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Abstract

Numerous e¤orts have been made for evaluating the performance of global climate models with such expecta-
tion that those models with higher reproducibility of the current climate should provide more reliable projections
of climate changes into the future. Attempts have been made to define a single general metric through which the
overall performance of a global climate model can be assessed. On the basis of general metrics defined through
several techniques of multivariate analysis, the present study compares global climate models from a viewpoint
of their reproducibility of climatological-mean fields of multiple variables. The analyses indicate that a repro-
ducibility of a particular variable is not necessarily independent of that of others, which may bring redundant
information into a general metric. The model reproducibility in upper and mid-tropospheric temperature and
lower-tropospheric humidity, for example, tends to be anti-correlated with that in upper and mid-tropospheric
humidity. It is argued that attention has to be paid to this kind of trade-o¤ relationships among some variables
and resultant redundancy in synthesizing multiple metrics. A possibility is suggested that an arbitrary selection of
variables can yield some redundant information of variables. The redundancy is, however, found to exert no seri-
ous influence on the quality of a general metric as long as it is based on the su‰cient number of variables. In our
attempt to evaluate the climate models by introducing general performance metrics with reduced redundancy of
variables, the overall model ranking is found rather insensitive to the specific definition of the metric.

1. Introduction

Quantitative projections of future climate
changes depend more or less on numerical climate
models. A multi-model ensemble (MME) is known
to outperform individual models in reproducing the
current climatic state owing to a tendency for their
biases to cancel each other (e.g., Knutti et al. 2010).
The MME future projection has therefore been be-
lieved to be more reliable than the corresponding
projection based on a single model, as exemplified
in the Intergovernmental Panel on Climate Change
(IPCC) Fourth Assessment Report (AR4; Solomon
et al. 2007). In AR4 a simple algebraic average of
the outputs from more than 20 global climate mod-
els that participated in the World Climate Research
Programme’s (WCRP’s) Coupled Model Intercom-
parison Project Phase 3 (CMIP3; Meehl et al. 2007)
is used as the best guess for the future projection.
The cancellation of model biases is, however, not
necessarily perfect. For example, a group of the
CMIP3 models in which a particular parameteriza-
tion scheme is commonly adopted, say, for cumulus
convection may su¤er from a common bias, sug-
gesting that model biases are not necessarily distrib-
uted randomly. Even if model biases were distrib-
uted randomly, the number of available models
would be unlikely su‰cient for their perfect cancel-
lation (e.g., Knutti et al. 2010). In fact, the e¤ective
number (or degrees of freedom: DOFs) of the
CMIP3 models has been estimated to be only be-
tween five and ten (Jun et al. 2008a, 2008b; Knutti
et al. 2010; Pennell and Reichler 2010). In other
words, the amount of information provided as an
ensemble of those models may be less than what

would be expected under the assumption that all
the models were mutually independent1.

Spatial similarity of biases in such a model vari-
able as climatological-mean surface air temperature
(SAT) is often used as a measure of independency
among the models. In addition to the insu‰cient ef-
fective number of models as discussed above, the
e¤ective number of these measures may also be lim-
ited. In fact, Yokoi et al. (2011) have demonstrated
that a performance metric for a given variable
(hereafter referred to as ‘‘variable metric’’), which
quantifies the similarity of its model-simulated dis-
tribution to its observational counterpart, may be
correlated with other variable metrics under the
constraint, for example, of thermal wind balance
that relates circulation and thermal fields.

E¤orts have been made to define a single general
performance metric (hereafter referred to as ‘‘gen-
eral metric’’) into which various aspects of model
performance are incorporated (Gleckler et al.
2008; Reichler and Kim 2008). This general metric
can be used for determining weights for individual
models to synthesize their outputs for defining an
optimal MME (e.g., Murphy et al. 2004). Usually
in defining a general metric, reproducibility of vari-
ous variables is estimated separately on the basis of
variable metrics before summed up, but what vari-
ables to be chosen is rather arbitrary. In fact,
Knutti et al. (2010) pointed out ‘‘there is virtually

