [1997]は、一般的に沈み込んだ海山によって法線応力の増加が期待され、プ 335 336 レート間の固着が強くなるために普段の地震活動が低調となっていると指摘した. これに対して、沈み込んだ海山の通り道は寧ろ安定的にすべっているために普段の 337 地震活動が低調となるという指摘 [例えば, Mochizuki et al., 2008] もある. 原因の解 338 釈は正反対であるが,どちらも海山によって地震活動が低調となることを主張して 339 おり,事実,南緯 18.5°付近の山羊座海山やルイビル海山列系の Mo'unga 海山が沈み 340 込みつつある領域やプチ海山群が沖に分布する領域では地震活動が少ない(Fig. 1c). 341 342 沈み込んだ海山の振る舞いは、マリアナ海溝のような浸食型とチリ海溝のような付 加型で異なるという指摘 [Cloos and Shreve, 1996] もある. ルイビル海山列から北に 343 延びるトンガ海溝は浸食型,南に延びるケルマディック海溝は付加型に分類されて 344 いる.トンガ・ケルマディック海溝沿いはこのような変化に富んだテクトニック環境 345 下にあり、地震の活動様式とテクトニクスには密接な関係があると考えられる. 346

347 **5-5-2.** Δσに敏感な地域

348 ここでは、地震トリガーを支配している可能性のある $\Delta \sigma$ とテクトニックな関係に 349 ついて議論する. Fig. 12b より、 $\Delta \sigma > 4.8$ kPa (<-4.8 kPa) では、バックグラウンド潮 350 汐の出現率から期待されるよりも地震の出現率が比較的大きい (小さい) ことがわか 351 る.そこで、これらのイベントの時空間分布を Fig. 15 に示す.赤のシンボルは $\Delta \sigma >$ 352 4.8 kPa 時のイベントで 94 個、青のシンボルは $\Delta \sigma < -4.8$ kPa 時のイベントで 41 個あ 353 る.南緯 17–19°では該当するイベントの抜けが目立つ(Fig. 15a)が、山羊座海山が 354 沈み込みつつあって地震活動が元来低調な地域である.

355 **Fig. 15c** は,背景地震 661 個に対する Δσ > 4.8 kPa 時及び Δσ < -4.8 kPa 時の地震の 発生率について緯度1度毎に集計したものである. $\Delta \sigma > 4.8 \text{ kPa}$ 時(黒実線)や $\Delta \sigma <$ 356 -4.8 kPa 時(破線)となるバックグラウンド潮汐(各地震の発生前後 183 日間の指標 357 変化の 15 分値に基づく)の出現率は,南方向へ徐々に大きくなっている. 661 個の 358 地震の平均的な断層パラメータ値(深さ 15 km, 走向 200°, 傾斜角 25°, すべり角 95°, 359 360 Fig. 3 参照)を持つ仮想的な断層を海溝軸に沿って北(西経 172.5°, 南緯 17.5°)から 361 南(西経 178.0°, 南緯 32.5°)に等間隔で 4 点配置し, 理論潮汐を計算したところ, Δσの潮汐レベル値は本質的に南の方が大きくなった.プレート境界型地震が解析領 362 域の南側で多く発生する要因のひとつかもしれない.また同時に、このような影響を 363 受けて大局的には、 $\Delta \sigma > 4.8$ kPa 時の地震(赤線)や $\Delta \sigma < -4.8$ kPa 時の地震(青線) 364 も南側で起きやすい傾向を示す. しかしその傾向から外れた, Δσ に特に敏感な地域 365 366 は、バックグラウンド潮汐の出現率(黒線)に対する地震の出現率(赤 and/or 青線) の差が大きい, 南緯 20-22°及び 27-29°区間(Fig. 15c 右端の黒棒)である. ただし, 367 Δσ に関係なく偶然発生した地震の重みを小さくするため、ここでは緯度1度の背景 368 地震が 30 個以上ある区間についてみた. これら Δσ に特に敏感な 2 区間はどちらも 369 沈み込みつつある海山やアウターライズに分布するプチ海山群から離れた位置にあ 370 り、プレート境界面のラフネス(凸凹)が比較的小さいと考えられる.プレート境界 371 372 面がスムーズであれば、Δσ による影響が相対的に大きくなり、地震の潮汐依存性が 強くなると考えられる.一方,プレート境界面に海山が存在する場合は海山によって 373 法線応力が増加する [Scholz and Small, 1997] ため、 $\Delta \sigma$ による影響は相対的に小さく 374 なり、地震の潮汐依存性が弱まるのではなかろうか.この結果は、沈み込んだ海山の 375 通り道が安定すべりとなること [例えば, Mochizuki et al., 2008] を否定するものでは 376

377 ない. 地震自体が発生しないため,本解析からは判断できない. 上記の議論は
 378 speculation であり,明確な解釈には今後のさらなる解析が必要である.

379 **5-6.** 周期的な地震活動の変化

 $\Delta \sigma > 4.8$ kPa 時の地震活動は定期的に静穏化しているようにみえる(Fig. 15d 上部 380 の黒棒). 地震活動がある発生率 v のポアソン過程と見做せるとき, ある一定期間 Δt 381 382 に発生する地震回数は期待値 vΔt のポアソン分布に従う. この性質を利用して, ある 一定期間内の地震活動の時間的な活発化・静穏化を指数化する.前処理として、デク 383 ラスタ処理が必要となる.ここでは、震央距離 30 km、時間差 30 日のイベントを数 384 385 珠繋ぎし、最大の規模を持つイベントで代表させた、デクラスタ処理により、全661 個から 533 個に減少したデクラスタカタログが得られた.このとき、コルモゴロフ・ 386 387 スミルノフ検定により、帰無仮説「地震の発生間隔が定常ポアソン過程である」は有 意水準 5%では棄却できず、ポアソン性の高い結果が得られていることを確認した. 388 Δσ > 4.8 kPa 時のイベント 94 個のうち,上記のデクラスタカタログに対応するイベ 389 390 ントは 69 個である. 平均発生率 69 個/40 年を持つポアソン過程と見做し,各時間窓 391 内の地震数をポアソン分布に基づき、出現率が上から5%、10%、15%、40%、15%、 392 10%, 5%となるように地震活動指数を-3,-2,-1,0,1,2,3の7カテゴリーに設定した. 393 +3 が通常より活発,-3 が静穏を示す.時間窓を 1080 日間(約3年間),時間シフト 394 を180日(約半年間)とした場合の地震活動指数の時系列を Fig. 16 の二重線で示す. 1080日間の平均発生率は 5.10 回であるため,指数-3 と 3 に対応する地震回数はそれ 395 396 ぞれ1回以下と9回以上である. 十数年間隔を持つ静穏期(1989年, 2002年, 2015 年頃)の間に同程度の出現間隔を持つ活発期(1982年, 1997年, 2008年頃)が認め 397 られ,静穏化と活発化が交互に繰り返しているようにみえる.長期的な潮汐周期とし 398 399 ては、対恒星近点順行周期(8.85年)や対恒星交点逆行周期(18.61年)が知られて いるが、それらの周期とは対応していない. Fig. 16 には、仮想的な断層面上での Δσ 400 401 の40年間の変化も重ねている. 仮定した断層の位置は解析領域の中央で、深さや断 402 層パラメータは 661 個の地震の平均的な値(Fig.3 参照)とした. 位置や断層パラメ ータを多少変えると、振幅は多少変化するが大局的な位相は変化しない.対恒星交点 403 404 逆行周期(破線)を始め様々な周期が見て取れるが、地震活動の活発化・静穏化と対 405 応した周期は認められない. Δτ や ΔCFF_(0.1)についても同様の手順で地震活動指数を 計算した.ここで <mark>Fig. 12</mark> から,Δτ > 0.8 kPa,ΔCFF_(0.1) > 1.12 kPa 時に発生したイベ 406

