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ABSTRACT

The overall performance of general circulation models is often investigated on the basis of the synthesis of

a number of scalar performance metrics of individual models that measure the reproducibility of diverse aspects

of the climate. Because of physical and dynamic constraints governing the climate, a model’s performance in

simulating a certain aspect of the climate is sometimes related closely to that in simulating another aspect, which

results in significant intermodel correlation between performance metrics. Numerous metrics and intermodel

correlations may cause a problem in understanding the evaluation and synthesizing the metrics. One possible

way to alleviate this problem is to group the correlated metrics beforehand. This study attempts to use simple

cluster analysis to group 43 performance metrics. Two clustering methods, the K-means and the Ward methods,

yield considerably similar clustering results, and several aspects of the results are found to be physically and

dynamically reasonable. Furthermore, the intermodel correlation between the cluster averages is considerably

lower than that between the metrics. These results suggest that the cluster analysis is helpful in obtaining the

appropriate grouping. Applications of the clustering results are also discussed.

1. Introduction

In recent years, the importance of general circulation

models (GCMs) for climate science and future pro-

jection has been increasingly acknowledged. For in-

stance, more than 20 GCMs participated in phase 3 of

the Climate Model Intercomparison Project (CMIP3;

Meehl et al. 2007a) to contribute to the Intergovern-

mental Panel for Climate Change (IPCC) Fourth As-

sessment Report. The archived output data from these

GCMs are recognized as being critically important for

multimodel-based analyses of the current state of the

climate and its future projection (Meehl et al. 2007b).

One approach to synthesize outputs of various GCMs

is a democratic ‘‘one model–one vote’’ framework,

whereas another approach is weighting or screening

GCMs depending on their performances (e.g., Santer

et al. 2009; Knutti et al. 2010). In the latter, determi-

nation of the weights or screening criteria is a major

issue. One way of determination is based on the eval-

uation of the overall performance of GCMs in simu-

lating diverse aspects of the climate relevant to the

purpose of the weighting or screening. Several studies

have examined the overall performance (Murphy et al.

2004; Gleckler et al. 2008; Pincus et al. 2008; Reichler

and Kim 2008). Murphy et al. (2004) introduced a cli-

mate prediction index on the basis of the reproducibility

of the climatological mean fields of 32 components of

surface and atmospheric variables for use as a weight-

ing function of GCMs for climate prediction. Gleckler

et al. (2008) evaluated the reproducibility of the global
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distribution of 22 variables, including atmospheric

temperature, wind, sea surface temperature, and ocean

surface heat and momentum fluxes, by using root-mean-

square errors (RMSE) between the simulations and the

observations as the metrics to evaluate the model per-

formance. Pincus et al. (2008) evaluated the model re-

producibility of atmospheric variables related to clouds,

precipitation, and radiation.

Because of the complexity of the climate, numerous

performance metrics that measure individual aspects of

the climate can be defined. Because even GCMs that

exhibit superior overall performance have some weak-

nesses in reproducing certain aspects of the climate

(Gleckler et al. 2008), we tend to end up with handling

numerous performance metrics to evaluate the overall

performance. It is complicated to understand the details

of the GCM performance when examining such a wide

range of performance metrics.

The overall performance metric defined for the weight-

ing or screening of GCMs may be a weighted average of

the individual metrics. For instance, Gleckler et al. (2008)

experimentally presented an overall metric that is a simple

average of the individual metrics they examined. For these

types of overall metric, we have to determine the weights

for numerous metrics, which is also a complicated task.

Incorporating numerous metrics may cause another

problem. If more metrics are incorporated in the eval-

uation, it is more likely that some will exhibit significant

positive intermodel correlation reflecting physical and

dynamic constraints, as briefly mentioned in Gleckler

et al. (2008). For instance, the geostrophic balance tends

to relate errors between horizontal wind and geo-

potential height; GCMs with smaller horizontal wind

errors tend to exhibit smaller geopotential height errors.

Such strong intermodel relationships may further

complicate the determination of the weights. Suppose

we examine three metrics, and two of them exhibit a

significant positive correlation and apparently represent

the same aspect of the climate, whereas the other rep-

resents a different aspect. If we want to incorporate the

performances in simulating the two aspects in an overall

metric with equal weight, the weight of the last metric

should be twice as large as the former. Unlike this simple

example, because we should examine numerous metrics

and aspects, it is much more complicated to completely

consider the relationships among the metrics for de-

termining of the weights.