3 Annan and Hargreaves (2010) showed that in a para-
digm of statistically indistinguishable ensemble,
CMIP3 models are well distributed in a sense that ob-
servations can be considered as a member of the
CMIP3 ensemble.
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an infinite number of metrics that can be defined’’.
Furthermore, Yokoi et al. (2011) argued that a gen-
eral performance metric might be marred if seri-
ously biased variables are incorporated into it. Fur-
thermore, adding a new variable metric to a general
metric may not necessarily lead to an e¤ective in-
crease in the information included in the metric, if
the new variable is linked closely to any of the vari-
ables that have already been incorporated into the
metric. In this case, the addition will introduce
some redundant information, or even some bias, to
the new general metric. In any case, ‘‘we currently
have no basis for assigning unequal weights for
any variables’’ (Sexton and Murphy 2003) in defin-
ing a general metric.

This study is motivated by Gleckler et al. (2008),
who argued ‘‘it might be fruitful to explore a wide
range of metrics, rather than striving for a single
index of overall skill, and then to use some objec-
tive method to reduce redundant information (e.g.,
SVD)’’. We examine linkages among variable met-
rics for the CMIP3 models by applying several
techniques of multivariate analysis. We identify
positively-correlated variable metrics in particular
variable groups and other metrics showing trade-
o¤ reproducibility of variables. We then propose
several definitions for general metrics in our at-
tempt to reduce redundancy.

The metrics defined in the following sections are
based only on the climatological-mean state. It
should be pointed out that they do not necessarily
capture every aspect of the performance of a cli-
mate model, since its reproducibility of the mean
state and that of natural variability around it do
not necessarily correlate positively (Gleckler et al.
2008; Santer et al. 2009). Another possible defect
of our metrics arises from their rather straightfor-
ward definition. It has been pointed out that most
of such straightforward metrics as area-mean biases
and root-mean-square errors for the present day cli-
mate do not necessarily be applicable well to future
projections (Whetton et al. 2007; Abe et al. 2009;
Girogi and Coppola 2010; Knutti et al. 2010). Re-
cently, e¤orts have been devoted to finding metrics
that can connect current climate reproducibility
reasonably to future projection (Hall and Qu 2006;
Boe et al. 2009; Shiogama et al. 2011), where these
metrics are expected to reduce uncertainty in future
projections based on ensembles of climate models.
In addition, a new paradigm of a statistically indis-

tinguishable ensemble has been proposed (Annan
and Hargreaves 2010), which di¤ers from the par-

ticular paradigm we adopt here that ensemble
members are assumed to be distributed around the
true climate. Despite the defects mentioned above,
we nevertheless use our metrics because our main
goal is to explore inter-variable relationships of
multiple metrics.

2. Data and analysis methods

2.1 Climate models and observed data

The multi-model dataset of the 20th Century Cli-
mate in Coupled Models (20C3M) experiment in
CMIP3 (Meehl et al. 2007) is utilized in this study.
In Table 1, the 22 variables used for our analysis
are listed with their abbreviations for reference.
For each of the variables, model output data from
24 climate models are compared with observational
data whose source and available periods are also
listed in Table 1. Most of the variables are obtained
from the Japanese 25-year reanalysis (JRA-25) of
the global atmosphere (Onogi et al. 2007). We
have verified that the usage of the European Centre
Medium-Range Weather Forecast 40-yr Reanalysis
(ERA40) data set (Uppala et al. 2005) in place of
JRA-25 yields no substantial changes in the results
presented below. We define a variable metric for
the i-th model (i ¼ 1; . . . ; I ) and the j-th variable
( j ¼ 1; . . . ; J) as

Cij ¼
1

sj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

12W

X12
k

XL
l

wlðmijkl � oijklÞ2
vuut ; ð1Þ

where sj denotes standard deviation of the ob-
served interannual variability of the j-th variable,
wl a local area weighting factor at the l-th grid
point (l ¼ 1; . . . ;L), W ¼ Swl , and mijkl and oijkl
are the simulated and observed climatological
means of the j-th variable for the k-th calendar
month (k ¼ 1; . . . ; 12), respectively. SjC

2
ij=J is

equivalent to the Climate Prediction Index (CPI;
Murphy et al. 2004) for the i-th model. Since avail-
able periods for observed OLR and SWTOA are
too short for a robust estimation of their interan-
nual variances (Table 1), the estimation was based
on the JRA25 data. A shortcoming of such metrics
as ours that include mean square errors is that they
cannot incorporate the signs of model errors. This
may artificially reduce the e¤ective variable number
estimated in our analysis.

