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S U M M A R Y
We estimated the maximum magnitude of earthquakes in the Japan-Kuril-Kamchatka trench
subduction zone with a method based on the conservation of seismic moment and the record
of interplate seismicity from 1977 to 2017. The key point of this method is to base calculations
on the tectonic moment rate instead of the total seismic moment rate. We modeled a seismic-
moment-frequency distribution for the Japan-Kuril-Kamchatka trench on the basis of the
truncated Gutenberg–Richter (G–R) law, the formula published by Utsu in 1974, the gamma
distribution, and the tapered G–R law. We estimated the maximum magnitude along the Japan-
Kuril-Kamchatka trench as ∼10 under the truncated G–R law and ∼11 under Utsu’s formula,
although the latter may be an overestimate. Therefore, the 2011 Tohoku earthquake, of moment
magnitude 9.2, may not be the largest possible event in this area. The recurrence interval for
magnitude 10 events based on the truncated G–R law is 4000 yr. Although these two models
perform equally well in terms of Akaike Information Criterion, the range of the 95 per cent
confidence level is consistently narrower for the truncated G–R law than for Utsu’s formula.
The estimated maximum magnitude depends not only on the model used, but also on the
parameters that constitute the tectonic moment. It is essential to accumulate more seismic data
and achieve more precise estimates of tectonic moment to improve estimates of maximum
magnitude.
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1 I N T RO D U C T I O N

It is very important in efforts related to earthquake disaster prevention to estimate the maximum magnitude of events that will occur in
a region. Precise estimates of this kind generally require data from time periods longer than the average recurrence interval of the largest
earthquake. However, the recurrence time of great earthquakes is far longer than human life spans, and available data are limited.

Various attempts have been made to estimate the maximum moment magnitude of earthquakes in the subduction zone along the Japan-
Kuril-Kamchatka trench. (To avoid confusion, this paper uses m for moment magnitude and M for seismic moment.) Matsuzawa (2013) used
the scaling law between fault area and magnitude to estimate this maximum magnitude as m 10, while admitting it was an extremely rough
estimate. Moreover, this estimate did not utilize data of actual seismicity. Kagan & Jackson (2013) estimated maximum magnitudes for all
subduction zones on the basis of the principle of conservation of moment, with some assumptions. They estimated the maximum magnitude
of earthquakes off the Tohoku district in Japan as m 9.26 ± 0.29 by considering one of the parameters that prescribes the gamma distribution
to be the maximum magnitude (a corner magnitude, see section 4.4), and they pointed out that at m 9.2, the 2011 Tohoku earthquake (Hirose
et al. 2011) was within expectations for this region. However, they also showed that, for the Andaman Island-Sumatra region, the estimated
maximum magnitude changed when the data period was extended to include an earthquake with the observed maximum magnitude. Thus,
it is worth examining whether the estimated maximum magnitude may change depending on the data with or without of the 2011 Tohoku
earthquake and its aftermath. Rong et al. (2014) used the tapered Gutenberg–Richter (G–R) law (Kagan 2002a) to estimate maximum
magnitudes of m 9.2 for 1000 yr and m 9.3 for 10 000 yr in the wide region extending from the Japan trench to the Kuril-Kamchatka trench.
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Figure 1. Epicenters of interplate earthquakes of m ≥ 5.8 at depths of 0–70 km in the Japan-Kuril-Kamchatka trench, 1977–2017. Broken purple lines are
plate boundaries from the PB2002 compilation (Bird 2003). Broken orange lines and broken green lines are isodepth contours of 20, 40, 60 and 80 km for
the upper boundary of the Pacific slab from Nakajima & Hasegawa (2006) and Kita et al. (2010); Hayes et al. (2012), respectively. Arrows indicate plate
convergence rates between the Pacific and Okhotsk plates (DeMets et al. 2010). The inset at upper left is a plot of earthquake magnitudes (vertical bars) and
cumulative earthquake number (curve) versus time. The insets at lower right show vertical cross sections of the plate boundary along lines a–a′ and b–b′; no
vertical exaggeration. The star denotes the epicenter of the 2011 Tohoku earthquake. Jt, Japan trench; KKt, Kuril-Kamchatka trench; Hd, Hokkaido district;
Td, Tohoku district; Kd, Kanto district.

However, neither the gamma distribution nor the tapered G–R law includes a parameter specifying the maximum magnitude, thus these laws
allow an event with an infinite magnitude to occur inevitably. On the other hand, two other formulations, the truncated G–R law (Utsu 1978)
and Utsu’s formula (Utsu 1974), do include such a parameter specifying the maximum magnitude. These may thus be better choices for
estimating maximum magnitudes.

In this study, we investigated the maximum magnitude of earthquakes along the Japan-Kuril-Kamchatka trench by applying the truncated
G–R law and the Utsu’s formula (and both based on the moment conservation principle) to the seismic record of 1977–2017, which includes
7 yr more data than analysed by Kagan & Jackson (2013). We also applied the gamma distribution and the tapered G–R law for reference
purposes.

2 DATA

We extracted three data sets of interplate earthquakes with m ≥ 5.8 from the GCMT catalogue (Dziewonski et al. 1981; Ekström et al. 2012)
from 1977 through 2017 (Fig. 1). We defined interplate events as those within specific ranges of strike angle (150–270◦), dip angle (0–45◦),
rake angle (45–135◦) and depth (0–70 km). The range of strike angles allows for the strike of the trench, which ranges from 180◦ to 240◦,
plus the error of the GCMT solutions. Our datasets all started on 1 January 1977, but ended on 31 December 2010 (Period 1), 31 December
2013 (Period 2) or 31 December 2017 (Period 3). Period 1 was the same period used by Kagan & Jackson (2013, and Rong et al. 2014) and
preceded the 2011 Tohoku earthquake. Periods 2 and 3, both of which included the 2011 Tohoku earthquake and aftershocks, were used to
check the dependence of estimated results on data periods.
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Table 1. Parameters used in this study. The width W of fault was estimated at 173 km along the Kuril-Kamchatka trench and 249 km along the Japan trench
in accordance with dip angles (10◦, 20◦, 30◦) of the configuration of the Pacific Plate (inset in Fig. 1). The length L of the fault was totaled 2990 km from
2200 km along the Kuril-Kamchatka trench and 790 km along the Japan trench.

χ (per
cent) μ (GPa) Dip (◦) W (km) L (km)

Vpl

(cm yr–1)
ṀT (1020

Nm yr–1)

70 49 10/20/30 173/249 2200/790 8.83 17.48

3 M E T H O D A N D PA R A M E T E R S E T T I N G

Like Kagan & Jackson (2013), we used the moment conservation principle to estimate the maximum magnitude. The key point of this method
is to restrict the total seismic moment release rate Ṁs to an upper limit set by the tectonic moment rate ṀT , which is the product of the plate
convergence rate, the interplate coupling rate, the modulus of rigidity, and the width and length of the fault. We set each of these parameters
of ṀT as follows.

We calculated the plate convergence rate (Vpl) from the relative plate motion between the Okhotsk Plate and the subducting Pacific
Plate in the MORVEL compilation (DeMets et al. 2010) by using the Plate Motion Calculator on the UNAVCO website (https://www.unav
co.org/sof tware/geodetic-utilities/geodetic-utilities.html). The resulting rate has a range of 8.24–9.32 cm yr–1 along the full set of trenches
(arrows in Fig. 1). For simplicity, this rate was set at 8.83 cm yr–1, the average of representative convergence rates near the centre of the
Japan trench (Vpl = 9.26 cm yr–1) and Kuril-Kamchatka trench (Vpl = 8.69 cm yr–1), weighted in proportion to the length of each trench (i.e.
9.26 × 1/4 + 8.69 × 3/4).

The interplate coupling rate (χ ) may be calculated from Vpl and the slip deficit rate. We determined the slip deficit rate from Hashimoto
et al. (2012), who used GNSS data from 1996 to 2000 to estimate slip deficit rates from off Hokkaido through off Kanto before the 2011
Tohoku earthquake. From the spatially heterogeneous results of Hashimoto et al. (2012), we adopted a mean slip deficit rate of 6 cm yr–1 for
the aftershock area of the 2011 Tohoku earthquake. The value of χ , defined by the ratio of slip deficit and Vpl (6/9.26 cm yr–1), was thus 65
per cent.

Generally, in estimates of slip deficit from GNSS data, all of the crustal displacement is assumed to occur at the plate boundary
(Savage 1983); that is, the stress release caused by small events between and within the plates is ascribed to stable sliding, including slow
slip on the plate boundary, and is not considered separately when estimating the tectonic moment. Our purpose, however, is to estimate
maximum magnitudes while taking into consideration the seismic moment (energy) released by all interplate earthquakes (see Section 4.6).
Accordingly, although it is unknown what proportion of the stable sliding estimated by the GNSS analysis is slip displacement of small
interplate earthquakes, a χ value of 65 per cent should be considered to be an underestimate.