407 ントを対象とした. その結果, Δσのような明確な周期性はみられなかった.

日本の東北沖では、小繰り返し地震の解析及び GNSS 解析から、プレートの沈み込 408 みレートが周期的に揺らいでいることが指摘されている [Uchida et al., 2016]. これ 409 は Fig. 16 でみられる静穏化と活発化がほぼ周期的に繰り返している点と類似してい 410 る(東北沖の周期約1-6年に対し、本解析領域の周期は十数年であるが).同じ太平 411 洋プレートの縁にあたる本解析地域においてもプレートの沈み込みレートに周期的 412 な揺らぎがあったとしても不思議ではない. プレートの沈み込みレート (テクトニッ 413 クローディングレート)が大きいタイミングでは、Δσの効果が相対的に小さくなる 414 415 ため, 潮汐による擾乱が小さい時でも地震に至るケースが増える. その結果, Δσ>4.8 kPa の条件を満たす地震数が減るため、静穏化するのかもしれない. データの蓄積を 416 待って将来の追試が必要である. 417

418

419 **§6.** *まとめ*

420 トンガ・ケルマディック海溝沿いで発生したプレート境界型の地震活動について, 421 潮汐との相関を調査した. 潮汐指標は体積歪, せん断応力, 法線応力, 及び ΔCFF (0.1, 0.4, 0.7)の6つを扱い、従来用いられてきた潮汐位相角だけでなく潮汐指標値そのも 422 のにも注目した.解析の結果,潮汐指標値の絶対値が大きいほど,地震の選択性が顕 423 著であり(指標値が大きな正の時に地震が起きやすく,大きな負で起きにくい),せ 424 ん断応力よりも法線応力の方が地震のトリガーに寄与していることがわかった、潮 425 426 汐の差応力が大きい時に G-R 則の b 値が低下する傾向にあり、岩石実験の結果と整 合する. トンガ・ケルマディック海溝沿いのプレート境界面における見かけの摩擦係 427 数は相対的に大きめであることから,間隙水圧の Δσ に対する応答は弱いと考えられ 428 る. 南緯 20-22°及び 27-29°区間は潮汐法線応力に特に敏感な地域と考えられる. 429

430 本研究を通して、潮汐応力が地震のトリガー効果を持っていることや潮汐に特に431 敏感な地域が示された.この情報が地震の予測に少しでも役立つことを願う.

432

433

434 **§A. 補遺**

435 A-1. 本解析プログラムの特徴

436 **A-1-1.** 固体潮汐の計算

437 固体潮汐の計算には中井 [1979]の起潮力ポテンシャル計算ロジックに、小沢
438 [1974]の歪 6 成分の定式化を組み合わせたプログラムを用いた.このプログラムは、
439 静力学的な場で計算された地球潮汐(n=2)に対する固有関数(補遺 A-2 参照)を読み
440 込み、任意の深さにおける歪テンソル6成分に対する時系列を出力する.地表ではせ
441 ん断歪は境界条件からゼロとなるが、地下においては一般にはゼロではなく、厳密な
442 計算が必要となる.なお、小沢 [1974]にある、動径方向への微分を含んだ歪成分の計
443 算の際に起潮力ポテンシャルも動径方向微分しているという誤りは訂正した.

444 GOTIC2 [Matsumoto et al., 2001] では固体潮汐も計算できるが,地表における値で
445 あることに加え,高々21 個の分潮しか考慮されない.地球潮汐に占める固体潮汐の
446 寄与は大きく,十分な精度を確保する必要があるため,太陽と月の位置から直接起潮
447 力ポテンシャルを計算し,それに固有関数(補遺 A-2 参照)を掛ける方式のプログラ
448 ムを使用した.

449

450 **A-1-2.** 海洋潮汐荷重効果の計算

451 海洋潮汐荷重効果は、地表に鉛直点荷重を加えた場合の任意の距離及び深さにお ける変形に関するグリーン関数(補遺 A-3 参照)と、全球海洋潮汐モデル(緯度×経 452 度セル毎の各分潮に対する振幅と位相の分布)とのコンボリューションによって計 453 算される. 海洋潮汐モデルは NAO.99b [Matsumoto et al., 2000] の短周期潮汐 16 分潮 454 (M2, S2, K1, O1, N2, P1, K2, Q1, M1, J1, OO1, 2N2, Mu2, Nu2, L2, T2) 及び NAO.99L 455 [Takanezawa et al., 2001] の長周期潮汐 5 分潮(Mtm, Mf, Mm, Ssa, Sa)から成る計 21 456 分潮を考慮した.海域の分割については、荷重点からの角距離O > 10°については経 457 度×緯度のセルを 0.5°×0.5°(1 次メッシュ), 5°< 0 ≤ 10°については 5′×5′(2 次メ 458 459 ッシュ), 0.2°< Θ ≤5°については 30″×30″ (3 次メッシュ), Θ ≤0.2°については 1.5″ × 1.5"(4 次メッシュ)とした. 分割した区域内に陸が含まれる場合は, その矩形内 460 での海の面積割合を考慮した計算を行った.ちなみに,対象点(震央)が日本周辺の 461 462 場合は,主要 16 分潮の海洋潮汐モデルを NAO.99b から NAO.99Jb [Matsumoto et al., 2000] に変更し、5° < 0 ≤10°については 7.5′ × 5′, 0.2° < 0 ≤5°については 45″ × 30″, 463

464 Θ ≤ 0.2°については 2.25" × 1.5"とした.