The inter-model variance in C is not necessarily
comparable in magnitude among the variables. For
example, standard deviations are large in upper and
mid-tropospheric temperature and specific humidity
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fields (Fig. 1). In Section 3, variances in C have
been standardized with inter-model standard devi-
ations, to explore relationships among variable
metrics. However, no standardization has been ap-
plied to C in Section 4, where we discuss general
performance metrics that have to be related to the
model reproducibility of variables and therefore
their inter-model variances must be explicitly incor-
porated.

2.2 Multivariate analysis techniques

In this subsection we briefly introduce three mul-
tivariate analysis techniques applied to C in the

present study. One of them is a cluster analysis. As
in Yokoi et al. (2011), we apply a cluster analysis to
a set of variable metrics, to identify several groups
of variable metrics that exhibit similar behaviors.
We adopt so-called Ward (1967) method, which is
based on the Euclidian distance between any pair
of clusters in the phase space.

Unlike the cluster analysis, a principal compo-
nent analysis (PCA), or an empirical orthogonal
function (EOF) analysis, seeks for basis vectors that
can be regarded as new ‘‘variable’’ metrics each of
which can represent behaviors of multiple variable
metrics. Before performing a PCA the RMS biases

Table 1. List of used variables and reference dataset. JRA25 is for Japan Re-Analysis (Onogi et al. 2007). HadSST2 is
for the Second Hadley Centre Sea Surface Temperature dataset (Rayner et al. 2006). ISCCP is for the International
Satellite Cloud Climatology Project (Rossow and Schi¤er 1999). ERBE is for Earth Radiation Budget Experiment
(Barkstrom et al. 1989). CMAP is for the CPC Merged Analysis of Precipitation (Xie and Arkin 1997).

Variable Description Reference Period

SLP Sea level pressure JRA25 1979–1999

U200 200-hPa zonal wind JRA25 1979–1999

U850 850-hPa zonal wind JRA25 1979–1999

V200 200-hPa meridional wind JRA25 1979–1999

V850 850-hPa meridional wind JRA25 1979–1999

T300 300-hPa air temperature JRA25 1979–1999

T500 500-hPa air temperature JRA25 1979–1999

T600 600-hPa air temperature JRA25 1979–1999

T700 700-hPa air temperature JRA25 1979–1999

T850 850-hPa air temperature JRA25 1979–1999

Q300 300-hPa Specific humidity JRA25 1979–1999

Q600 600-hPa Specific humidity JRA25 1979–1999

Q700 700-hPa Specific humidity JRA25 1979–1999

Q850 850-hPa Specific humidity JRA25 1979–1999

LH Surface latent heat flux JRA25 1979–1999

SH Surface sensible heat flux JRA25 1979–1999

SAT Surface (2 m) air temperature JRA25 1979–1999

SST Sea surface temperature HadSST2 1979–1999

CloudC Cloud cover ISSCP-D2 1984–1999

OLR Outgoing longwave radiation ERBE Feb. 1985–Feb. 1990

SWTOA Reflected shortwave radiation ERBE Feb. 1985–Feb. 1990

Prec Total precipitation CMAP 1979–1999
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of individual variables within the model ensemble
have been subtracted from the CPI matrix C de-
fined in (1):

C 0 ¼ fC 0
ijg ¼ Cij �

1

I

X1

i

Cij

( )
: ð2Þ

The resultant matrix C 0 can be decomposed in PCA
into a pair of orthogonal matrices:

C 0 ¼ U 0V 0T ; or C 0
ij ¼

XR
r

U 0
irV

0
jr; ð3Þ

where U 0 ¼ fU 0
irg, V 0 ¼ fV 0

jrg and r ¼ 1; . . . ;R
(R ¼ minðI ; JÞ). In this factorization, the i-th row
vector of C 0 (a set of variable metrics for the i-th
model) is represented by a linear combination of
the R column vectors in V 0, called basis vectors or
EOFs, with the corresponding i-th row vector of U 0

that represents a set of their coe‰cients that scores
reproducibility of the i-th model.