Uchida & Matsuzawa (2011) estimated a mean χ of 66 per cent in the aftershock area of the 2011 Tohoku earthquake from their analysis
of small repeating earthquakes (m ∼3) from 1993 to March 2007. Note that because they used a Vpl value of 7.2 cm yr–1 (Shella et al. 2002),
the stable sliding rate was 2.4 cm yr–1. If instead we assume a Vpl of 9.26 cm yr–1 based on MORVEL, the slip deficit rate would be 6.86 cm yr–1

and the resulting χ would be 74 per cent (=6.86/9.26). Small repeating earthquakes are considered to play a partial role in stable sliding on the
plate boundary which, we defined, is consist of seismic slip by small repeating earthquakes and slow slip. The value of χ depends not only on
energy released by large earthquakes and stable sliding on the plate boundary, but also on energy released by intraplate earthquakes. However,
this analysis of repeating earthquakes does not treat slow slip and earthquakes off the plate boundary, which would result in overestimating χ .
Note that Igarashi et al. (2003) confirmed that the scaling relationship between seismic moment and seismic slip in California is applicable to
interplate earthquakes beneath northeastern Japan. The slip rate of small repeating earthquakes during 1996–2000, the period of the GNSS
analysis, is the same as that estimated from small repeating earthquakes from 1993 to March 2007 (Uchida & Matsuzawa 2013).

The difference in χ between the small repeating earthquakes analysis (74 per cent) and the GNSS analysis (65 per cent) is considered to
arise from strain release by small interplate and intraplate earthquakes. However, the proportion of the strain release represented by interplate
and intraplate earthquakes is unknown. Furthermore, χ is unknown for most of the Kuril-Kamchatka trench. Therefore, we adopted a value
of 70 per cent, an intermediate value between 65 and 74 per cent. We also explored this issue for reference purposes by varying χ from 10 to
100 per cent.

We set the modulus of rigidity (μ) at 49 GPa (Bird & Kagan 2004), the same value used by previous studies (Kagan & Jackson 2013;
Rong et al. 2014).

Because the mean water depth of the Japan-Kuril-Kamchatka trench is about 7 km and the base of the interplate seismogenic zone
is 50–60 km deep (e.g. Kita et al. 2010), we specified a fault plane with a depth range between 7 and 60 km and a width W of 173 km
(=(20–7)/sin 10 + (40–20)/sin 20 + (60–40)/sin 30) along the Kuril-Kamchatka trench and 249 km (=(40–7)/sin 10 + (60–40)/sin 20)
along the Japan trench in accordance with the configuration of the Pacific Plate (Nakajima & Hasegawa 2006; Kita et al. 2010; Hayes et al.
2012) (inset in Fig. 1). The length L of the fault was measured along the strike of the trench and totaled 2990 km from 2200 km along the
Kuril-Kamchatka trench and 790 km along the Japan trench. Table 1 shows the list of parameters assigned and the resulting value of ṀT for
χ = 70 per cent.

We applied the truncated G–R law, Utsu’s formula, gamma distribution and tapered G–R law to the cumulative frequency-moment
distributions of our three seismic datasets. These laws are represented by two parameters, β (the representative parameter of slope of a
frequency-moment distribution) and Mc (the characteristic moment corresponding to the maximum magnitude). The Mc terms under each
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of the four laws are determined uniquely from the corresponding β terms when ṀT is assigned a priori. The next section presents detailed
numerical formulas and parameters for each law.

4 N U M E R I C A L F O R M U L A S

Moment (M) is linked to magnitude (m) by the relations

log M = 1.5m + 9.0 (1)

m = log M

1.5
− 6.0 (2)

∂m

∂ M
= 1

1.5M ln 10
, (3)

where log and ln indicate common and natural logarithms, respectively. After Kagan & Jackson (2013) and Rong et al. (2014), we adopted
9.0 as the coefficient on the right side in eq. (1), although 9.05 (Hanks & Kanamori 1979) and 9.1 (Kanamori 1977) have also been suggested.
This choice of coefficient puts the moment magnitude of the 2011 Tohoku earthquake at 9.2, rather than 9.0 as estimated by the Japan
Meteorological Agency (Hirose et al. 2011).

The total seismic moment release rate Ṁs as restricted by the tectonic moment rate ṀT was obtained analytically from the probability
density function φ(M) and the complementary cumulative distribution function �(M) of moment. We show the derivation process for the
magnitude and moment representations of each law in Sections 4.1–4.5 and the total seismic moment release rate Ṁs in Section 4.6.

4.1 G–R law

4.1.1 Magnitude representation of G–R law

When the number of earthquakes with magnitudes from m to m + dm in a given region and a given period is defined as nm(m)dm, their size
distribution is approximated by the G–R law (Gutenberg & Richter 1944):

log nm (m) = a − bm (4)

nm (m) = 10a 10−bm = 10a e−Bm, (5)

where a and b are constants and B = b ln 10. The total number of earthquakes Nm(m) greater than or equal to m is given by

Nm (m) =
∞
∫
m

nm

(
m ′) dm ′ = 10ae−Bm

B
. (6)

When we set x = m − mt , where mt is the completeness magnitude, the probability density function f (x) of x is given by

f (x) = nm (m)

Nm (mt )
= 10ae−Bm

10ae−Bmt

B

= B e−Bx = B10−bx . (7)

The complementary cumulative distribution function F(x) of x is given by

F (x) =
∞
∫
x

f
(
x ′) dx ′ = e−Bx = 10−bx . (8)

Nm(m) is also represented using F(x) as follows:

Nm (m) = Nm (mt ) F (x) = NF (x) , (9)

where N = Nm (mt ). Note that the relation between f (x) and F(x) is

f (x) = − ∂F (x)

∂x
. (10)

Because the likelihood L of observed xi (i = 1, 2, . . . , N ) is represented as

L =
N∏

i=1

f (xi ) = f (x1) × f (x2) × · · · × f (xN ) , (11)

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article-abstract/219/3/1590/5553983 by M

eteorological R
esearch Institute user on 17 N

ovem
ber 2019



1594 F. Hirose et al.

the log-likelihood ln L becomes

ln L = ln f (x1) + ln f (x2) + · · · + ln f (xN )

=
N∑

i=1
ln f (xi ) =

N∑
i=1

ln
(
Be−Bxi

) = N ln B − B
N∑

i = 1
xi ,

(12)

and the maximum-likelihood estimate of B becomes

∂ ln L

∂ B
= N

B
−

N∑
i = 1

xi = 0 (13)

∴ B = N∑N
i=1 xi

= 1

E [x]
, (14)

where E[x] is the mean of xi .
Therefore, the maximum-likelihood estimate of b becomes

∴ b = 1

E [x] ln 10
= log e

E [x]
= log e

E [m] − mt
. (15)

4.1.2 Moment representation of G–R law

Here we convert the magnitude representation shown in Section 4.1.1 to a moment representation. Again, nm(m)dm is the number of
earthquakes with magnitudes from m to m + dm. The number of earthquakes with moments from M to M + dM , nM (M)dM , is derived
from eqs (2), (3) and (5) as follows:

nM (M) dM = nm (m) dm = nm (m)
∂m

∂ M
dM

= 10a 10
−b

⎛
⎝ log M

1.5
− 6.0

⎞
⎠

1

1.5 M ln 10
dM = 10a+6.0b

1.5 ln 10
M−β−1dM,

(16)

where β = b/1.5. Therefore, the moment representation for nm(m) in eq. (5), nM (M), is given by

∴ nM (M) = 10a+6.0b

1.5 ln 10
M−β−1 . (17)

From eq. (16), the moment representation for Nm(m) in eq. (6), NM (M), is given by

NM (M) =
∞
∫
M

nM

(
M ′) dM ′ = 10a+6.0b

1.5 ln 10

[
1

−β

(
M ′)−β

]∞

M

= 10a+6.0b

1.5 ln 10

1

β
M−β . (18)

From eqs (17) and (18), the probability density function φ(M) of M is given by

φ (M) = nM (M)

NM (Mt )
=

10a+6.0b

1.5 ln 10
M−β−1

10a+6.0b

1.5 ln 10

1

β
Mt

−β

= βMt
β M−β−1, (19)

and the complementary cumulative distribution function �(M) of M is given by

� (M) =
∞
∫
M

φ
(
M ′) dM ′ = Mt

β M−β (Mt ≤ M < ∞) . (20)

NM (M) is also represented using �(M) as follows:

NM (M) = NM (Mt ) � (M) = N� (M) . (21)

Note that φ(M) and �(M) are related as

φ (M) = − ∂� (M)