Sometimes statistical approaches are used to synthe-

size the performance metrics. The strong relationships

may make it difficult to apply statistical approaches,

however, because some require statistical independence

among the metrics. For instance, we may perform a

multiple linear regression analysis between trends of a

certain climatological aspect projected by GCMs and

performance metrics to obtain reliable projection. This

method assumes the explaining variables (performance

metrics in this case) to be independent of each other,

however, so it will be difficult to appropriately determine

regression coefficients, which is the so-called multi-

collinearity problem.

We consider grouping such correlated performance

metrics beforehand to be one solution for addressing

these problems. By calculating averages of the metrics in

individual groups and using them as a new set of metrics

instead of the original ones, the number of metrics to be

considered will be reduced and the intermodel correla-

tion among the metrics will be generally less significant.

This will simplify the model evaluation and the un-

derstanding of the model performance. In this study, we

attempt to use simple cluster analysis to demonstrate its

applicability in obtaining the appropriate grouping.

The rest of the paper is organized as follows: section 2

explains the GCMs, variables, performance metrics, and

cluster analysis considered in this study. Section 3 demon-

strates successful grouping of the performance metrics by

cluster analysis. Section 4 discusses the application of the

clustering results. Section 5 briefly summarizes this study.

2. Data and performance metrics

a. Data

To demonstrate the significant intermodel correla-

tions between the performance metrics and the appli-

cability of the cluster analysis, we examine a set of

performance metrics for 3-month mean climatological

fields in the boreal summer (June–August) of 14 vari-

ables (Table 1). We evaluate the performance of 22

GCMs that participated in CMIP3. The GCMs include

the Bjerknes Centre for Climate Research Bergen Cli-

mate Model, version 2.0 (BCCR-BCM2.0); National

Center for Atmospheric Research Community Climate

System Model, version 3 (CCSM3); Canadian Centre for

Climate Modelling and Analysis (CCCma) Coupled

General Circulation Model, version 3.1, with spectral

triangular truncation at wave number 47 [CGCM3.1(T47)];

CGCM3.1(T63); Centre National de Recherches Météo-

rologiques Coupled Global Climate Model, version 3

(CNRM-CM3); Commonwealth Scientific and Industrial

Research Organisation, Mark version 3.0 (CSIRO Mk3.0);

CSIRO Mk3.5; ECHAM5/Max Planck Institute Ocean

Model (MPI-OM); Flexible Global Ocean–Atmosphere–

Land System Model, gridpoint version 1.0 (FGOALS-

g1.0); Geophysical Fluid Dynamics Laboratory Climate

Model, version 2.0 (GFDL CM2.0); GFDL CM2.1; Goddard

Institute for Space Studies Atmosphere–Ocean Model
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(GISS-AOM); GISS Model E-H (GISS-EH); GISS

Model E-R (GISS-ER); Istituto Nazionale di Geofisica e

Vulcanologia global climate model, version SXG (INGV-

SXG); Institute of Numerical Mathematics Coupled Model,

version 3.0 (INM-CM3.0); L’Institut Pierre-Simon Laplace

Coupled Model, version 4 (IPSL CM4); Model for In-

terdisciplinary Research on Climate 3, high-resolution ver-

sion (MIROC3hi); MIROC 3, medium-resolution version

(MIROC3med); Meteorological Research Institute Cou-

pled General Circulation Model, version 2.3.2 (MRI

CGCM2.3.2); Parallel Climate Model (PCM); and the

third climate configuration of the Met Office Unified

Model (UKMO HadCM3). The simulated climatologi-

cal fields of the variables are calculated from monthly-

mean outputs of twentieth-century climate simulations

(Meehl et al. 2007a) for the period of 1979–99, archived

in the Program for Climate Model Diagnosis and Inter-

comparison database.

