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The frequency-magnitude distribution expressed by the Gutenberg-Richter (G-R) law is the basis of a sim-
ple method to forecast earthquakes. The frequency-magnitude distribution is sometimes approximated by the
modified G-R law, which imposes a maximum magnitude. In this study we tested three earthquake forecast mod-
els: Cbv (the Constant b-value model) based on only the G-R law with a spatially constant b-value, Vbv (the
Variable b-value model) based on only the G-R law with regionally variable b-values, and MGR (the Modified
G-R model) based on the modified G-R or G-R law (chosen according to Akaike Information Criterion) with
regionally variable b-values. We also incorporated aftershock decay and minimum limits of expected seismicity
in these models. Comparing the results of retrospective forecasts by the three models, we found that MGR was
almost always better than Vbv; Cbv was better than Vbv for short-term (one year) forecasts; little difference
between MGR and Cbv for short-term forecasts; and MGR and Vbv tended to be better than Cbv for long-term
(three years or longer) forecasts. We propose the use of MGR in the earthquake forecast testing experiment by
the Collaboratory for the Study of Earthquake Predictability for Japan.
Key words: Earthquake forecast, G-R law, modified G-R law, b-value, modified Omori formula, minimum limit
of expected seismicity, retrospective forecasts, CSEP for Japan.

1. Introduction
An earthquake forecast testing experiment was started by

the Collaboratory for the Study of Earthquake Predictabil-
ity (CSEP) for Japan on November 1, 2009 (Nanjo et al.,
2009). The main purposes of the experiment are to elicit
the submission of statistical and physics-based models, to
evaluate the performance of these earthquake forecast mod-
els, and to better understand the physics and statistics of
earthquake occurrence. The target of the forecasts is to pre-
dict a seismicity rate (number of earthquakes in a predefined
time window) for each magnitude bin at each predefined
grid node within a predefined testing region.

The Gutenberg-Richter (G-R) law (Gutenberg and
Richter, 1944) is the basis of a simple method to pre-
dict earthquakes (e.g., Earthquake Research Committee,
2006; Wiemer and Schorlemmer, 2007). The Earthquake
Research Committee (2006), for example, estimated na-
tionwide occurrence probabilities for earthquakes in Japan
whose location cannot be predefined. They used the G-R
law with a spatiotemporally constant b-value, which we
call the Cbv (constant b-value) model here. However, be-
cause the b-value varies spatially (e.g., Wiemer and Wyss,
1997; Hirose et al., 2002a, b; Schorlemmer et al., 2005),
we made an earthquake forecast model using b-values es-
timated for each region to capture the regionality of seis-
micity, which we call the Vbv (variable b-value) model.
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The frequency-magnitude distribution is also sometimes ap-
proximated by the modified G-R law of Utsu (1974), which
imposes a maximum magnitude and assumes that no earth-
quakes larger than that magnitude occur. Accordingly, we
also made a model that uses the modified G-R law for re-
gions where it fits the data better than the original G-R law,
which we call the MGR (modified G-R) model.

This paper reports the results of comparison of retrospec-
tive forecasts made using the MGR, Vbv, and Cbv models.

2. The G-R and Modified G-R Laws for
Frequency-Magnitude Distributions

2.1 The G-R law
The general property of the size distribution of earth-

quakes, that large earthquakes occur in small numbers and
small earthquakes occur in large numbers, is well known.
When the number of earthquakes with magnitudes from M
to M + d M in a given region and a given period is defined
as n(M)d M , their size distribution is approximated by the
G-R law (Gutenberg and Richter, 1944) given by

log n(M) = a − bM, (1)

where a and b are constants. Furthermore, cumulative
frequency-magnitude distribution is given by

log N (M) = A − bM, (1-2)

where N (M) is the number of earthquakes with greater
or equal to M , and A is a constant expressed as A =
a − log(b ln 10). The b-value, which indicates the slope of
the linear curve in the frequency-magnitude distribution, is
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an especially important parameter. Many researchers report
that b-value varies spatiotemporally (e.g., Suyehiro, 1966;
Anderson et al., 1980; Wyss, 1990; Wiemer and Benoit,
1996; Wiemer and McNutt, 1997; Wiemer and Wyss, 1997;
Murru et al., 1999; Öncel and Wyss, 2000; Wyss et al.,
2000; Gerstenberger et al., 2001; Hirose et al., 2002a, b;
Schorlemmer et al., 2005), and the results of laboratory ex-
periments by Scholz (1968) are often quoted to explain the
spatiotemporal variation of b-values. Scholz (1968) con-
ducted a rock fracturing experiment and showed that b-
values decrease with an increase of the shear stress acting
on a medium. Schorlemmer et al. (2005) also suggested the
dependency of b-values on stress by showing the relation-
ship of b-values and the type of focal mechanisms. All of
these results support the spatial variation of b-values.
2.2 The modified G-R law

It is commonly found that a frequency-magnitude distri-
bution is a convex-upward curve rather than a straight line
(e.g., Utsu, 1974) and departs from the G-R law. That is,
the number of larger or smaller earthquakes is fewer than
expected from the G-R law. This sometimes happens when
the catalog is incomplete because of magnitude saturation
for large earthquakes or nondetection of small earthquakes.

However, a frequency-magnitude distribution can depart
greatly from the G-R law even if the catalog is perfect
(e.g., Utsu, 1974; Umino and Sacks, 1993). Umino and
Sacks (1993) researched frequency-magnitude distributions
of earthquakes in the crust and in the upper plane of the
double seismic zone in the Pacific slab beneath northeast
Japan, using the Tohoku University and JMA catalogs with
aftershocks removed. They found that both frequency-
magnitude distributions departed from the G-R law, to a
slight degree for earthquakes in the crust and to a greater
degree for those in the slab. They confirmed that the cata-
logs were complete for M ≥ 2.0 in the crust and M ≥ 2.1
in the upper plane in the slab by the method of Rydelek
and Sacks (1989). Furthermore, they found no difference
between frequency-magnitude distributions based on seis-
mic wave duration magnitudes and amplitude magnitudes.
Therefore, they suggested that this result is robust.

Utsu (1974) proposed a modification of the magnitude
distribution, employing an upper limit to model convex-
upward curves:

log n(M) = a − bM + log(c − M) (M < c), (2-1)

n(M) = 0 (M ≥ c), (2-2)

where a, b, and c are constants, and c represents an upper
magnitude limit. This frequency-magnitude distribution ap-
proaches zero asymptotically as M approaches c. Constants
a and b in Eq. (2-1) cannot be treated as equivalents of
those in Eq. (1), although Eq. (2-1) adds only the logarith-
mic function of c−M to Eq. (1). The b-value of the G-R law
indicates the inclination of the frequency-magnitude distri-
bution whereas the inclination in Utsu’s modified G-R law
is the function of b, c, and M . The a-value of the G-R law
indicates the number of earthquakes of M = 0, but this is
not necessarily true in the modified G-R law. To avoid con-
fusion, in this paper we rewrite a, b, and c in Eqs. (2) as am ,

bm , and cm , respectively:

log n(M) = am − bm M + log(cm − M) (M < cm), (3-1)

n(M) = 0 (M ≥ cm). (3-2)

Furthermore, cumulative frequency-magnitude distribution
is given by

log N (M)=am −log B+log

{(
cm −M− 1

B

)
e−B M

+ 1

B
e−Bcm

}
(M < cm), (3-3)

N (M) = 0 (M ≥ cm), (3-4)

where B = bm ln 10. (3-5)

It is obvious from Eqs. (3-2) and (3-4) that earthquakes
with M ≥ cm are not expected to occur by definition in
the modified G-R law. However, there is a possibility that
earthquakes with M ≥ cm might occur in the real activity
during the predicting period, especially when the modeling
period is not long enough to include a large earthquake or
the predicting period is very long. Therefore, we introduced
a minimum limit of seismicity rate to cover the disadvan-
tage of using the modified G-R law, which is discussed in
Section 4.2.
2.3 Parameter estimation

We applied the maximum likelihood estimation method
(Aki, 1965; Utsu, 1974) to estimate the b-value of the G-R
law and the bm- and cm-values of the modified G-R law.
However, as the parameters of the modified G-R law, unlike
the G-R law, cannot be obtained analytically, we estimated
them numerically using the Newton method (Mabuchi et
al., 2002). The MGR model compares values of the Akaike
Information Criterion or AIC (Akaike, 1974) calculated
by applying the G-R and modified G-R laws to observed
frequency-magnitude distributions for each region, adopt-
ing the law that yields the smaller AIC for each region, un-
less the difference in AIC was less than 1, in which case we
used the G-R law (see Section 4.1).

3. Data and Target Earthquakes
We used the Japan Meteorological Agency (JMA) unified

hypocenter catalog and selected inland earthquakes with
depths of 30 km or less, then divided this data base into
two groups, of which one was used for modeling and the
other for testing.

As for data for modeling, in consideration of the de-
tectability of earthquakes at different times in the past (K.
Z. Nanjo, private communication), we selected earthquakes
of M ≥ 5.0, M ≥ 4.0, M ≥ 3.0, and M ≥ 2.0 for the pe-
riods 1965–2007, 1980–2007, 1990–2007, and 2000–2007,
respectively. To investigate the stability of the models, we
prepared virtual catalogs of eight different time spans, ex-
trapolating the number of events in each magnitude bin
from the shorter record periods. The virtual catalogs cover
periods of 36, 37, ..., 43 years, corresponding to 1965–2000,
1965–2001, ..., 1965–2007, respectively. For the 43-year
catalog (1965–2007), for example, the numbers of earth-
quakes with M ≥ 5.0, M ≥ 4.0, M ≥ 3.0, and M ≥ 2.0
were multiplied by 43/43 (= 1), 43/28, 43/18, and 43/8,
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Fig. 1. Frequency-magnitude distribution of data used to make models. Crosses denote the number of events per magnitude bin. Data periods vary
depending on magnitude ranges: 1965–2007 for M ≥ 5.0, 1980–2007 for M ≥ 4.0, 1990–2007 for M ≥ 3.0, and 2000–2007 for M ≥ 2.0. Open
circles denote the number of events in each magnitude bin after adjustment based on the length of data periods. Solid circles are cumulative number
of events shown by open circles. Solid line represents the approximate cumulative distribution by the G-R law with A = 6.81, b = 0.87.

respectively, according to the number of years in their re-
spective periods (43, 28, 18, and 8 years) of record (Fig. 1).