∂ M
. (22)

The log-likelihood ln L of observed Mi (i = 1, 2, . . . , N ) becomes

ln L =
N∑

i=1

ln φ (Mi ) =
N∑

i=1

ln
(
βMt

β Mi
−β−1

) = N [ln β + βlnMt ] − (1 + β)
N∑

i = 1

lnMi , (23)

and the maximum-likelihood estimate of B becomes

∂ ln L

∂β
= N

β
+ N lnMt −

N∑
i = 1

lnMi = 0 (24)
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∴ β = N∑N
i=1 ln Mi

Mt

. (25)

4.2 Truncated G–R law

4.2.1 Magnitude representation of truncated G–R law

The truncated G–R law with upper magnitude limit ctr (e.g. Utsu 1978) is given by

log nm (m) = atr − btr m (m ≤ ctr ) (26)

nm (m) = 10atr 10−btr m = 10atr e−Btr m (m ≤ ctr ) (27)

nm (m) = 0 (m > ctr ) , (28)

where atr , btr and ctr are constants and Btr = btr ln 10. The number of earthquakes with magnitudes from m to ctr , Nm(m), is given by

Nm (m) =
ctr∫
m

nm

(
m ′) dm ′ = 10atr

Btr

(
e−Btr m − e−Btr ctr

)
(m ≤ ctr ) . (29)

The probability density function f (x) of x( = m − mt ) is given by

f (x) = nm (m)

Nm (mt )
= 10atr e−Btr m

10atr

Btr

(
e−Btr mt − e−Btr ctr

)
= Btr

eBtr (m−mt ) − eBtr (m−ctr )
= Btr

eBtr x − eBtr (x−Ctr )

= Btr

1 − e−Btr Ctr
e−Btr x ,

(30)

where Ctr = ctr − mt .
The complementary cumulative distribution function F(x) of x is given by

F (x) =
Ctr∫
x

f
(
x ′) dx ′ = Nm (m)

Nm (mt )
=

10atr

Btr

(
e−Btr m − e−Btr ctr

)
10atr

Btr

(
e−Btr mt − e−Btr ctr

) = e−Btr x − e−Btr Ctr

1 − e−Btr Ctr
. (31)

Here, note that the upper limit of the integration is Ctr rather than ctr.
The log-likelihood ln L becomes

ln L =
N∑

i=1

ln f (xi ) =
N∑

i=1

ln

(
Btr

1 − e−Btr Ctr
e−Btr xi

)
= N ln

Btr

1 − e−Btr Ctr
− Btr

N∑
i = 1

xi . (32)

See Utsu (1978, 1999b) for details of the estimation procedure for parameters Btr and Ctr .

4.2.2 Moment representation of truncated G–R law

Here we convert the magnitude representation shown in Section 4.2.1 to a moment representation. The number of earthquakes with moments
from M to M + dM , nM (M)dM , is derived from eqs (2), (3) and (27) as follows:

nM (M) dM = nm (m) dm = nm (m)
∂m

∂ M
dM

= 10atr 10
−btr

⎛
⎝ log M

1.5
− 6.0

⎞
⎠

1

1.5M ln 10
dM

= 10atr +6.0btr

1.5 ln 10
M−βtr −1dM (M ≤ Mctr ) ,

(33)

where βtr = btr/1.5 and Mctr is the upper limit of moment, corresponding to the upper limit of magnitude ctr . Therefore, the moment
representation for nm(m) in eq. (27), nM (M), is given by

∴ nM (M) = 10atr +6.0btr

1.5 ln 10
M−βtr −1 (M ≤ Mctr ) . (34)
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From eq. (33), the moment representation for Nm(m) in eq. (29), NM (M), is given by

NM (M) =
Mctr∫
M

nM (M ′) dM ′ = 10atr +6.0btr

1.5 ln 10

[
1

−βtr

(
M ′)−βtr

]Mctr

M

= 10atr +6.0btr

1.5 ln 10

1

βtr

(
M−βtr − Mctr

−βtr
)
.

(35)

From eqs (34) and (35), the probability density function φ(M) of M is given by

φ (M) = nM (M)

NM (Mt )
=

10atr +6.0btr

1.5 ln 10
M−βtr −1

10atr +6.0btr

1.5 ln 10

1

βtr

(
Mt

−βtr − Mctr
−βtr
)

= βtr
M−βtr −1

Mt
−βtr − Mctr

−βtr
= Mctr

βtr Mt
βtr

Mctr
βtr − Mt

βtr
βtr M−βtr −1

= βtr Mt
βtr M−βtr −1

1 −
(

Mctr

Mt

)−βtr
(Mt ≤ M ≤ Mctr ) ,

(36)

and the complementary cumulative distribution function �(M) of M is given by

� (M) =
Mctr∫
M

φ (M ′) dM ′ = NM (M)

NM (Mt )
= M−βtr − Mctr

−βtr

Mt
−βtr − Mctr

−βtr

= Mt
βtr M−βtr

1 −
(

Mctr

M

)−βtr

1 −
(

Mctr

Mt

)−βtr
(Mt ≤ M ≤ Mctr ) .

(37)

Comparing this equation with eq. (20) of the G–R law, we can find a taper with power. Note that this equation accords with eq. (20)
when Mctr becomes ∞. The log-likelihood ln L becomes

ln L =
N∑

i=1
ln φ (Mi ) =

N∑
i=1

ln

(
Mctr

βtr Mt
βtr

Mctr
βtr − Mt

βtr
βtr Mi

−βtr −1

)

= N
[
βtr ln Mctr + βtr ln Mt + ln βtr − ln

(
Mctr

βtr − Mt
βtr
)]− (1 + βtr )

N∑
i = 1

ln Mi .

(38)

4.3 Utsu’s formula

4.3.1 Magnitude representation of Utsu’s formula

Utsu (1974) suggested a law with a different upper magnitude limit, cu , in order to represent a decrease of frequency near the upper limit of
magnitude, than that of the truncated G–R law in Section 4.2. Utsu’s formula is given by

log nm (m) = au − bum + log (cu − m) (m < cu) (39)

nm (m) = 10au 10−bu m 10log(cu−m) = 10au e−Bu m (cu − m) (m < cu) (40)

nm (m) = 0 (m ≥ cu) , (41)

where au , bu , and cu are constants and Bu = bu ln 10. We can find that eq. (39) was expressed by the addition of eq. (4) of the G–R law and
logarithmic taper. The number of earthquakes with magnitudes from m to cu , Nm(m), is given by

Nm (m) =
cu∫
m

nm (m ′) dm ′ = 10au
cu∫
m

e−Bu m′
(cu − m ′) dm ′

= 10au

{[
(cu − m ′)

1

−Bu
e−Bu m′

]cu

m

−
cu∫
m

(−1)
1

−Bu
e−Bu m′

dm ′
}

= 10au

Bu

{(
cu − m − 1

Bu

)
e−Bu m + 1

Bu
e−Bu cu

}
(m < cu) .

(42)

The probability density function f (x) of x is given by

f (x) = nm (m)

Nm (mt )
= 10au e−Bu m (cu − m)

10au

Bu

{(
cu − mt − 1

Bu

)
e−Bu mt + 1

Bu
e−Bu cu

}

= Bu
2e−Bu x (Cu − x)

BuCu − 1 + e−Bu Cu
= Bu

2e−Bu x (Cu − x)

P
,

(43)
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where Cu = cu − mt and P = Bu Cu − 1 + e−Bu Cu .
The complementary cumulative distribution function F(x) of x is given by

F (x) =
Cu∫
x

f (x ′) dx ′ = Bu
2

P

Cu∫
x

e−Bu x ′
(Cu − x ′) dx ′

= Bu

P

{(
Cu − x − 1

Bu

)
e−Bu x + 1

Bu
e−Bu Cu

}
.

(44)

Here, note that the upper limit of the integration is Cu rather than cu. Furthermore, note that the opening brace ‘{’ is incorrectly placed
in eq. (11.105) of Utsu (1999b).

The log-likelihood ln L becomes

ln L =
N∑

i=1
ln f (xi ) =

N∑
i=1

ln

{
Bu

2e−Bu xi (Cu − xi )

P

}

= N (2 ln Bu − ln P − BuE [x]) +
N∑

i = 1
ln (Cu − xi ) ,

(45)

and the maximum-likelihood estimates of Bu and Cu can be obtained from ∂ln L/∂Bu = ∂ln L/∂Cu = 0 (e.g. Utsu 1999b; Mabuchi et al.
2002).