The simulated fields are compared with the reference

datasets, which are also listed in Table 1. Among 14

variables, seven variables of zonal (U) and meridional

(V) winds, temperature T, geopotential height Z, spe-

cific humidity Q, surface temperature Tsf, and sea level

pressure (SLP) fields are obtained from the 40-yr Eu-

ropean Centre for Medium-Range Weather Forecasts

(ECMWF) Re-Analysis (ERA-40) dataset. The other

seven variables are obtained from products retrieved

from satellite datasets. Note that U, V, T, Z, and Q are

evaluated separately in the lower (850-hPa level), mid-

dle (500-hPa level), and upper (300-hPa level for Q and

200-hPa level for the others) troposphere. These pres-

sure levels are symbolized in a manner such that, for

example, ‘‘20’’ stands for the 200-hPa level. Thus, 200-hPa

zonal wind is symbolized as ‘‘U20.’’

Because of the data availability, reference climatolog-

ical fields of several variables are calculated for different

periods from the model evaluation period 1979–99. In

particular, outgoing longwave radiation (OLR) and re-

flected shortwave radiation (OSR) at the top of the at-

mosphere have a period of only four years (2001–04) that

does not overlap the model evaluation period. Thus, it

seems inappropriate to regard the 4-year average as the

climatological field because of the possible existence of

natural variability with interannual to decadal time scales.

When we use averages over 4-yr periods (such as 1979–82

and 1983–86) as simulated climatological fields to examine

the sensitivity of the performance metrics of OLR and OSR

to a selection of target periods, however, the differences in

the metrics among the different periods for each model

are considerably smaller than those among the GCMs

(figure not shown). This suggests that simulated natural

variability has little impact on the intermodel comparison.

Although characteristics in simulated natural variability

may be different from those in the real atmosphere, this

result implies that the inconsistency and the shortness of

the period do not significantly affect our main results.

TABLE 1. Variables used for evaluation and reference datasets.

Variable Description Reference Year

U85, U50, U20 850-, 500-, 200-hPa zonal wind ERA-40 (Uppala et al. 2005) 1979–99

V85, V50, V20 850-, 500-, 200-hPa meridional wind ERA-40 (Uppala et al. 2005) 1979–99

T85, T50, T20 850-, 500-, 200-hPa temperature ERA-40 (Uppala et al. 2005) 1979–99

Z85, Z50, Z20 850-, 500-, 200-hPa geopotential height ERA-40 (Uppala et al. 2005) 1979–99

Q85, Q50, Q30 850-, 500-, 300-hPa specific humidity ERA-40 (Uppala et al. 2005) 1979–99

Tsf Surface temperature ERA-40 (Uppala et al. 2005) 1979–99

SLP Sea level pressure ERA-40 (Uppala et al. 2005) 1979–99

OLR Outgoing longwave radiation Clouds and the Earth’s Radiant

Energy System (CERES;

Wielicki et al. 1996)

2001–04

OSR Reflected shortwave radiation at the

top of the atmosphere

CERES (Wielicki et al. 1996) 2001–04

CLD Cloud fraction International Satellite Cloud

Climatology Project

(ISCCP)-D2 (Rossow and

Schiffer 1999)

1984–99

LHF Surface latent heat flux Southampton Oceanography Centre

(SOC; Josey et al. 1999)

1980–93

SHF Surface sensible heat flux SOC (Josey et al. 1999) 1980–93

PRC Precipitation Global Precipitation Climatology

Project (GPCP; Adler et al. 2003)

1979–99

SST Sea surface temperature Hadley Centre Sea Ice and Sea Surface

Temperature dataset (HadISST;

Rayner et al. 2006)

1979–99
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For the polar regions (south of 608S or north of 708N),

we decide to use only the satellite datasets for evaluation

and not to use the reanalysis dataset because of the lack

of sufficient observational data assimilated in the rean-

alysis procedure. The evaluation of SLP is further limited

to areas for which the surface altitude is below 1000 m. In

addition, latent heat flux (LHF), sensible heat flux (SHF),

and sea surface temperature (SST) data exist only over

the ocean.

