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of 90 Sr and 137 Cs in atmospheric depositions after the Fukushima Daiichi Nuclear Power Plant

accident with long-term observations. Scientific reports, 10(1), 1-8.
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Figure 1: Scatter diagram of the depositions of '*’Cs over the monthly mean (purple crosses) observed
surface concentrations at Namie (Tsushima), Fukushima, and Tsukuba in 2013 and those simulated by
Kajino et al., 2016 (K16) (E. and vq are 0.04 and 0.1 cm s™!, respectively) considering different emission
sources: the open orange squares represent mineral dust particles from bare soil (dust aerosols), and the
closed orange squares denote bioaerosols emitted from forest ecosystems (forest aerosols). The green open
and closed squares are the same as the orange squares but are simulated by this study (£, and vy are 0.4
and 10 cm s”!, respectively). The purple, orange, and green lines indicate the regression lines of the purple
crosses, orange squares (open plus closed), and green squares (open plus closed), respectively.
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Figure 2: Horizontal distributions of (a,c) the annual total amounts of resuspended '3’Cs (Bq m™) and
(b,d) redeposited amounts of resuspended '*’Cs (Bq m) obtained from the simulations assuming (a,b)
submicron (K16; E. and vy are 0.04 and 0.1 cm s™!, respectively) and (c,d) supermicron (this study; E. and
vqare 0.4 and 10 cm s, respectively) sizes of 37Cs-bearing particles. The areal total amounts are embedded
at the bottom right of each panel.

-12-



2% 3CHk

Kajino, M., M. Ishizuka, Y. Igarashi, K. Kita, C. Yoshikawa, M. Inatsu. Long-term assessment of airborne
radiocesium after the Fukushima nuclear accident: Re-suspension from bare soil and forest ecosystems,
Atmos. Chem. Phys., 16, 13149-13172, https://doi.org/10.5194/acp-16-13149-2016, 2016.

Watanabe, M., M. Kajino, K. Ninomiya, Y. Nagahashi, and A. Shinohara, Eight-year variations in
atmospheric radiocesium in Fukushima city, Atmos. Chem. Phys. Discuss. [preprint],
https://doi.org/10.5194/acp-2021-591, in review, 2021.

Kajino, M., A. Watanabe, M. Ishizuka, K. Kita, Y. Zaizen, T. Kinase, R. Hirai, K. Konnai, A. Saya, Y.
Shiroma, H. Hasegawa, N. Akata, M. Hosoda, S. Tokonami, and Y. Igarashi, Reassessment of the
radiocesium resuspension flux from contaminated ground surfaces in East Japan, submitted to Atmos.
Chem. Phys.

_13_


https://doi.org/10.5194/acp-16-13149-2016
https://doi.org/10.5194/acp-2021-591

3. Publications 2019-2021

HGER ST 2019-2021

_14_



Abe et al. Progress in Earth and Planetary Science
https://doi.org/10.1186/s40645-020-00403-6

(2021) 8:13

Progress in Earth and
Planetary Science

RESEARCH ARTICLE Open Access

Widespread distribution of radiocesium-
bearing microparticles over the greater

Check for
updates

Kanto Region resulting from the Fukushima

nuclear accident
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Abstract

The Fukushima Daiichi Nuclear Power Plant (FDNPP) accident in March 2011 emitted a considerable amount of
radioactive materials. This study isolated radiocesium-bearing microparticles (CsMPs), a form of radioactive materials
emitted from the FDNPP at the early stage of the accident, from aerosols collected hourly on filter tapes at seven
monitoring stations at the greater Kanto Region, including the Tokyo metropolitan area, on 15 March 2011. The
aerosols had a spherical shape ~ 1 um in diameter with activity of less than 1 Bq of '*’Cs per particle. Their physical
and chemical characteristics, including radioactivity ratio '**Cs/"*’Cs as well as chemical composition and state, are
essentially the same as previously reported CsMPs. This study demonstrated that air parcels containing CsMPs
emitted from the FDNPP were widespread over the greater Kanto Region, more than 250 km away from the
FDNPP, during the daytime of 15 March. Trajectory analysis indicated that these particles were emitted from the
reactor No. 2 of FDNPP between 14 March evening and 15 March early morning. The information obtained on the
widespread distribution of CsMPs can be useful for assessing the actual impacts of radioactive contamination from
the FDNPP accident on the environment and human health.

Keywords: Fukushima Daiichi Nuclear Power Plant accident, Radiocesium-bearing microparticle, Suspended
particulate matter, Synchrotron radiation X-ray analysis, Trajectory analysis

1 Introduction

Considerable amounts of radioactive materials were re-
leased into the environment following the Fukushima
Daiichi Nuclear Power Plant (FDNPP) accident caused
by tsunamis associated with the Tohoku Earthquake on
11 March 2011 (e.g., MEXT 2020; Steinhauser et al.
2014). To reveal the time evolution of atmospheric
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Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
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120-8551, Japan
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@ Springer Open

radionuclide concentrations immediately after the acci-
dent, Tsuruta et al. (2014, 2018) and Oura et al. (2015)
investigated suspended particulate matter (SPM) col-
lected on filter-tape at automated air pollution monitor-
ing stations across Eastern Japan. More than 400
stations in Eastern Japan were in operation during the
initial period of the FDNPP accident. Analyzing atmos-
pheric radiocesium concentrations at 99 of those SPM
monitoring stations, these studies revealed that radio-
active materials emitted into the air from the FDNPP
were transported over Eastern Japan via several major
plumes during 12-23 March (Tsuruta et al. 2014, 2018).
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As a form of radioactive materials emitted from the
FDNPP at the early stage of the accident, radiocesium-
bearing microparticles (CsMPs) have been investigated
by numerous researchers in recent years (Igarashi et al.
2019). They were solid particles and not easily dissolved
into water, which first discovered by Adachi et al. (2013)
from aerosols collected at the Meteorological Research
Institute (MRI) in Tsukuba, 170 km south-southwest of
EDNPP, during 2110 JST 14 March and 0910 JST 15
March 2011. After the discovery of the CsMP, many
studies focused on their physical and chemical charac-
teristics as well as their environmental distributions
(Igarashi et al. 2019). While several types of CsMPs have
been reported, almost CsMPs examined previously were
nearly spherical, several pm in diameter, and had rela-
tively high specific radioactivity, i.e., ~ 1 Bq per particle
as '*’Cs (Adachi et al. 2013; Furuki et al. 2017). Their
main matrices were silicate glass (Satou et al. 2016) with
Fe and Zn (Adachi et al. 2013; Abe et al. 2014), and trace
amounts of various heavy elements associated with nu-
clear fuel and fission products (FPs) were detected (Abe
et al. 2014). Physical and chemical characterizations of
radioactive materials, including their water solubility,
shape, size, and chemical composition and state, are crit-
ical factors that determine their behavior within the en-
vironment and human body. CsMPs and other
particulate radioactive materials have previously been
identified in various environmental samples collected in
Fukushima Prefecture as follows: soils collected around
the FDNPP (e.g., Satou et al. 2016, 2018, Ono et al.
2017, Furuki et al. 2017, Martin et al. 2019, 2020), a
non-woven fabric cloth laid on an agricultural field
(Yamaguchi et al. 2016), and river sediments (Miura
et al. 2018). Similar radioactive microparticles were also
found on masks worn during cleaning work in residen-
tial areas near the FDNPP 5 years after the accident
(Higaki et al. 2017). As mentioned above, these CsMPs
found previously consist primarily of silicate glass. It is
thus concerned that they have a long-term impact on
the environment compared to water-soluble radioactive
materials, whereas some recent investigations indicate a
very slow rate of dissolution of CsMP into pure-water or
seawater (Okumura et al. 2019; Suetake et al. 2019).
Meanwhile, some CsMPs containing chloride as a water-
soluble compound had been recently found from aero-
sols collected near the FDNPP after the hydrogen explo-
sion of the reactor No. 1 of the FDNPP (Onozaki et al.
2019). Comprehensive investigations of CsMPs with
various physical/chemical properties are therefore vitally
important in accurately assessing the impacts of radio-
active contamination from the FDNPP accident on the
environment and human health.