As in the case of PCA, non-negative matrix fac-
torization (NMF; Lee and Seung 1999) decomposes
the CPI matrix C in (1). Unlike PCA, however,
NMF decomposes C directly:

CAPQT ; ð4Þ

taking advantage of the fact that every element of
C is nonnegative. In (4), P and Q are nonnegative
I � R and J � R matrices, respectively, but not
necessarily orthogonal. Here, a positive integer R

satisfies R < IJðI þ JÞ�1.
Figure 2 schematically compares basis vectors

obtained through (a) PCA and (b) NMF applied
to a hypothetical two-variable metric data set. The
origin of the PCA basis vectors is situated at the
center of balance between the two model groups
that corresponds to the RMS bias in (1). The lead-
ing PCA vector is in the direction of the maximum
variability of the metrics, and the second PCA vec-
tor must be orthogonal to the leading vector. In
contrast, the NMF basis vectors are not orthogonal
mutually. In a hypothetical situation where there
are only two groups of climate models as in Fig. 2,
the two NMF basis vectors are inclined to point
those groups. In the particular phase space illus-
trated in Fig. 2, a model with lower reproducibility
of the current climatic state tends to be more dis-
tant from the origin2. The particular distance can
therefore be regarded as a general performance
metric, and the projection of the state vector of a
given model onto a NMF basis vector can thus be
considered as a new variable metric that comprises
multiple variables showing similar behaviors. A
general performance metric thus defined should be
subject to a certain degree of redundancy, which
can nevertheless be reduced in synthesizing these
projections. This contrasts with the PCA vectors
that do not necessarily point the origin of the phase
space but may rather represent trade-o¤ reproduci-
bility among the variables.

While some suggestions have been made on how
many basis vectors should be retained for PCA, no

Fig. 1. Inter-model standard deviations of
Cij , defined in (1). See text for details.

Fig. 2. Comparison among basis vectors,
represented by arrows a and b, obtained
by (a) PCA and (b) NMF, in a phase space
of a hypothetical two-variable coordinate
system. Ovals in each panel denote distri-
butions of the points that represent errors
(biases) of the individual models.

4 Here we assume that both internal climate variabil-
ity and observational errors are much smaller than
the model bias, as is likely the case for most of the
models.
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objective criterion has been proposed thus far for
determining R in NMF. In fact, Schlink and Thiem
(2009), who applied NMF to identify dominant
patterns of atmospheric variability, determined R

empirically after several trials in varying R. While
relative importance of a given set of PCA basis
vectors can be assessed with the corresponding ei-
genvalues, the order of NMF basis vectors can-
not be uniquely determined. With this peculiarity
of NMF, all the basis vectors should be treated
evenly.

3. Relationship among multiple variable metrics

3.1 Cluster analysis

Figure 3 shows a dendrogram based on our clus-
ter analysis that was applied to a set of C after
standardizing inter-model variances. We adopted
a stopping rule of Calinski and Harabasz (1974).
Though not particularly distinct, the maximum of
the pseudo-F function in their definition, which is
the ratio of the inter-cluster variance based on the

means of the individual clusters to the mean of the
intra-cluster variances, was found to be realized
when the model members were categorized into
two main clusters. This result of our cluster analysis
may be attributable to the artifact of RMSE-based
metrics where the signs of biases are neglected. One
of the two main clusters consists of upper and mid-
tropospheric temperature (T300, T500, T600, T700)
and lower-tropospheric humidity (Q850), whose
combination may be understandable except for
humidity. The other main cluster, which consists
of the 17 other variables, comprises several sub-
clusters. One of them consists of lower-tropospheric
temperature (T850), SAT and sea surface tempera-
ture (SST), whose close association in the climate
models is understandable. However, interpretation
of some of the other sub-clusters is not necessarily
straightforward. It seems counterintuitive, for ex-
ample, that model biases in surface sensible and
latent heat fluxes are not closely related to those in
either SAT or SST. As argued by Yokoi et al.