Because the horizontal resolutions of the GCM outputs

and the reference data are different, we first interpolated

all data onto 2.58 3 2.58 grids and then compared the

simulated and reference data for each grid.

b. Performance metrics

Among various kinds of statistical measures that

represent similarity between simulated and reference

fields, we use two measures as the performance metrics:

the magnitude of the global mean bias and the centered

(unbiased) RMSE. The global mean bias bm is defined as

bm 5
1

IJ
�

i
�

j
[Xm(i, j) 2 Xo(i, j)],

where Xm is the simulated climatological field of a cer-

tain variable X of the mth model; Xo is the corre-

sponding reference field; i and j indicate longitude and

latitude, respectively; and I and J indicate grid numbers

in longitude and latitude, respectively. The first metric

is simply the absolute value of bm (jbmj). The second

metric cm is the RMSE between the simulated and

reference fields after eliminating the corresponding

global mean. Its mathematical form is

cm 5
1

IJ
�

i
�

j
[Xm(i, j) 2 Xo(i, j) 2 bm]2

�1/2

.

(

This measure represents the similarity in the spatial

pattern between the two fields. For both metrics, smaller

values represent better performance. For brevity, the

mean-bias metric and the centered-RMSE metric are

hereinafter denoted with suffixes ‘‘b’’ and ‘‘c,’’ respectively.

For instance, the mean-bias metric of U20 (200-hPa zonal

wind) is abbreviated as U20b.

The square sum of these two metrics is equal to the

mean-square error (MSE), which is given as

jbmj
2

1 c2
m 5

1

IJ
�

i
�

j
[Xm(i, j) 2 Xo(i, j)]2 5 MSEm.

Relative magnitudes of the mean-bias metric with re-

spect to the centered-RMSE metric are considered to

depend on the variables (Gleckler et al. 2008). If one of

the two metrics explains most of the MSE, the other metric

is considered to be unimportant; thus, it will be better to

exclude the latter from the cluster analysis. Figure 1 shows

the ratio of squared mean bias (jbmj2) to MSE averaged

over all models. The values of the squared mean biases of

temperature and geopotential height in the middle and

upper troposphere are higher than 50% of their MSEs.

On the other hand, horizontal winds, radiation at the top

of the atmosphere (OLR and OSR), and precipitation have

small relative magnitudes of the squared mean biases. In

FIG. 1. Intermodel average of the ratio of the squared mean bias to MSE for each variable.
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particular, V20b, V50b, and V85b squared are less than

1% of their respective MSEs. Therefore, we exclude

these three metrics from the analysis.

In addition, because the magnitudes of the observed

surface turbulent fluxes (LHF and SHF) tend to be con-

siderably less accurate than their horizontal patterns

(Gleckler et al. 2008), we consider only the centered RMSE

for these variables (LHFc and SHFc). By considering

these factors, we decided to retain 43 metrics (19 mean-

bias metrics and 24 centered-RMSE metrics) for our

cluster analysis.

At this point, bm and cm have dimensions that are

the same as the respective variables. Therefore, we next

introduced the normalized mean-bias metric b*
m and the

normalized centered-RMSE metric c*
m such that

b*
m 5 (bm 2 ab)/sb and

c*
m 5 (cm 2 ac)/sc.

Here, ab and ac indicate the intermodel mean of bm and

cm, respectively, and sb and sc indicate the respective

intermodel standard deviation.

As discussed later, 17% of the pairs of the 43 metrics

exhibit a statistically significant positive correlation.

We will use the cluster analysis to group such correlated

metrics.

c. Clustering algorithms

In this study, the aforementioned performance metrics

are regarded as vectors with 22 dimensions, which corre-

spond to the number of GCMs used. The similarity among

the metrics used for the cluster analysis is defined as the

Euclidean distance in the 22-dimensional phase space.

We apply two hard clustering methods, in which each

metric belongs to only one cluster, in contrast to soft

(fuzzy) clustering methods in which each metric can be-

long to more than one cluster. One method is a hierar-

chical approach of the Ward method (Ward 1963). It

begins with 43 one-member clusters and stepwise merges

two clusters until all the metrics belong to a single cluster.

The other is a nonhierarchical approach of the K-means

method (Forgy 1965). In this method, we first define the

number of clusters and the initial grouping of the metrics,

and then the method iteratively modifies the grouping to

find the appropriate grouping. Note that the clustering

approaches have recently been used in climate studies.

For instance, Williams and Tselioudis (2007) and Williams

and Webb (2009) applied the K-means method to joint

cloud optical depth–cloud-top pressure histograms and

determined cloud regimes at individual grid points.