465 本研究で用いたプログラムは、GOTIC2 をベースに改造したものである.改造点を 以下に述べる. GOTIC2 は、グリーン関数が地表における変形に対するもののみであ 466 るため、海底下や地下の地震活動域の変形を議論するには不適である.海底下につい 467 468 て計算する場合,直上の海洋セルからの寄与の計算に工夫が必要となる. GOTIC2 で は、各海洋セルからの寄与については、セル内のグリーン関数の振る舞いを2次関数 469 470 で近似して積分で評価している.荷重点からの角距離Oが 0.0001°-179.99°の範囲につ いてのグリーン関数が与えられている場合(補遺 A-3 参照), $\Theta = 0^{\circ}$ では U_{θ} 以外のグ 471 リーン関数値は有限の値をとるが、その値を 0.0001°(0.36") 以遠の値から外挿する 472 ことは困難である.これは対象点(震央)が属するセルからの積分の寄与を計算する 473 ことができないことを意味する.また、対象点からの最短距離が 0.0001°未満のセル 474 についても、その中のグリーン関数の振る舞いを適切に表現することは困難である. 475 そのため、対象点を含む4次メッシュのセル1個と、対象点からセルの4辺のいず 476 477 れかまでの最短距離が 0.0001°未満の 4 次メッシュは計算から一旦除外した.除外さ 478 れ得るセルの総面積は,最大で 3.0"×3.0"(日本周辺だと 4.5"×3.0")で,およそ 100 479 m×100mのエリアである.計算除外されたセルからの寄与については次のように処 480 理した.対象点の深さが1kmより深い場合については、直上からの寄与を無視し、 481 当該セルを「陸」として扱うこととした. 無視できる理由については補遺 A-5 を参照 482 のこと. なお,対象点の深さが1kmより浅い場合については,ブジネスク近似によ 483 る理論値で別途評価する必要があろうが、本研究で対象とした地震の深さはすべて 484 10km 以深である.また、荷重点近傍においては地下におけるグリーン関数の挙動は 複雑となる(補遺 A-3 の Fig. A2 参照). そのため,ひとつのセル内での関数の変化 485 を高々2次関数で近似する GOTIC2 のロジックを有効とするためには、たとえ広域 486 にわたって海が分布している領域であっても、2次関数近似が成立するよう、震央近 487 傍では細かなセルを設定する必要がある.そこで、本プログラムは日本国内外に関わ 488 489 らず 4 次メッシュまで扱う (パラメータ MESH4 及び FULLMESH は ON).

490 上述のとおり,GOTIC2では、各海洋セルからの寄与については、セル内のグリー
491 ン関数の振る舞いを2次関数で近似したうえで、積分を解析表現で評価している.し
492 かし、体積歪ε_{vol}等については、積分の解析表現が存在しない項を含むため、数値積
493 分で計算することとした.

494

495 A-2. 固有関数

静力学的な場の地球の固有関数y_iⁿ(r) (i = 1,2,…,6)の計算は, Kamigaichi [1998]に 496 497 従った. ただし, 地球モデルは 1066A [Gilbert and Dziewonski, 1975] から PREM [Dziewonski and Anderson, 1981] へ変更した. PREM の海洋層(深さ 0-3.0 km) につ 498 499 いては、Tsuruoka et al. [1995]と同一の地殻物性 ($V_p = 5 \text{ km/s}$, $V_s = 2.6 \text{ km/s}$, $\rho = 2.6$ 500 g/cm³) で置換したモデルに対して計算した. 固体潮汐(n=2)については, 波長が非常 に長い現象であるため、深さ方向のグリッド間隔を表面鉛直荷重の場合ほど細かく 501 設定する必要はない.しかし,海洋潮汐荷重効果の見積もりに必要となる表面鉛直荷 502 503 重に関する固有関数計算時の深さ方向のグリッド間隔はかなり密にしなければなら ない.対象とできる震源の深さは 0-102.4 km とし,波数と物性の境界(深さ 3.0, 15.0, 504 24.4,80.0 km) に応じて以下のように変えた. 波数 n が 0-5,000 については、深さ 0.0-505 3.0 km は 0.0075 km 間隔 (グリッド数 400 個), 深さ 3.0-15.0 km は 0.006 km 間隔 506 507 (2,000 個), 深さ 15.0-24.4 km は 0.94 km 間隔 (10 個), 深さ 24.4-80.0 km は 1.39 km 508 間隔(40個), 深さ 80-102.4 km は 1.4 km 間隔(16個)である. 精度を保障するため 509 に, n が 5,000 以上については, 地殻の最浅部(深さ 0.0-3.0 km) での数値積分のス テップを 75 cm (0.00075 km 間隔, 4,000 個)とし, これ以深では n = 0-5,000 の場合 510 と同じにした.本研究では、nの上限は10,000とした.(本研究では対象となってい 511 ないが) 震源の深さが 10 km 未満の場合の波数 n は 10,000 以上まで考慮する必要が 512 ある [Kamigaichi, 1998]. 物性境界の深さにおける地点の潮汐応答を計算する場合, 513 514 本プログラムでは上側の層の物性を用いる.