Fig. 3. Dendrogram of the cluster analysis that is applied to Cij defined in (1).
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(2011), the mixture between variables that can yield
model biases in their global-mean values (e.g., SLP
and temperature fields) and those that cannot (e.g.,
meridional wind velocity) may complicate the inter-
pretation.

3.2 PCA

We applied PCA to the same set of C as above
through the eigenvalue decomposition of its corre-
lation matrix (Fig. 4). Fractions of the total vari-
ance explained by these modes are 36%, 21%, 9%,

Fig. 4. (a) Loadings of individual variables (abscissa) for the leading PCA modes, and (b) its scores for indi-
vidual models (abscissa). (c, e) Same as in (a), but for second and third modes, respectively. (d, f ) Same as
in (b), but for the second and third modes, respectively.

February 2012 K. NISHII et al. 93



7%, 6% and 5%. Thus more than 80% of the total
variance is explained by the six leading modes,
which means that most of the information of the
22 variables can be accounted for only by these
six modes. The first mode represents the overall
model performance (Fig. 4a). Models that earn
large negative scores of this mode tend to show
high reproducibility in 16 out of the 22 variables
but not for upper and mid-tropospheric tempera-
ture (T300, T500, T600, T700), lower-tropospheric
humidity (Q850) and cloud cover (Fig. 4d). Mean-
while, reproducibility of most of these six variables
is measured by the second PCA mode (Fig. 4b),
and its large negative score represents high repro-
ducibility of those variables (Fig. 4e). In contrast
to these two leading modes, the higher modes rep-
resent trade-o¤ relationships in reproducibility
among the 22 variables (Figs. 4c and 4f ), and there-
fore none of these modes alone can be used as
a measure of the overall performance of a given
model. The trade-o¤ relationships found in the
analysis by Yokoi et al. (2011) and ours may sug-
gest that one should not focus too much on the
model reproducibility only of a particular aspect,
in order to avoid its over-tuning at the expense of
other aspects. We should keep in mind, however,
that the trade-o¤ relationships represented by the
higher modes tend to be more or less overempha-
sized due to an artifact of PCA (Lee and Seung
1999).

3.3 NMF

Our cluster analysis implies that the DOFs of the
variable metrics of C may be only two, while the
six leading modes are retained for our PCA. In rec-
ognition of this uncertainty, we repeatedly applied
NMF to the standardized C, changing R from two
to six. Figure 5 presents the results for R ¼ 2 as a
typical example. In Fig. 5, a small value in Pir sug-
gests high reproducibility of the i-th model in a par-
ticular aspect represented by the r-th column vector
of Q. The first NMF mode for R ¼ 2 measures the
reproducibility of upper and mid-tropospheric tem-
perature and lower-tropospheric humidity, whereas
that of upper and mid-tropospheric humidity is
scored e¤ectively by the second mode. The group-
ing of the variables into the two NNF modes is
overall consistent with the corresponding grouping
in our cluster analysis and PCA. The characteristic
of the first mode for R ¼ 2 is fairly robust as it is
reproduced in the second mode for R ¼ 3 (not
shown). A positive score of the first NMF mode

with R ¼ 3 corresponds to lower reproducibility of
upper and mid-tropospheric humidity, T850, SAT
and SST. The third mode implies better reproduci-
bility of temperature fields in those models with
large Q values at the expense of that of other vari-
ables.