For cluster analysis, one important issue is the deter-

mination of the number of clusters. Among the various

statistical approaches proposed for assessing the rele-

vance of the cluster number, we adopted the pseudo-F

and pseudo-t2 statistics (Fovell and Fovell 1993) for the

Ward method and the pseudo-F statistic for the K-means

method. The pseudo-F statistic is based on the ratio of

the variance among the cluster means to that among the

members within individual clusters; the statistical signif-

icance levels at which the former variance is greater than

the latter are evaluated. The pseudo-t2 statistic represents

an error increment by cluster merger, and its abrupt in-

crease suggests the number of clusters to be retained.

Note that, as Fovell and Fovell (1993) stated, these statis-

tical measures are ‘‘pseudo tests’’ because they violate

several assumptions that underlie statistic theories. There-

fore, we should use these measures with caution, although

they provide useful information on the number of clusters

to be retained.

For the K-means method, the clustering result is sub-

ject to the initial grouping. Therefore, we perform the

method 100 000 times with a different initial grouping to

find the most appropriate result with the maximum sig-

nificance level of the pseudo-F statistic.

3. Results

First, we determine the number of clusters from

a statistical viewpoint. Figure 2a shows the statistical

significance levels of the pseudo-F statistic. Because the

significance levels are calculated using the standard F

statistics theory, it is inappropriate to focus on their

magnitudes. Instead, we attempted to compare the sig-

nificance levels among the different numbers of clusters.

In both clustering methods, significance levels do not

vary considerably if the total number of clusters is more

than seven, whereas it falls sharply if the number is less

than seven. This suggests that retaining seven clusters is

statistically appropriate. The pseudo-t2 statistic for the

Ward method (Fig. 2b) supports this finding. We can find

three relatively large stepwise error increases at cluster

numbers 11, 7, and 5. Based on these results, we decide

to retain seven clusters for both methods.

The clustering result with seven clusters based on the

K-means method is shown in Table 2. The number of

members included in a single cluster ranges from 3 to 17.

The result from the Ward method is very consistent with

that from the K-means method; the only difference is

that T50c belongs to cluster B in the Ward method in-

stead of to cluster A.

We can point out several aspects of the clustering

results that are reasonable from the physical and dy-

namic viewpoints, although it is difficult to interpret

the entire aspects. For instance, most of the centered-

RMSE metrics of the horizontal winds and the mid- and
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lower-tropospheric thermodynamic variables are included

in cluster A. This feature is probably related to the geo-

strophic balance, mass continuity, and hydrostatic bal-

ance that link large-scale wind, pressure, and temperature

fields. Centered-RMSE metrics of OLR, cloudiness, and

precipitation are also grouped in cluster A, possibly rep-

resenting a link between the horizontal distribution in the

convection and circulation fields. In cluster C, the mean-

bias metrics of temperature in the middle and lower tro-

posphere and geopotential height in the middle and

upper troposphere are grouped, which is associated with

the radiative–convective equilibrium and the hydrostatic

balance. In cluster E, OLRb and OSRb are grouped to-

gether with PRCb, which is related to a bias in conden-

sation and radiative heating. The consistency between the

two clustering results and the conceivable physical expla-

nation for the results suggest that the resultant clusters are

not merely a statistical artifact.

We also performed the K-means method for 3-month-

mean fields for three other seasons (September–November,

December–February, and March–May) and for the annual-

mean field. For each of the four periods, retaining six or

seven clusters is statistically appropriate. There are sev-

eral features in the clustering results that are consistent

with those for the June–August season. For instance, a

combination of U20c, U50c, U85c, V20c, V50c, V85c,

T50c, Z50c, Z85c, and SLPc and a combination of T50b,

T85b, Tsfb, Z20b, and Z50b are found in all periods. These

similarities support the argument that the clustering re-

sults reflect underlying physical and dynamic constraints

independent of the seasons. On the other hand, there are

some differences in the clustering results among seasons,

which suggest that it is necessary to perform the cluster

analysis to obtain the most appropriate results for a target

season of individual studies.