Among the major polluted plumes identified by Tsur-
uta et al. (2014), the second plume (P2) carried the
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aerosols collected at the MRI on 14 and 15 March 2011
(Adachi et al. 2013). After being observed at SPM moni-
toring stations in the vicinity of the MRI (Tsukuba) dur-
ing the morning of 15 March, P2 was then spread into
the Kanto Plain, including the Tokyo metropolitan area,
one of the most populated areas in the world. The
southward spread of P2 was due to low-level northerlies
associated with an eastward-moving low-pressure system
located south of the Kanto Region (Takemura et al.
2011). Hypothesizing that CsMPs were the major carrier
of radioactive Cs in P2, this study aims to verify the
widespread distribution of CsMP in P2 over the greater
Kanto Region (in and around the Kanto Region) on 15
March, focusing on how far CsMPs were transported
southwest from the FDNPP by the local wind system.
We examined radioactive aerosol particles from the
SPM filter-tape samples collected hourly on 15 March at
several stations in the greater Kanto Region to compare
their physical/chemical characteristics with those of
previously reported CsMPs isolated from various
environmental samples. To investigate detailed chemical
characteristics of the radioactive aerosols isolated from
the SPM filter-tape samples, we applied multiple X-ray
analytical techniques using a synchrotron radiation
microbeam (SR-p) X-ray in a nondestructive manner.
The SR-p-X-ray analysis is an analytical technique that
is commonly used for microscopic chemical
characterization of various materials in the nondestruc-
tive manner and is quite suitable for CsMPs as demon-
strated by several previous studies (Abe et al. 2014; Ono
et al. 2017; Onozaki et al. 2019; Miura et al. 2020; Kuri-
hara et al. 2020a). This study has implications for the
impacts of radioactive materials on the environment and
human health as well as the reactor condition during the
early stage of the accident.

2 Methods/experimental

2.1 SPM filter-tape samples and separation method of
particles

The SPM monitors within the Japan air pollution moni-
toring network are routinely operated by local govern-
ments (prefectures and municipalities designated by
ordinance). Particulates less than 10 um in diameter
were automatically collected on the filter tape installed
in the SPM monitors as a sample spot (11 or 16 mm in
diameter) for 1 h at a flow rate of 15.0, 16.7, or 18.0 1/
min. The filter tape was made of glass fiber or polytetra-
fluoroethylene. Detailed information of the SPM filter-
tape samples has been described in previous studies
(Tsuruta et al. 2014, 2018; Oura et al. 2015). Seven
pieces of the filters sampled at seven monitoring stations
designated as A, B, C, D, E, F, and G within the greater
Kanto Region (see Table 1 and Fig. 1) were used in this
study. Each piece was selected which had the highest
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Table 1 Information of seven monitoring stations (A~G) and SPM filter-tape samples investigated in the present study

Station Latitude Longitude Distance from FDNPP Sampling time (JST) 37Cs/Bqm™
A 35.85 140.25 189 km 15 March 0800-0900 22.1
B 36.19 139.13 218 km 15 March 1200-1300 59.1
C 35.78 139.62 229 km 15 March 1000-1100 819
D 35.65 139.59 236 km 15 March 1000-1100 294
E 3537 13922 280 km 15 March 1400-1500 293
F 36.33 13844 261 km 15 March 1600-1700 221
G 3641 138.24 273 km 15 March 1600-1700 328

137Cs concentration on March 15 at each station under
the direct influence of P2. We cut these filters into four
or eight portions in collecting radioactive particles. An
imaging plate (GE Measurement and Control, CR x 25P
computed radiography scanner) and micromanipulator
(AP-xy-01; Micro Support Corp.) were used to detect
and separate radioactive particles from the filters. The
amount and distribution of radioactive particles on the
filter was observed in a process similar to previous stud-
ies (Adachi et al. 2013; Abe et al. 2014). Prior to the SR
experiments, a low-vacuum scanning electron

microscope (SEM; SU 3500; Hitachi High-Technologies)
was used to observe the shapes of individual particles
isolated from the filters. The radioactivity of ***Cs and
"7Cs in each particle was determined by using a Ge
semiconductor detector (GC4018; CANBERRA) coupled
with a multichannel analyzer (Lynx Digital Signal
Analyzer; CANBERRA). The gamma-ray spectrum was
collected for more than 400,000 s per particle. Two
standard radioactive sources, '**Cs standard by Japan
Radioisotope Association and '*’Cs standard by Amer-
sham plc, were measured in the same manner to
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Fig. 1 Locations of monitoring stations A~G in the greater Kanto Region and radioactive particles isolated in this study. Coordinates and
collection time of the filters are shown for each station. White dashed lines on the map indicate distance from the FDNPP. Eight CsMPs were
isolated from these seven filters as displayed by SEM images around the map. They are nearly spherical in shape with a diameter of 1.3 um
(particle A1), 1.3 um (B1), 1.4 um (C1), 1.5 um (D1), 1.2 um (D2), 1.3 um (E1), 0.9 um (F1), and 1.8 um (G1). The scale bars under the SEM images
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calibrate radioactivity of the particles. Absolute value
and statistical error of radioactivity of ***Cs and **’Cs in
individual particles were calculated as decay-corrected
data at the time of 1446 JST 11 March 2011. After these
analyses, the radioactive particles on carbon tape frag-
ments were removed and then placed on a flat Kapton
tape with a plastic holder for the SR-p-X-ray analyses.

2.2 Synchrotron radiation X-ray analyses of CsMPs

The SR experiments using an X-ray microbeam were
carried out at the BL37XU (Terada et al. 2004, 2010), a
hard X-ray undulator beamline at SPring-8, located at
the Japan Synchrotron Radiation Research Institute
(JASRI). The sample was placed on an automatic XY
stage in the experimental hatch. Monochromatic X-rays
were obtained with a Si (111) double crystal mono-
chromator, and the X-ray microbeam with the size of ~
1 pm (V) x ~1 pm (H) was produced by focusing
Kirkpatrick—-Baez mirrors. We applied three X-ray analyt-
ical techniques: SR-p-X-ray fluorescence (XRF) analysis,
SR-p-X-ray absorption near edge structure (XANES) ana-
lysis, and SR-u-X-ray powder diffraction (XRD) analysis.
The measurement conditions of the SR-experiments were
the same as in our previous investigations (Abe et al.
2014; Ono et al. 2017; Onozaki et al. 2019).

The SR-p-XRF analysis was carried out using 37.5 keV
X-rays that enable to excite K-edges of Cs (36.0 keV)
and Ba (37.4 keV). Three types of energy-dispersive X-
ray detectors were used depending on the beamtime: a
Si (Li) detector for the beamtimes until 2017, and eight-
elements silicon drift detectors or a Ge semiconductor
detector for the beamtimes in 2018 and 2019. The SR-p-
XRF spectrum was measured for 200 s in live time per
sample. The intensity of each spectrum was normalized
to that of the Thomson scattering peak detected at 37.5
keV. The SR-u-XANES spectra of the particles and the
reference samples were measured in fluorescence mode
for the following absorption edges: Fe-K edge (7111 eV),
Zn-K edge (9661 eV), Mo-K edge (20,000 eV), and Sn-K
edge (29,200 eV). The intensity of Ka line of each target
elements in individual particles was scanned with a
measurement step of ~ 1 eV/step, integration times of
3.0~10.0 s/step, and an energy range of ~ 100 eV from
the lower to the higher energy sides of the absorption
edge. To normalize the Ka intensity of the target ele-
ments, an intensity of the incident X-ray beam (/;) was
monitored using an ionization chamber. Reference mate-
rials (powders of metals, typical oxides, sulfides, silicates,
and synthesized glass samples) containing each target el-
ements were also measured as a same manner. In the
SR-p-XRD analysis, the X-ray diffraction patterns of the
samples were measured with a Debye-Scherrer optical
system using a two-dimensional detector (CMOS flat
panel) placed 200 mm behind the sample. The energy of

Page 4 of 10

the incident X-ray was set to 15.0 keV with an exposure
time of 440 ms and an integration of 100 times/sample.