4. Attempts for synthesizing multiple variable

metrics for reduced redundancy

Several methods have been proposed for synthe-
sizing multiple variable metrics, but some of them,
including an algebraic mean of the variable metrics,
are rather ad hoc. Utilizing the multivariate analy-
ses discussed above, we make several attempts to
reduce redundant information in a set of multiple
variable metrics in defining a scalar metric as a
measure of model’s general performance (‘‘general
metric’’), as in Yokoi et al. (2011). In our attempts,
we try to evaluate the overall performance of the
i-th model with R (r ¼ 1; 2; . . . ;R) new variable
metrics defined as:

~CCir ¼
SjojrCij

Sjojr

; ð5Þ

where ojr signifies the weighting for the r-th metric
that has been defined through one of the analysis
methods discussed above. For the cluster-analysis-
based CPI, ojr ¼ 1 if the j-th variable belongs to
the r-th variable cluster or ojr ¼ 0 otherwise. For
the NMF-based metrics, ojr ¼ Qjr. A new general
metric for the i-th model with reduced redundancy
may thus be given as

D̂Di ¼
Sr

~CC 2
ir

R
: ð6Þ

Our cluster analysis of the unnormalized C gives us
R ¼ 3, because the pseudo F reaches its maximum
for three main clusters, whereas PCA for the unnor-
malized C suggests R ¼ 4, because the four leading
modes explain more than 80% of the total variance
represented as the trace of the covariance matrix of
C. On the basis of these results R ¼ 3 and 4 are
tested for our NMF, but their di¤erence is so small
that only results for R ¼ 3 are discussed in the fol-
lowing.

We also utilize total energy (TE; Talagrand
1981), which has been used as a norm for evaluat-
ing forecast errors. In our practice, TE is integrated
over the global domain A:
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TE ¼ 1

2

ðð (
u 02 þ v 02 þ Cp

Tr

T 02 þ RTr

p 0
s

pr

� �2

þ L2

CpTr

q 02

)
dA dp ð7Þ

where primes denote deviations from the observa-
tions, u westerlies, v southerlies, Cp specific heat at
constant pressure, L latent heat, R gas constant, T
temperature, Tr reference temperature, and q spe-
cific humidity. In (7), the vertical integration was
performed between the p ¼ 200 and 1000 (hPa) lev-
els. No evaluation was made, however, for the term
that includes surface pressure (ps), which is not
available in some of the CMIP3 model output.
Strictly speaking, TE cannot be regarded as a gen-
eral metric for model performance, since solar and

terrestrial radiations, surface heat fluxes and cloud
cover are all excluded from it. It can nevertheless
o¤er a physically meaningful means for synthesiz-
ing dynamical and thermal variables in defining a
metric. As another general metric, we also adopt
the same definition as the Model Climate Perfor-
mance Index (MCPI; Gleckler et al. 2008), which
is a simple summation of the conventional vari-
able metrics but with the variable metrics listed in
Table 1.

Figure 6 compares the model rankings based on
the aforementioned general metrics. Models that
are evaluated at higher rankings based on a par-
ticular general metric tend to be ranked at higher
positions based on the other general metrics. Al-
though the TE-based model ranking tends to devi-
ate slightly from those based on the other metrics,
the overall consistency among the model rankings

Fig. 5. (a) First column vector of Q that represents weights of individual variables (abscissa) for measure of
the reproducibility of the CMIP3 models (abscissa) as represented by (b) the column vectors of P both for
the first mode of NMF with R ¼ 2. (c, d) As in (a, b), respectively, but for the second mode.
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based on the various general metrics implies that
the reproducibility of the dynamical variables is
more or less related to that of the physical vari-
ables.

Figure 7 shows the numbers of variable metrics
that are ranked as the top five (squares with solid
line) and bottom five (triangles with dotted line)
among the 24 CMIP3 models. The models are

listed in descending order according to the CPI-
based general metric. The figure indicates an over-
all tendency for models with higher (lower) ranking
based on the CPI-based general metric to exhibit
higher (lower) reproducibility with respect to a
greater number of variable metrics. For example,
ECHAM5/MPI-OM, the best model based on the
general metric, is ranked among the top five of the

Fig. 6. Ranking (ordinate) of the CMIP3 models (abscissa) determined through general metrics based on the
CPI (square), cluster analysis (rhombus), NMF (downward-pointing triangle), MCPI (upward-pointing tri-
angle) and TE (rightward-pointing triangle), as indicated. See text for details.