As for data for testing, we defined target earthquakes as
those that were with depth ≤ 30 km and 5.0 ≤ M ≤ 9.0
occurring during the testing period just after the modeling
period. Testing period lengths were set at one, three, five,
and seven years.

4. Construction of the Modified G-R Earthquake
Forecast Model

4.1 Procedure for calculating model parameters
Step 1. We set 5483 grids with a spacing of 0.1◦ in latitude

and longitude over Japan and selected earthquakes oc-
curring within a region with a radius of 20 km from
each grid (Fig. 2). A circular area with a radius of
20 km is almost equal to the area of the source region
S (km2) of an M 7.0 event given by an empirical rela-
tion log S = 1.02M − 4.0 (Utsu and Seki, 1955).

Step 2. We treated the “threshold magnitude” Mth in each
region to be the magnitude bin that includes the largest
number of events (Fig. 3). Note that because the JMA
catalog rounds off magnitudes to the nearest tenth,
M 2.1, for example, means the bin 2.05 ≤ M < 2.15,
and Mth is not 2.1 but 2.05.

Step 3. We derived parameters for both the G-R and mod-
ified G-R law from the frequency-magnitude distribu-

tion in regions where the number of earthquakes in the
virtual catalog with M ≥ Mth was at least 200. In
regions with fewer than 200 such events, the b-value
was assumed to be the mean b-value estimated by the
G-R law for all earthquakes in the study region, ex-
cluding the area around Miyake Island (enclosed area
in Fig. 2(a)) because events in that region were tecton-
ically different, as discussed in Section 7.6.

Step 4. We compared AIC values for the G-R and modi-
fied G-R laws for the frequency-magnitude distribu-
tion in each region and selected the law that yielded
the smaller value. If the difference between the AIC
values was less than 1, we selected the G-R law to re-
duce the risk of underestimating the probability (dis-
cussed further in Section 7.3). When calculating AIC
values, we imposed conditions of one free parameter
for the G-R law and two free parameters for the mod-
ified G-R law, because a- and am-values are treated as
fixed values determined by the total number of earth-
quakes with M ≥ Mth.

Step 5. To estimate the expected rate of earthquakes with
M ≥ Mth in the testing period, we used the data from
the final year in the modeling periods and estimated
the a-value for the G-R law and am-value for the mod-
ified G-R law by taking the testing period length into
account (Fig. 4(a)). When a large earthquake closely
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Fig. 2. (a) Calculation grids that covers Japan with spacing of 0.1◦. Circle and shaded rectangle in inset map A indicate examples of a region for
calculating model parameters and a forecast area, respectively. Shaded area near Miyake Island (labeled in Fig. 2(c)) in inset map B indicates the
region excluded from the estimate of the nationwide mean b-value for tectonic reasons. (b) Epicenters of earthquakes used to make models. (c)
Epicenters of target earthquakes with M ≥ 5.0. Different symbols correspond to different periods. Prefecture abbreviations: Iw, Iwate; Mi, Miyagi;
Ni, Niigata; To, Tochigi; Gu, Gunma; Na, Nagano; Gi, Gifu; Tt, Tottori. White arrows indicate relative movements of the oceanic plates against the
land plate.
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Fig. 2. (continued).

2007.12 2007.12 2007.12 2007.12

1

10

100

1000

10000

N
um

be
r

or
cu

m
ul

at
iv

e
nu

m
be

r
of

ea
rt

hq
ua

ke
s

2 3 4 5 6

Magnitude

Mth

A=4.60
b=0.99

AIC=133.30

am=3.89
bm=0.68
cm=4.48

AIC=131.37

Fig. 3. Frequency-magnitude distribution within a radius of 20 km from the grid cell at lat 34.4◦N, long 136.1◦E. Data and symbols are the same as in
Fig. 1. Distributions are approximated by two theoretical curves, the original G-R law (solid line) and the modified G-R law (dashed line). Estimated
a- and b-values and AIC for the original G-R law and am -, bm -, and cm -values and AIC for the modified G-R law are shown on the right side.
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Fig. 4. Plot of magnitude and cumulative numbers of events versus time within a radius of 20 km from the grids at (a) lat 36.7◦N, long 139.4◦E and
(b) lat 37.3◦N, long 138.9◦E. Lines L and S denote long-term and short-term seismicity rates, respectively. Red curve in (b) denotes aftershocks
calculated by the modified Omori formula with parameters Ka = 458.37, ca = 0.26, and p = 1.07. These parameters are obtained for the period
from the mainshock to the end of 2004.

preceded the testing period (earthquakes with M ≥ 5.0
within one year or M ≥ 7.0 within five years), we fore-
casted the expected seismicity by applying the modi-
fied Omori formula (Utsu, 1957) to the modeling data
(Fig. 4(b)). When more than one such large earthquake
occurred in a region, the largest (and the last if there
are multiple largest events) one was assumed to be the
mainshock. There were also cases in which a region
included aftershocks but not a mainshock. However, if
the maximum earthquake extracted in each region sat-
isfied the above magnitude and period condition, after-
shock activity was estimated the same way even if the
maximum earthquake was not a true mainshock.

Step 6. Finally, we used the obtained parameters to esti-
mate the seismicity rate for a range of M(5.0 ≤ M ≤
9.0) in the testing periods. The forecast area corre-

sponding to each grid cell was defined as an outline of
0.1◦ × 0.1◦ in latitude and longitude centered at each
grid (inset map A in Fig. 2(a)). As a region for calcu-
lating model parameters was circular while a forecast
area was rectangular, the expected seismicity rate for a
forecast area was corrected by taking into account the
ratio of a rectangular area to circular one. The loca-
tions of target earthquakes were represented by epicen-
ters without considering the size of their source area.

4.2 Minimum limit of seismicity rate
When no earthquake with M ≥ Mth occurred in the mod-

eling data in a region, the expected seismicity rate of target
earthquakes could not be obtained because the a-value in
the G-R law and am-value in the modified G-R law could
not be estimated. To estimate such low seismicity rates in
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Fig. 5. Distributions of expected numbers of earthquakes with 5.0 ≤ M ≤ 9.0 predicted by the MGR model for (a) 2001, (b) 2002, (c) 2003, (d) 2004,
(e) 2005, (f) 2006, (g) 2007, and (h) 2008 using data from 1965 to the year before each forecast period. Symbols for each figure are the same as in
Fig. 2(c).

some regions, we adopted the following assumption. The
Earthquake Research Committee (2006) proposed that the
average displacement rate for active faults of grade C, the
lowest class of activity, is 0.024 mm/y. We assumed that the
average displacement rate is 1/10 of this rate, 0.0024 mm/y,
in grid cells where seismicity is too low to be estimated
from seismicity data. Matsuda (1975) derived an empirical
relation of displacement D (m) and M given by log D =
0.6M−4.0, and by extrapolation, displacement D for M 5.0
is 0.1 m. Thus, an earthquake of M 5.0 would occur once in
about 42,000 years (2.4 × 10−5/y) for an average displace-
ment rate of 0.0024 mm/y. Then we estimated minimum
limits of seismicity rate for each M bin between 5.0 and 9.0
from the G-R law and the b-value for each grid cell.

Note that we assumed that the minimum limit of seismic-

ity rate mentioned above is applicable to earthquakes with
M ≥ cm , and we estimated the minimum rate for each M
bin from the G-R law with the mean b-value.

5. Statistical Evaluation of Earthquake Forecast
Models

We evaluated the proposed earthquake forecast models
statistically by using a log-likelihood test and an N -test
(Kagan and Jackson, 1995; Schorlemmer et al., 2007).
5.1 Log-likelihood evaluation

We evaluated the models by comparing the log-
likelihood of the models for the observed target earthquake
distribution. We divided the target area and the earth-
quake magnitudes into a three-dimensional grid of K cells
in which the third dimension is magnitude. When earth-
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Fig. 5. (continued).

quakes occur independently in each cell, the probability Pi j

that an earthquake, whose average occurrence rate (Poisson
rate) is λ in the cell, occurs just k times is expressed by the
Poisson process in the form

Pi j = e−λi j λ
ki j

i j

ki j !
, (4)

where the subscript i indicates grid number (1 to 5483)
and j indicates the index of the target magnitude (1 to
41, corresponding to steps of 0.1 magnitude from M 5.0
to M 9.0), for a total number of cells K = 5483 × 41 =
224,803. The log-likelihood (ln L) for all cells is obtained
by

ln L =
5483∑
i=1

41∑
j=1

ln Pi j . (5)

As Pi j is not larger than 1, the closer to zero that ln L
approaches, the more accurate the model becomes.
5.2 N-test

The N -test is a statistical method to check the con-
sistency in occurrence numbers between observed earth-
quakes and predicted ones (Kagan and Jackson, 1995;
Schorlemmer et al., 2007). Assuming the Poisson rate (av-
erage seismicity rate) for the J th cell in the forecast period
to be λJ (where J = 1, 2, ..., K ), the expected number of
earthquakes in the cell, E[n J ], is given by

E[n J ] = λJ . (6)

Thus the total expected number in all cells, E[n], is given
by summation of the Poisson rate in each cell:

E[n] =
K∑

J=1

λJ . (7)
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Fig. 6. Forecast for 2008 by the MGR model using data from 1965 through 2007. Distributions of expected numbers of earthquakes with 5.0 ≤ M ≤ 9.0
for regions estimated by (a) the G-R law with variable b-values in each region, (b) the modified G-R law, and (c) the G-R law with a constant mean
b-value. (d) Distributions of cm values. Circles in (a) and (b) denote target earthquakes that occurred in the corresponding regions.

