Evaluation of the GPS Positioning Error due to the Inhomogeneous Distribution of Atmospheric Delay by a Numerical Weather Model Data

Hiromu Seko
(Meteorological Research Institute/JMA)
Hajime Nakamura
(Numerical Prediction Department / JMA)
Sei-ichi Shimada
(National Research Institute for Earth Science and Disaster Prevention)

-Contents-

1. Motivation
2. Methodology
3. Positioning error caused by Mountain lee wave

Comparison with observed results (Shimada, 2002)
4. Summary

1. Motivation

- Large positioning errors were caused by atmosphere.
- Atmospheric model with gradient does not always improve positioning error.
\rightarrow Small scale variation existed?
- To discuss only influence of atmosphere, 'clean' delay was calculated by the numerical weather model.
- 'Clean' delay was used as input data of analysis program and positioning error was estimated.
- Small scale variation (mountain lee wave case) causes the positioning error?

Cloud images observed by geostationary meteorological satellite

2. Method

2.a Flowchart of estimation of positioning error

2.b Atmospheric model
(a) Constant model

$$
\tau_{\mathrm{est}}=\tau_{\text {zen }} \mathbf{m}(\theta)
$$

(b) Linear gradient model (MacMilan, 1995) $\tau_{\text {est }}=\tau_{\text {zen }} \mathbf{m}(\theta)+\mathbf{m}(\theta) / \tan (\theta)\left(\mathbf{G}_{\mathrm{N}} \cos \phi+\mathrm{G}_{\mathrm{E}} \sin \phi\right)$.
(c) Second order function fitting model

$$
\tau_{\text {est }}=\tau_{\text {zen }} m(\theta)+\mathbf{m}(\theta)\left(\mathbf{G}_{\mathrm{N}} \mathbf{y}+\mathbf{G}_{\mathrm{E}} \mathbf{x}+\mathbf{G}_{\mathrm{N} 2} \mathbf{y}^{2}+\mathbf{G}_{\mathrm{NE}} \mathbf{x y}+\mathbf{G}_{\mathrm{E} 2} \mathbf{x}^{2}\right),
$$

where $x=1.0 / \tan (\theta) * \sin \phi, y=1.0 / \tan (\theta) * \cos \phi$
2.c Estimation of positioning error

When estimated slant delay ($\tau_{\text {est }}$) is larger (smaller) than simulated delay (τ), the receiver position was shifted to opposite (same) side of satellite.

Positioning error (Beutler, 1988): $\delta \mathbf{x}=-\Sigma\left\{\left(\tau-\tau_{\text {est }}\right) \cos \theta \sin \phi\right\} / \mathbf{N}$, $\delta \mathrm{y}=-\Sigma\left\{\left(\tau-\tau_{\text {est }}\right) \cos \theta \cos \phi\right\} / \mathrm{N}$, $\delta \mathbf{z}=-\Sigma\left\{\left(\tau-\tau_{\text {est }}\right) \sin \theta\right\} / \mathbf{N}$

Analysis process

Zenith delay

Numerical weather model

- Non-hydrostatic model of Meteorological Research Institute
- Variables: U V ρ P $\boldsymbol{\theta}$ $\mathbf{q}_{\mathbf{v}} \mathbf{q}_{\mathbf{c}} \mathbf{q}_{\mathrm{r}} \mathbf{q}_{\mathrm{s}} \mathbf{q}_{\mathrm{h}} \mathbf{q}_{\mathrm{i}}$ etc.
- Horizontal grid : 250m
- Initial data: upper sounding

1. Actual positions of GPS receivers and satellites were used. (cutoff angle 15°)
2. The path was found by using the ray tracing method.
3. Slant delays were obtained by integrating the delay along the path.

Cartesian grid relative to a receiver

Topography relative to GPS receiver

Horizontal distribution of N at $\mathrm{z}=3 \mathrm{~km}$

- Refractivity(N) on the Cartesian grid was calculated from simulated data (Thayer,1974).
- Delay was calculated from refractivity (\mathbf{N}).