2.3 Trajectory analysis for the radioactive plume transport
A meteorological trajectory analysis was conducted to
evaluate air parcel positions every 10 min based on wind
fields from the Japan Meteorological Agency mesoscale-
model objective analysis. The analysis has a horizontal
resolution of 0.0625 x 0.05° with 50 vertical levels up to
21,800 m. Three-hourly analysis data of wind on model
levels were used, as well as 3-hourly analysis and 1-
hourly forecast data of 10 m surface wind. The three-
dimensional wind data cannot resolve small-scale turbu-
lence that is most vigorous within the mixed layer. Air
parcels were initially placed at 50 m intervals from 50 m
to 1000 m above the surface. For each parcel, the trajec-
tory calculation was terminated if it hit the surface.

3 Results and discussion

3.1 Physical/chemical characteristics of CsMPs isolated
from SPM filter-tape

In total, eight CsMPs were successfully isolated from
seven pieces of SPM filter-tape samples. As illustrated in
Fig. 1, the eight CsMPs were labelled as Al, B1, C1, DI,
D2, El, F1, and G1 in corresponding to the seven SPM
monitoring stations. The particles were spherical with
diameters of ~ 1 pm, and their radioactivity was less
than 1 Bq of '*’Cs per particle (Fig. 2). The radioactivity
ratios between **Cs and *"Cs (***Cs/**"Cs) were ~ 1.0,
suggesting that these particles were emitted from either
reactor No. 2 or 3 of FDNPP (Nishihara et al. 2010) (see
additional data Table S1 online). As first pointed out by
Satou et al. (2018), CsMPs from the FDNPP can be cate-
gorized into two major types, type A and type B, based
on the **Cs/"*’Cs ratio of individual particles. Type A
particles are characterized by '**Cs/**’Cs ratio of ~ 1.0,
in contrast to type B particles with ***Cs/**’Cs ratio of ~
0.9.

As a result of the SR-p-XRF analyses of individual par-
ticles, A1~G1 were found to have qualitatively-similar
chemical compositions. The SR-pu-XRF spectra of four
representative particles (Al, B1, C1, and E1) are shown
in Fig. 3 with that of a type A CsMP collected at the
MRI in a previous study (Abe et al. 2014). Note that all
these spectra were measured using the same Si (Li)
detector in several beamtimes. The XRF analysis using a
monochromatic SR-p-X-ray with high-energy (37.5 keV)
for the excitation can detect trace amounts of heavy ele-
ments within individual particles, although lighter ele-
ments (such as Si) that are major components of the
particle could not be detected in the spectrum. In
addition to sharp K-line peaks of Cs which had been
identified by the gamma-ray spectroscopy, the following
eight heavy elements were detected in all particles: Fe,
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Fig. 2 Radioactivity of '*’Cs and '**Cs/"*Cs activity ratio of individual particles. The radioactivity of '*’Cs (+ 1 x standard deviation, 6) of eight
particles (A1~G1) are as follows: 0471 + 0.016 Bq (particle A1), 0.426 + 0.015 Bq (B1), 0.546 + 0.019 Bq (C1), 0.425 + 0.014 Bq (D1), 0.318 + 0.011
Bq (D2), 0.156 + 0.008 Bq (E1), 0.317 + 0.011 Bg (F1), and 0.665 + 0.023 Bq (G1). The three dashed lines show estimates of the ">*Cs/"*’Cs ratio of
nuclear fuel in FDNPP reactors No. 1, 2, and 3, respectively, at the time of the accident, as calculated using ORIGEN2 Code (Nishihara et al. 2010).

Activity values shown here were decay-corrected as of 11 March 2011

Zn, Rb, Mo, Sn, Sb, Te, and Ba. Several trace elements
specific to certain particles were also found: Zr from
seven particles except for particle B1; Nb from particle
C1; Ag from particle F1, Cd from particles C1 and GI;
Pb from particles Al, Bl, C1, E1, F1, and G1; and U
from particles Al, B1, and F1.

The SR-p-XANES analysis examined the chemical
states of four metal elements (Fe, Zn, Mo, and Sn) and
indicated that these elements exist as cations in silicate
glass with high oxidation numbers (see additional data
Fig. S1 online). SR-p-XRD analysis of individual particles
showed no diffraction peaks caused by crystal structure
for any of the particles (see additional data Fig. S2 on-
line), confirming that these particles have glass bodies.

As discussed above, physical/chemical characteristics
obtained for the eight CsMPs (A1~G1) collected at the
seven SPM monitoring stations in the greater Kanto Re-
gion are essentially the same as those of type A CsMPs
found in the previous studies (e.g., Abe et al. 2014; Igara-
shi et al. 2019). As first reported by Utsunomiya et al.
(2019), it is already-known fact that air parcels contain-
ing type A CsMPs passed over Tokyo City at some point
on 15 March. Our results strongly support their pioneer-
ing report. At the same time, this paper first demon-
strated that CsMPs emitted from the FDNPP were
widespread over the greater Kanto Region, including
West side of Tokyo metropolitan area, during the day-
time of 15 March with a temporal resolution of an hour.
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Fig. 3 SR-u-XRF spectra of four representative CsMPs (A1, B1, C1, and E1) isolated from the SPM filter-tape samples, showing the heavy elemental
composition of individual particles. The intensity of each spectrum is displayed on a logarithmic scale and shifted in a longitudinal direction. The
spectrum of MRI-A shows datum obtained for one of type A CsMPs (particle A) collected at the MRI in the previous study (Abe et al. 2014)
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3.2 Transport pathway of CsMP from FDNPP to greater
Kanto Region

To estimate the emission time of the CsMPs and identify
their transport pathway(s) from the FDNPP to the
greater Kanto Region, we conducted trajectory analysis
of air parcels that passed over the seven monitoring
stations A~G. As an example, Fig. 4 shows backward
trajectories for air parcels situated at different heights
over station B starting at 1200 JST 15 March, where the
SPM aerosols including particle B1 were collected dur-
ing 1200-1300 JST. The trajectories are color-coded to
distinguish parcel heights at station B in Fig. 4a and also
color-coded by parcel height at each time step in Fig. 4b.
Figure 4a, b suggests that the air parcels situated at 150—
600 m above station B at 1200 JST were likely to be
located below the 500 m level within 20 km range from
the FDNPP sometime between 0040 and 0330 JST on
the same day. The vertical profile of potential
temperature at station B (Fig. 4c) indicates that the at-
mospheric mixed layer was as deep as 800 m above the
surface, suggesting that air parcels within the layer
should have experienced vigorous turbulent mixing and
thus be well-mixed down to near-surface levels. Like-
wise, air parcels from the FDNPP were released into the
night-time mixed layer. Advected by low-level norther-
lies, these air parcels then travelled along the coast
mostly within the marine mixed layer (Fig. 4b), which
was probably well developed in the early morning given
the cool offshore northerlies over the relatively warm
ocean.

Results of our backward trajectory analysis for the
seven monitoring stations are summarized in Table 2.
Although the estimated emission times have ranges that
span several hours, we concluded that polluted air par-
cels containing CsMPs that passed over the greater
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Kanto Region on 15 March were emitted from the
FDNPP between the evening of 14 March and early
morning 15 March. After being released into the mixed
layer, these polluted air parcels were advected southward
by low-level northerlies and later by northeasterlies. The
parcels very likely underwent vigorous mixing down to
near-surface levels, within the mixed layer above the sta-
tions. The earliest emission time is estimated for the
parcels above station E, as the trajectories detoured far
offshore under the northwesterlies shortly after emitted.
Our trajectory analysis implies that individual aerosol
particles that were emitted locally from the FDNPP sub-
sequently spread widely over the greater Kanto Region
within a relatively short period of time (within 18 h at
the longest) under time-varying flow conditions. Based
on the results of our backward trajectory analysis, we
calculated forward trajectories for air parcels over the
EDNPP starting at 0100 JST 15 March 2011 and showed
them on the map with the seven monitoring stations
A~@G (Fig. 5). The air parcels situated above the FDNPP
at that time moved southward and then widespread over
the greater Kanto Region within a day.