As the total expected number follows the Poisson distri-
bution with the Poisson rate E[n], the confidence interval
corresponding to an arbitrary significance level can be es-
timated easily. We used a significance level of 95% in this
study. It should be noted that the N -test does not evaluate
the spatial distribution of the number yielded by a model.
For example, when a model forecasts five earthquakes in
western Japan and none in eastern Japan, and five actual
earthquakes occurred only in eastern Japan, the N -test does
not reject the model. Therefore, we used the N -test results
only for reference in this study.

6. Results
6.1 MGR model

Figure 5 shows the expected number of earthquakes with
5.0 ≤ M ≤ 9.0 for each year forecasted by the MGR model
on the basis of the catalog from 1965 to the end of the
previous year. The results for 2008 (based on the 1965–
2007 catalog), for example, are separated into three regions
in Fig. 6 according to the G-R law that was applied: the
G-R law with variable b, the modified G-R law, and the
G-R law with constant mean b. Table 1 lists the number
of grid cells for each G-R law and the results of the log-
likelihood and N -tests. For forecast year 2008, for example
(Fig. 5(h) and Fig. 6), the G-R and modified G-R laws could
be distinguished and applied in 2038 of the 5483 grid cells
because the number of earthquakes in these cells was at
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Table 1. Retrospective forecasts by the MGR, Vbv, and Cbv models using a radius of 20 km. In the column “Number of grid cells,” 1, 2, and 3 indicate
regions where the G-R law with variable b-values, the modified G-R law, and the G-R law with constant b-value are applied, respectively. Underlined
numbers in the “log likelihood” column indicate the best log likelihood among the three models in each forecast period. In the “N -test” column, E[n]
and N indicate the expected and actual numbers of target earthquakes in the forecast periods, respectively; entries marked with an “x” are rejected
models with 95% significance level.

MGR Vbv Cbv

(Data period) Number of Log N -test Number of Log N -test Number of Log N -test Mean

Forecast period grid cells likelihood E[n] N grid cells likelihood E[n] N grid cells likelihood E[n] N b-value

(1965.1–2000.12) All: 5483 −44.0 5.00 4 All: 5483 −44.9 5.91 4 All: 5483 −42.3 7.45 4 0.94

2001.1–2001.12 1: 1088 −31.2 2.62 3 1: 1301 −33.1 4.53 3 1: — — — —

2: 213 −1.0 0.99 0 2: — — — — 2: — — — —

3: 4182 −11.8 1.38 1 3: 4182 −11.8 1.38 1 3: 5483 −42.3 7.45 4

(1965.1–2001.12) All: 5483 −16.1 4.39 1 All: 5483 −17.0 5.36 1 All: 5483 −13.7 4.12 1 0.92

2002.1–2002.12 1: 1199 −14.0 2.29 1 1: 1495 −15.8 4.13 1 1: — — — —

2: 296 −0.9 0.88 0 2: — — — — 2: — — — —

3: 3988 −1.2 1.23 0 3: 3988 −1.2 1.23 0 3: 5483 −13.7 4.12 1

(1965.1–2002.12) All: 5483 −63.4 4.59 6 All: 5483 −64.6 5.72 6 All: 5483 −54.5 4.22 6 0.89

2003.1–2003.12 1: 1246 −44.0 2.27 4 1: 1568 −46.2 4.41 4 1: — — — —

2: 322 −1.0 1.01 0 2: — — — — 2: — — — —

3: 3915 −18.4 1.31 2 3: 3915 −18.4 1.31 2 3: 5483 −54.5 4.22 6

(1965.1–2003.12) All: 5483 −273.0 5.62× 28 All: 5483 −274.4 7.10× 28 All: 5483 −278.9 5.13× 28 0.88

2004.1–2004.12 1: 1371 −186.6 2.70× 20 1: 1715 −189.6 5.73× 20 1: — — — —

2: 344 −1.5 1.55 0 2: — — — — 2: — — — —

3: 3768 −84.8 1.38× 8 3: 3768 −84.8 1.38× 8 3: 5483 −278.9 5.13× 28

(1965.1–2004.12) All: 5483 −77.9 5.27 8 All: 5483 −78.7 6.51 8 All: 5483 −79.0 5.89 8 0.88

2005.1–2005.12 1: 1470 −2.7 2.66 0 1: 1844 −16.2 5.37 2 1: — — — —

2: 374 −12.7 1.46 2 2: — — — — 2: — — — —

3: 3639 −62.5 1.15× 6 3: 3639 −62.5 1.15× 6 3: 5483 −79.0 5.89 8

(1965.1–2005.12) All: 5483 −24.3 4.46 2 All: 5483 −25.0 5.51 2 All: 5483 −24.4 4.76 2 0.88

2006.1–2006.12 1: 1527 −9.9 2.35 1 1: 1925 −23.9 4.41 2 1: — — — —

2: 398 −13.3 1.01 1 2: — — — — 2: — — — —

3: 3558 −1.1 1.10 0 3: 3558 −1.1 1.10 0 3: 5483 −24.4 4.76 2

(1965.1–2006.12) All: 5483 −97.4 4.31 8 All: 5483 −96.1 5.43 8 All: 5483 −91.9 4.25 8 0.87

2007.1–2007.12 1: 1544 −27.9 2.21 2 1: 1950 −38.7 4.42 3 1: — — — —

2: 406 −12.1 1.09 1 2: — — — — 2: — — — —

3: 3533 −57.4 1.02× 5 3: 3533 −57.4 1.02× 5 3: 5483 −91.9 4.25 8

(1965.1–2007.12) All: 5483 −41.9 5.37 4 All: 5483 −42.5 6.48 4 All: 5483 −46.3 5.58 4 0.87

2008.1–2008.12 1: 1653 −31.7 3.15 3 1: 2038 −41.5 5.46 4 1: — — — —

2: 385 −9.2 1.21 1 2: — — — — 2: — — — —

3: 3445 −1.0 1.02 0 3: 3445 −1.0 1.02 0 3: 5483 −46.3 5.58 4

Total −637.9 −643.2 −631.1

least 200 (step 3 in Section 4.1). The frequency-magnitude
distribution followed the G-R law in 1653 of these cells and
the modified G-R law in the other 385 cells through step 4 in
Section 4.1. The number of target earthquakes expected by
the MGR model was large in Niigata prefecture, Nagano-
Gifu prefecture, eastern Izu peninsula, Kinki district, and
central Kyushu district (Fig. 5(h) and Fig. 6(a) and 6(b); see
Fig. 2(c) for place names) because the seismicity rate is high
or the b-value is small in these regions. Similar features are
seen for the other forecast years (Fig. 5).

Four earthquakes with M ≥ 5.0 occurred in 2008: the
mainshock (M 7.2) called the Iwate-Miyagi Nairiku earth-
quake and three of its aftershocks (M 5.7, M 5.3, M 5.2).
Frequency-magnitude distributions in the grid cells where
the M 7.2, M 5.3, and M 5.2 events occurred followed the
G-R law and yielded b-values of 0.81, 0.63, and 0.87, re-
spectively, which are smaller than or equal to the nation-
wide mean b-value of 0.87. For the grid cell of the M 5.7

event, the frequency-magnitude distribution followed the
modified G-R law, and cm was estimated at 6.3. The ex-
pected seismicity rates for that year were 0.4594 × 10−5,
0.3518 × 10−3, 0.5159 × 10−3, and 0.1707 × 10−3 for the
cells of the M 7.2, M 5.7, M 5.3, and M 5.2 events, respec-
tively. Figure 6(d) shows the distribution of cm in 385 cells.
The estimated upper limits of cm were lower in southern
Hokkaido, southern Kinki district, and southern Kyushu
district than in other regions. Regions where cm was rel-
atively high correspond to places where large earthquakes
occurred during the modeling periods.
6.2 MGR model vs. Vbv model

Table 1 shows that the MGR model was generally su-
perior to the Vbv model because the log-likelihood for the
MGR model, which combines the G-R and modified G-R
laws, was greater than that for the Vbv model, which uses
only the G-R law and assumes the b-value will vary re-
gionally. The difference between these models is in the
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Fig. 7. Comparison of forecasts for 2002 by the MGR and Vbv models using data from 1965 through 2001. Expected numbers of earthquakes with
5.0 ≤ M ≤ 9.0 estimated by (a) the modified G-R law in the MGR model and (b) the Vbv model in the same regions as (a). (c) The difference
between (a) and (b). (d) Distribution of cm values.

use of the modified G-R law. The numbers of earthquakes
expected by the MGR model in cells where the modified
G-R law is applied are lower than those expected by the
Vbv model (Fig. 7). Note that no target earthquakes with
5.0 ≤ M ≤ 9.0 occurred in those cells. As the ex-
pected seismicity rate for earthquakes larger than cm was
constrained to a minimum limit by the modified G-R law,
the MGR model was superior to the Vbv model when target
earthquakes did not occur in the grid cell.

There was one exceptional case in 2007 in which the Vbv
model was superior to the MGR model for target earth-
quakes. An earthquake with M 5.2 occurred beneath the
Boso Peninsula on August 18, 2007, where the modified
G-R law was used in accordance with step 4 in Section 4.1.
The estimated value of the upper magnitude limit cm was

4.6, thus the occurrence of the M 5.2 earthquake made the
MGR model perform worse than the Vbv model.
6.3 Vbv model vs. Cbv model

Comparing the log-likelihoods of the Vbv model, which
used variable b-values in each region, and the Cbv model,
which used a constant mean b-value for the whole study
area, we found that the Cbv model was better than the Vbv
model in five cases out of eight (Table 1). Although we
expected the use of regional b-values to favor the Vbv over
the Cbv model, the results did not show a clear tendency.
Figure 8 shows an example of the forecasts for 2002 by the
Vbv and Cbv models using data from 1965 through 2001.
As seen in Table 1, the Cbv model was better than the Vbv
model for 2002, mainly because an earthquake occurred in
western Tottori prefecture where the expected number of
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Fig. 8. Comparison of forecasts for 2002 by the Vbv and Cbv models using data from 1965 through 2001. Expected numbers of earthquakes with
5.0 ≤ M ≤ 9.0 estimated by (a) the G-R law with variable b-values in each region and (b) the Cbv model in the same regions as (a). (c) The
difference between (a) and (b). (d) The difference of b-values between the Vbv and Cbv models. The triangle in (c) denotes a target earthquake that
occurred in the region where the variable b-value is estimated.

events was relatively small (Fig. 8(c)) a result of the high
b-value in that region (Fig. 8(d)).