515 本研究で扱うグリーン関数 (補遺 A-3 参照) は,固有関数 $y_1^n(r)$ 及び $y_3^n(r)$ とそれぞ 516 れの空間微分 ($\frac{dy_1^n(r)}{dr}$, $\frac{dy_3^n(r)}{dr}$)から算出される. Fig. A1 にいくつかの n における表面 517 鉛直荷重に関する固有関数 $y_1^n(r)$ 及び $y_3^n(r)$ の深さプロファイルを示す.上記の計算グ 518 リッドは丸印で示されている.いずれの n についても,関数値は $\frac{dy_i^n(r)-min_i^n}{max_i^n-min_i^n}$ で規格化 519 されている.ここで, min_i^n 及び max_i^n はそれぞれ n, i に対応した最小値及び最大値で,

520 Fig. A1 中に示してある. PREM の物性境界にあたる深さ 3.0, 15.0, 24.4 km で, $y_1^n(r)$ 521 は低次の n に, $y_3^n(r)$ はやや高次の n に折れ曲がりがみられる. Kamigaichi [1998]の 522 Fig. 1 の $y_1^n(r)$ は地表面値で正規化しているため, Fig. A1(a)とは印象が異なるが,地

523 球モデルに依存して折れ曲がりの深さが多少異なる以外は、ほぼ同じ特徴を示して

524 いる. Fig. A1 に示す固有関数の特徴は以下の通りである. 固有関数yⁿ(r)(Fig. A1(a))

525 の絶対値はいずれのnについても深さ0kmが最大で,深さとともに単調に減少する.

526 高次のnについては,変形が地殻最浅部に限られ,固有関数値は最浅部の構造によっ

- 527 てのみコントロールされている.しかし低次の n については, マントルが全体的に変
- 528 形し、固有関数値はマントルの物性に大いにコントロールされている.次に、固有関
- 529 数 $y_3^n(r)$ (Fig. A1(b))の特徴について述べる. $y_3^n(r)$ の絶対値はいずれのnについても
- 530 深さ0kmが最大である.nが高次となると正から負へ符号が反転する深さが浅くな
- 531 り、最終的にゼロに収束する傾向を示す.
- 532

533 A-3. 任意の深さにおけるグリーン関数の計算

さまざまな波数 n に対する表面鉛直荷重に関する固有関数(補遺 A-2 参照)から 534 地表鉛直点荷重に対するグリーン関数への変換手法は Kamigaichi [1998]に従った.出 535 536 力されるグリーン関数は,球座標系(r,θ,φ)で表すと,動径方向(鉛直方向)の変 537 $位U_r$,余緯度方向(水平方向)の変位 U_{θ} ,余緯度方向の線歪 $E_{\theta\theta}$,動径方向の線歪 E_{rr} , せん断歪 $E_{r\theta}$,体積歪 E_{vol} の6種類である. Fig. A2 に表面点荷重に対する各深さにお 538 ける各グリーン関数を示す.荷重点からの角距離Oが 0.0001°-179.99°の範囲について, 539 540 丸印で示した点で計算した. GOTIC2 ではこの計算点は Farrell [1972]の Table A3 の通 541 り 50 個であるが、本研究では特に近距離の刻み幅を小さくし、計算点を全部で 81 個 542 と増やして解像度を上げた.具体的な0を示すと、0 < 100°の場合は(1.0, 1.2, 1.6, 2.0, 2.5, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0)×10^(-4, -3, -2, -1, 0, 1)°の 72 個, 0 ≥ 100°の場合は 10°刻み 543 の9個を合わせた計81個である. GOTIC2では,一番近距離の0は1.0×10⁻⁴と同じで 544 あるが、次が 1.0×10⁻³°まで飛び、その次が 1.0×10⁻²°で、1.0°未満で本研究より粗い. 545 深さ0km における0=0.1°付近の様子が Kamigaichi [1998]の Fig. 3 と異なるが,これ 546 547 は地球モデルに依存するためのもので大局的には同じ特徴を示している.これら6種 548 類の物理量があれば歪テンソル6成分の計算に対応できる. Kamigaichi [1998]で取り 扱っていない E_{rr} 及び $E_{r\theta}$ の式のみ以下に示す. 549

$$E_{rr} = \frac{G}{a} \sum_{n=0}^{\infty} \frac{dy_1^n(r)}{dr} P_n(\cos\theta)$$
(A1)

$$E_{r\theta} = \frac{1}{2} \frac{G}{a} \sum_{n=1}^{\infty} \left(\frac{y_1^n(r)}{r} - \frac{y_3^n(r)}{r} + \frac{dy_3^n(r)}{dr} \right) \frac{\partial P_n(\cos\theta)}{\partial\theta}$$
(A2)

550 ここで、Gは万有引力定数、aは地球半径、 $y_1^n(r)$ 及び $y_3^n(r)$ はn次の固有関数、 $P_n(\cos\theta)$ 551 はn次のルジャンドル関数である.なお、 U_{ϕ} 、 $E_{r\phi}$ 、 $E_{\theta\phi}$ は点荷重問題の対称性から 552 ゼロであり、 $E_{\phi\phi}$ は非ゼロであるが U_r 及び U_{θ} から計算可能である[Kamigaichi, 1998]. 553 通常、プレート境界型地震が発生する深さ 10 km 以深については、足し合わせ次数n554 の上限は 10,000 で十分である [Kamigaichi, 1998].

555

556 A-4. 仮定した断層座標系への変換

557 本オリジナル座標系は, x:東, y:北, z:上である(GOTIC2 に準拠). ここでは
558 本座標系を, 仮定した断層座標系へ変換する手順について述べる. Aki and Richards
559 [2002]の Fig. 4.20 で示される一般的な座標系(x':北, y':東, z':下)を一度経由
560 し, 断層座標系(x":すべり方向, y":法線方向, z":x"×y"(ベクトル積))へ変
561 換するため,計2回の座標系変換(回転)を行う必要がある.

562 {x, y, z}座標系から{x', y', z'}座標系への変換(回転)行列 A₁は,

$$A_1 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$
(A3)

563 である. {x', y', z'}座標系から{x", y", z"}座標系への変換(回転)行列 A₂は,

$$A_{2} = \begin{pmatrix} \cos\lambda\cos\phi_{s} + \cos\delta\sin\lambda\sin\phi_{s} & \cos\lambda\sin\phi_{s} - \cos\delta\sin\lambda\cos\phi_{s} & -\sin\lambda\sin\delta\\ -\sin\delta\sin\phi_{s} & \sin\delta\cos\phi_{s} & -\cos\delta\\ * & * & * \end{pmatrix}$$
(A4)

564 である.ここで、 ϕ_s は走向、 δ は傾斜角、 λ はすべり角である.第3行は第1行ベクト 565 ルと第2行ベクトルのベクトル積で、煩雑になるため省略した.