3.3 Possible source of CsMPs distributed over greater
Kanto Region

The chemical composition of particles emitted primarily
from the FDNPP could reflect the reactor condition dur-
ing the early stages of the accident. As indicated by Oku-
mura et al. (2019), we cannot ignore the possibility that
CsMP collected from soils years after the accident was
altered physically or chemically in the environment even
if they are hardly soluble into the water. Unlike such
field samples, there would be little change in physical
and chemical properties of the CsMPs as they were sam-
pled on the SPM filter-tape shortly after emission. The
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Fig. 4 Backward trajectories calculated for air parcels placed above station B at 1200 JST 15 March 2011. The trajectories are color-coded (a) to
distinguish heights (m) of the parcels at station B and (b) according to their heights at each time step. Small and large dots on the trajectories
indicate intervals of every hour and 3 h, respectively, after the calculation start time. ¢ Vertical profile of potential temperature (K) above station B
at the trajectory start time
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Table 2 Summary of the backward trajectory analysis for seven monitoring stations (A~G)

Station Starting time Depth of Estimated paths of air parcels between the station and 20 km range from FDNPP
gaszllv(\:;r d :E:;ﬁ:;;ic Height above Height above 20 Estimated emission time
trajectories above the station the station km range from FDNPP (JST) from FDNPP

A 15 March 0800 ~500 m 750-800 m 0-600 m 15 March 0000-0220

B 15 March 1200 ~800 m 150-600 m 0-500 m 15 March 0040-0330

C 15 March 1100 ~900 m 800-900 m 100-700 m 15 March 0210-0340

D 15 March 1100 ~900 m 850-900 m 50-650 m 15 March 0120-0310

E 15 March 1400 ~700 m 750-850 m 100-650 m 14 March 2000~ 15 March 0130

F 15 March 1600 ~200 m 50-650 m 50-550 m 15 March 0040-0340

G 15 March 1600 ~200 m 50-300 m 100-300 m 14 March 2330- 15 March 0200

chemical compositions of the CsMPs discussed in this
study are thus likely to be preserved except for radioactive
decay effects. Therefore, our analysis offers important infor-
mation regarding raw materials and the generation process
of CsMP in the reactor. All elements identified in the
CsMPs can be associated with materials in the FDNPP. As
a result of the nuclear fission reaction of ***U, the FPs
yielded 11 elements (Rb, Zr, Nb, Mo, Ag, Cd, Sn, Sb, Te,
Cs, and Ba) (Crouch 1977, Burns et al. 2012, Yamamoto
2012). It is also possible that Zr and Sn in the CsMPs ori-
ginate to Zr—Sn alloy used for fuel cladding within the reac-
tors. On the other hand, vaporous elements, such as Rb
(e.g., the boiling points of RbOH and RbI are about 1660 K
and 1577 K under 1 atm, respectively) and Cs (e.g., the boil-
ing points of CsOH and CsI are about 1263 K and 1553 K
under 1 atm, respectively), in the CsMPs were richer than
the original composition of FPs derived from U fuel. There-
fore, condensation of these elements by vaporization in the
reactor pressure vessel (RPV) could happen during the par-
ticle generation process. Moreover, the amounts of Cs in
the particles would be higher than those of Mo even

-
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Fig. 5 Forward trajectories calculated for air parcels placed above
the FDNPP at 0100 JST 15 March 2011. The trajectories are color-
coded to distinguish heights (m) of the parcels at FDNPP. Small and
large dots on the trajectories indicate intervals of every hour and 3 h
since the calculation start time, respectively

considering the difference in excitation efficiency from
monochromatic X-rays (37.5 keV). Although Cs,MoO, was
suggested as one possible source for the vapor phases carry-
ing Cs at high temperature (Kissane and Drosik 2006;
Gouello et al. 2013; Do et al. 2018), our result indicates that
the volatilization and condensation of Cs,MoQ, were not
predominant processes of the generating of the CsMPs. Do
et al. (2018) have pointed out that CsOH is the predomin-
ant cesium species when the damaged fuel temperature is
higher than 2000 K at higher steam pressures, but
Cs;MoO, would become more important at lower
temperature. In this connection, Imoto et al. (2017) re-
ported the presence of nanoparticles of CsFeSi,Og within
CsMP and pointed out that the material could be formed
by the CsOH chemisorption onto Si-bearing stainless
steel. Iron, Cr, Mn, Ni, and Mo could originate from stain-
less steel, which composed RPV and FDNPP buildings.
Regarding a possible source for Zn, we previously identi-
fied an additive agent of primary cooling water (Abe et al.
2014), but a thin plating of steel and inorganic paint on
RPV and buildings could be other potential sources (Itou
et al. 2018). Lead metal and Pb-containing materials are
commonly used for shielding of radiation. To make a
more detailed interpretation of the generation process of
the CsMPs, it is indispensable to carry out further scien-
tific investigation using other analytical methods to reveal
more quantitative chemical composition and isotopic fea-
tures of individual particles, such as secondary ion mass
spectrometry (Imoto et al. 2017; Kurihara et al. 2020a;
Kurihara et al. 2020b).

As described above, type A CsMPs including eight
particles investigated in this study have been thought to
be originated to either reactors No. 2 or No. 3 of the
FDNPP based on their '**Cs/'*’Cs ratio: there are two
opinions about from which the type A CsMPs were
emitted (e.g., Igarashi et al. 2019; Ikehara et al. 2020).
We therefore consider the source of the type A CsMPs
in relationship to the accident progress, making use of
high time-resolution of the SPM filter-tape samples. Our
trajectory analysis suggests that the emission time for the
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type A CsMPs isolated from the greater Kanto Region was
between midnight and early morning 15 March, although
emission time could have been as early as the evening of
14 March for parcels that reached station E (Table 2).
Consistent with these estimated emission times, pressure
inside the RPV in reactor No. 2 decreased after the usage
of a safety relief valve around 1903 JST on 14 March,
followed by three sharp RPV pressure peaks around 2100
and 2300 JST 14 March and 0100 JST 15 March (TEPCO
2015). Around 0300 JST on 15 March, the pressure inside
the primary containment vessel of reactor No. 2 exceeded
its designed value (TEPCO 2015). In contrast, no incident
was reported for reactor No. 3 during the same period ex-
cept for a hydrogen explosion at 1101 JST 14 March. We
therefore hypothesized that the incident(s) in reactor No.
2 were the most likely cause of the type A CsMPs, rather
than reactor No. 3. Our hypothesis is strongly supported
by recent investigation of isotopic ratios of U and Cs in
CsMPs (Kurihara et al. 2020b).

4 Conclusions

Eight CsMPs were isolated successfully from aerosol parti-
cles collected hourly on filter tapes at seven monitoring
stations in the greater Kanto Region, including the Tokyo
metropolitan area, on 15 March 2011. Our finding dem-
onstrates clearly that air parcels containing CsMPs emit-
ted from the FDNPP were widespread over the greater
Kanto Region, farther than 250 km away from the FDNPP,
during the daytime of 15 March. Detailed physical and
chemical properties of individual CsMPs were investigated
by SR-p-X-ray analyses. As a result, it was concluded that
the incident(s) in reactor No. 2 of FDNPP were the most
likely cause of CsMPs distributed over the greater Kanto
Region. Our trajectory analysis also suggests that air par-
cels containing the CsMPs as water-insoluble microparti-
cles with radionuclides likely passed over the greater
Kanto Region including Tokyo metropolitan area on 15
March. Some of those particles could have been deposited
on the ground or suspended in the near-surface air, al-
though most of them were transported to the ocean. Fur-
ther investigation is necessary to estimate the
environmental and health impacts from the CsMPs that
travelled into the metropolitan area. Information regard-
ing widespread distribution of CsMPs can be useful to-
ward calculating an inhalation dose of radionuclides
during the early stage of the accident.

5 Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/540645-020-00403-6.