Outline of ray tracing method

Derivation of equation ${ }^{(1)}$

- d/ds(n dX/ds) = $\mathrm{\nabla n}$ where, \mathbf{X} : position of tracer, n : refractivity, s : increment of tracing distance (100 m)
- When $\mathbf{Y}=\mathrm{nd} \mathbf{X} / \mathrm{ds}$ is introduced, a equation (1) become

$$
\begin{equation*}
\mathrm{d} \mathbf{Y} / \mathrm{ds}=\nabla \mathrm{n} \quad \ldots(2) \quad \mathrm{d} \mathbf{X} / \mathrm{ds}=\mathbf{Y} / \mathrm{n} \tag{3}
\end{equation*}
$$

- Furthermore, $\mathrm{d} \tau=\mathrm{ds} / \mathrm{n}$ is introduced. Equation (2) and (3) became

$$
\begin{equation*}
\mathrm{d} \mathbf{Y} / \mathrm{d} \tau=\mathrm{n} \nabla \mathrm{n} \ldots(2)^{\prime} \quad \mathrm{d} \mathbf{X} / \mathrm{d} \tau=\mathbf{Y} \tag{3}
\end{equation*}
$$

Ray tracing technique ${ }^{(2)}$

- At the starting point of tracing,

$$
\mathbf{X}_{0}=0, \quad \mathbf{Y}_{0}=\mathrm{n}_{0} \mathrm{~d} \mathbf{X} / \mathrm{ds}
$$

- \mathbf{X} is calculated as follows;

$$
\begin{aligned}
\mathbf{X}_{\mathrm{m}+1} & =\mathbf{X}_{\mathrm{m}} \quad+\mathrm{d} \tau * \mathbf{Y}_{\mathrm{m}+0.5} \\
\mathbf{Y}_{\mathrm{m}+1.5} & =\mathbf{Y}_{\mathrm{m}+0.5}+\mathrm{d} \tau *(\mathrm{n} \nabla \mathrm{n}) \text { at } \mathbf{X}_{\mathrm{m}+1}
\end{aligned}
$$

- $\mathbf{Y}_{0.5}$ is estimated, implicitly.
$\mathbf{X}_{1}=\mathbf{X}_{0}+\mathrm{d} \tau * \mathbf{Y}_{0.5}$
$\mathbf{Y}_{0.5}=\mathbf{Y}_{0}+1 / 2 * \mathrm{~d} \tau *(\mathrm{n} \nabla \mathrm{n})$ at $\mathbf{X}_{0.25}=\mathbf{Y}_{0}+1 / 2 * \mathrm{~d} \tau *(\mathrm{n} \nabla \mathrm{n})$ at $\left(\mathbf{X}_{0}+\mathrm{d} \tau^{*} \mathbf{Y}_{0.5} / 4\right)$

3. Mountain lee wave simulated by

numerical model (7 March 1997)

- Line-shaped cloud bands -Orientation:
 north-south direction -Location:
East of Izu peninsula -Wave length : ~15km
- Numerical model simulated well mountain lee wave.

Schematic illustration of mountain lee wave and water vapor distribution (Shimada et al. 2001)

Positions estimated with 'Constant model'

Zenith wet delay

Movement of position with model of $\tau_{\text {est }}=\tau_{\text {zen }} \mathbf{m}(\theta)$.

Gradient estimated with 'Linear gradient model'

Linear gradient model: $\tau_{\text {est }}=\tau_{\text {zen }} m(\theta)+m(\theta) / \tan (\theta)\left(G_{\mathrm{N}} \cos \phi+\mathrm{G}_{\mathrm{E}} \sin \phi\right)$.

Observed gradient at el. $=10^{\circ}$
1997/03/07 00:00-24:00UT HORIZONTAL GRADIENTS

-Simulated gradients pointed to large PWV region from small PWV region.
-Simulated directions of gradient are consistent with observed ones, except KWN and 3042.

Simulated gradient at el. $=10^{\circ}$

Total delay converted in the zenith direction (m)

Improvement of positioning error by using the gradient

positioning error

Delays in the zenith direction (m)

SITE:5105

Residual (m) $\left(=\tau-\left(\tau_{\text {cen }} m(\theta)+m(\theta) / \tan (\theta)\left(G_{N} \cos \phi+G_{E} \sin \phi\right)\right)\right)$
SITE:2108

- Positioning error was reduced by using 'Linear gradient model'.
- Large positioning error remained at 2108 where delay did not vary linearly. \leftarrow Large residual in red circle causes the large error.