The Vbv model was superior to the Cbv model for 2008
(Fig. 9). The expected number distribution in Fig. 9 is sim-
ilar to that in Fig. 8. The Iwate-Miyagi Nairiku earthquake
occurred in the forecast period. The Vbv model was better
than the Cbv model because the number of earthquakes ex-
pected by the Vbv model was larger in the region where the
M 5.7 aftershock occurred, because the estimated regional
b-value was 0.50, which is smaller than the mean b-value
(0.87), although the difference of expected numbers in the
grid cell in the two models was very small (0.01/year).

6.4 MGR model vs. Cbv model
The log-likelihoods in Table 1 show that the MGR model

was better than the Cbv model in four of the eight cases,
which means there is little difference between the perfor-
mance of the models. From the other model comparisons in
Sections 6.2 and 6.3, it might have been expected that the
MGR model would be the best of the three models, but the
superiority of the MGR model was not clear. We discuss
ways to clarify this situation below.

7. Discussion
7.1 The effect of the radius of each region

To simplify the procedure, we adopted a constant region
radius in this study. As the median target magnitude was
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Fig. 9. Comparison of forecasts for 2008 by the Vbv and Cbv models using data from 1965 through 2007. Explanation is the same as for Fig. 8.

M 7.0, we selected a region radius of 20 km, with an area
almost equivalent to the focal size of an M 7.0 earthquake
(Utsu and Seki, 1955). Because the number of earthquakes
extracted from a region is small if its radius is small, the
number of regions where the G-R and modified G-R laws
could be discriminated (step 3 in Section 4.1) decreases
at small radii. In addition, when the number of earth-
quakes is small, the estimation error of the parameters for
the frequency-magnitude distribution becomes large and we
cannot obtain stable results. On the other hand, if a large
radius is selected, the estimated parameters represent spa-
tially smoothed features that provide less information about
the regional variation of seismicity. Tables 2 to 4 show re-
sults for radii of 10 km, 30 km, and 40 km, corresponding
to M 6.4, M 7.3, and M 7.6 earthquakes, respectively. For
a radius of 10 km, less than 1/10 of the grid cells (524 of
5483) are suitable for discriminating between the G-R and

modified G-R laws (step 3 in Section 4.1). This propor-
tion is about 1/4, 1/2, and 2/3 for radii of 20 km, 30 km,
and 40 km, respectively. The results of the forecast change
to some extent by changing a radius. For example, with a
10-km radius (Table 2), the MGR model is better than the
Cbv model for 2001 but worse for 2006 based on the log-
likelihood value, whereas the results are the opposite with a
20-km radius (Table 1).

In addition, in the forecast for 2008, the MGR model is
better than the Vbv model for a 20-km radius (Table 1),
but the results are reversed for a 30-km and 40-km ra-
dius (Tables 3 and 4). The reason is as follows. The
M 7.2 Iwate-Miyagi Nairiku earthquake occurred on June
14, 2008. However, during the modeling period, seismicity
was relatively high at locations 30 km southwest and 30–
40 km south-southeast of the mainshock. Thus the region
centered at lat 39.0◦N, long 140.9◦E includes both this seis-
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Table 2. Comparison of retrospective forecasts by the MGR, Vbv, and Cbv models using a radius of 10 km. See Table 1 for explanation.

MGR Vbv Cbv

(Data [year]) Number of Log N -test Number of Log N -test Number of Log N -test Mean

Forecast [year] grid cells likelihood E[n] N grid cells likelihood E[n] N grid cells likelihood E[n] N b-value

(1965.1–2000.12) All: 5483 −43.1 5.52 4 All: 5483 −43.8 6.13 4 All: 5483 −43.8 9.08 4 0.94

2001.1–2001.12 1: 277 −19.8 1.84 2 1: 343 −21.1 3.12 2 1: — — — —

2: 66 −0.7 0.67 0 2: — — — — 2: — — — —

3: 5140 −22.7 3.01 2 3: 5140 −22.7 3.01 2 3: 5483 −43.8 9.08 4

(1965.1–2001.12) All: 5483 −17.6 4.78 1 All: 5483 −18.2 5.39 1 All: 5483 −14.1 5.45 1 0.92

2002.1–2002.12 1: 295 −14.2 1.41 1 1: 378 −15.3 2.54 1 1: — — — —

2: 83 −0.5 0.52 0 2: — — — — 2: — — — —

3: 5105 −2.9 2.86 0 3: 5105 −2.9 2.86 0 3: 5483 −14.1 5.45 1

(1965.1–2002.12) All: 5483 −75.5 5.11 6 All: 5483 −76.0 5.69 6 All: 5483 −71.4 5.12 6 0.89

2003.1–2003.12 1: 302 −13.2 1.55 1 1: 389 −14.3 2.68 1 1: — — — —

2: 87 −0.6 0.55 0 2: — — — — 2: — — — —

3: 5094 −61.7 3.02 5 3: 5094 −61.7 3.02 5 3: 5483 −71.4 5.12 6

(1965.1–2003.12) All: 5483 −295.6 6.24× 28 All: 5483 −296.5 7.05× 28 All: 5483 −296.8 6.32× 28 0.88

2004.1–2004.12 1: 332 −10.9 2.10 1 1: 421 −12.5 3.68 1 1: — — — —

2: 89 −0.8 0.77 0 2: — — — — 2: — — — —

3: 5062 −284.0 3.38× 27 3: 5062 −284.0 3.38× 27 3: 5483 −296.8 6.32× 28

(1965.1–2004.12) All: 5483 −88.3 5.48 8 All: 5483 −88.9 6.18 8 All: 5483 −90.9 6.87 8 0.88

2005.1–2005.12 1: 353 −7.7 1.87 1 1: 450 −14.8 3.26 2 1: — — — —

2: 97 −6.6 0.69 1 2: — — — — 2: — — — —

3: 5033 −74.1 2.92 6 3: 5033 −74.1 2.92 6 3: 5483 −90.9 6.87 8

(1965.1–2005.12) All: 5483 −27.9 4.88 2 All: 5483 −28.0 5.33 2 All: 5483 −24.7 5.76 2 0.88

2006.1–2006.12 1: 384 −12.4 1.68 1 1: 476 −25.3 2.57 2 1: — — — —

2: 92 −12.7 0.45 1 2: — — — — 2: — — — —

3: 5007 −2.8 2.76 0 3: 5007 −2.8 2.76 0 3: 5483 −24.7 5.76 2

(1965.1–2006.12) All: 5483 −96.1 6.03 8 All: 5483 −97.8 7.70 8 All: 5483 −93.8 5.14 8 0.87

2007.1–2007.12 1: 393 −12.1 1.78 1 1: 490 −15.3 5.02 1 1: — — — —

2: 97 −1.6 1.57 0 2: — — — — 2: — — — —

3: 4993 −82.5 2.68× 7 3: 4993 −82.5 2.68× 7 3: 5483 −93.8 5.14 8

(1965.1–2007.12) All: 5483 −46.5 5.43 4 All: 5483 −47.6 6.56 4 All: 5483 −47.5 6.99 4 0.87

2008.1–2008.12 1: 415 −43.3 2.19 4 1: 524 −45.0 3.92 4 1: — — — —

2: 109 −0.6 0.61 0 2: — — — — 2: — — — —

3: 4959 −2.6 2.64 0 3: 4959 −2.6 2.64 0 3: 5483 −47.5 6.99 4

Total −690.6 −696.8 −682.9

micity and the mainshock if the radius is 30 km or 40 km,
but not if the radius is 20 km. When the region includes this
seismicity, the log-likelihood for the MGR model becomes
small because the modified G-R law is selected and cm is es-
timated at 6.9, which is less than the mainshock magnitude
of 7.2.

When a radius of 40 km is selected, the total log-
likelihood for the MGR model is largest, which indicates
that we might have a choice to select a radius of 40 km
instead of 20 km. The selection of radius is a difficult prob-
lem. It may be advantageous in future work to treat radius
as a variable parameter, depending on the magnitude of the
target earthquake or the location of the regions.
7.2 The effect of the modified G-R law

The log-likelihood values for the MGR model, which ap-
plies the modified G-R law to some regions, tend to be
larger than those for the Vbv model, which uses only the
G-R law (e.g. Table 1). Therefore the effect of introduc-
ing the modified G-R law into the forecast model is evident.
The MGR model was worse only in the forecast for 2007
because the magnitude of the M 5.2 earthquake beneath the

Boso Peninsula on August 18, 2007, exceeded the value of
cm , which was estimated at 4.6. In this region an M 4.9
earthquake that occurred on October 8, 1966, was excluded
from our virtual catalog used for modeling because events
less than M 5 were rejected during that period. Thus, intro-
ducing the modified G-R law may be risky for estimating
cm if the data period is not long enough. This problem may
be avoidable in future work by setting a lower limit for cm

based on the largest earthquake in a long-term catalog. In
addition, a forecast model incorporating the estimation er-
ror of cm (Mabuchi et al., 2002) may yield better results.