Additional file 1: Table $1. '**Cs and '*Cs radioactivities and
134Cs/'3Cs activity ratio of eight particles (A1~G1). Figure S1. SR-p-
XANES spectra of four representative CsMPs (A1, B1, C1, and E1) isolated
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from the SPM filter and reference materials. (a) Fe-K edge, (b) Zn-K edge,
(c) Mo-K edge, and (d) Sn-K edge. Figure S2. SR-pu-XRD patterns of four
representative radioactive particles (A1, B1, C1, and E1) isolated from the
SPM filter and reference material. (a) Particle A1, (b) particle B1, (c) particle
C1, (d) particle E1, and (e) silicon powder (NIST SRM 640c). In contrast to
sharp diffraction peaks detected in silicon powder, no obvious peaks
were detected in four radioactive particles.
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Abstract The dispersion and deposition of radio-cesium (**’Cs) carried by two types (type A and

type B) of water-insoluble Cs-bearing solid microparticles (CsMPs) released due to the Fukushima
nuclear accident were simulated for the first time. The presence of type B CsMPs (70-400 um found

in soil and 1-5 pm found in air), associated with the hydrogen explosion of Unit 1 in the afternoon of
March 12, could partly explain the simulated underestimation of total deposition over land by assuming
that 100% of the Cs carriers were water-soluble submicron particles (WSPs). Type A CsMPs (0.1-10 um),
released from Units 2 or 3 in the midnight between March 14 and 15, traveled over the Kanto Plain, the
most populated plain in Japan. Differences in the size distribution of type A CsMPs altered the surface

air concentration over Kanto substantially, by up to more than one order of magnitude. The major
deposition mechanisms varied among dry, wet, and fog (and/or cloud) depositions depending on the

size distribution and locations. The simulated activity fractions due to the CsMPs in the total deposition
were compared to those observed in surface soil for the first time. The observations could be explained

by the simulations for the locations under the influence of type B CsMPs. However, the simulations were
substantially underestimated for the locations influenced by type A CsMPs. There could be more fractions
of type A CsMPs emission in the source term and/or the simulated deposition rates of type A CsMPs were
underestimated.

1. Introduction

The Fukushima Daiichi Nuclear Power Plant (FINPP or FDNPP) accident released substantial amounts
of fission products into the atmosphere (Chino et al., 2011; Hirao et al., 2013; Katata et al., 2015; Saunier
et al., 2013; Stohl et al., 2012; Terada et al., 2020, 2012; Winiarek et al., 2014; Yumimoto et al., 2016). The
contaminated air mass traveled over Japan and the radionuclides were deposited into and contaminated
terrestrial ecosystems; this phenomenon was discovered by field measurements (Igarashi et al., 2015; Ike-
hara et al., 2020; NRA [Nuclear Regulation Authority], 2012; Oura et al., 2015; Sanada et al. 2014, 2018; Torii
et al., 2012; Tsuruta et al., 2014, 2017, 2018, 2019) and has been investigated by numerical simulations (Ka-
jino et al., 2018, 2019a; Morino et al, 2011, 2013; Nakajima et al., 2017; Sekiyama & Iwasaki, 2018; Sekiyama
& Kajino, 2020; Saya et al., 2018; Sekiyama et al, 2015, 2017; Terada et al., 2020). The radionuclides were
transported and deposited over the ocean (Aoyama et al., 2016) and further to North America (Wetherbee
et al., 2012) and Europe (Masson et al., 2011, 2013). Radio-Cs (***Cs and *’Cs) is among the key radioiso-
topes due to its abundance and relatively long half-lives (2.06 and 30.1 years, respectively).

Thanks to extensive field measurements and numerical simulations, knowledge has been accumulated
(Mathieu et al., 2018). Between 7 and 20 PBq of **'Cs was released to the atmosphere (Mathieu et al., 2018)
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and ~3 PBq was deposited in terrestrial areas in Japan (NRA, 2012; Torii et al., 2012). Nakajima et al. (2017)
identified the transport pathways of radio-Cs over Japan by using numerical simulations together with hour-
ly surface air activity concentration measurements from one hundred stations in Japan (Oura et al., 2015;
Tsuruta et al., 2014). Deposition mechanisms over land were systematically investigated by the altitudinal
analysis of aircraft measurements and a numerical simulation by Sanada et al. (2018). To better simulate the
atmospheric behaviors of radio-Cs, multimodel ensemble studies have been conducted (Draxler et al., 2015,
Kitayama et al., 2018; Kristiansen et al., 2016; Sato et al., 2018, 2020; SCJ [Science Council of Japan], 2014).
However, although the properties of radio-Cs in the atmosphere are relatively easy to predict, that is, it is
chemically inert and has an extremely low vapor pressure, there are still significant uncertainties in multi-
model simulations, especially for deposition.

Several issues remain regarding the accurate simulation of radio-Cs, such as (1) deposition modeling, (2)
horizontal resolution, and (3) aerosol microphysical properties. Due to the large uncertainty in deposition
modeling, even using the same meteorological field and the same source term, different transport mod-
els have predicted very different deposition fields and relative magnitudes of different deposition mecha-
nisms (i.e., dry or wet depositions) (Sato et al., 2018). Most models do not include the fog and cloud droplet
deposition process, which could play a key role in radio-Cs depositions over the mountain forests of Ja-
pan (Hososhima & Kaneyasu, 2015; Imamura et al., 2020; Katata et al., 2015; Kajino et al., 2019a; Sanada
et al., 2018). There is also considerable uncertainty in meteorological modeling, which was indicated from
Part 1 of the current study (Kajino et al., 2019a). Even a single transport model with a single model domain
predicted very different deposition fields and contributions from different deposition mechanisms (dry, fog,
in-cloud, or below-cloud wet depositions) depending on the selection of meteorological fields. Due to the
complex topography in the Fukushima area and the surrounding prefectures, the horizontal resolution is
important for accurate simulations of plume transport, as indicated by a comparison of 5, 3, and 1-km res-
olution simulations (Sekiyama & Kajino, 2020). However, the effect of aerosol microphysical properties has
not been fully investigated by numerical simulations.

Kaneyasu et al. (2012) showed that the size distributions of radio-Cs were very close to those of sul-
phate, which is water-soluble particles (WSPs) with submicron size ranges (0.1-1 um in diameter) and
concluded that sulphate was the potential carrier of radio-Cs. WSPs were assumed to be the carrier of
radio-Cs for all previous simulations, except that of Adachi et al. (2013). Adachi et al. (2013) discov-
ered Cs-glassy and spherical particles that were totally hydrophobic and larger than 1 um, the envi-
ronmental behaviors of which should be very different from those of WSPs. The particles were named
Cs-bearing microparticles (CsMPs) and extensively studied in the subsequent literatures (e.g., Igarashi
et al., 2019). Based on limited knowledge, Adachi et al. (2013) conducted a transport simulation of
CsMPs for a limited period (March 15) and showed a significant difference in the deposition patterns.
However, there was no knowledge on the abundance of CsMPs at that time, and only a few particles
were found from an air sample.

After Adachi et al. (2013), successful isolations of CsMPs from various samples, such as soil (Furuki
et al., 2017; Tkehara et al., 2018; Satou et al., 2016, 2018), plant leaves and agricultural materials (Kogure
et al., 2016; Okumura et al., 2019a; Yamaguchi et al, 2016, 2018), masks (Higaki et al., 2017), and rivers
(Miura et al., 2018), were performed. Extensive studies have been performed on the physical and chemical
properties of CsMPs (Abe et al., 2014; Adachi et al., 2013; Kogure et al., 2016; Okumura et al., 2019b, 2019c;
Satou et al., 2015, 2016, 2018; Yamaguchi et al., 2016); thus, knowledge has been accumulated (Igarashi
et al., 2019). Based on the chemical compositions of CsMPs, locations of soil samples, and locations and
timings of air samples, power plant units involved, formation mechanisms, emission events, and transport
pathways were investigated (Hidaka, 2019; Igarashi et al., 2019; Ikehara et al., 2020; Onozaki et al., 2019;
Satou et al, 2015, 2016, 2018). Recently, Ikehara et al. (2020) reported the activity fractions of CsMPs in the
surface soil at 20 sites in the Fukushima prefecture, located 4.42-61.0 km from the F1INPP, which ranged
from 1.63% to 80.2% of the total activity. As a result, we have observational evidence that the radioactivity
of CsMPs was significant in the environment, and we can quantitatively compare those observational data
with simulated CsMP deposition.