Fig. 7. The number of variable metrics (metrics) that are ranked as the top five (squares with solid line) and
bottom five (triangles with dotted line) among the models. Models (abscissa) are listed in descending order
according to the rank of CPI.
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24 models with respect to as many as 15 variable
metrics, while only a single variable metric ranks
this model (ECHAM5/MPI-OM) among the bot-
tom five. In contrast, the three models that earn
the lowest scores of the general metric are not
ranked among the top five with respect to any of
the variable metrics. Meanwhile, such models as
GFDL-CM2.1, MRI-CGCM2.3.2, CSIRO-Mk3.5
and GFDL-2.0 earn the top five scores in as many
variable metrics as the higher-ranked models based
on the general metric do so. Those models exhibit,
however, the relatively low reproducibility in air
temperature and humidity, whose inter-model vari-
ances tend to be large (Fig. 1). This is hinted at in
Figs. 5b and 5d, where these models earn high
scores in P. Our results suggest that a general met-
ric based on an unnormalized matrix C may likely
be influenced substantially by the reproducibility of
variables with large inter-model variances.

5. Discussion and conclusions

In this paper, we have compared several multi-
variate analysis methods that can be used for ex-
tracting relationships among variable metrics.
While details are dependent of specific analysis
methods, there are nevertheless some common fea-
tures in the resultant grouping of the variable met-
rics. Some groups of the metrics obtained as the
leading PCA or NMF modes are characterized by
variable metrics whose inter-model variances are
large and can thereby score the overall performance
of the models. In contrast, other groups represent
trade-o¤ relationships among the variables in their
model reproducibility.

We have also proposed several methods to re-
duce redundancy in variable metrics before defining
a general metric that scores the general perfor-
mance of climate models. Model rankings are,
however, rather insensitive to the particular defini-
tion of the general performance metric (Fig. 6).
These results suggest that (i) a general performance
metric that consists of a su‰ciently large number of
variable metrics is unlikely to be influenced signifi-
cantly by the redundancy of variables, and (ii) good
models tend to show high reproducibility in various
aspects, at least based on the metrics used in this
study (Fig. 7).

Basically our metrics are based on RMSE from
the observed climatology3, even in the estimation
with the total energy norm. Thus one may consider
that this similarity in the definition of the metrics
based on CPI, MCPI and TE may lead to the simi-

larity among the model rankings based on those
metrics as shown in Fig. 6. We have compared the
model ranking based on CPI with those on the pat-
tern correlations and RMSE of global-mean biases
(Fig. 8). Although the similarity among those three
rankings is weaker if compared to that among the
rankings shown in Fig. 6, there is still a tendency
that those models with higher rankings based on
CPI tend to be ranked also in higher positions
based on the pattern correlation and global-mean
biases.

As noted in the introduction, metrics that are re-
lated to future projections have been sought (Hall
and Qu 2006; Boe et al. 2009; Shiogama et al.
2011). Though it is beyond the scope of the present
study, it will be valuable to assess briefly whether
the simple metrics defined in this study may have
any relevance to future projection. Following Abe
et al. (2009), we compared inter-model similarity
of present-day climate simulation with that of pro-
jected future change. The inter-model similarity is
evaluated between possible pairs of the CMIP3
models based on CPI (Fig. 9a) or single variable
metrics (Fig. 9b). The future change is based on
the di¤erence between the averages for the two pe-
riods, one for 2070–2099 of the A1B scenario ex-
periment and the other for 1970–1999 of the
20C3M experiment. More specifically, the former
average is assigned to mijkl and the latter to oijkl in
(1). sj is based on the current climate. Figure 9b
summarizes the correlation in the inter-model simi-
larities between the present-day climate and pro-
jected future change based on the same scatter plot
as in Fig. 9a but based on respective variable met-
rics. The figure indicates fairly high correlation be-
tween current climate and future change projection
based on single variable metrics, especially in OLR,
SWTOA and Prec, except for tropospheric temper-
atures. The high correlations of variable metrics
suggests that a pair of models that simulate similar
mean fields for the present-day climate tends to
yield similar future projection in the mean field, as
long as the similarity is measured by those vari-
ables. The correlation lowers if these variables are
synthesized in the form of CPI (0.21), while the cor-
relation is improved slightly (0.31) if temperature