On the other hand, Burroughs and Tebbens (2002, BSSA)
found that an upper-truncated power law, which is equiv-
alent to the modified G-R law, applied to earthquake cu-
mulative frequency-magnitude distributions yields a time-
independent scaling parameter called the α-value. By ana-
lyzing several types of seismicity, they showed the α-value
for the short time intervals is equal to the b-value obtained
by applying the G-R law to the entire record. This sug-
gests that the modified G-R law is not necessarily appli-
cable for a long term data and the G-R law using α-value
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Table 3. Comparison of retrospective forecasts by the MGR, Vbv, and Cbv models using a radius of 30 km. See Table 1 for explanation.

MGR Vbv Cbv

(Data [year]) Number of Log N -test Number of Log N -test Number of Log N -test Mean

Forecast [year] grid cells likelihood E[n] N grid cells likelihood E[n] N grid cells likelihood E[n] N b-value

(1965.1–2000.12) All: 5483 −44.4 5.29 4 All: 5483 −45.5 6.40 4 All: 5483 −41.8 6.14 4 0.94

2001.1–2001.12 1: 2211 −42.3 3.20 4 1: 2620 −44.9 5.81 4 1: — — — —

2: 409 −1.5 1.49 0 2: — — — — 2: — — — —

3: 2863 −0.6 0.59 0 3: 2863 −0.6 0.59 0 3: 5483 −41.8 6.14 4

(1965.1–2001.12) All: 5483 −15.7 4.36 1 All: 5483 −16.8 5.46 1 All: 5483 −13.9 3.55 1 0.92

2002.1–2002.12 1: 2264 −13.9 2.56 1 1: 2837 −16.3 4.93 1 1: — — — —

2: 573 −1.3 1.27 0 2: — — — — 2: — — — —

3: 2646 −0.5 0.53 0 3: 2646 −0.5 0.53 0 3: 5483 −13.9 3.55 1

(1965.1–2002.12) All: 5483 −63.5 4.60 6 All: 5483 −64.8 5.87 6 All: 5483 −58.2 3.75 6 0.89

2003.1–2003.12 1: 2277 −61.6 2.66 6 1: 2895 −64.3 5.34 6 1: — — — —

2: 618 −1.4 1.41 0 2: — — — — 2: — — — —

3: 2588 −0.5 0.52 0 3: 2588 −0.5 0.52 0 3: 5483 −58.2 3.75 6

(1965.1–2003.12) All: 5483 −265.7 5.31× 28 All: 5483 −267.2 6.88× 28 All: 5483 −275.2 4.50× 28 0.88

2004.1–2004.12 1: 2413 −250.5 2.93× 27 1: 3085 −253.9 6.32× 27 1: — — — —

2: 672 −1.8 1.82 0 2: — — — — 2: — — — —

3: 2398 −13.3 0.56 1 3: 2398 −13.3 0.56 1 3: 5483 −275.2 4.50× 28

(1965.1–2004.12) All: 5483 −79.5 5.16 8 All: 5483 −80.7 6.64 8 All: 5483 −79.5 5.42 8 0.88

2005.1–2005.12 1: 2523 −2.8 2.76 0 1: 3265 −16.5 6.18 2 1: — — — —

2: 742 −12.6 1.94 2 2: — — — — 2: — — — —

3: 2218 −64.1 0.46× 6 3: 2218 −64.1 0.46× 6 3: 5483 −79.5 5.42 8

(1965.1–2005.12) All: 5483 −24.3 4.45 2 All: 5483 −25.1 5.56 2 All: 5483 −23.9 4.16 2 0.88

2006.1–2006.12 1: 2655 −10.2 2.63 1 1: 3420 −24.7 5.16 2 1: — — — —

2: 765 −13.7 1.43 1 2: — — — — 2: — — — —

3: 2063 −0.4 0.40 0 3: 2063 −0.4 0.40 0 3: 5483 −23.9 4.16 2

(1965.1–2006.12) All: 5483 −90.0 4.48 8 All: 5483 −88.2 5.77 8 All: 5483 −88.7 3.95× 8 0.87

2007.1–2007.12 1: 2683 −65.6 2.37 6 1: 3465 −87.8 5.37 8 1: — — — —

2: 782 −24.0 1.72 2 2: — — — — 2: — — — —

3: 2018 −0.4 0.39 0 3: 2018 −0.4 0.39 0 3: 5483 −88.7 3.95 8

(1965.1–2007.12) All: 5483 −46.3 5.28 4 All: 5483 −42.6 6.51 4 All: 5483 −47.3 5.04 4 0.87

2008.1–2008.12 1: 2760 −12.3 3.09 1 1: 3525 −42.2 6.13 4 1: — — — —

2: 765 −33.7 1.81 3 2: — — — — 2: — — — —

3: 1958 −0.4 0.38 0 3: 1958 −0.4 0.38 0 3: 5483 −47.3 5.04 4

Total −629.4 −630.8 −628.5

instead of b-value derived from short term data might be
useful for forecasting. The method using the α-value can
be an alternative in the future work for a longer term pre-
diction. However, from our result mentioned above, the in-
troduction of the modified G-R law into the forecast model
is obviously effective to improve the prediction as far as our
tested forecasting period is concerned (seven years at most
in Section 7.5). We consider that there exist some regions
in inland Japan where a frequency-magnitude distribution
exhibits a convex-upward curve rather than a straight line
and departs from the G-R law by nature, or our forecasting
period is short enough for the modified G-R law to become
superior to the G-R law in regions where the modified G-R
law is selected in the modeling period.
7.3 Model selection by AIC

Generally, a model having a smaller AIC should be se-
lected when models are chosen on the basis of AIC. How-
ever, we selected the G-R law when the difference of AIC
between the G-R and modified G-R laws was less than 1,
as mentioned in Section 4.1, to reduce the risk of underesti-
mating the probability. We assumed that no earthquake with

M ≥ cm will occur when the modified G-R law is applied
to the region, and this assumption is a severe constraint.
For example, AIC for the modified G-R law is smaller than
that for the G-R law by 0.54 in the region where the Iwate-
Miyagi Nairiku earthquake occurred (Fig. 10). Note that the
data period in Fig. 10 is from 1930 through 2007. The value
of cm was estimated to be 5.7 by the modified G-R law, but
a mainshock with M 7.2 occurred on June 14, 2008. In this
case, the modified G-R law had a negative effect. There-
fore, we decided to set a bias of AIC by 1 when selecting
the G-R law, but it was a decision made for trial purposes
rather than one arising from a rigorous analysis.
7.4 The effect of aftershocks

As mentioned in Section 4.1, when a large earthquake oc-
curred closely preceding the forecast period, we forecasted
the expected number of earthquakes with M ≥ Mth in the
forecast period by using the modified Omori formula

n(t) = Ka

(t + ca)p
, (8)



254 F. HIROSE AND K. MAEDA: FORECAST MODELS USING G-R AND MODIFIED G-R LAW

Table 4. Comparison of retrospective forecasts by the MGR, Vbv, and Cbv models using a radius of 40 km. See Table 1 for explanation.

MGR Vbv Cbv

(Data [year]) Number of Log N -test Number of Log N -test Number of Log N -test Mean

Forecast [year] grid cells likelihood E[n] N grid cells likelihood E[n] N grid cells likelihood E[n] N b-value

(1965.1–2000.12) All: 5483 −43.7 5.48 4 All: 5483 −45.1 6.89 4 All: 5483 −41.2 5.35 4 0.94

2001.1–2001.12 1: 2946 −41.3 3.07 4 1: 3629 −44.9 6.64 4 1: — — — —

2: 683 −2.2 2.17 0 2: — — — — 2: — — — —

3: 1854 −0.2 0.25 0 3: 1854 −0.2 0.25 0 3: 5483 −41.2 5.35 4

(1965.1–2001.12) All: 5483 −14.7 4.58 1 All: 5483 −15.7 5.85× 1 All: 5483 −12.0 3.16 1 0.92

2002.1–2002.12 1: 2972 −2.4 2.42 0 1: 3895 −15.4 5.64× 1 1: — — — —

2: 923 −12.0 1.95 1 2: — — — — 2: — — — —

3: 1588 −0.2 0.21 0 3: 1588 −0.2 0.21 0 3: 5483 −12.0 3.16 1

(1965.1–2002.12) All: 5483 −61.1 4.96 6 All: 5483 −62.1 6.41 6 All: 5483 −59.5 3.51 6 0.89

2003.1–2003.12 1: 2974 −50.5 2.59 5 1: 3955 −61.8 6.18 6 1: — — — —

2: 981 −10.3 2.13 1 2: — — — — 2: — — — —

3: 1528 −0.2 0.24 0 3: 1528 −0.2 0.24 0 3: 5483 −59.5 3.51 6

(1965.1–2003.12) All: 5483 −266.4 5.91× 28 All: 5483 −268.1 7.64× 28 All: 5483 −279.3 4.10× 28 0.88

2004.1–2004.12 1: 3106 −250.0 2.87× 27 1: 4079 −254.5 7.40× 27 1: — — — —

2: 973 −2.8 2.81 0 2: — — — — 2: — — — —

3: 1404 −13.6 0.23 1 3: 1404 −13.6 0.23 1 3: 5483 −279.3 4.10× 28

(1965.1–2004.12) All: 5483 −84.2 5.80 8 All: 5483 −85.5 7.38 8 All: 5483 −83.1 5.15 8 0.88

2005.1–2005.12 1: 3151 −2.7 2.71 0 1: 4246 −18.2 7.20 2 1: — — — —

2: 1095 −14.2 2.90 2 2: — — — — 2: — — — —

3: 1237 −67.3 0.18× 6 3: 1237 −67.3 0.18× 6 3: 5483 −83.1 5.15 8

(1965.1–2005.12) All: 5483 −22.1 4.91 2 All: 5483 −23.2 6.11 2 All: 5483 −22.4 3.92 2 0.88

2006.1–2006.12 1: 3316 −10.3 2.68 1 1: 4389 −23.1 5.96 2 1: — — — —

2: 1073 −11.7 2.08 1 2: — — — — 2: — — — —

3: 1094 −0.1 0.15 0 3: 1094 −0.1 0.15 0 3: 5483 −22.4 3.92 2

(1965.1–2006.12) All: 5483 −87.3 4.15 8 All: 5483 −85.9 5.22 8 All: 5483 −86.4 3.68× 8 0.87