4.3.2 Moment representation of Utsu’s formula

Here we convert the magnitude representation shown in Section 4.3.1 to a moment representation. The number of earthquakes with moments
from M to M + dM , nM (M)dM , is derived from eqs (2), (3) and (40) as follows:

nM (M) dM = nm (m) dm = nm (m)
∂m

∂ M
dM

= 10au 10
−bu

⎛
⎝ log M

1.5
− 6.0

⎞
⎠

10
log

⎧⎨
⎩
⎛
⎝ log Mcu

1.5
− 6.0

⎞
⎠−
⎛
⎝ log M

1.5
− 6.0

⎞
⎠
⎫⎬
⎭ 1

1.5M ln 10
dM

= 10au+6.0bu

1.5 ln 10
M−βu−1 1

1.5
log

Mcu

M
d M (M < Mcu) ,

(46)

where βu = bu/1.5 and Mcu is the upper limit of moment corresponding to the upper limit of magnitude cu . Therefore, the moment
representation for nm(m) in eq. (40), nM (M), is given by

∴ nM (M) = 10au+6.0bu

1.5 ln 10
M−βu−1 1

1.5
log

Mcu

M
(M < Mcu) . (47)

From eq. (46), the moment representation for Nm(m) in eq. (42), NM (M), is given by

NM (M) =
Mcu∫
M

nM (M ′) dM ′ = 1

1.5

10au+6.0bu

1.5 ln 10

Mcu∫
M

M ′−βu−1 log
Mcu

M ′ dM ′

= 1

1.5

10au+6.0bu

1.5 ln 10

1

βu

(
M−βu log

Mcu

M
− M−βu − Mcu

−βu

βu ln 10

)
.

(48)

From eqs (47) and (48), the probability density function φ(M) of M is given by

φ (M) = nM (M)

NM (Mt )
=

10au+6.0bu

1.5 ln 10
M−βu−1 1

1.5
log

Mcu

M
1

1.5

10au+6.0bu

1.5 ln 10

1

βu

(
M−βu log

Mcu

Mt
− Mt

−βu − Mcu
−βu

βu ln 10

)

= βu Mt
βu M−βu−1

log
Mcu

M

log
Mcu

Mt
−

1 −
(

Mcu

Mt

)−βu

βu ln 10

(Mt ≤ M ≤ Mcu),

(49)

and the complementary cumulative distribution function �(M) of M is given by

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article-abstract/219/3/1590/5553983 by M

eteorological R
esearch Institute user on 17 N

ovem
ber 2019



1598 F. Hirose et al.

� (M) =
Mcu∫
M

φ (M ′) dM ′ = NM (M)

NM (Mt )
=

M−βu log
Mcu

M
− M−βu − Mcu

−βu

βu ln 10

Mt
−βu log

Mcu

Mt
− Mt

−βu − Mcu
−βu

βu ln 10

= Mt
βu M−βu

log
Mcu

M
−

1 −
(

Mcu

M

)−βu

βu ln 10

log
Mcu

Mt
−

1 −
(

Mcu

Mt

)−βu

βu ln 10

(Mt ≤ M ≤ Mcu) .

(50)

The log-likelihood ln L becomes

ln L =
N∑

i=1

ln φ (Mi ) =
N∑

i=1

ln

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

βu Mt
βu Mi

−βu−1
log

Mcu

Mi

log
Mcu

Mt
−

1 −
(

Mcu

Mt

)−βu

βu ln 10

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (51)

Although maximum-likelihood estimates of βu and Mcu can be obtained from ∂ln L/∂βu = ∂ln L/∂Mcu = 0, the formulas are complicated.
Therefore, for practical applications we recommend converting parameters Bu and Cu obtained by eq. (45) to the moment representations
βu and Mcu using eq. (1). In this study, βu was estimated numerically by a grid search for the maximum value of eq. (51) because Mcu is
represented by βu by setting ṀT a priori (see Section 4.7).

4.4 Gamma distribution

4.4.1 Magnitude representation of gamma distribution

The gamma distribution is an example of a law stipulating that there is no upper limit of magnitude or moment, although the number of
earthquakes decreases sharply when m or M becomes large (Saito et al. 1973; Kagan 1991). In this section, we treat expressions that Utsu
called the generalized Saito et al. equation [eq. (15) in Utsu 1999a]. Kagan (2002a, Section 2.2.1) used a version of the gamma distribution
that was based on the generalized Saito et al. equation, but did not present a magnitude representation of it. The generalized Saito et al.
equation is given by

log nm (m) = ag − bgm − k101.5m (52)

nm (m) = 10ag 10−bg m 10−k101.5m = 10ag e−Bg me−γ e

Bg
βg

m

, (53)

where ag , bg and k are constants, Bg = bg ln 10, βg = bg/1.5 and γ = k ln 10. The number of earthquakes Nm(m) with magnitudes greater
than or equal to m is given by

Nm (m) =
∞
∫
m

nm

(
m ′) dm ′ = 10ag βgγ

βg

Bg
�

(
−βg, γ e

Bg
βg

m
)

, (54)

where �(−βg, γ e
Bg
βg

m
) is an upper incomplete gamma function defined as

� (a, x) ≡
∞
∫
x

ta−1e−t dt (x > 0) . (55)

The probability density function f (x) of x is given by

f (x) = nm (m)

Nm (mt )
= 10ag e−Bg me−γ e

Bg

βg
m

10ag βgγ
βg

Bg
�

⎛
⎜⎝−βg, γ e

Bg

βg
mt

⎞
⎟⎠

= Bge−Bg x e−De

Bg

βg
x

βg Dβg �
(−βg, D

) , (56)

where D = γ e
Bg
βg

mt . Note that eq. (56) is consistent with eq. (11.138) of Utsu (1999b) with βg = 1/2 (note that c in Utsu’s eq. [11.138] is a
misprint of C which is the same as D in this paper).
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The complementary cumulative distribution function F(x) of x is given by

F (x) =
∞
∫
x

f
(
x ′) dx ′ =

�

(
−βg, De

Bg
βg

x
)

�
(−βg, D

) . (57)

4.4.2 Moment representation of gamma distribution

Here we convert the magnitude representation shown in Section 4.4.1 to a moment representation. The number of earthquakes with moments
from M to M + dM , nM (M)dM , is derived from eqs (2), (3) and (53) as follows:

nM (M) dM = nm (m) dm = nm (m)
∂m

∂ M
dM

= 10ag 10
−bg

⎛
⎝ log M

1.5
− 6.0

⎞
⎠

10−k10

1.5

⎛
⎜⎝ log M

1.5
− 6.0

⎞
⎟⎠

1

1.5M ln 10
dM

= 10ag+6.0bg

1.5 ln 10
M−βg−1e−10−9.0γ M dM

= 10ag+6.0bg

1.5 ln 10
M−βg−1e

−
M

Mcg dM,

(58)

where Mcg is a corner moment parameter that characterizes the frequency-moment distribution, which we set at Mcg = (10−9.0γ )−1 . Note
that Mcg is not an upper limit of moment like Mctr in the truncated G–R law and Mcu in Utsu’s formula. Therefore, the moment representation
for nm(m) in eq. (53), nM (M), is given by

∴ nM (M) = 10ag+6.0bg

1.5 ln 10
M−βg−1e

−
M

Mcg . (59)

From eqs (55) and (58), the moment representation for Nm(m) in eq. (54), NM (M), is given by

NM (M) =
∞∫
M

nM (M ′) dM ′ = 10ag+6.0bg

1.5 ln 10

∞∫
M

M ′−βg−1e
−

M ′

Mcg dM ′

= 10ag+6.0bg

1.5 ln 10
Mcg

−βg

∞∫
M

Mcg

t−βg−1e−t dt

= 10ag+6.0bg

1.5 ln 10
Mcg

−βg �

(
−βg,

M

Mcg

)
,

(60)

where we substituted t for
M ′

Mcg
for simplicity.

From eqs (59) and (60), the probability density function φ(M) of M is given by

φ (M) = nM (M)

NM (Mt )
=

10ag+6.0bg

1.5 ln 10
M−βg−1e

−
M

Mcg

10ag+6.0bg

1.5 ln 10
Mcg

−βg �

(
−βg,

Mt

Mcg

)

= M−βg−1e
−

M

Mcg

Mcg
−βg �

(
−βg,

Mt

Mcg

) (Mt ≤ M ≤ ∞) ,

(61)

and the complementary cumulative distribution function �(M) of M is given by

� (M) =
∞
∫
M

φ
(
M ′) dM ′ = NM (M)

NM (Mt )
=

�

(
−βg,

M

Mcg

)

�

(
−βg,

Mt

Mcg

) (Mt ≤ M ≤ ∞) . (62)
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The log-likelihood ln L becomes

ln L =
N∑

i=1
ln φ (Mi ) =

N∑
i=1

ln

⎛
⎜⎜⎜⎝ Mi

−βg−1e
−

Mi

Mcg

Mcg
−βg �

(
−βg,

Mt

Mcg

)
⎞
⎟⎟⎟⎠

= N

[
βg ln Mcg − ln �

(
−βg,

Mt

Mcg

)]
− (1 + βg

) N∑
i = 1

ln Mi − 1

Mcg

N∑
i = 1

Mi .