Number of wave in Skymap is a half at most

 \rightarrow Atmospheric Model is extended to 'Second-order model' $\tau_{\text {est }}=\tau_{\text {zen }} m(\theta)+m(\theta)\left(\mathbf{G}_{\mathrm{N}} \mathbf{y}+\mathbf{G}_{\mathrm{E}} \mathbf{x}+\mathbf{G}_{\mathrm{N} 2} \mathbf{y}^{2}+\mathbf{G}_{\mathrm{NE}} \mathbf{x y}+\mathbf{G}_{\mathrm{E} 2} \mathbf{x}^{2}\right)$,where $x=1.0 / \tan (\theta) * \sin \phi, y=1.0 / \tan (\theta) * \cos \phi$
positioning error

Residual (m) ($\left.=\tau-\left(\tau_{\text {zen }} \mathbf{m}(\theta)+\mathbf{m}(\theta) / \tan (\theta)\left(\mathbf{G}_{\mathrm{N}} \cos \phi+\mathbf{G}_{\mathrm{E}} \sin \phi\right)\right)\right)$
SITE:2108

- Large positioning error remained where delay did not vary uniformly (red circle).

$$
\left(=\tau-\tau_{\mathrm{ze}} \mathbf{m}(\theta)+\mathbf{m}(\theta)\left(\mathbf{G}_{\mathrm{N}} \mathbf{y}+\mathbf{G}_{\mathrm{E}} \mathbf{x}+\mathbf{G}_{\mathrm{N} 2} \mathbf{y}^{2}+\mathbf{G}_{\mathrm{NE}} \mathbf{x y}+\mathbf{G}_{\mathrm{E} 2} \mathbf{x}^{2}\right)\right)
$$

- Second-order model reduces positioning error.
- Residual in a red circle was decreased.

Number of wave in Skymap is a half at most
\rightarrow Atmospheric Model is extended to Second-order model $\tau_{\text {est }}=\tau_{\text {zen }} \mathbf{m}(\theta)+\mathbf{m}(\theta)\left(\mathbf{G}_{\mathrm{N}} \mathbf{y}+\mathbf{G}_{\mathrm{E}} \mathbf{x}+\mathbf{G}_{\mathrm{N} 2} \mathbf{y}^{2}+\mathbf{G}_{\mathrm{NE}} \mathbf{x y}+\mathbf{G}_{\mathrm{E} 2} \mathbf{x}^{2}\right)$,
where $x=1.0 / \tan (\theta) * \sin \phi, y=1.0 / \tan (\theta) * \cos \phi$

Positioning error

Positioning error in east-west direction (m)

Linear gradient model

Second-order model

- E-W component of residual (O-C) is expressed as $-\left(\tau-\tau_{\text {est }}\right) \cos \theta \sin \phi$.
- Second order model reduces
E-W component of residual (O-C)
- Large residual in a red circle was decreased.

Improvement of vertical positioning error at 2107

$$
\delta \mathrm{z}:-\Sigma\left\{\left(\tau-\tau_{\mathrm{est}}\right) \sin \theta\right\} / \mathbf{N} \quad \delta \mathrm{z}:-\Sigma\left\{\left(\tau-\tau_{\mathrm{est}}\right) \sin \theta\right\} / \mathbf{N}
$$

Zenith total delay SITE:2107
$\delta \mathrm{z}=0.687 \mathrm{~cm}$
with linear gradient model

SITE:2107 with second-order model SITE:2107

$\delta \mathrm{z}=0.187 \mathrm{~cm}$

- When the delays is estimated with second order model, vertical positioning errors were reduced.

Improvement of vertical positioning error

-'Constant model', 'Linear gradient model':
Large residual $\mathrm{O}-\mathrm{C}$ existed at the large elevation angles.

- Vertical component : Large residual was multiplied by $\sin \theta$,
\Rightarrow Large vertical positioning error remained.
\bullet-Second-order function fitting model' :
Residual at the large elevation angle is small
\Rightarrow Vertical positioning error was reduced

5. Summary

- The positioning error was evaluated with the delays simulated by the numerical weather model. Simulated refractivity distributions are useful for evaluation of positioning error.
- Small scale variation of delay
-Positioning error is greatly reduced by using gradient model.
-Second order curve fitting model improves the positioning error further.
-Second order term is essential for the improvements of vertical positioning error.

Acknowledgement
This study is the results of the GPS meteorology / Japan. Authors thank
Prof. Heki and Dr. Iwabuchi for advising estimation method of the positioning error.