2007.1–2007.12 1: 3268 −71.3 2.35× 7 1: 4383 −85.7 5.06 8 1: — — — —

2: 1115 −15.9 1.65 1 2: — — — — 2: — — — —

3: 1100 −0.2 0.15 0 3: 1100 −0.2 0.15 0 3: 5483 −86.4 3.68× 8

(1965.1–2007.12) All: 5483 −45.9 5.11 4 All: 5483 −42.6 6.24 4 All: 5483 −47.8 4.69 4 0.87

2008.1–2008.12 1: 3329 −11.9 2.95 1 1: 4394 −42.5 6.08 4 1: — — — —

2: 1065 −33.8 2.01 3 2: — — — — 2: — — — —

3: 1089 −0.2 0.16 0 3: 1089 −0.2 0.16 0 3: 5483 −47.8 4.69 4

Total −625.4 −628.1 −631.6

where t is time after the mainshock, n(t) is the number of
aftershocks per unit time, and Ka, ca, and p are constants
(Utsu, 1957). In this study, to simplify the procedure we
took into account only mainshocks with M ≥ 5.0 within the
preceding year or M ≥ 7.0 within the preceding five years.
When there were no such mainshocks, we estimated the
expected number in the forecast period from the seismicity
rate in the year just before the forecast period. As shown
in Fig. 4(b), models that make adjustments on the basis
of the aftershock decay rate can avoid overestimating the
seismicity in forecast periods.

Generally it may be better to account for aftershock ac-
tivity added to the background seismicity in the form

n(t) = Ka

(t + ca)p
+ SB, (9)

where SB is the background seismicity rate. Theoretically,
if we apply Eq. (9) to the modeling data, we can estimate
the background seismicity as well as the aftershock activity
and expect to forecast future seismicity more appropriately.
However, if the data are insufficient, Eq. (9) is not necessar-

ily a good selection. For example, when we apply Eqs. (8)
and (9) to aftershocks of the Iwate-Miyagi Nairiku earth-
quake (M 7.2) of June 14, 2008, and estimate parameters
using data between the mainshock and the end of 2008, the
result of Eq. (8) is a better match to the actual activity for
2009 than the result of Eq. (9). Therefore, in this study we
adopted Eq. (8) to evaluate the effect of aftershock activity.
7.5 The effect of forecast periods

Although forecast periods were fixed at one year or three
years in accordance with the rule of CSEP for Japan, we
tested the models for a wider range of periods. Comparing
total log-likelihood values of three models in Tables 1, 5,
6, and 7, we found that the MGR model shows a tendency
to improve for longer forecast periods such as three, five,
or seven years. The effect of setting regionally variable b-
values in the MGR and Vbv models tends to become evident
in longer term forecasts because the number of target earth-
quakes increase and we can get statistically more stable re-
sults. Note that there are some cases that result in worse
N -test results for the three models if the forecast period in-
cludes a large number of earthquakes, as in the case of the
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Table 5. Comparison of retrospective forecasts by the MGR, Vbv, and Cbv models using a radius of 20 km and forecast period of 3 years. See Table 1
for explanation.

MGR Vbv Cbv

(Data [year]) Number of Log N -test Number of Log N -test Number of Log N -test Mean

Forecast [year] grid cells likelihood E[n] N grid cells likelihood E[n] N grid cells likelihood E[n] N b-value

(1965.1–2000.12) All: 5483 −129.6 14.73 11 All: 5483 −132.3 17.51 11 All: 5483 −131.7 32.16× 11 0.94

2001.1–2003.12 1: 1088 −54.6 8.12 5 1: 1301 −60.3 13.88 5 1: — — — —

2: 213 −3.0 2.98 0 2: — — — — 2: — — — —

3: 4182 −72.0 3.63 6 3: 4182 −72.0 3.63 6 3: 5483 −131.7 32.16 11

(1965.1–2001.12) All: 5483 −330.3 12.61× 35 All: 5483 −333.3 15.59× 35 All: 5483 −324.2 12.53× 35 0.92

2002.1–2004.12 1: 1199 −160.0 6.85× 18 1: 1495 −165.7 12.52 18 1: — — — —

2: 296 −2.7 2.69 0 2: — — — — 2: — — — —

3: 3988 −167.6 3.07× 17 3: 3988 −167.6 3.07× 17 3: 5483 −324.2 12.53× 35

(1965.1–2002.12) All: 5483 −370.6 13.17× 42 All: 5483 −373.8 16.63× 42 All: 5483 −376.4 12.33× 42 0.89

2003.1–2005.12 1: 1246 −200.3 6.79× 24 1: 1568 −211.5 13.30× 25 1: — — — —

2: 322 −8.0 3.06 1 2: — — — — 2: — — — —

3: 3915 −162.3 3.32× 17 3: 3915 −162.3 3.32× 17 3: 5483 −376.4 12.33× 42

(1965.1–2003.12) All: 5483 −341.9 16.41× 38 All: 5483 −346.1 21.00× 38 All: 5483 −350.4 15.44× 38 0.88

2004.1–2006.12 1: 1371 −183.4 8.09× 22 1: 1715 −205.5 17.45 24 1: — — — —

2: 344 −17.9 4.78 2 2: — — — — 2: — — — —

3: 3768 −140.6 3.55× 14 3: 3768 −140.6 3.55× 14 3: 5483 −350.4 15.44× 38

(1965.1–2004.12) All: 5483 −174.4 16.51 18 All: 5483 −174.2 20.83 18 All: 5483 −171.4 19.85 18 0.88

2005.1–2007.12 1: 1470 −47.1 8.03 4 1: 1844 −78.6 17.99× 8 1: — — — —

2: 374 −31.7 5.64 4 2: — — — — 2: — — — —

3: 3639 −95.6 2.84× 10 3: 3639 −95.6 2.84× 10 3: 5483 −171.4 19.85 18

(1965.1–2005.12) All: 5483 −139.9 12.98 14 All: 5483 −138.0 16.21 14 All: 5483 −138.9 14.07 14 0.88

2006.1–2008.12 1: 1527 −66.0 7.05 7 1: 1925 −96.9 13.44 10 1: — — — —

2: 398 −32.8 3.15 3 2: — — — — 2: — — — —

3: 3558 −41.1 2.78 4 3: 3558 −41.1 2.78 4 3: 5483 −138.9 14.07 14

Total −1486.7 −1497.7 −1493.0

Table 6. Comparison of retrospective forecasts by the MGR, Vbv, and Cbv models using a radius of 20 km and forecast period of 5 years. See Table 1
for explanation.

MGR Vbv Cbv

(Data [year]) Number of Log N -test Number of Log N -test Number of Log N -test Mean

Forecast [year] grid cells likelihood E[n] N grid cells likelihood E[n] N grid cells likelihood E[n] N b-value

(1965.1–2000.12) All: 5483 −486.7 24.63× 47 All: 5483 −491.3 29.29× 47 All: 5483 −515.8 67.29× 47 0.94

2001.1–2005.12 1: 1088 −119.2 13.78 14 1: 1301 −128.9 23.41 14 1: — — — —

2: 213 −5.0 4.98× 0 2: — — — — 2: — — — —

3: 4182 −362.4 5.87× 33 3: 4182 −362.4 5.87× 33 3: 5483 −515.8 67.29× 47

(1965.1–2001.12) All: 5483 −421.5 20.89× 45 All: 5483 −423.1 25.91× 45 All: 5483 −416.1 21.38× 45 0.92

2002.1–2006.12 1: 1199 −164.7 11.43× 20 1: 1495 −189.3 21.00 22 1: — — — —

2: 296 −23.0 4.55 2 2: — — — — 2: — — — —

3: 3988 −233.8 4.91× 23 3: 3988 −233.8 4.91× 23 3: 5483 −416.1 21.38× 45

(1965.1–2002.12) All: 5483 −451.2 21.81× 52 All: 5483 −456.6 27.61× 52 All: 5483 −455.2 20.66× 52 0.89

2003.1–2007.12 1: 1246 −218.8 11.32× 27 1: 1568 −240.7 22.28 29 1: — — — —

2: 322 −16.5 5.16 2 2: — — — — 2: — — — —

3: 3915 −215.9 5.33× 23 3: 3915 −215.9 5.33× 23 3: 5483 −455.2 20.66× 52

(1965.1–2003.12) All: 5483 −437.8 27.31× 50 All: 5483 −444.5 35.08× 50 All: 5483 −447.8 26.15× 50 0.88

2004.1–2008.12 1: 1371 −222.7 13.48× 27 1: 1715 −260.1 29.36 31 1: — — — —

2: 344 −30.7 8.12 4 2: — — — — 2: — — — —

3: 3768 −184.5 5.72× 19 3: 3768 −184.5 5.72× 19 3: 5483 −447.8 26.15× 50

Total −1797.2 −1815.5 −1834.9
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Table 7. Comparison of retrospective forecasts by the MGR, Vbv, and Cbv models using a radius of 20 km and forecast period of 7 years. See Table 1
for explanation.