(63)

Note that

� (a + 1, x) = a� (a, x) + xae−x . (64)

Through eq. (64), eq. (61) becomes the following complicated form that was presented as eqs (16) and (17) by Kagan (2002a):

φ (M) = M−βg−1e
−

M

Mcg

Mcg
−βg �

(
−βg,

Mt

Mcg

)

= βg M−βg−1 Mt
βg e

Mt − M

Mcg

1 −
(

Mt

Mcg

)βg

e

Mt

Mcg �

(
1 − βg,

Mt

Mcg

)

= G−1 βg

M

(
Mt

M

)βg

e

Mt − M

Mcg (Mt ≤ M ≤ ∞)

(65)

G = 1 −
(

Mt

Mcg

)βg

e

Mt

Mcg �

(
1 − βg,

Mt

Mcg

)
. (66)

Similarly, through eq. (64), eq. (62) becomes the complicated form presented as eq. (19) by Kagan (2002a):

� (M) =
∞∫
M

φ (M ′) dM ′ =
�

(
−βg,

M

Mcg

)

�

(
−βg,

Mt

Mcg

)

=
−βg

−1�

(
1 − βg,

M

Mcg

)
−
(

M

Mcg

)−βg

e
−

M

Mcg

−βg
−1�

(
1 − βg,

Mt

Mcg

)
−
(

Mt

Mcg

)−βg

e
−

Mt

Mcg

= G−1

(
Mt

M

)βg

e

Mt − M

Mcg

⎧⎪⎨
⎪⎩1 −

(
M

Mcg

)βg

e

M

Mcg �

(
1 − βg,

M

Mcg

)⎫⎪⎬
⎪⎭

(67)

Similarly, through eqs (64) and (65), eq. (63) becomes the form shown as eq. (38) by Kagan (2002a):

ln L =
N∑

i=1
ln φ (Mi ) =

N∑
i=1

ln

⎛
⎜⎝G−1 βg

M

(
Mt

M

)βg

e

Mt − M

Mcg

⎞
⎟⎠

= N
[
βg ln Mt + ln βg − ln G

]+ N Mt −∑N
i = 1 Mi

Mcg
− (1 + βg

) N∑
i = 1

ln Mi .

(68)

Note that the plus sign of log C in eq. (38) of Kagan (2002a) is changed to a minus sign, that is, − ln G, in eq. (68) of this study. It appears
that Kagan (2002a) used the complicated forms of eqs (65)–(67) rather than the simpler forms of eqs (61) and (62) for easier comparison
with his presentation of the tapered G–R law (see Section 4.5) in the same paper.
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4.5 Tapered G–R law

4.5.1 Moment representation of tapered G–R law

The distribution functions shown in Sections 4.1–4.4 were based on magnitude representations. However, no magnitude representation of the
tapered G–R law (Vere-Jones et al. 2001; Kagan 2002a) has been published. Therefore, in Section 4.5.2 we present a derivation based on the
moment representation of Kagan (2002a).

According to eq. (12) of Kagan (2002a), the probability density function φ(M) of M is given by

φ (M) =
[

βta

M
+ 1

Mcta

] (
Mt

M

)βta

e

Mt − M

Mcta (Mt ≤ M ≤ ∞) , (69)

where βta and Mcta are constants. Mcta is a corner moment parameter that characterizes the frequency-moment distribution, just as Mcg

defines the gamma distribution and unlike Mctr in the truncated G–R law and Mcu in Utsu’s formula, Mcta is not an upper limit of moment.
From eq. (69), the complementary cumulative distribution function �(M) of M is given by

� (M) =
∞∫
M

φ (M ′) dM ′ = Mt
βta e

Mt

Mcta
∞∫
M

(
βta

M ′ + 1

Mcta

)
M ′−βta e

−
M ′

Mcta dM ′

= Mt
βta M−βta e

Mt − M

Mcta (Mt ≤ M ≤ ∞) .

(70)

We could confirm that eq. (70) was consistent with eq. (11) of Kagan (2002a). We can find eq. (70) was expressed by the product of
eq. (20) of the G–R law and exponential taper. Note that this equation accords with eq. (20) when Mcta becomes ∞.

The log-likelihood ln L becomes

ln L =
N∑

i=1
ln φ (Mi ) =

N∑
i=1

ln

⎛
⎜⎝
[

βta

Mi
+ 1

Mcta

](
Mt

Mi

)βta

e

Mt − Mi

Mcta

⎞
⎟⎠

= Nβta ln Mt + 1

Mcta

(
N Mt −

N∑
i = 1

Mi

)
− βta

N∑
i = 1

ln Mi +
N∑

i = 1

ln

(
βta

Mi
+ 1

Mcta

)
.

(71)

4.5.2 Magnitude representation of tapered G–R law

Here we convert the moment representation shown in Section 4.5.1 to a magnitude representation. The relation between x = m − mt and M
is derived from eq. (2) as follows:

M

Mt
= 101.5x . (72)

When we set xcta = mcta − mt , where mcta is the magnitude representation of Mcta ,

Mcta

Mt
= 101.5xcta . (73)

From eqs (70), (72), and (73),

� (M) = Mt
βta M−βta e

Mt − M

Mcta =
(

M

Mt

)−βta

e

1 − M

Mt

Mcta

Mt

= (101.5x
)−βta e

1 − 101.5x

101.5xcta = 10−bta x e

1 − 101.5x

101.5xcta = e−Bta x e

1 − 101.5x

101.5xcta = F (x) ,

(74)

where β ta = bta/1.5 and Bta = bta ln 10.
The probability density function f (x) of x is given by

f (x) = − ∂F (x)

∂x
= e−Bta x e

1 − 101.5x

101.5xcta

(
Bta + 101.5x

101.5xcta
1.5 ln 10

)
. (75)

This is consistent with eq. (7) in the G–R law when xcta is ∞.
Nm(m) was obtained from eqs (9) and (74), NM (M) was obtained from eqs (21) and (74), nm(m) was obtained from eqs (7) and (75),

and nM (M) was obtained from eqs (22) and (69).
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4.6 Seismic moment release rate

In Sections 4.1−4.5 we explained how the functions φ(M) and �(M) are derived under each of the five laws used in this study. In this section,
we show how to estimate the total seismic moment release rate Ṁs from observed frequency–magnitude distributions using φ(M) and �(M)
under each law. The total seismic moment release Ms(Mt ) from events greater or equal to Mt is given by

Ms (Mt ) =
N∑

i=1

Mi = NM (Mt ) E [M] = NM (Mt ) I1 (Mt ) , (76)

where E[M] is the mean of Mi and I1(Mt ) is the first-order statistical moment of seismic moment from events greater or equal to Mt :

I1 (Mt ) ≈
Mmax∫

Mt

M ′φ
(
M ′) dM ′, (77)

where the upper limit of integration Mmax is Mctr for the truncated G–R law, Mcu for Utsu’s formula, and infinite for the G–R law, gamma
distribution, and tapered G–R law.

From eq. (76), the total seismic moment release rate Ṁs(Mt ) from events greater or equal to Mt is given by

Ṁs (Mt ) = ṄM (Mt ) I1 (Mt ) , (78)

where ṄM (Mt ) is the occurrence rate of earthquakes greater or equal to Mt . Introducing an arbitrary seismic moment M0 from eq. (21),
ṄM (Mt ) is given by

ṄM (Mt ) = ṄM (M0)

� (M0)
= α0

� (M0)
, (79)

where we set ṄM (M0) = α0 . The reason for incorporating M0 and α0 here is to refine the formulation of the total seismic moment release
rate Ṁs as explained later.