566 これら2回の座標変換(回転)を表す行列Aは $A = A_2A_1$ と表せる.オリジナル座標 567 系での歪テンソルをE,断層座標系での歪テンソルをE''とした場合, E'' = AEA^t の関 568 係がある.断層面上のせん断応力 $\Delta \tau$,法線応力 $\Delta \sigma$ 及び ΔCFF は,次のように表せ 569 る.

$$\Delta \tau = 2\mu_L \varepsilon_{\chi'' \gamma''} \tag{A5}$$

$$\Delta \sigma = \lambda_L \varepsilon_{\rm vol} + 2\mu_L \varepsilon_{y''y''} \tag{A6}$$

$$\Delta CFF = \Delta \tau + \mu' \Delta \sigma \tag{A7}$$

570 ここで、 ϵ_{vol} は体積歪で座標変換に依存しない。 λ_L 及び μ_L はラメの定数で、それぞれ

571
$$\lambda_L = \rho (V_p^2 - 2V_s^2)$$
及び $\mu_L = \rho V_s^2$ から求めた. μ' は見かけの摩擦係数である. オリジナ

572 ル座標系で得られた歪テンソル 6 成分(
$$\epsilon_{xx}, \epsilon_{yy}, \epsilon_{zz}, \epsilon_{xy}, \epsilon_{xz}, \epsilon_{yz}$$
)を用いて, $\epsilon_{x''y''}$,

574

$$\varepsilon_{x''y''} = a_{11}b_1 + a_{12}b_2 + a_{13}b_3 \tag{A8}$$

$$\varepsilon_{y''y''} = a_{21}b_1 + a_{22}b_2 + a_{23}b_3 \tag{A9}$$

$$\varepsilon_{\rm vol} = \varepsilon_{xx} + \varepsilon_{yy} + \varepsilon_{zz} \tag{A10}$$

$$b_1 = a_{21}\varepsilon_{xx} + a_{22}\varepsilon_{xy} + a_{23}\varepsilon_{xz} \tag{A11}$$

$$b_2 = a_{21}\varepsilon_{xy} + a_{22}\varepsilon_{yy} + a_{23}\varepsilon_{yz} \tag{A12}$$

$$b_3 = a_{21}\varepsilon_{xz} + a_{22}\varepsilon_{yz} + a_{23}\varepsilon_{zz} \tag{A13}$$

$$a_{11} = \cos\lambda\sin\phi_s - \cos\delta\sin\lambda\cos\phi_s \tag{A14}$$

$$a_{12} = \cos\lambda\cos\phi_s + \cos\delta\sin\lambda\sin\phi_s \tag{A15}$$

$$a_{13} = \sin\lambda\sin\delta \tag{A16}$$

$$a_{21} = \sin \delta \cos \phi_s \tag{A17}$$

$$a_{22} = -\sin\delta\sin\phi_s \tag{A18}$$

$$a_{23} = \cos\delta \tag{A19}$$

575

576 A-5. 対象点直上半径 R以内からの寄与が全体に占める割合

577 補遺 A-1-2 で述べたように,海底下の対象点の深さが1kmより深い場合,直上か 578 らの寄与を無視する処理を行った.その根拠を以下に示す.ブジネスク近似(半無限 579 均質完全弾性体媒質)で,直上の半径 R 以内からの寄与が平面全体からの寄与に占 580 める比率を見積もる.ここでは,歪や傾斜などのように $1/(a\theta)^2$ で減衰する物理量の 581 代表例として体積歪を取り上げる.表面鉛直単位点荷重に対する媒質内の体積歪は, 582 円筒座標系 (r, θ, z) で考えると,次式で表される [Kamigaichi, 1998].

$$E_{vol} = \frac{1}{2\pi\eta} \frac{z}{(r^2 + z^2)^{3/2}}$$
(A20)

583 ここで, z は深さ, r は荷重点からの水平距離, $\eta = \lambda + \mu$ である. したがって, 半無 584 限媒質表面に均質な荷重密度 ρ が分布していると仮定した場合, 半径 R 以内の寄与 585 は,

$$E_{\rm vol} = \frac{\rho g}{2\pi\eta} \int_{0}^{2\pi} \int_{0}^{R} \frac{z}{(r^2 + z^2)^{3/2}} r dr \, d\phi = \frac{\rho g}{\eta} \left\{ 1 - \cos\left(\arctan\frac{R}{z}\right) \right\}$$
(A21)

586 となる.よって、全体 $(R \to \infty)$ に占める R 以内からの寄与は、 $1 - \cos\left(\arctan\frac{R}{z}\right)$ と 587 なる.この値は、R = 100 m と固定して考えると、z = 10 m で約 90%、z = 100 m で約 588 30%、z = 1000 m で約 0.5%である.すなわち、(R/z) < 0.1 であれば直上の半径 R 以内 589 からの寄与は全体の 0.5%以下となり無視できる.なお、変位などの1/ $a\theta$ で減衰する 590 物理量については、荷重点近傍からの相対的寄与は歪や傾斜に比べてさらに小さい.

- 591
- 592 謝辞
- 593 鶴岡弘博士及び田中佐千子博士には、潮汐に関する解析について大変有益な助言

594 をいただきました. CMT 解カタログは Global CMT Project

- 595 [<u>https://www.globalcmt.org/CMTfiles.html</u>] から取得しました. 地表のプレート境界
- 596 データは Bird [2003]を使用しました. スラブの等深線データは USGS
- 597 [<u>https://earthquake.usgs.gov/data/slab/</u>]から取得しました. プレート収束速度の算出
- 598 には UNAVCO [<u>https://www.unavco.org/</u>]の Plate Motion Calculator を使用しました.

599 図の作成には GMT [Wessel et al., 2013] を使用しました. 地下の潮汐歪及び潮汐応

- 600 力を計算できるプログラム「TidalStrain.2」は下記の気象研サーバで公開していま
- 601 す [<u>https://mri-2.mri-jma.go.jp/owncloud/s/tjqx7HfK8bD3KQf</u>].
- 602
- 603 文献
- Aki, K. and P. G. Richards, 2002, Quantitative seismology, 2nd ed., *University Science Books, Sausalito*, 700pp.
- 606 Ballance, P. F., D. W. Scholl, T. L. Vallier, and R. H. Herzer, 1989, Subduction of a late
- 607 Cretaceous seamount of the Louisville ridge at the Tonga trench: A model of normal and 608 accelerated tectonic erosion, *Tectonics*, **8**, 953-962.
- Bird, P., 2003, An updated digital model of plate boundaries, *Geochem. Geophys. Geosyst.*, 4,
 1027, doi: 10:1029/2001GC000252.
- 611 Cloos, M. and R. L. Shreve, 1996, Shear-zone thickness and the seismicity of Chilean- and
 612 Marianas-type subduction zones, *Geology*, 24, 107-110.
- 613 Cocco, M. and J. R. Rice, 2002, Pore pressure and poroelasticity effects in Coulomb stress