Based on the knowledge of CsMPs obtained so far, we conducted the first simulations for the dispersion and
deposition of radio-Cs in March 2011 by taking the presence of CsMPs into account. Then we summarized
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:3;1;;@ of Information for Type B and Type A Nonhygroscopic CsMPs
Type B Type A
Sample contained CsMPs Soil (<10 km NNW of FINPP)?, Air (25 km N of Air (170 km SW of FINPP)', Soil (20 km NW of FINPP)Y, cloth
FINPP) on vegetable field®
Diameter found 70-400 um®, 1-5 um® 1-10 um®Y, < 1 um®
Hypothesized emission event Unit 1, hydrogen explosion (March 12, 15:36 LT) Unit 2, SRV openings (March 14, 21:30 and 23:25; March 15, 1:02

Simulated duration of emission

Total emission amount

LT)f or Unit 3, core cooling water injection on March 15, 2:30
LT (Hidaka, 2019)'March 15, evening (Satou et al., 2015)f

March 12, 15:30-16:00 LT March 14, 21:00-22:00 LTMarch 14, 23:00-March 15, 0:00
LTMarch 15, 01:00-02:00 LT

0.7 PBq 0.475 PBq'

Satou et al. (2018). "Onozaki et al. (2019). ‘Adachi et al. (2013). %Satou et al. (2016, 2018). “Okumura et al. (2019a). ‘The emission event of type A CsMPs is still
controversial, but the timings of the SRV openings of Unit 2 were in the simulation, because emission amount associated with the water injection event of Unit
3 is not currently available. Also, there could be additional source of type A CsMPs, March 15 evening, as suggested by Satou et al. (2015).

the environmental behaviors of CsMPs and their differences from the previous simulations, assuming 100%
of submicron WSPs.

2. Materials and Methods

Many parts of the simulation methods used in this study are the same as those in our Part 1 paper (Kajino
et al., 2019a). The common methods are roughly described herein, but the novel methods are extensively
described in this section.

2.1. Meteorological Simulation

In Kajino et al. (2019a), an ensemble analysis of multiple meteorological models and modules was con-
ducted with a 3-km grid resolution. The results showed that the chemical transport simulation that used
the meteorological ensemble mean field (Met_EnsMean) was successful in terms of modeling cumulative
precipitation, total **’Cs deposition, and cumulative **’Cs surface air concentrations. Thus, in this study,
Met_EnsMean was selected as a reference meteorological field with which to conduct sensitivity tests of the
microphysical properties of CsMPs using a chemical transport model.

Each meteorological simulation and the methods used to produce the Met_EnsMean are explained in Ta-
ble 1 and Figure 1 of Kajino et al. (2019a). Two meteorological models were used: the Japan Meteorological
Agency (JMA)’s non-hydrostatic model (NHM ver. 3.5; Saito et al., 2007) and the weather research and
forecasting model (WRF ver. 3.5.1; Skamarock et al., 2008). Three types of simulations were conducted:
NHM using JMA’s meso-regional objective analysis (MANAL) as the boundary conditions, NHM using the
local ensemble transform Kalman filter (LETKF; Kunii, 2013), and WRF driven by MANAL. Several WRF
simulations with different cloud microphysics modules and different boundary layer turbulence schemes
were also conducted to depict the variations in surface air concentration and deposition of '*’Cs depending
on the physics modules and to produce the ensemble mean of the WRF simulations (WRF_EnsMean).
Met_EnsMean was the ensemble mean of the NHM, NHM-LETKF, and WRF_EnsMean.

2.2. Transport Model

NHM-Chem (Kajino et al., 2019b) has been used for simulating the dispersion and deposition of radio-
nuclides. NHM-Chem is a Eulerian chemical transport model (CTM) that can be offline-coupled or on-
line-coupled with the NHM. The offline coupling mode was used for this study. Because the transport pro-
cess is embedded as a subroutine of the NHM in the online coupling mode, the CTM is driven only by the
NHM. On the other hand, the offline coupling mode is composed of a standalone CTM and the interface
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Figure 1. (a) Model domain and the topography of the region. The cross indicates the location of the FINPP. (b) Deposition area defined in this study. (0)
Whole area indicates the sum of areas (1) to (9).

processor, which converts the meteorological model output into the input for the CTM; thus, other meteor-
ological models can be used to drive NHM-Chem by preparing interface processors for other meteorological
fields, such as Met_EnsMean and those made by WRF.

NHM-Chem considers major tropospheric photochemical reactions and aerosol dynamic processes, but
a simplified version for radionuclides was used in this study, as presented in Kajino et al. (2019a): no
chemical reactions and the relevant aerosol processes, such as nucleation, condensation and coagula-
tion, were considered, while changes in size distribution due to deposition were considered by using
a triple-moment modal method, assuming log-normal size distributions. Changes in size distribution
during transport can be ignored for submicron particles, as in Kajino et al. (2019a) and almost all the
previous simulations, because their gravitational settling velocities are negligibly small. In contrast, the
size distributions of CsMPs, the diameters of which are as large as 10-100 um, should vary significantly
during transport, as the larger particles are readily deposited on the surface within 10-100 km (e.g., as
shown later in Figure 3). The predicted size distributions were applied for the calculations of the dry
deposition, gravitational settling, and below-cloud scavenging processes. For in-cloud scavenging, the
prescribed cloud condensation nuclei (CCN) activation fractions were applied as described later in Sec-
tion 2.3.2. This is the only difference from Kajino et al. (2019a) in the elementary processes of the CTM:
the prescribed “hygroscopicity” (x = 0.4) was applied for the simulation of WSPs for the calculation of
CCN activation in Kajino et al. (2019a).

2.3. Simulation Setup
2.3.1. Model Domain and Simulation Period

The model domain, which covers the eastern and northeastern parts of Japan (213 x 257 grid cells with a
3-km grid resolution using a Lambert conformal coordinate system) is presented in Figure 1a. There are 48
vertical layers, up to ~22 km above sea level (ASL), for the NHM and 27 layers, up to 100 hPa, for the WRF
on a terrain-following coordinate system with vertically stretched grids (with more grids at lower levels to
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resolve boundary layer dynamics and fewer grids in the free troposphere). Since the vertical grid structures
of the NHM and WREF are different, as is the standalone CTM part of the offline NHM-Chem, the meteor-
ological fields were vertically interpolated to the vertical layers of the CTM, which include 19 layers up to
10 km ASL. The output time interval of the NHM and WRF are 1 h, and thus the input/output time interval
for the CTM is also 1 h. The horizontal grid of the CTM was the same as that of the meteorological models.
The simulation period is from 00 Cooridated Universal Time (UTC) on March 11 to 00 UTC on April 1, with
a spin-up period of 20 h; the onset of emission was 20 UTC on March 11.

A tagged simulation method was used in this study. Tagged tracers (**’Cs) were released every 30 min at
a rate of 1 TBq h™. Each simulation stopped when the maximum concentration over the model domain
was below a very small value (10™"° Bq m™?). After all the simulations, the prescribed emission rate at each
30 min interval was multiplied by the corresponding tagged concentration and deposition fields, and all the
tagged simulations were summed to derive the full simulation results. The tagged method is useful because
the environmental behaviors of radionuclides should not be very nonlinear. However, note that due to nu-
merical errors, the tagged results were different from those of the standard simulation: the results assuming
WSPs for the whole period presented in this study were different from those of Met_EnsMean presented in
Kajino et al. (2019a). The difference is also due to using different settings for the microphysical properties
of the WSPs (see Section 2.3.3) and different formulations of CCN activation between Kajino et al. (2019a)
and this study (see Section 2.2).