5 Note that RMSE-based metrics provide us with
mixture of information on the similarity in model–
simulated and observed climatological-mean fields
of a given variable from multiple perspectives: the
global-mean bias and pattern similarities with respect
to spatial distribution and local amplitude.
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metrics are excluded. This modest correlation im-
plies that uncertainty that could emerge in the fu-
ture projection may not be well constrained by us-

ing a synthesized metric that consists of multiple
aspects, even if each of the metrics shows high cor-
relation between the present-day climate and future

Fig. 8. Comparison of rankings of the CMIP3 models. Small squares, rhombuses and double triangles de-
note the rankings based on CPI, horizontal pattern correlation and RMSE of global-mean biases, respec-
tively, between simulated and observed climatological fields. In the evaluation of the latter two, the pattern
correlations and global-mean biases for single variables are first estimated, and then their rankings among
the models are averaged, respectively. Models (abscissa) are listed in descending order according to the
rank of CPI. Note that ECHO-G is not listed, whose humidity data were lost due to a computer trouble.

Fig. 9. (a) Scatter plot between inter-model similarity of the 20c3m experiment (abscissa) and that of the pro-
jected future changes (ordinate) for all possible pairs of the CMIP3 models. The similarity is measured by
CPI that has been evaluated without specific humidity. The future change is based on the di¤erence be-
tween the averages for the two periods, one for 2070–2099 of the A1B scenario experiment and the other
for 1970–1999 of the 20C3M experiment. A line represents a regression line. (b) Correlations between the
inter-model similarity of the 20c3m experiment and that of the future change, which is based on the same
scatter plots as in (a) but for variables used in this study. The last one ‘‘CPI w/o T’’ denotes CPI evaluated
without T300, T500, T600, T700, and T850.
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projection. In our analysis, high correlations are
found in some variable metrics, but the physical
reasoning has not been uncovered.

Previous studies have pointed out that the
CMIP3 models are not mutually independent and
their e¤ective number is only between five and
ten (Jun et al. 2008a, 2008b; Pennell and Reichler
2010). The estimation of the e¤ective model num-
ber by using PCA is equivalent to that of the num-
ber of e¤ective metrics or measures of inter-model
similarity, since the numbers of nonzero eigen-
values of inter-model and inter-variable covariance
matrices of C are identical. As there are infinite
ways to define metrics, incorporating additional
metrics may increase the e¤ective model number.
While precise estimation of the e¤ective numbers
of models and variables may be of little worth, it
will be worthwhile to deepen our understanding of
inter-model and inter-metric relationships. In Sec-
tion 3, linkages were revealed among di¤erent vari-
able metrics for the CMIP3 models. Some of them
seem to reflect physical relationships among the
variables or in parameterization schemes, while
others may be mere artifacts of constraints among
the variables by a particular analysis method. Fur-
ther investigation is needed to identify the origins
of the revealed relationships. In Section 4, we at-
tempted to reduce redundancy among the variable
metrics in quantifying general performance of the
CMIP3 models. Still, no attempt has been made
for avoiding inter-model dependency that may dis-
tort the uncertainty (i.e., PDF) of the future projec-
tion in the ensemble of the CMIP3 models.

In the present study, we have focused on the
reproducibility of the climatological-mean fields,
whereas most of the studies on model reproducibil-
ity also focus on time-variability and long-term
trends. From a regional viewpoint, however, assess-
ing the model reproducibility of atmospheric phe-
nomena, including tropical and midlatitude cy-
clones and large-scale teleconnection patterns, is
necessary for reliable projection of their future
changes. Several studies applied process-oriented
performance metrics to the CMIP3 models (e.g.
Yokoi and Takayabu 2009; Nishii et al. 2009). Es-
pecially, Kosaka and Nakamura (2011) found that
models with better reproducibility of the climato-
logical-mean fields tend to show better reproduci-
bility of the most dominant summertime anomaly
pattern over the western North Pacific. Exploring
the relationships among process-oriented regional
metrics and global metrics based on climatological-

mean fields and their trends will be valuable in im-
proving global climate models.
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