- analysis of earthquake interactions, J. Geophys. Res., **107**, doi: 10.1029/2000JB000138.
- 615 Crawford, W. C., J. A. Hildebrand, L. M. Dorman, S. C. Webb, and D. A. Wiens, 2003, Tonga
- Ridge and Lau Basin crustal structure from seismic refraction data, *J. Geophys. Res.*, 108,
 doi: 10.1029/2001JB001435.
- Dziewonski, A. M. and D. L. Anderson, 1981, Preliminary reference Earth model, *Phys. Earth.*
- 619 Planet. Inter., 25, 297-356, doi: 10.1016/0031-9201(81)90046-7.
- 620 Dziewonski, A. M., T.-A. Chou, and J. H. Woodhouse, 1981, Determination of earthquake
- source parameters from waveform data for studies of global and regional seismicity, J. *Geophys. Res.*, 86, 2825-2852, doi: 10.1029/JB086iB04p02825.
- Ekström, G., M. Nettles, and A. M. Dziewonski, 2012, The global CMT project 2004-2010:
- 624 Centroid-moment tensors for 13,017 earthquakes, *Phys. Earth Planet. Inter.*, 200-201, 1625 9, doi: 10.1016/j.pepi.2012.04.002.
- Farrell, W. E., 1972, Deformation of the Earth by surface loads, *Rev. Geophys. Space Phys.*,
 10, 761-797.
- Flinn, E. A., E. R. Engdahl, and A. R. Hill, 1974, Seismic and geographical regionalization, *Bull. Seism. Soc. Am.*, 64, 771-993.
- 630 Fujiwara, T., T. Yamazaki, and M. Joshima, 2001, Bathymetry and magnetic anomalies in the
- Havre Trough and southern Lau Basin: from rifting to spreading in back-arc basins, *Earth Planet. Science Lett.*, 185, 253-264.
- Gilbert, F. and A. M. Dziewonski, 1975, An application of normal mode theory to the retrieval
 of structural parameters and source mechanisms from seismic spectra, *Phil. Trans. R. Soc. London A*, 278, 187-269.
- Gutenberg, B. and C. F. Richter, 1944, Frequency of earthquakes in California, *Bull. Seism. Soc. Am.*, 34, 185-188.
- Hayes, G. P., D. J. Wald, and R. L. Johnson, 2012, Slab1.0: A three-dimensional model of
 global subduction zone geometries, *J. Geophys. Res.*, 117, B01302, doi:
 10.1029/2011JB008524.
- Heaton, T. H., 1975, Tidal triggering of earthquakes, *Geophys. J. R. astr. Soc.*, 43, 307-326.
- Ide, S., 2013, The proportionality between relative plate velocity and seismicity in subduction
- 643 zones, *Nature Geo.*, **6**, 780-784, doi: 10.1038/NGEO1901.

- Ide, S. and Y. Tanaka, 2014, Controls on plate motion by oscillating tidal stress: Evidence
 from deep tremors in western Japan, *Geophys. Res. Lett.*, 41, 3842-3850,
 doi:10.1002/2014GL060035.
- Ide, S., S. Yabe, and Y. Tanaka, 2016, Earthquake potential revealed by tidal influence on
 earthquake size-frequency statistics, *Nature Geo.*, 9, 834-838, doi:10.1038/NGEO2796.
- Kamigaichi, O., 1998, Green functions of the earth at borehole sensor installation depths for
 surface point load, *Papers in Meteorology and Geophysics*, 48, 89-100.
- Lallemand, S. E., J. Malavieille, and S. Calassou, 1992, Effects of oceanic ridge subduction
 on accretionary wedges: Experimental modeling and marine observations, *Tectonics*, 11,
 1301-1313.
- Matsumoto, K., T. Takanezawa, and M. Ooe, 2000, Ocean tide models developed by
 assimilating TOPEX/POSEIDON altimeter data into hydrodynamical model: A global
 model and a regional model around Japan, J. Oceanogr., 56, 567-581.
- Matsumoto, K., T. Sato, T. Takanezawa, and M. Ooe, 2001, GOTIC2: A program for
 computation of oceanic tidal loading effect, *J. Geod. Soc. Jpn.*, 47, 243-248.
- Mochizuki, K., T. Yamada, M. Shinohara, Y. Yamanaka, and T. Kanazawa, 2008, Weak
 interplate coupling by seamounts and repeating M~7 earthquakes, *Science*, 321, 11941197, doi: 10.1126/science.1160250.
- 662 中井新二, 1979, 実用的な起潮力計算プログラム, *緯度観測所彙報*, 18, 124-135.
- Nishikawa, T. and S. Ide, 2015, Background seismicity rate at subduction zones linked to slabbending-related hydration, *Geophys. Res. Lett.*, 42, 7081-7089, doi:
 10.1002/2015GL064578.
- Noda, H., M. Nakatani, and T. Hori, 2013, Large nucleation before large earthquakes is
 sometimes slipped due to cascade-up—Implications from a rate and state simulation of
 faults with hierarchical asperities, J. Geophys. Res., 118, 2924-2952, doi:
 10.1002/jgrb.50122.
- Obara, K. and A. Kato, 2016, Connecting slow earthquakes to huge earthquakes, *Science*, 353,
 253-257, doi: 10.1126/science.aaf1512.
- 672 小沢泉夫, 1974, 地球潮汐変化の分類と分布, 測地学会誌, 20, 178-187.
- Parson, L. M. and I. C. Wright, 1996, The Lau-Havre-Taupo back-arc basin: A southward-