MGR Vbv Cbv

(Data [year]) Number of Log N -test Number of Log N -test Number of Log N -test Mean

Forecast [year] grid cells likelihood E[n] N grid cells likelihood E[n] N grid cells likelihood E[n] N b-value

(1965.1–2000.12) All: 5483 −580.4 34.65× 57 All: 5483 −583.7 41.19× 57 All: 5483 −635.5 110.20× 57 0.94

2001.1–2007.12 1: 1088 −148.2 19.54 17 1: 1301 −176.7 33.07× 19 1: — — — —

2: 213 −25.2 6.99 2 2: — — — — 2: — — — —

3: 4182 −406.9 8.11× 38 3: 4182 −406.9 8.11× 38 3: 5483 −635.5 110.20× 57

(1965.1–2001.12) All: 5483 −522.8 29.20× 57 All: 5483 −525.7 36.28× 57 All: 5483 −522.7 30.47× 57 0.92

2002.1–2008.12 1: 1199 −205.1 16.01× 25 1: 1495 −237.4 29.53 28 1: — — — —

2: 296 −29.4 6.44 3 2: — — — — 2: — — — —

3: 3988 −288.3 6.75× 29 3: 3988 −288.3 6.75× 29 3: 5483 −522.7 30.47× 57

Total −1103.2 −1109.4 −1158.2

Table 8. Comparison of retrospective forecasts by the MGR, Vbv, and Cbv models using a radius of 20 km and a minimum seismicity rate for M 5.0 of
2.4 × 10−4/y. See Table 1 for explanation.

MGR Vbv Cbv

(Data [year]) Number of Log N -test Number of Log N -test Number of Log N -test Mean

Forecast [year] grid cells likelihood E[n] N grid cells likelihood E[n] N grid cells likelihood E[n] N b-value

(1965.1–2000.12) All: 5483 −46.5 7.50 4 All: 5483 −47.3 8.30 4 All: 5483 −44.7 9.84 4 0.94

2001.1–2001.12 1: 1088 −31.2 2.65 3 1: 1301 −33.1 4.57 3 1: — — — —

2: 213 −1.1 1.11 0 2: — — — — 2: — — — —

3: 4182 −14.2 3.74 1 3: 4182 −14.2 3.74 1 3: 5483 −44.7 9.84 4

(1965.1–2001.12) All: 5483 −19.1 7.40× 1 All: 5483 −19.9 8.22× 1 All: 5483 −16.6 6.99× 1 0.92

2002.1–2002.12 1: 1199 −14.1 2.39 1 1: 1495 −15.9 4.26 1 1: — — — —

2: 296 −1.1 1.05 0 2: — — — — 2: — — — —

3: 3988 −4.0 3.97× 0 3: 3988 −4.0 3.97× 0 3: 5483 −16.6 6.99× 1

(1965.1–2002.12) All: 5483 −66.5 7.69 6 All: 5483 −67.5 8.65 6 All: 5483 −57.5 7.15 6 0.89

2003.1–2003.12 1: 1246 −44.1 2.35 4 1: 1568 −46.3 4.55 4 1: — — — —

2: 322 −1.2 1.23 0 2: — — — — 2: — — — —

3: 3915 −21.2 4.11 2 3: 3915 −21.2 4.11 2 3: 5483 −57.5 7.15 6

(1965.1–2003.12) All: 5483 −273.5 8.50× 28 All: 5483 −274.8 9.79× 28 All: 5483 −279.3 7.82× 28 0.88

2004.1–2004.12 1: 1371 −186.6 2.77× 20 1: 1715 −189.7 5.81× 20 1: — — — —

2: 344 −1.8 1.76 0 2: — — — — 2: — — — —

3: 3768 −85.1 3.97× 8 3: 3768 −85.1 3.97× 8 3: 5483 −279.3 7.82× 28

(1965.1–2004.12) All: 5483 −81.0 8.32 8 All: 5483 −81.6 9.36 8 All: 5483 −81.9 8.75 8 0.88

2005.1–2005.12 1: 1470 −2.8 2.79 0 1: 1844 −16.3 5.52 2 1: — — — —

2: 374 −12.9 1.70 2 2: — — — — 2: — — — —

3: 3639 −65.2 3.83 6 3: 3639 −65.2 3.83 6 3: 5483 −81.9 8.75 8

(1965.1–2005.12) All: 5483 −24.9 7.40× 2 All: 5483 −25.4 8.24× 2 All: 5483 −24.9 7.50× 2 0.88

2006.1–2006.12 1: 1527 −10.0 2.49 1 1: 1925 −21.8 4.60 2 1: — — — —

2: 398 −11.2 1.27 1 2: — — — — 2: — — — —

3: 3558 −3.6 3.64 0 3: 3558 −3.6 3.64 0 3: 5483 −24.9 7.50× 2

(1965.1–2006.12) All: 5483 −95.9 7.44 8 All: 5483 −96.7 8.34 8 All: 5483 −92.5 7.17 8 0.87

2007.1–2007.12 1: 1544 −28.0 2.39 2 1: 1950 −38.9 4.65 3 1: — — — —

2: 406 −10.1 1.36 1 2: — — — — 2: — — — —

3: 3533 −57.8 3.70 5 3: 3533 −57.8 3.70 5 3: 5483 −92.5 7.17 8

(1965.1–2007.12) All: 5483 −44.9 8.41 4 All: 5483 −45.3 9.33 4 All: 5483 −49.2 8.44 4 0.87

2008.1–2008.12 1: 1653 −31.9 3.31 3 1: 2038 −41.7 5.67 4 1: — — — —

2: 385 −9.4 1.44 1 2: — — — — 2: — — — —

3: 3445 −3.7 3.66 0 3: 3445 −3.7 3.66 0 3: 5483 −49.2 8.44 4

Total −652.3 −658.5 −646.4
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Table 9. Comparison of retrospective forecasts by the MGR, Vbv, and Cbv models using a radius of 20 km and a minimum seismicity rate for M 5.0 of
2.4 × 10−6/y. See Table 1 for explanation.

MGR Vbv Cbv

(Data [year]) Number of Log N -test Number of Log N -test Number of Log N -test Mean

Forecast [year] grid cells likelihood E[n] N grid cells likelihood E[n] N grid cells likelihood E[n] N b-value

(1965.1–2000.12) All: 5483 −43.8 4.75 4 All: 5483 −44.7 5.68 4 All: 5483 −42.0 7.21 4 0.94

2001.1–2001.12 1: 1088 −31.2 2.62 3 1: 1301 −33.1 4.53 3 1: — — — —

2: 213 −1.0 0.98 0 2: — — — — 2: — — — —

3: 4182 −11.6 1.15 1 3: 4182 −11.6 1.15 1 3: 5483 −42.0 7.21 4

(1965.1–2001.12) All: 5483 −15.8 4.09 1 All: 5483 −16.7 5.07 1 All: 5483 −13.4 3.84 1 0.92

2002.1–2002.12 1: 1199 −14.0 2.28 1 1: 1495 −15.8 4.12 1 1: — — — —

2: 296 −0.9 0.86 0 2: — — — — 2: — — — —

3: 3988 −1.0 0.95 0 3: 3988 −1.0 0.95 0 3: 5483 −13.4 3.84 1

(1965.1–2002.12) All: 5483 −63.1 4.28 6 All: 5483 −64.3 5.43 6 All: 5483 −54.3 3.93 6 0.89

2003.1–2003.12 1: 1246 −44.0 2.26 4 1: 1568 −46.1 4.40 4 1: — — — —

2: 322 −1.0 0.99 0 2: — — — — 2: — — — —

3: 3915 −18.1 1.04 2 3: 3915 −18.1 1.04 2 3: 5483 −54.3 3.93 6

(1965.1–2003.12) All: 5483 −275.0 5.33× 28 All: 5483 −276.5 6.83× 28 All: 5483 −280.9 4.86× 28 0.88

2004.1–2004.12 1: 1371 −186.6 2.69× 20 1: 1715 −189.6 5.72× 20 1: — — — —

2: 344 −1.5 1.53 0 2: — — — — 2: — — — —

3: 3768 −86.9 1.12× 8 3: 3768 −86.9 1.12× 8 3: 5483 −280.9 4.86× 28

(1965.1–2004.12) All: 5483 −77.6 4.96 8 All: 5483 −78.4 6.23 8 All: 5483 −78.7 5.61 8 0.88

2005.1–2005.12 1: 1470 −2.6 2.65 0 1: 1844 −16.2 5.35 2 1: — — — —

2: 374 −12.7 1.44 2 2: — — — — 2: — — — —

3: 3639 −62.3 0.88× 6 3: 3639 −62.3 0.88× 6 3: 5483 −78.7 5.61 8

(1965.1–2005.12) All: 5483 −26.3 4.17 2 All: 5483 −27.0 5.23 2 All: 5483 −26.5 4.48 2 0.88

2006.1–2006.12 1: 1527 −9.9 2.34 1 1: 1925 −26.2 4.39 2 1: — — — —

2: 398 −15.6 0.99 1 2: — — — — 2: — — — —

3: 3558 −0.8 0.84 0 3: 3558 −0.8 0.84 0 3: 5483 −26.5 4.48 2

(1965.1–2006.12) All: 5483 −101.7 4.00× 8 All: 5483 −98.1 5.14 8 All: 5483 −93.9 3.96× 8 0.87

2007.1–2007.12 1: 1544 −27.8 2.19 2 1: 1950 −38.6 4.40 3 1: — — — —

2: 406 −14.4 1.06 1 2: — — — — 2: — — — —

3: 3533 −59.5 0.75× 5 3: 3533 −59.5 0.75× 5 3: 5483 −93.9 3.96× 8

(1965.1–2007.12) All: 5483 −41.6 5.07 4 All: 5483 −42.2 6.19 4 All: 5483 −46.0 5.29 4 0.87

2008.1–2008.12 1: 1653 −31.7 3.13 3 1: 2038 −41.4 5.44 4 1: — — — —

2: 385 −9.1 1.18 1 2: — — — — 2: — — — —

3: 3445 −0.8 0.75 0 3: 3445 −0.8 0.75 0 3: 5483 −46.0 5.29 4

Total −644.8 −648.0 −635.7

Mid Niigata prefecture earthquake (M 6.8) of October 23,
2004, and its many aftershocks. We discuss this further in
Section 7.9.
7.6 Seismicity near Miyake Island

Most of the target earthquakes in this study occurred
in the continental crust. However, regions from the Izu
Peninsula to Miyake Island belong to a volcanic arc on
the Philippine Sea plate, and earthquakes in these regions
occur in oceanic crust or mantle. Near Miyake Island,
volcanic earthquakes began June 26, 2000, and in the next
two months, a notable swarm of activity occurred, including
more than 7200 events with M ≥ 2.8 (= Mth), more than
870 with M ≥ 4.0, 78 with M ≥ 5.0, and 6 with M ≥
6.0 (of which the two largest were M 6.5). This activity
is equivalent to the aftershock sequence of an M 8 class
mainshock. However, it damped rapidly, and the average
number of earthquakes with M ≥ 2.8 was around 20 per
year from 2003 through 2008.