Eq. (77) is combined with eqs (19), (36), (49), (61), (65) and (69), respectively, to obtain I1(Mt ) under each law as follows.
For the G–R law,

I1 (Mt ) =
∞∫

Mt

M ′φ (M ′) dM ′ =
∞∫

Mt

M ′βMt
β M ′−β−1d M ′

= βMt
β

∞∫
Mt

M ′−βdM ′ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

βMt
β

[
1

1 − β
M ′1−β

]∞

Mt

= β

β − 1
Mt (β > 1)

Mt [ln M ′]∞Mt
= ∞ (β = 1)

βMt
β

[
1

1 − β
M ′1−β

]∞

Mt

= ∞ (β < 1)

. (80)

For the truncated G–R law,

I1 (Mt ) =
Mctr∫
Mt

M ′φ (M ′) dM ′ =
Mctr∫
Mt

M ′ βtr Mt
βtr M ′−βtr −1

1 −
(

Mctr

Mt

)−βtr
dM ′

= βtr Mt
βtr

1 −
(

Mctr

Mt

)−βtr

Mctr∫
Mt

M ′−βtr dM ′ =

⎧⎪⎪⎨
⎪⎪⎩

βtr

1 − βtr

Mt
βtr Mctr − Mt Mctr

βtr

Mctr
βtr − Mt

βtr
(βtr �= 1)

Mt Mctr

Mctr − Mt
ln

Mctr

Mt
(βtr = 1)

. (81)
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For Utsu’s formula,

I1 (Mt ) =
Mcu∫
Mt

M ′φ (M ′) dM ′ =
Mcu∫
Mt

M ′βu Mt
βu M ′−βu−1

log
Mcu

M ′

log
Mcu

Mt
−

1 −
(

Mcu

Mt

)−βu

βu ln 10

dM ′

= βu Mt
βu

log
Mcu

Mt
−

1 −
(

Mcu

Mt

)−βu

βu ln 10

Mcu∫
Mt

M ′−βu log
Mcu

M ′ dM ′

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

βu

1 − βu

Mt
βu Mcu

1−βu − Mt

(1 − βu) ln 10
− Mt log

Mcu

Mt

log
Mcu

Mt
−

1 −
(

Mcu

Mt

)−βu

βu ln 10

(βu �= 1)

Mt

log
Mcu

Mt
−

1 −
(

Mcu

Mt

)−1
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2

2 ln 10
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(82)

For the gamma distribution,

I1 (Mt ) =
∞∫

Mt

M ′φ (M ′) dM ′

=
∞∫

Mt

M ′ M ′−βg−1e
−

M ′

Mcg

Mcg
−βg �

(
−βg,

Mt

Mcg

)dM ′ =
Mcg�

(
1 − βg,

Mt

Mcg

)

�

(
−βg,

Mt

Mcg

)

= βg Mt
βg

1 − βg
Mcg

1−βg �

(
2 − βg,

Mt

Mcg

)
e

Mt

Mcg G−1 − βg

1 − βg
Mt G

−1
(
βg �= 1

)

(83)

Here, the last complicated formulation was converted by using eq. (64). We omit the case of βg = 1.
For the tapered G–R law,

I1 (Mt ) =
∞∫

Mt

M ′φ (M ′) dM ′

=
∞∫

Mt

M ′
[

βta

M ′ + 1

Mcta

](
Mt

M ′

)βta

e

Mt − M ′

Mcta dM ′

= Mt
βta

1 − βta
Mcta

1−βta �

(
2 − βta,

Mt

Mcta

)
e

Mt

Mcta − βta

1 − βta
Mt (βta �= 1)

(84)

We omit the case of βta = 1.
The total seismic moment release rate Ṁs (including events smaller than Mt ) is obtained from eq. (78) by having the limit of Mt approach

zero:

Ṁs = lim
Mt →0

[
ṄM (Mt ) I1 (Mt )

] = lim
Mt →0

[
α0

� (M0)
I1 (Mt )

]
. (85)
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1604 F. Hirose et al.

Thus, we can derive Ṁs under each law as follows. From eqs (20) and (80), Ṁs for the G–R law is given by

Ṁs = lim
Mt →0

[
α0

� (M0)
I1 (Mt )

]

= α0 lim
Mt →0

⎡
⎢⎢⎢⎣

∞∫
Mt

M ′−βd M ′

∞∫
M0

M ′−β−1d M ′

⎤
⎥⎥⎥⎦

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

α0 lim
Mt →0

⎡
⎢⎢⎢⎣
[

1

1 − β

(
M ′)1−β

]∞

Mt[
− 1

β

(
M ′)−β

]∞

M0

⎤
⎥⎥⎥⎦ = ∞ (β �= 1)

α0 lim
Mt →0

[
[ln M ′]∞Mt[−(M ′)−1]∞

M0

]
= ∞ (β = 1)

(86)

In the following, we show cases in which the series of β terms (βtr , βu, βg, βta) is less than 1 because Ṁs diverges when series of
β ≥ 1 for other four laws (but not for the G–R law).

From eqs (37) and (81), Ṁs for the truncated G–R law is given by

Ṁs = lim
Mt →0

[
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]
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(87)

From eqs (50) and (82), Ṁs for Utsu’s formula is given by

Ṁs = lim
Mt →0

[
α0

� (M0)
I1 (Mt )

]

= lim
Mt →0

⎡
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βu Mcu

1−βu − Mt
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log
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−

1 −
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(88)
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=
α0βu

1 − βu
M0
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(
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From eqs (62) and (83), Ṁs for the gamma distribution is given by

Ṁs = lim
Mt →0

[
α0

� (M0)
I1 (Mt )

]
= lim

Mt →0
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)

(89)

The last complicated formulation in eq. (89) is converted by using eq. (64), corresponding to eqs (7) and (10) of Kagan (2002b). (Note
that the appearance of C in eq. (10) of Kagan (2002b) is an error, being unnecessary.) The term �(1 − βg) is the gamma function, defined as

� (a) ≡
∞
∫
0

ta−1e−t dt (a > 0) . (90)

From eqs (70) and (84), Ṁs for the tapered G–R law is given by

Ṁs = lim
Mt →0

[
α0

� (M0)
I1 (Mt )

]

= lim
Mt →0

⎡
⎢⎢⎢⎣ α0

Mt
βta M0

−βta e

Mt − M0

Mcta

Mt
βta

1 − βta
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1−βta �

(
2 − βta,
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Mcta

)
e

Mt

Mcta − βta

1 − βta
Mt

⎤
⎥⎥⎥⎦

= α0

1 − βta
M0

βta Mcta
1−βta e

M0

Mcta � (2 − βta) (βta < 1)

(91)

As mentioned earlier, M0 is an arbitrary seismic moment and α0 = ṄM (M0). In this study, we adopted a completeness magnitude of m
5.8 such that M0 = Mm5.8 and ṄM (M0) = ṄM (Mm5.8).

4.7 Estimation of parameters

Section 4.6 introduced the analytical solutions of total seismic moment release rate Ṁs under each law in eqs (86)−(89) and (91), respectively.
By assuming that Ṁs and ṀT are equal, the set of Mc terms (Mctr , Mcu, Mcg, Mcta) can be represented by a corresponding set of β terms
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1606 F. Hirose et al.

Figure 2. Logarithm of the likelihood ratio (LLR) function, normalized to a maximum of 0.0, for the truncated G–R law. The values in parentheses indicate
both ends of the 95 per cent confidence level, also marked by dashed vertical lines for β tr.

(βtr , βu, βg, βta). For example, the truncated G–R law is written as

Ṁs = α0βtr

1 − βtr
M0

βtr Mctr
1−βtr

Mctr
βtr

Mctr
βtr − M0

βtr
= ṀT = χμW LVpl , (92)

where all variables except for Mctr and βtr are known. We used a grid search to estimate values of the β term that maximized the log-likelihood
ln L under each law, and then obtained the corresponding set of Mc terms simultaneously. The magnitude representations corresponding to
the Mc terms are denoted by ctr , cu, cg, and cta .

Finally, we address estimates of error. Wilks (1962) showed that the logarithm of the likelihood ratio (LLR) was distributed as half of a

chi-squared distribution with k degrees of freedom (
1

2
χ 2

k ). LLR in our case follows
1

2
χ 2

1 , because all of the laws we used, other than the G–R

law, have one degree of freedom through Ṁs = ṀT . The value of χ 2
1 is 3.84 when the upper probability becomes 5 per cent; that is, χ 2

1 values

no greater than 3.84 correspond to the 95 per cent confidence level. When the LLR (
1

2
χ 2

1 ) is normalized to a maximum of 0.0, the 95 per cent

confidence level nearly corresponds to the contour value –1.92 (half of –3.84) (cf. Kagan 1997 for two degrees of freedom). Fig. 2 shows the
LLR function normalized for applying the truncated G–R law to the 1977–2017 seismicity record.

We judged the relative quality of the resulting models by the Akaike Information Criterion or AIC (Akaike 1974):

AIC = − 2lnLmax + 2k, (93)

where lnLmax is the maximum log-likelihood and k is the degree of freedom. The AIC grows small as the quality of the model increases.