Because we arbitrarily selected the 43 metrics, the

appropriateness of the metric selection and the robust-

ness of the clustering result against the metric selection

may be questioned. To address this, we examined the

stability of the clustering result against the removal of

some of the 43 metrics from the Ward clustering. We

removed several (from one to five) metrics, applied the

Ward method to the remaining metrics, and compared

the results with the reference result obtained by ana-

lyzing all 43 metrics. We examined all combinations of

the removals for the one-, two-, three-, and four-metric-

removal tests, and we sampled randomly 100 000 com-

binations for the five-metric-removal test. Figure 3

shows the ratios of the experiments in which clustering

results are completely consistent with the reference re-

sult and those in which only one, two, and three metrics

are classified into different clusters. We consider the

transfer of up to three metrics as moderately consistent.

For the one-metric-removal test, most of the experiments

exhibit such moderately consistent results, whereas the

ratio of experiments with moderately consistent results

decreases with an increasing number of removals. For the

FIG. 2. (a) Statistical significance of pseudo-F statistic for the

Ward (circles) and K-means (stars) methods, and (b) pseudo-t2

statistic for the Ward method as a function of cluster number.

TABLE 2. Members of the seven clusters for the K-means clus-

tering. The mean-bias metrics (jbmj) and the centered-RMSE

metrics (cm) are indicated by italic and boldface type, respectively.

Cluster Metrics

A U20c, U50c, U85c, V20c, V50c, V85c,

T50c, T85c, Z50c, Z85c, Q50c, Q85c,

Tsfc, SLPc, OLRc, CLDc, PRCc
B U20b, U50b, Z20c, Q30b, Q30c, Q50b, SHFc

C T50b, T85b, Z20b, Z50b, Tsfb

D T20b, T20c, OSRc, CLDb, LHFc

E OLRb, OSRb, PRCb

F U85b, Z85b, SLPb

G Q85b, SSTb, SSTc
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five-metric-removal test, only approximately one-half of

the experiments exhibit moderately consistent results.

Note that more than 65% of the experiments of the one-

metric-removal test exhibit a clustering result that is

completely consistent. These results imply that the clus-

tering result is not sensitive to the artificial removal of one

or a few metrics from the cluster analysis, although re-

moval of five or more metrics sometimes considerably

influences the clustering result.

It is sometimes difficult to obtain robust results by using

cluster analysis if it is applied to data with large dimensions.

This is because the Euclidean distance between a given pair

of data points in phase space tends to increase with data

dimension. This may seriously affect the analysis in this

study performed within the phase space having as many as

22 dimensions. Our analysis is surprisingly successful in

defining clusters that are reasonable from the physical and

dynamic viewpoints and that are not particularly sensitive

to the artificial removal of one or a few metrics, however.

Cluster means, which are averages over the normal-

ized performance metrics in individual clusters, can be

used as new metrics instead of the original performance

metrics. Note that, as with the original performance

metrics, smaller values of the cluster means represent

higher performance of the models in simulating the as-

pects of the climate relevant to the cluster.

Figure 4 compares intermodel significant relation-

ships among the performance metrics with those among

the cluster means. Statistical significance of the co-

efficients is evaluated based on the Student’s t test with

two different assumptions about the degrees of freedom

(DOF). The first assumption is that the 22 models are

independent, which means that DOF 5 20. This as-

sumption may be inappropriate, because five pairs of the

GCMs are considered to be only different version of the

same model, such as MIROC3hi and MIROC3med.

Therefore, we also adopt a more reasonable assumption:

the number of independent GCMs is considered to be 17

(DOF 5 15). Results of the significance tests with the

first and second assumption are presented with color

tones and symbols, respectively, in Fig. 4. Intermodel

correlation coefficients among the 43 metrics (Fig. 4a)

show that, in general, a pair of metrics that exhibits a

statistically significant correlation tends to be grouped

in a single cluster—in particular, clusters A, C, and G.

Furthermore, the correlation between two metrics in

different clusters is generally insignificant. On the other

hand, intermodel correlation coefficients among the

cluster means for the K-means method (Fig. 4b) show

that there are only three pairs that exhibit moderate

positive correlation at the 95% confidence level (less

than at the 99% level) for the test with DOF 5 20, and

only one pair for that with DOF 5 15.