- 674 propagating, multi-stage evolution from rifting to spreading, *Tectonophys.*, **263**, 1-22.
- Scholz, C. H., 1968, The frequency-magnitude relation of microfracturing in rock and its
 relation to earthquakes, *Bull. Seism. Soc. Am.*, 58, 399-415.
- 677 Scholz, C. H., 2015, On the stress dependence of the earthquake b value, *Geophys. Res. Lett.*,
 678 42, 1399–1402, doi: 10.1002/2014GL062863.
- Scholz, C. H. and C. Small, 1997, The effect of seamount subduction on seismic coupling, *Geology*, 25, 487-490.
- Schorlemmer, D., S. Wiemer, and M. Wyss, 2005, Variations in earthquake-size distribution
 across different stress regimes, *Nature*, 437, 539-542, doi: 10.1038/nature04094.
- Schuster, A., 1897, On lunar and solar periodicities of earthquakes, *Proc. R. Soc. London*, 61,
 455–465.
- Takanezawa, T., K. Matsumoto, M. Ooe, and I. Naito, 2001, Effects of the long-period ocean
 tide on Earth rotation, gravity and crustal deformation predicted by global barotropic
 model: periods from Mtm to Sa, J. Geod. Soc. Jpn., 47, 545-550.
- Tanaka, S., M. Ohtake, and H. Sato, 2002a, Evidence for tidal triggering of earthquakes as
 revealed from statistical analysis of global data, *J. Geophys. Res.*, 107, B102211, doi:
 10.1029/2001JB001577.
- Tanaka, S., M. Ohtake, and H. Sato, 2002b, Spatio-temporal variation of the tidal triggering
 effect on earthquake occurrence associated with the 1982 South Tonga earthquake of
 Mw7.5, *Geophys. Res. Lett.*, 29, doi: 10.1029/2002GL015386.
- Taylor, B., K. Zellmer, F. Martines, and A. Goodliffe, 1996, Sea-floor spreading in the Lau
 back-arc basin, *Earth Planet. Science Lett.*, 144, 35-40.
- Tsuruoka, H., M. Ohtake, and H. Sato, 1995, Statistical test of the tidal triggering of
 earthquakes: contribution of the ocean tide loading effect, *Geophys. J. Int.*, 122, 183-194.
- 698 Turner, S. and C. Hawkesworth, 1998, Using geochemistry to map mantle flow beneath the
- 699 Lau Basin, *Geology*, **26**, 1019-1022.
- Uchida, N., T. Iinuma, R. M. Nadeau, R. Bürgmann, and R. Hino, 2016, Periodic slow slip
 triggers megathrust zone earthquakes in northeastern Japan, *Science*, **351**, 488-492, doi:
 10.1126/science.aad3108.
- 703 Utsu, T., 1999, Representation and analysis of the earthquake size distribution: A historical

review and some new approaches, *Pure Appl. Geophys.*, **155**, 509-535.

- 705 Wessel, P., W. H. F. Smith, R. Scharroo, J. Luis, and F. Wobbe, 2013, Generic Mapping Tools:
- 706 Improved Version Released, *Eos, trans. AGU*, **94**, 409-410, doi: 10.1002/2013EO450001.
- 707
- 708
- 709 Figure Captions

Figure 1. (a) トンガ・ケルマディック地域で 1977 年 1 月 1 日~2016 年 12 月 710 31 日に発生した 661 個の浅部プレート境界型地震(深さ 70 km 以浅, Mw 711 > 5.5)の震央. 16.5°S, 170°W 付近の×は解析から排除した地震(本文参 712 照). 紫線は地表のプレート境界[Bird, 2003]を示す. 数字入りの色付きコ 713 ンターは, 沈み込む太平洋スラブの上面の深さ[km] [Hayes et al., 2012]を 714 示す. 破線内の解析領域は Tanaka et al. [2002b]と同じ. 白矢印と黒矢印は 715 それぞれケルマディックプレート (KE) に対する太平洋プレート (PA) 716 とトンガプレート(TO)の相対運動を示す. Tt と Kt はそれぞれトンガ海 717 718 溝とケルマディック海溝を示す.2 つの六芒星は、山羊座海山(CS)と 719 Mo'unga 海山 (MS) の中心を示す. 楕円エリアはアウターライズのプチ 海山群を示す. 緑線は Figure 2 の鉛直断面の位置を示す. (b) 地震の時空 720 間分布.(c)緯度1度あたりの地震頻度.CSとMSはそれぞれ山羊座海山 721 と Mo'unga 海山. 右下の細棒はアウターライズの海山群.(d) M-T 図(鉛 722 直棒)と回数積算図. (e) 規模別頻度分布. ◇は個別, ◆は累積. 直線は 723 G-R 則[Gutenberg and Richter, 1944] をフィッテイングしたもので、N=661, 724 *b* = 1.246. 725

726

727 Figure 2. Fig. 1a の緑線における鉛直断面. 破線はプレート境界 [Hayes et al., 728 2012].

729

730 Figure 3. 断層パラメータの分布: (a) 走向, (b) 傾斜角, (c) すべり角.

731

732 Figure 4. 固体潮汐及び海洋潮汐荷重効果の時間変化の例: (a, c, e) せん断応力
733 Δτ, (b, d, f) (青) 法線応力 Δσ. 1982 年 12 月 19 日 17:44 UTC に発生した

⁷³⁴ 地震(Mw 7.5, depth: 29.2 km, strike: 198°, dip: 22°, and rake: 101°)の前後1日
⁷³⁵ 間を示す.(a, b)総計(赤 or 青)に対する固体潮汐(実線)と海洋潮汐(破線)
⁷³⁶ の寄与.(c, d)海洋潮汐に対する分潮の寄与.実線は主要8分潮(M2, S2,
⁷³⁷ K1, O1, N2, P1, K2, Q1),短破線は短周期帯16分潮(M2, S2, K1, O1, N2, P1,
⁷³⁸ K2, Q1, M1, J1, OO1, 2N2, Mu2, Nu2, L2, T2),長破線は長周期帯5分潮
⁷³⁹ (Mtm, Mf, Mm, Ssa, Sa).赤線と青線は全21分潮からなり,単破線とほぼ
⁷⁴⁰ 同じである.(e, f)主要8分潮の寄与.

741

742 Figure 5. 潮汐指標値の時間変化に基づく地震発生時(十字)における潮汐位
 743 相角(ψ)と潮汐レベル(L). ここでは潮汐せん断応力が示されているが, 6 成
 744 分とも同じ手続きで決定される.

745

- 746 Figure 6. 661 個の合成位相角データに基づくヒストグラム例.水平破線は平均
 747 頻度(100% / 18)を表す.
- 748

Figure 7. 潮汐指標変化の例:(緑) 体積歪 ΔV,(赤) せん断応力 Δτ,(青) 法線応 力 Δσ,(橙) ΔCFF (μ' = 0.1), (黒) ΔCFF (μ' = 0.4), (紫) ΔCFF (μ' = 0.7). 各プロ ット期間は地震発生時刻の前後 1 日間: (a, b) 1982 年 12 月 19 日 17:44 UTC (*M*_w 7.5); (c, d) 2006 年 5 月 3 日 15:27 UTC (*M*_w 8.0); (e, f) 2009 年 3 月 19 日 18:17 UTC (*M*_w 7.6). 潮汐位相角は各パネルの右下に示されている.