5 R E S U LT S

Fig. 3 shows the frequency–magnitude distribution and the approximate cumulative distribution under each law for the periods 1977–2010
(Period 1) and 1977–2017 (Period 3). Note that the approximate cumulative distribution under the G–R law was obtained by using the
maximum-likelihood method of eq. (15) because Ṁs diverged in eq. (86). All five laws fit the existing observations well; however, because
the Earth is not infinite, the frequency–magnitude distribution departs from the straight line of the G–R law with the accumulation of seismic
data. Although it is hard to choose from among these four curves, we can estimate the parameters of each law on the basis of seismic
moment conservation even from limited seismic data. Fig. 4 shows the moment-magnitude distribution, in which the vertical axis in Fig. 3
is replaced with the product of the number of earthquakes in each magnitude bin and moment release per year. The area enclosed by each
curve corresponds to Ṁs and is equal to ṀT . One can see that although small events greatly outnumber large events in Fig. 3, the large
events greatly outweigh the small events in Fig. 4. The difference between these theoretical curves and the observation data above m 7 should
become smaller with the accumulation of seismic data. The estimated maximum magnitude based on the 1977–2010 record (Period 1) is m
9.92 under the truncated G–R law and m 10.65 under Utsu’s formula, and the corner parameter is 10.00 under the gamma distribution and
9.65 under the tapered G–R law (Fig. 3a). The 2011 Tohoku earthquake occurred just after this period. Because its observed magnitude (m
9.2) was less than the maximum magnitudes estimated by the truncated G–R law (m 9.92) and Utsu’s formula (m 10.65), it fits within the
expected range. Table 2 lists the parameters of each law for each of the three periods we analysed.

Fig. 5 shows the maximum magnitudes (ctr , cu) estimated by the truncated G–R law and Utsu’s formula for the three time periods. As
shown in Fig. 3, Utsu’s formula deviates from the G–R law at smaller magnitude than others. Accordingly, the maximum magnitude (cu)
estimated by Utsu’s formula tends to become large in order to compensate the total seismic moment release (Fig. 4). On the other hand, for
the truncated G–R law, the seismic moment release rate suddenly falls from certain positive value into exact zero at the maximum magnitude.
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Maximum magnitude of subduction earthquakes 1607

Figure 3. Frequency–magnitude distribution for the periods (a) 1977–2010 and (b) 1977–2017. Open circles denote the number of events per magnitude bin of
0.1 width, and solid circles are the cumulative number of events. Magenta, red, blue, broken green, and broken black lines represent the approximate cumulative
event distributions under the G–R law, truncated G–R law, Utsu’s formula, gamma distribution and tapered G–R law, respectively. The five models are pretty
much indistinguishable from the actual earthquake data. Estimated parameters for these laws are listed at upper right.

Figure 4. Moment–magnitude distribution for the periods (a) 1977–2010 and (b) 1977–2017. Open circles denote the annual total moment of events per
magnitude bin of 0.1 width. Note that the 2011 Tohoku earthquake (m 9.2) plots outside this figure (an arrow at the top of the figure). Magenta, red, blue, broken
green, and broken black lines represent the approximate cumulative distribution by the G–R law, truncated G–R law, Utsu’s formula, gamma distribution and
tapered G–R law, respectively.

Therefore, the maximum magnitude estimated by the truncated G–R law may show nearly the infimum of the possible maximum magnitude.
The consistent difference of 0.7–0.8 between the results of the two laws (Fig. 5) arises from their difference in seismic moment release
curves. The estimated maximum magnitudes changed little after the 2011 Tohoku earthquake, and we cannot confirm the dependence of the
maximum magnitude on the data period, as Kagan & Jackson (2013) proposed.

Eq. (92) can be rewritten simply as follows: Ṁs ∼ α0 Mctr
1−βtr = const when Mctr � M0 and βtr ∼ 0.6. Thus, generally, the maximum

magnitude (ctr , cu) becomes smaller when seismicity rate α0 increases, and the β terms (βtr , βu) decrease as a consequence of seismic
moment conservation. Because the seismicity rate with m ≥ 5.8 is 10.7 events yr–1 (=438 events/41 yr) in Period 3 and 9.7 events yr–1 (=330
events/34 yr) in Period 1, the maximum magnitude tends to decrease, yet because the β terms in Period 3 are larger than those in Period 1,
the maximum magnitude tends to increase. The result of these counteracting effects is that the maximum magnitude is only slightly larger in
Period 3 than in Period 1.
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Table 2. Parameters estimated in this study. Values in parentheses are upper and lower limits of the 95 per cent confidence interval.

Period 1977–2010 1977–2013 1977–2017

Events 330 408 438

Seismicity rate
(events/y) 9.7 11.0 10.7

mmax obs
a 8.4 9.2 9.2

βb cc βb cc βb cc

Truncated G–R 0.611 (0.545–0.680) 9.92 (9.49–10.55) 0.630 (0.569–0.693) 9.97 (9.55–10.58) 0.641 (0.582–0.703) 10.09 (9.65–10.73)
Utsu’s equation 0.536 (0.457–0.618) 10.65 (10.11–11.44) 0.560 (0.488–0.635) 10.76 (10.22–11.53) 0.574 (0.503–0.647) 10.91 (10.34–11.71)
Gamma distribution 0.610 (0.543–0.679) 10.00 (9.56–10.64) 0.630 (0.571–0.693) 10.07 (9.64–10.68) 0.641 (0.583–0.703) 10.19 (9.74–10.83)
Tapered G–R 0.612 (0.547–0.680) 9.65 (9.20–10.30) 0.629 (0.571–0.693) 9.69 (9.26–10.33) 0.641 (0.582–0.703) 9.82 (9.36–10.48)
aMaximum observed magnitude during this time period.
bThe β terms in the truncated G–R law, Utsu’s equation, gamma distribution, and tapered G–R law are β tr, βu, βg, and β ta, respectively.
cThe c terms in the truncated G–R law, Utsu’s equation, gamma distribution, and tapered G–R law are ctr, cu, cg, and cta, respectively.

Figure 5. Maximum magnitudes estimated by the truncated G–R law (red) and Utsu’s equation (blue) for Periods 1–3. Vertical bars indicate both ends of the
95 per cent confidence level.

Figure 6. Temporal variation of c values. Red, blue, green and black symbols represent c values (ctr , cu , cg, and cta) estimated by the truncated G–R law,
Utsu’s formula, gamma distribution and tapered G–R law, respectively. Note that cg and cta are mere parameters defining a corner magnitude not the maximum
magnitude.

The estimation error of the parameters is little changed after the 2011 Tohoku earthquake (Table 2). The AIC value for Utsu’s formula
is 0.3 smaller than that of the truncated G–R law before the 2011 Tohoku earthquake, and 0.4 larger than that after the event. Although there
is little difference in the AICs, the range of the 95 per cent confidence level of the maximum magnitude for the result of the truncated G–R
law is consistently about 0.3 narrower than that for Utsu’s formula (Table 2).

Fig. 6 shows the maximum magnitudes estimated by all four laws for the three time periods. The results from the gamma distribution
(cg) are very close to those from the truncated G–R law, and those from the tapered G–R law (cta) are about 0.3 smaller.
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6 D I S C U S S I O N

As mentioned in Section 1, the parameters of the gamma distribution and tapered G–R law do not exactly prescribe the maximum magnitude,
whereas the truncated G–R law and Utsu’s formula have parameters clearly corresponding to the maximum magnitude. Accordingly, we
confine our discussion to the latter two laws, paying particular attention to parameters estimated by the truncated G–R law due to their smaller
error.

6.1 Recurrence interval

The maximum magnitude estimated by the truncated G–R law became 10.09 after the 2011 Tohoku earthquake (Fig. 5). The recurrence
interval of earthquakes with m ≥ 9.95 is about 4000 yr along the Japan-Kuril-Kamchatka trench because the expected occurrence rate is 0.01
event in the 41-yr period 1977–2017 (Fig. 3b). Although the tectonic moment accumulated over 4000 yr corresponds to an earthquake of m
10.6, we can avoid overestimating the maximum magnitude by taking into consideration the seismic moment release of smaller earthquakes,
as noted in this study.

The recurrence interval of giant earthquakes of m ≥ 9.15, similar to the 2011 Tohoku earthquake, is about 200 yr along the Japan-Kuril-
Kamchatka trench because the occurrence rate is 0.2 events in 41 yr (Fig. 3b). The Earthquake Research Committee (2011) estimated a mean
recurrence interval of 600 yr for such earthquakes because studies of tsunami deposits indicate that five great earthquakes comparable to the
2011 Tohoku earthquake, such as the 869 Jogan earthquake (Namegaya & Satake 2014), occurred in the past 2500 yr. On the other hand,
because the area off the Tohoku district (500 km × 200 km) corresponds to about one-sixth of the length of the Japan-Kuril-Kamchatka
trench, the recurrence interval off the Tohoku district would be 1200 yr if the spatial occurrence rate is constant, or twice that estimated by
the Earthquake Research Committee (2011). However, there is scant information for a 15th-century earthquake between the 869 and 2011
events. If the magnitude of the 15th-century earthquake was a little less than the Jogan and Tohoku earthquakes, for example m 8.85, the
recurrence interval estimated by seismic moment conservation would be about 600 yr, consistent with the estimate of the Earthquake Research
Committee (2011).