Table 3 summarizes the percentage of metric pairs and

cluster-mean pairs with significant intermodel correlation

for the test with DOF 5 15. Whereas 17% of the metric

pairs (156 out of 903 pairs) exhibit statistically significant

positive correlation above the 95% levels, only 5% of the

cluster-mean pairs (1 out of 21 pairs) exhibit such corre-

lation. Furthermore, whereas 9% of the metric pairs ex-

hibit correlation at a higher significance level (99% and

99.9%), such high correlation is not observed for the

cluster-mean pairs. These results suggest that the problem

of significant intermodel relationship among the metrics

can be considerably alleviated by using the cluster means

instead of the original metrics.

4. Discussion

One advantage of the clustering method is that we can

simplify the evaluation studies of GCM performance by

reducing the number of metrics considered and by re-

ducing the significant intermodel correlation between the

metrics. Using the clustering result, we can roughly grasp

the similarities and the differences in reproducibility be-

tween the different versions of the GCM, which is useful

information during model improvement activities. As an

example, we apply the K-means clustering result to the

comparison in model performance among three versions

of our Japanese GCM: MIROC3med, MIROC3hi (K-1

Model Developers 2004), and MIROC5 (Watanabe et al.

2010). These GCMs were developed by the Atmosphere

and Ocean Research Institute (AORI) of the University of

Tokyo, the National Institute for Environmental Studies

(NIES), and the Japan Agency for Marine-Earth Science

and Technology (JAMSTEC). The former two versions

participated in CMIP3. The major difference between the

FIG. 3. Results of the robustness test, showing ratios of experi-

ments by which clustering results are completely consistent with

the reference result (darkest), and those in which only one (second

darkest), two (second lightest), and three (the lightest) metrics are

classified into different clusters.
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two versions is the horizontal and vertical resolution of the

atmosphere and ocean components; the horizontal reso-

lution of the atmosphere is T42 for MIROC3med and is

T106 for MIROC3hi. The third model, MIROC5, is a newly

developed version designed for the next IPCC report. It has

numerous improvements in the parameterization schemes.

In particular, MIROC5 adopts new schemes for cumulus

convection, large-scale condensation, cloud microphysics,

and turbulence parameterization (Watanabe et al. 2010).

For comparing the three MIROC versions, we calcu-

late cluster means of the normalized performance met-

rics by using the clustering result in the last section

(shown in Table 2). Because the intermodel mean and

the standard deviation used for the normalization are

obtained from the 22 CMIP3 models, negative (positive)

values represent a higher (lower) performance than the

average performance over the 22 CMIP3 models. Figure 5

shows such cluster means for the three MIROC versions.

On comparing MIROC3med and MIROC3hi, it is re-

vealed that five out of seven cluster means of MIROC3hi

are smaller than those of MIROC3med. The other two

cluster means are comparable. These results suggest an

advantage of higher resolution.

On the other hand, the performance of MIROC5 is, de-

spite its coarser resolution, superior to that of MIROC3hi

in five out of seven clusters, owing to the result of sub-

stantial improvements in the model. As a result of the

FIG. 4. (a) Statistical significance of correlation coefficients between performance metrics based on the Student’s t test with DOF 5 20

(color tones) and DOF 5 15 (symbols). The clustering result of the K-means methods is shown at the left of the figure. Metric identifi-

cations in boldface type represent the centered-RMSE metric, and those without boldface represent the mean-bias metric. Note that T50c,

shown by blue type, belongs to cluster B in the Ward clustering method. (b) As in (a), except showing statistical significance of correlation

coefficients between cluster means of the K-means method.

TABLE 3. Ratio of the metric pairs and the cluster-mean pairs

that exhibit statistically significant positive intermodel correlation

coefficients above 99.9%, 99%, and 95% significance levels with

DOF 5 15.

Significance levels $99.9% $99% $95%

Metric pairs 3% 9% 17%

Cluster-mean pairs 0% 0% 5%
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clustering method, we can roughly discuss the aspects of

the climate that are better simulated by the new model.

The most notable improvement can be found in cluster

G, wherein the SST distribution has become more re-

alistic than that in the former versions, as pointed out by

Watanabe et al. (2010). The simulations of the upper-

tropospheric jet and moisture field represented by cluster

B and the mean temperature profile represented by

cluster C are also improved. If we experimentally define

an overall performance metric as a simple average of the

seven cluster means as proposed by Gleckler et al. (2008),

MIROC5 exhibits slightly higher overall performance

than MIROC3hi. Note, however, that this evaluation is

no doubt dependent on the definition of the overall metric,

which should be determined in the context of the purpose

of the overall metric.