2.3.2. Emission Amount and Period for **’Cs and CsMPs

The most commonly used estimation by the Japan Atomic Energy Agency (JAEA) (Katata et al., 2015) was
used for the emission inventory of **’Cs in the simulation. WSPs were assumed to be the radionuclide carri-
er particles in the same manner as in Kajino et al. (2019a), except for two periods, when two types of CsMPs
were assumed to be emitted.

The current knowledge on the two types of CsMPs is summarized in Table 1. The readers can find very
detailed information on CsMPs from the extensive review by Igarashi et al. (2019); this information
is briefly described here. Type A CsMPs were first found by Adachi et al. (2013) in a sample from a
high-volume air sampler filter in Tsukuba, ~170 km southwest (SW) of the FINPP. Type A CsMPs
were also found by Satou et al. (2016) in the soil sampled ~20 km northwest (NW) of the FINPP. The
diameters of the isolated type A CsMPs thus far range from 1 to 10 um; these particles have spherical
shapes and high specific radioactivity (Adachi et al., 2013; Igarashi et al., 2019; Satou et al., 2016). Ad-
ditionally, type A CsMPs smaller than 0.5 um in diameter were recently found (Okumura et al., 2019a).
Type B CsMPs were first found by Satou et al. (2018) in soil samples in Fukushima, within 10 km
north-northwest (NNW) of the FINPP. The diameters of the isolated type B CsMPs so far range from 70
to 400 um; these particles have irregular shapes and low specific radioactivity but high activity values,
reaching beyond 1 kBq (Igarashi et al., 2019; Satou et al., 2018). Recently, type B CsMPs with a few
micrometers in diameter (1-5 um) were also found in an air sample at a station ~25 km north of the
F1NPP (Onozaki et al., 2019).

Satou et al. (2018) discussed that the emission of type B CsMPs is associated with the hydrogen explosion
of Unit 1, which occurred on March 12, 15:36 local time (LT; UTC+9). This is because the isotopic activity
ratios (***Cs/"*’Cs) of the type B CsMPs were similar to those of the estimated fuel composition of Unit 1
and because the dispersion of such large particles (~100 wm in diameter) over significant distances (~20 km
away from the FINPP) should require considerable energy, such as a hydrogen explosion. According to
Katata et al. (2015), the simulated duration of the emission on March 12 lasted from 15:30 to 16:00 LT, and
the total emission amount was 0.7 PBq (Table 1).

On the other hand, the timing of the emission of type A CsMPs is still controversial. The activity ratios of the
type A CsMPs were significantly different from those of Unit 1, but it is difficult to identify the origin of the
particles because the isotopic activity ratios of Units 2 and 3 were similar to each other (Igarashi et al., 2019;
Satou et al., 2018). Judging from the air sample that contained type A CsMPs (sampled from March 14 at
21:00 to March 15 at 9:10 LT) and the tagged simulation results, Adachi et al. (2013) estimated that the air
mass that contained type A CsMPs should have started in the FINPP between March 14 at 17:00 to March
15 at 2:00 LT. According to Katata et al. (2015), during this period, three peak emission events occurred, and
the safety relief valve (SRV) of Unit 2 opened at 21:00 and 23:00 LT on March 14 and at 1:00 LT on March 15.
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Table 2

In contrast, based on the engineering of the reactor, Hidaka (2019) argued that the formation of type A CsMPs
in Unit 2 is unlikely. The author proposed that type A CsMPs were also formed due to the hydrogen explosion
of Unit 3 at 11:01 LT on March 14. The particles were mostly dispersed toward the ocean during the time of
formation, but part of them were deposited on the reactor building of Unit 3 and could have been resuspended
and released into the environment due to a restart of the core cooling water injection at 2:30 LT on March 15.
This argument is consistent with the result of the atmospheric simulation: the environmental dose rate meas-
ured in Tsukuba peaked twice (at 4:24 (0.5 uSv h™") and 9:12 (1.1 uSv h™") LT on March 15); the latter peak
was associated with the water injection time according to the tagged simulation of Adachi et al. (2013). Never-
theless, we had to use the events of Unit 2 as the source for the type A CsMPs, which amounted to 0.475 PBq
(Table 1), because the Katata et al. (2015)’s source term does not consider emissions of the Unit 3 during the
time. There could be other emission events of type A CsMPs, such as on the evening of March 15, as suggested
by Satou et al. (2015). However, the measurement of these particles was conducted using soil samples, so it is
difficult to associate the samples with the emission events. Thus, the events on the evening of March 15 were
not assessed in the current study as a CsMP type A emission source.

2.3.3. Microphysical Properties of *’Cs and CsMPs

In Kajino et al. (2019a), the '*’Cs-bearing particles were assumed to be WSPs in all cases, and the microphys-
ical properties of these particles were set as follows: the number-equivalent geometric mean dry diameter
(Dgn,ary) was 102 nm, the geometric standard deviation (g,) was 1.6, the particle density (o,) was 1.83 x 10°kg
m™? (assuming ammonium sulfate) and the hygroscopicity (x) was 0.4 (to calculate hygroscopic growth and
CCN activation). In Adachi et al. (2013), for simplicity, we excluded the in-cloud scavenging processes (CCN
activation and subsequent cloud microphysical processes), as the CsMPs were water-insoluble and thus not
activated as CCN. However, this is not true in all cases: even relatively large nonhygroscopic particles can
be activated at higher supersaturations (e.g., Petters and Kreidenweis, 2007). To consider the activation of
nonsoluble particles and to make the simulation simpler, the CCN activation fractions of the CsMPs were
prescribed for the sensitivity simulations.

Tables 2 and 3 summarize the sensitivity tests for the microphysical properties of type B and type A CsMPs,
respectively. The number-equivalent geometric mean diameters (D,,) at emission were set at logarithmic
intervals from 0.1 to 100 um for type B and 0.1 to 10 um for type A. Note that D, , in the environment = D , 4ry
because CsMPs are nonhygroscopic. o, was set to unity (monodispersed) for the type B simulation to see the
simple relationship between size and transportation/deposition. The weather pattern was simple, the wind
was mostly southerly during the 30-min emission duration, and in reality, most of the type B CsMPs were
deposited within 10 km of the FINPP, as these CsMPs were large. On the other hand, type A CsMPs traveled
a longer distance (more than 100 km) over complex terrain and/or within complex meteorological fields,
so sensitivity tests were conducted for o, values ranging from monodispersal (g, = 1.0) to broad dispersal
(og = 2.0). Information on g, has not yet been yielded from field observations, but this is a key parameter
for atmospheric simulations because larger particles are deposited more rapidly and substantial changes
in size distribution during transport could occur for broadly dispersed particles larger than 1 um in diam-
eter. For example, when Dy, = 1 um, the mass-equivalent mean diameter is D,,, = 1 um for g, = 1.0 but
Dy = 4.2 um for o, = 2.0, according to the relationships between number-equivalent and mass-equivalent
mean diameters as follows:

2
InD,, =D, +3(Inc,) . )

Sizes and Prescribed Activated Fractions of Type B CsMPs

Experimentname  Bl15 Bl4 BI3 BI2 Bl1l BI0O B09 B0O8 BO7 BO6 BOS  B04 B03 B02 BO1  BOO
Dy, (pm)* 100 631 398 251 158 10. 631 398 251 158 1.0 0631 0398 0251 0158 0.1
Fog" 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
Cloud" 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0

*Number-equivalent geometric mean diameter at emission. ®Derived using prescribed supersaturations (0.01% for fog and 0.1 for clouds); x = 0.
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The settling velocity is 17.6-fold larger for particles with o, = 2.0 than for particles with o, = 1.0 for same
D, .. The prescribed activated fractions were calculated using prescribed supersaturations of 0.01% and 0.1%
for fog and clouds, respectively. The activated fractions of fog were applied for '*’Cs at the bottom layer of
the model domain, and those of clouds were applied above the bottom layer. This method comprises several
uncertainties. (1) Changes in activated fractions during transport due to changes in size distributions can-
not be considered. (2) Substantial electrical charges of the type A CsMPs significantly enhanced scavenging
by cloud droplets (Dépée et al., 2019), but this effect was not considered. Electrical charges can reduce the
surface tension of droplets so that the activated fraction can be enhanced (Holldnder & Schumann, 1979).
(3) Fog deposition over mountains could occur when clouds over the plains approach the mountain surface
(Hososhima & Kaneyasu et al., 2015; Imamura et al., 2020; Sanada et al., 2018); therefore, it might be better
to use the activated fraction for clouds.