As this swarm was related to magmatic activity in
oceanic crust and mantle, its characteristics might be very
different from the on-land events that were our main target.
Therefore, we excluded the Miyake Island region when we

estimated a nationwide mean b-value from seismicity in the
study area (Fig. 2(b)). This b-value was also used as the
default in regions where the G-R and modified G-R laws
could not be distinguished (step 3 in Section 4.1), including
near Miyake Island.
7.7 Effect of minimum seismicity rate

As mentioned in Section 4.2, we assumed that target grid
cells have a minimum rate of seismicity for earthquakes
with M ≥ cm . We presumed that an earthquake of M 5.0
will occur once in about 42,000 years (2.4 × 10−5/y) as the
minimum rate. But we also examined cases in which an
earthquake of M 5.0 will occur once in 4,200 years (2.4 ×
10−4/y) or 420,000 years (2.4 × 10−6/y). The results are
shown in Tables 8 and 9 for a radius of 20 km and forecast
period of one year. The log-likelihood changes to a small
extent, but only for the 2006 forecast did it change the rank
order of the different models.
7.8 Long-term or short-term data for seismicity esti-

mations
As mentioned in Section 4.1, we estimated the seismic-

ity rates from the data for the year just before the testing
period. There is an advantage in using a long data record
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Fig. 10. Frequency-magnitude distribution within a radius of 20 km from the grid at lat 39.0◦N, long 140.9◦E. Symbols are the same as in Fig. 1 except
that M ≥ 5.0 in this case is for the period 1930–2007. Explanation is the same as for Fig. 3.

for estimating parameters b, bm , and cm , because the esti-
mation error is expected to decrease as the number of earth-
quakes increases. On the other hand, long-term data may be
a disadvantage for estimating parameters a and am because
seismicity rates fluctuate over relatively short periods. For
example, in Fig. 4(a), the expected seismicity is expressed
by line L for long-term data and line S for short-term data,
and the latter is a better fit in prediction. Therefore, for
short-term forecasts such as one or three years, as proposed
in CSEP for Japan, we estimated the expected seismicity
rate from the last year of data in the modeling period.
7.9 Effect of definition of target earthquakes

Aftershocks cannot be forecasted by our models because
they assume that earthquakes occur independently and do
not consider triggering effects. However, as aftershocks are
also targeted in the forecast experiment by CSEP for Japan,
the results listed in Tables 1 to 9 are for target earthquakes
including aftershocks, which makes results worse when
many aftershocks occur. For example, the Mid Niigata pre-
fecture earthquake (M 6.8) occurred on October 23, 2004,
and 26 aftershocks with M ≥ 5.0 occurred by the end
of 2004. In the N -test, the MGR model expected 5.62
target earthquakes in 2004 whereas 28 earthquakes were
observed: the Mid Niigata prefecture earthquake, its af-
tershocks, and one earthquake in western Hokkaido on
December 14, 2004. In addition, the log-likelihood was
worse for 2004 than that for other forecast years. Table 10

shows that when target earthquakes were restricted to main-
shocks, the total expected number E[n] and total observed
number in the N -test were similar to each other, and the
log-likelihood was near the same level as the other forecast
years. The definition of target earthquakes is essential for
evaluation of models. It is significant that the models in this
study were intended to forecast mainly mainshocks, which
differs from the framework of CSEP for Japan.
7.10 Future problems

The models in this study were designed to forecast target
earthquakes with 5.0 ≤ M ≤ 9.0 and depth ≤ 30 km by
using only seismicity data after January 1965, according to
the framework of CSEP for Japan. We ignored all informa-
tion about tectonic settings (except in the case of Miyake
Island), geodetic crustal movements, velocity structure in
the crust, spatial distribution of active faults, physical mech-
anism of earthquakes, and so on, all of which are related to
seismicity. To improve the models, it is important to bring
this information into them. For example, considering tec-
tonic information, in the Kanto district both continental and
oceanic crust interact beneath the Boso Peninsula, thus it is
reasonable to treat the crustal types separately by consider-
ing the distribution of hypocenters rather than epicenters.

For another example, recently it has been suggested that
earthquakes in the continental crust are related to melts in
the lower crust (Okada et al., 2008). Our model might be
improved by clarifying the relationship between seismicity
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Table 10. Comparison of retrospective forecasts by the MGR, Vbv, and Cbv models using a radius of 20 km and target earthquakes that are exclusively
mainshocks. See Table 1 for explanation. The five periods shown in boldface in the first column have had aftershocks removed from target earthquakes
in each forecast period.

MGR Vbv Cbv

(Data [year]) Number of Log N -test Number of Log N -test Number of Log N -test Mean

Forecast [year] grid cells likelihood E[n] N grid cells likelihood E[n] N grid cells likelihood E[n] N b-value

(1965.1–2000.12) All: 5483 −44.0 5.00 4 All: 5483 −44.9 5.91 4 All: 5483 −42.3 7.45 4 0.94

2001.1–2001.12 1: 1088 −31.2 2.62 3 1: 1301 −33.1 4.53 3 1: — — — —

2: 213 −1.0 0.99 0 2: — — — — 2: — — — —

3: 4182 −11.8 1.38 1 3: 4182 −11.8 1.38 1 3: 5483 −42.3 7.45 4

(1965.1–2001.12) All: 5483 −16.1 4.39 1 All: 5483 −17.0 5.36 1 All: 5483 −13.7 4.12 1 0.92

2002.1–2002.12 1: 1199 −14.0 2.29 1 1: 1495 −15.8 4.13 1 1: — — — —

2: 296 −0.9 0.88 0 2: — — — — 2: — — — —

3: 3988 −1.2 1.23 0 3: 3988 −1.2 1.23 0 3: 5483 −13.7 4.12 1

(1965.1–2002.12) All: 5483 −26.0 4.59 2 All: 5483 −27.1 5.72 2 All: 5483 −21.4 4.22 2 0.89

2003.1–2003.12 1: 1246 −14.3 2.27 1 1: 1568 −16.5 4.41 1 1: — — — —

2: 322 −1.0 1.01 0 2: — — — — 2: — — — —

3: 3915 −10.7 1.31 1 3: 3915 −10.7 1.31 1 3: 5483 −21.4 4.22 2

(1965.1–2003.12) All: 5483 −29.8 5.62 2 All: 5483 −31.3 7.10 2 All: 5483 −30.2 5.13 2 0.88

2004.1–2004.12 1: 1371 −14.0 2.70 1 1: 1715 −17.1 5.73× 1 1: — — — —

2: 344 −1.5 1.55 0 2: — — — — 2: — — — —

3: 3768 −14.2 1.38 1 3: 3768 −14.2 1.38 1 3: 5483 −30.2 5.13 2

(1965.1-2004.12) All: 5483 −30.4 5.27 3 All: 5483 −31.2 6.51 3 All: 5483 −31.6 5.89 3 0.88

2005.1–2005.12 1: 1470 −2.7 2.66 0 1: 1844 −16.2 5.37 2 1: — — — —

2: 374 −12.7 1.46 2 2: — — — — 2: — — — —

3: 3639 −15.1 1.15 1 3: 3639 −15.1 1.15 1 3: 5483 −31.6 5.89 3

(1965.1–2005.12) All: 5483 −24.3 4.46 2 All: 5483 −25.0 5.51 2 All: 5483 −24.4 4.76 2 0.88

2006.1–2006.12 1: 1527 −9.9 2.35 1 1: 1925 −23.9 4.41 2 1: — — — —

2: 398 −13.3 1.01 1 2: — — — — 2: — — — —

3: 3558 −1.1 1.10 0 3: 3558 −1.1 1.10 0 3: 5483 −24.4 4.76 2

(1965.1–2006.12) All: 5483 −55.1 4.31 4 All: 5483 −53.8 5.43 4 All: 5483 −50.7 4.25 4 0.87

2007.1–2007.12 1: 1544 −16.5 2.21 1 1: 1950 −27.3 4.42 2 1: — — — —

2: 406 −12.1 1.09 1 2: — — — — 2: — — — —

3: 3533 −26.5 1.02 2 3: 3533 −26.5 1.02 2 3: 5483 −50.7 4.25 4

(1965.1–2007.12) All: 5483 −17.7 5.37 1 All: 5483 −18.8 6.48× 1 All: 5483 −18.5 5.58× 1 0.87

2008.1–2008.12 1: 1653 −15.4 3.15 1 1: 2038 −17.8 5.46 1 1: — — — —

2: 385 −1.2 1.21 0 2: — — — — 2: — — — —

3: 3445 −1.0 1.02 0 3: 3445 −1.0 1.02 0 3: 5483 −18.5 5.58× 1

Total −243.4 −249.2 −232.7

and velocity structure in the lower crust. We consider the
models proposed here to be basic models that can be im-
proved by adding more information.

8. Summary
We proposed earthquake forecast models based on the

G-R law or the modified G-R law and compared their per-
formance by retrospective forecast. The results are as fol-
lows:

1. The MGR model, using both the modified G-R and
G-R laws, was better than the Vbv model, using only
the G-R law.

2. The Cbv model, based on a spatially constant b-value,
was better than the Vbv model, based on regionally
variable b-values for short-term (one year) forecasts.

3. The difference between the MGR and Cbv models was
not clear for short-term forecasts.

4. The MGR and the Vbv models, using regionally vari-
able b-values, tended to become better than the Cbv

model for long-term (three years or longer) forecasts.

On the basis of our results, we propose the use of the
MGR model for CSEP for Japan.
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