755 Figure 8. 潮汐指標間の位相角の相関. 相関係数を各パネル上部に示す.

756

757 Figure 9. 潮汐位相角とレベルの関係: (a, d) せん断応力 Δτ, (b, e) 法線応力 Δσ,
758 (c, f) ΔCFF (μ' = 0.1). 橙, 緑, ○はそれぞれ M_w ≥ 7.0, M_w 6.0–6.9, M_w 5.5–
759 5.9 の地震. 図(d-f)の菱形と棒は, それぞれ平均と標準偏差を示す.

760

Figure 10. 潮汐位相角の頻度分布: (a) せん断応力 Δτ, (b) 法線応力 Δσ, (c)
ΔCFF (μ' = 0.1). 式(1)で推定した p 値は各パネルに示されている.水平破
線は平均頻度(100% / 18)を示す.曲線は正弦波近似.

764

- Figure 11. 潮汐レベルの頻度分布: (a) せん断応力 Δτ, (b) 法線応力 Δσ, (c)
 ΔCFF (μ' = 0.1). 灰棒は地震発生時のレベルの頻度を表す. 破線棒は各地
 震前後 183 日間に 15 分間隔で出力した背景潮汐指標の頻度(右上の N_{bg})
 を表す. 菱形はこれら 2 つの頻度の比(つまり, 灰棒/破線棒)を表す.
- 769
- 770 Figure 12. Fig. 11 と同じ(ただし、10 区間). 直灰線は菱形の回帰直線. Δσ <
 771 -4.8 kPa または Δσ > 4.8 kPa(図 b の矢印)の詳細については 5.5.2 節参
 772 照.
- 773
- 774 Figure 13. G-R 則の b 値: (a) せん断応力 Δτ, (b, e) 法線応力 Δσ, (c, f) ΔCFF (μ'
 775 = 0.1). 菱形と棒はそれぞれ b 値と標準偏差で、潮汐指標値が正または負
 776 の時間帯に発生した地震を用いて算出された. 各パネルの左端の三角は、
 777 全 661 個を用いて推定した b 値を示す.
- 778
- 779 Figure 14. (a) 地震発生時における潮汐差応力(最大主応力と最小主応力の差)
 780 とマグニチュードの関係.水平破線は,全 661 個のイベントによる平均差
 781 応力値である.(b) 平均値より高い潮汐差応力(菱形)と低い差応力(四
 782 角)時に発生した地震の規模別累積頻度分布.直線は G-R 則.
- 783

Figure 15. (a, b, d) **Figure 1a, b, d** と同様. ただし,赤と青のシンボルはそれぞ 784 れ Δσ > 4.8 kPa と Δσ < -4.8 kPa の時に発生した地震を示す.発震機構解 785 は GCMT カタログ[Dziewonski et al., 1981; Ekström et al., 2012]による. NI, 786 LB, HT はそれぞれ Niuafo'ou プレート, Lau 海盆, Havre トラフ. (c) $\Delta \sigma >$ 787 4.8 kPa 時(赤棒) または Δσ < -4.8 kPa 時(青棒) に発生した地震の緯度 788 あたりの頻度分布(下横軸の括弧内の数値).灰棒は無条件の地震の頻度 789 分布(下横軸). 無条件地震に対する Δσ>4.8 kPa 時または<-4.8 kPa 時に 790 発生した地震の割合はそれぞれ赤または青で示されており、特に、菱形は 791 無条件地震数(灰棒)が30個以上のケース.実線と波線はそれぞれ,背 792 景潮汐レベルの Δσ > 4.8 kPa と< -4.8 kPa の出現率を示す. 右端の 2 つの 793

794太棒は、背景潮汐レベルの $\Delta \sigma > 4.8$ kPa と<-4.8 kPa の出現率(黒実線/</th>795黒破線)よりも有意に大きい or 小さい出現率(赤線/青線)を持つ緯度796の範囲を示す. これらの領域では、 $\Delta \sigma$ によって地震トリガーが制御され797ていると考えられる. 右下の細棒はアウターライズの海山を表す. (d) $\Delta \sigma$ 798> 4.8 kPa 時または $\Delta \sigma < -4.8$ kPa 時の地震の累積頻度分布(右縦軸の括弧799内の数値). 上部の 3 つの黒棒は、 $\Delta \sigma > 4.8$ kPa 時の地震静穏化期間を示800す.

801

Figure 16. グラフ上部に示された断層パラメータ(Figure 3)に基づいた 40 年間
の Δσ の変化(ほぼ鉛直の黒線).二重線は地震活動指数を示す(詳細は
5.6 節参照).破線は Δσ>4.8 kPa の潮汐背景変化の相対頻度(6 か月間隔)
を示しており、18.61 年潮汐周期に対応する.上部の 3 つの黒棒は Fig. 15
と同じ.

807

808 Figure A1. PREM モデルで計算された異なる波数 n に関する固有関数 (a)
809 y₁ⁿ(r), (b) y₃ⁿ(r) の深さプロファイル. 横軸は規格化した固有関数値. 詳
810 細については Appendix A-2 参照. 波数と対応する最小値・最大値
811 [km/(km/s)²]はグラフ内のリストを参照. ドットの間隔はグリッド間隔を
812 表す.

813

- 814 Figure A2. 表面点荷重(1 kg)に対する各深さにおける各グリーン関数(a) U_r , (b) 815 U_{θ} , (c) $E_{\theta\theta}$, (d) E_{rr} , (e) $E_{r\theta}$, (f) E_{vol} と角距離の関係. 変位は $(a\theta) \times 10^{12}$ 倍, 816 歪は $(a\theta)^2 \times 10^{12}$ 倍されている. ここで *a* は地球半径 [m].
- 817
- 818

819 Supplemental Information

820 本研究で用いた地震の基礎情報,得られた潮汐のレベル,位相角,差応力を Table
821 S1 に示す.

- Table Captions
- 824 Table S1. 解析に用いた地震イベント,潮汐指標レベルと位相角,および本研究
- 825 で得られた主潮汐応力差に関する基本情報.