A great earthquake of m 8.8 occurred off Hokkaido along the Kuril trench in the 17th century (Ioki & Tanioka 2016), and tsunami
deposit studies suggest that the mean recurrence interval of events this size is about 400 yr (Earthquake Research Committee 2017). The
recurrence interval of earthquakes with m ≥ 8.75 is about 80 yr for the whole study region because the expected occurrence rate is 0.54 event
in 41 yr under the truncated G–R law. Because the area off Hokkaido (300 km × 130 km) is about 1/15 of the whole area, the recurrence
interval there would be 1200 yr if the spatial occurrence rate is constant, or three times the estimate by the Earthquake Research Committee
(2017). Reversely, the magnitude corresponding to earthquakes whose mean recurrence interval is about 400 yr is estimated 8.30 or larger,
which is a little smaller than 8.75, under the truncated G–R law. Thus, there is such a difference between our mode and the investigation of
Earthquake Research Committee (2011, 2017), which may indicate the estimation error range of our method.

Murotani et al. (2013) introduced various scaling relations from m 7–8 interplate earthquakes around Japan and other global great
earthquakes. Their scaling relationship between rupture area S (km2) and seismic moment, S = 1.34 × 10−10 M2/3, indicates that the
magnitude of an earthquake that ruptures the entire study region would be m 9.8, which is slightly smaller than our estimate. It is uncertain
whether this scaling relationship can be extrapolated to events of m 10 because Murotani et al. (2013) used only four m ≥ 9 events, the largest
of which was m 9.2. Furthermore, the scaling relationship increases maximum magnitudes without limit as the rupture area increases, whereas
our method does not always result in large magnitudes. The maximum magnitude from Utsu’s formula may be an overestimate because it
departs steeply from the scaling relationship of Murotani et al. (2013).

6.2 Error estimates

In this section, we discuss error estimates. The long-term seismic moment rate Ṁs depends on the seismicity rate α0, the β value, the shape
and temporal stability of the frequency–magnitude distribution and the magnitude uncertainty of the earthquakes in the catalogue, etc. On
the other hand, the tectonic moment rate ṀT depends on downdip width, the coupling coefficient, the 3-D geometry of the subduction zone,
the rigidity, the temporal stability of plate convergence rate, etc. All of these are subject to estimation errors and contribute the uncertainty
of the maximum magnitude. Here, we discuss about the major error factors among those such as: the interplate coupling rate χ , the plate
convergence rate Vpl, the seismicity rate α0, the β value and the width of the seismogenic zone W.

Our results discussed so far have been based on a single interplate coupling rate (χ = 70 per cent). However, χ is highly arbitrary
because the observation periods available to estimate it are insufficient. Therefore, we investigated this issue by making calculations with χ

values ranging from 10 to 100 per cent at intervals of 10 per cent. Fig. 7 shows that the maximum magnitude increases monotonically with
χ , and the maximum magnitude estimated by the truncated G–R law is consistently 0.7–0.9 smaller than that estimated by Utsu’s formula.
Because the truncated G–R law estimates a maximum magnitude smaller than the largest observed event (m 9.2, the 2011 Tohoku earthquake)
for χ values of 10 and 20 per cent, the actual value of χ is probably >30 per cent under the truncated G–R law. This inference may help to
constrain χ . In addition, the maximum magnitude under the truncated G–R law is 10.38, even at χ = 100 per cent.
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1610 F. Hirose et al.

Figure 7. Maximum magnitude for different interplate coupling rates under the truncated G–R law (red) and Utsu’s equation (blue) for the period 1977–2017.

We adopted the MORVEL model (DeMets et al. 2010) as a source of plate convergence rate Vpl, but other models could be proposed. For
example, in the REVEL model (Shella et al. 2002), Vpl off the Tohoku district is 7.22–7.42 cm yr–1, or 80 per cent of its value in MORVEL
(9.20–9.32 cm yr–1). Accordingly, ṀT and the estimated maximum magnitude would also decrease.

As mentioned in Section 5, the maximum magnitude is inversely correlated to seismicity rate. Although the seismicity rate of m ≥ 5.8
earthquakes has a range of 9.7–11.0 events yr–1 during Periods 1–3, it may depart from that range over longer periods. For example, if βtr is
set at its value in Period 3 and α0 ranges from 5 to 15, the maximum magnitude has a range of 10.70–9.82 from eq. (92) corresponding to α0.
Similarly, the maximum magnitude is correlated to βtr . Although βtr has a range of 0.611–0.641 in Periods 1–3, it may depart from that range
over longer periods. For example, if α0 is set at its value in Period 3 and βtr ranges from 0.5 to 0.7, the maximum magnitude has a range of
9.20–10.69.

Kagan & Jackson (2013) applied the gamma distribution to the seismic record before the 2011 Tohoku earthquake and estimated the
maximum magnitude (strictly speaking cg) off the Tohoku district to be 9.26 ± 0.29. They assumed a seismogenic zone with a width W of
104 km and a dip angle of 14◦ between 14 and 40 km depth. However, many studies have reported that the rupture extended as far as the
trench axis (Sakaguchi et al. 2011; Sun et al. 2017). In addition, as mentioned in Section 3, the lower limit of the interplate seismogenic zone
was at 50–60 km depth (e.g. Kita et al. 2010). From these considerations, W = 104 km must be an underestimate because the width of the
seismogenic zone off the Tohoku district is instead 249 km. We can recalculate cg by adopting the parameters of Kagan & Jackson (2013)
(χ = 50 per cent, = 49 GPa, L = 620 km), adding Vpl = 11.15 cm yr−1 (derived by inversion from ṀT = 1.76 × 1020 Nm yr–1 in Zone
number 12a in Kagan and Jackson’s Table 1, although this value is overestimated), and adopting a value of 249 km for W. For Period 1 off
the Tohoku district, cg then becomes 9.92 and the range of 95 per cent confidence becomes 9.19–11.43.

As this exercise shows, the maximum magnitude depends not only on the model selected, but also on the parameters (χ, μ, W, L and Vpl )
that constitute the tectonic moment. It is essential to accumulate more seismic data and also make more precise estimates of tectonic moment
to improve our estimates of maximum magnitude.

7 S U M M A RY

We estimated the maximum magnitude of events that can be expected to occur in the subduction zone along the Japan-Kuril-Kamchatka
trench on the basis of the seismic moment conservation principle. We applied the truncated G–R law and Utsu’s formula, which contain a
parameter clearly corresponding to the maximum magnitude, to an earthquake dataset that covers a longer period than previous studies and
includes the 2011 Tohoku earthquake.

The estimated maximum magnitude was ∼10 under the truncated G–R law and ∼11 under Utsu’s formula. The estimated maximum
magnitudes increased only slightly when based on the longer data period. The maximum magnitude was about one unit greater under Utsu’s
formula than under the truncated G–R law because the seismic moment release in Utsu’s formula is smaller than that of the truncated G–R
law around m 9.

Although the performances of these two models were little different in terms of AIC, the size of the 95 per cent confidence level was
consistently smaller for the truncated G–R law than for Utsu’s formula. The maximum magnitude under Utsu’s formula may be overestimated
because it departs from the scaling relationship of Murotani et al. (2013).

The estimated recurrence interval for events greater than m 9.95 is about 4000 yr under the truncated G–R law. The recurrence interval
of m ≥ 9.15 earthquakes, the size of the 2011 Tohoku earthquake, off the Tohoku district is estimated to be 1200 yr, or twice the length
estimated from tsunami deposits. However, if the magnitude of the 15th-century earthquake is no more than one unit smaller than the 869
Jogan and 2011 Tohoku earthquakes (for example m 8.85), the recurrence interval from the truncated G–R law becomes consistent with the
recurrence interval estimated from tsunami deposits at about 600 yr. The recurrence interval of m ≥ 8.75 earthquakes off Hokkaido along
the Kuril trench is estimated to be 1200 yr, or three times the recurrence interval estimated from tsunami deposits. The recurrence interval of
m ≥ 8.30 events becomes 400 yr under the truncated G–R law.
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Under the scaling relationship, the maximum magnitude increases without limit as the size of the convergent margin generating interplate
earthquakes grows. But our method does not always result in large magnitudes considering the moment release of smaller earthquakes. The
maximum magnitude for the Japan-Kuril-Kamchatka trench is no greater than 10.38, even for the unrealistic case of a 100 per cent interplate
coupling rate.

The maximum magnitude for a given seismogenic region depends on the parameters that constitute tectonic moment as well as the
model used to estimate it. To improve estimates of the maximum magnitude, it is essential to both accumulate seismic data and achieve more
precise estimates of tectonic moment.
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