The clustering approaches will also be applicable to

various kinds of GCM studies and future projections.

For instance, they can help to select GCMs whose sim-

ulations are used as initial and boundary conditions for

dynamic downscaling (e.g., Kawase et al. 2009) and

impact assessment models (e.g., Iizumi et al. 2010). They

can also be applied to multimodel detection and attri-

bution studies (e.g., Santer et al. 2009) and multimodel-

based future assessments (e.g., Murphy et al. 2004).

In such studies, we may have to define a synthesized

overall performance metric that measures overall re-

producibility of diverse aspects of the climate. If we have

to define it on the basis of a weighted sum of original

metrics, determination of specific weighting will be com-

plicated because of the numerous metrics and the signif-

icant intermodel correlations between them. On the other

hand, the use of cluster means as a new set of metrics will

alleviate this difficulty because of the reduced number of

metrics and generally lower intermodel correlations. In

addition, when we want to consider all the conceivable

variables for which appropriate reference data can be

obtained, the clustering approach will allow it without

introducing concerns about increases in the number of

performance metrics.

Note that the selection of the performance metrics

depends on the purpose of the evaluation. In addition to

the global field, it may be important to evaluate the re-

gional aspects for dynamic downscaling and impact as-

sessment studies. As seen in the last section, the

clustering results also depend on the analyzed season.

Furthermore, aspects of the climate are not limited to

climatological mean fields. For instance, interannual

variability is probably important for assessing future

projection, and spatial distribution of the variance and

the phase of diurnal variability and seasonal cycle may

be important for impact assessments on agriculture.

5. Summary

The evaluation of overall GCM performance in simu-

lating climatological mean fields should be based on

a synthesis of various kinds of atmospheric and oceanic

variables (Gleckler et al. 2008). We have to consider nu-

merous performance metrics, however, some of which are

sometimes significantly correlated because of the un-

derlying physical and dynamic constraints. If we reduce the

number of the metrics and the significant relationship, we

may be able to simplify the evaluation studies of the

overall GCM performance. For this purpose, we attempt

to use the cluster analysis to group the performance met-

rics that are mutually linked. We apply two clustering

methods to the 43 performance metrics that measure the

reproducibility of the boreal summer climatological fields

of 14 variables. The two methods suggest that retaining

seven clusters is statistically the optimal choice in this case,

yielding consistent clustering results between the two

methods. Several aspects of the clustering results are

agreeable from the physical and dynamic viewpoints and/

or are common among the four seasons. Furthermore, the

clustering results are not particularly sensitive to the re-

moval of one or a few metrics from the cluster analysis.

Examining the intermodel correlation analysis among the

metrics and among the cluster means, we find that the ratio

of the cluster-mean pairs that exhibit statistically signifi-

cant positive correlation is considerably less than that of

the metric pairs. These results suggest that the cluster

analysis is useful in obtaining appropriate grouping. In

addition, the problem of a significant intermodel rela-

tionship between the metrics will be alleviated by using the

cluster means as new metrics instead of using the original

metrics.

FIG. 5. Cluster means of the normalized performance metrics of

MIROC3med (light gray), MIROC3hi (gray), and MIROC5 (dark

gray). Smaller values indicate better performance, and negative

(positive) values indicate higher (lower) performance than the

average performance over the 22 CMIP3 models. The clustering

results of the K-means method are used. Simple averages over the

seven cluster means are shown at the farthest right (Ave).
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We believe that the cluster analysis will be helpful in

selecting GCMs for the dynamic downscaling approach

and for impact assessment and in synthesizing outputs of

GCMs for multimodel detection and attribution studies

and multimodel future projection. In addition, cluster

analysis will help in summarizing details of model im-

provement, which may be useful information for model

development activities.

It is pointed out that, in addition to the two clustering

methods adopted in this study, there are several ap-

proaches that may be potentially useful for alleviating a

significant intermodel relationship problem. These ap-

proaches include soft (fuzzy) clustering, empirical orthog-

onal function analysis, and single-value decomposition

analysis. Comparisons of these approaches are useful for

identifying their advantages if these approaches are applied

to the evaluation of model performance, which remains our

future topic of research.
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