As shown in Tables 2 and 3, we defined the experiment names as follows: For the type B case, B00-B15
represent simulations from 0.1 to 100 um of D, ,, respectively. For the type A case, A00 to A10 represent
simulations from 0.1 to 10 um of D, ,. In addition, for the type A case, symbols from a to d are added to the
end of the experiment names indicating the sensitivity of o, from 1.0 to 2.0, respectively. For example, B10-
A05c means a sensitivity study with (Dg,, 0,) = (10 pum, 1.0) for type B CsMPs and (Dg,, o) = (1.0 um, 1.6)
for type A CsMPs.

For the WSPs, the D, , and o, at emission were set as 0.5 um and 1.6, respectively, with prescribed activation
fractions of 1.0 for both fog and clouds. Note that D, in the environment = Dy, q;y because hygroscopic
growth was not considered in the simulation method. p, was assumed to be 1.83 x 10° kg m™ in all cases
because the particle densities of the CsMPs were not available.

2.4. Observation Data and Deposition Areas

The radioactivity observation data sets used in Kajino et al. (2019a) were also used in this study: aircraft
measurement data for cumulative depositions of *’Cs were provided by NRA (2012) and Torii et al. (2012)
and hourly surface air concentrations of **’Cs were provided by Tsuruta et al. (2014) and Oura et al. (2015),
except for the Tokai site (station d of Figure 11), for which data were obtained from Okura et al. (2012).
Tsuruta et al. (2014) developed a method to retrieve hourly surface air concentrations of '*’Cs using the
filter tapes for the suspended particle matter (SPM; 100% cut-off at 10 um) monitoring. **’Cs concentration
data measured at 99 stations were released by Tsuruta et al. (2014) and Oura et al. (2015). For the Tokai
site, the filter sampling was made only when the gamma dose rates were high with sampling intervals from
20 min to half a day (Okura et al., 2012). For the sake of comparison against the hourly simulation data,
we produced hourly data from the raw data of time intervals less than 1 hour (20 and 45 min). Because
NRA (2012) did not provide deposition amounts for the restricted flight zone of the FINPP (an area 3 km

’;‘;le)l;iztributions and Prescribed Activated Fractions of Type a CSMPs

Experiment name Al0a-d* A09 A08 A07 A06 A05 A04 A03 A02 A01 A00
D, (p.m)b 10. 6.31 3.98 2.51 1.58 1.0 0.631 0.398 0.251 0.158 0.1
Fog (0 = 1.0)° 1 0 0 0 0 0 0 0 0 0 0
Fog (o, = 1.3)° 0.97 0.53 0.05 0 0 0 0 0 0 0 0
Fog (g, = 1.6)° 0.98 0.84 0.51 0.17 0.03 0 0 0 0 0 0
Fog (g, = 2.0)° 0.99 0.96 0.87 0.68 0.43 0.20 0.07 0.01 0 0 0
Cloud (¢, = 1.0)° 1 1 1 1 0 0 0 0 0 0 0
Cloud (g = 1.3)° 1 1 1 0.99 0.74 0.14 0 0 0 0 0
Cloud (gg = 1.6)° 1 1 1 0.99 0.91 0.64 0.27 0.05 0 0 0
Cloud (¢, = 2.0)° 1 1 1 1 0.98 0.91 0.76 0.51 0.26 0.1 0.03

*a-d correspond to o, namely, a, b, ¢, and d are experiments with o, = 1.0, 1.3, 1.6, and 2.0 respectively. Same for A00 to A09. bNumber—equivalent geometric
mean diameter at emission. “Derived using prescribed supersaturations (0.01% for fog and 0.1 for clouds); x = 0.
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in radius), in this study, radiation monitoring data, which totaled 45 TBq, collected using an unmanned
helicopter and provided by Sanada et al. (2014) were used. Precipitation data were not used in the study be-
cause the simulated precipitation was already evaluated in Kajino et al. (2019a). The detection limits of ob-
served surface air concentration of *’Cs were ~0.1-0.6 Bq m™* and 0.1-0.3 Bq m ™ for Tsuruta et al. (2014)
and Oura et al. (2015), respectively. The detection limit of observed deposition was ~15 kBq m™> (Torii
et al., 2012).

The deposition areas used for the process analysis in both Kajino et al. (2019a) and this study are shown in
Figure 1b. To focus on the areas in which CsMPs were deposited, we discussed only Hamadori (Area 1), a
coastal area in Fukushima prefecture, which includes the FINPP, Tochigi and Gunma (Area 6 and Area 7),
where the mountains were contaminated mainly due to fog (or cloud) deposition, and Iwaki-Ibaraki and
Ibaraki-Chiba (Area 8 and Area 9), which are south and downwind of the FINPP for assessing type A par-
ticle transportation. Fog deposition partly contributed to deposition in Iwaki-Ibaraki (Kajino et al., 2019a;
Sanada et al., 2018), but there was almost no fog contribution to Ibaraki-Chiba because the contaminated
areas were located over the Kanto Plain (Figure 1a). The Kanto Plain, which includes Ibaraki, Chiba, Tochi-
gi, Gunma, and Tokyo prefectures, is the most populated plain in Japan, as shown in Figure 1b.

The observed total amount of **’Cs deposited over the entire land area of Japan (denoted as Area 0) was 2.59
PBq excluding the restricted flight zone and 2.64 PBq including it. The largest deposition (1.43 PBq) was
observed in Area 1 (including deposition in the restricted zone). The observed depositions over Areas 6 and
7, and Areas 8 and 9 were 0.21 and 0.16 PBq, respectively.

3. Results
3.1. Type B

Surface weather charts for the periods during which emissions of type B and type A CsMPs occurred are
presented in Figure 2, together with the timings of their possible emission sources. The hourly mean meas-
ured and simulated wind vectors at FINPP are also presented. The wind speed and direction were meas-
ured on the premises of the FINPP by a monitoring car, https://www.tepco.co.jp/nu/fukushima-np/f1/
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Unit 1, Hydrogen explosion Unit 2, SRV openings and subsequent water injection
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Figure 2. (a-d) Surface weather charts provided by the Japan Meteorological Agency for the assumed emission events of type B and type A CsMPs from March
12 to 15, 9 local time (LT) (0 UTC). (e) Observed (red) and simulated (blue) hourly wind vectors at the FINPP.
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indexold-j.html (last accessed: June 5, 2020). There are significant discrepancies in the wind field due to
the differences in the measurement height (probably at 2 m) and simulation height (10 m) and the coarse
resolution (Ax = 3 km) needed to resolve the wind field by the coast.

During the emission of type B CsMPs (from the hydrogen explosion of Unit 1), the southerly wind associ-
ated with a migrating anticyclone situated to the south of the FINPP transported type B CsMPs northward
and deposited them as shown in Figure 3. The wind directions of the measurement and simulation were
similar, but the simulated wind direction was shifted slightly toward the east, in the direction of the ocean.
Figure 3 shows the cumulative concentration and deposition of 137Cs at different sizes of CsMPs (0.1, 1, 10,
and 100 um). The transport distances and deposition amounts are summarized in Figure 4. The simulated
deposition amounts and the deposition processes that contributed to the model are summarized in Figure 5.

There were significant differences in both the concentration and deposition fields for the CsMPs with di-
ameters ranging between 0.1 and 100 um, as shown in Figure 3. Under the influences of the anticyclone, no
precipitation or fog events occurred during the emission and transport of type B CsMPs in the afternoon of
March 12; thus, only dry deposition contributed to the overall deposition (Figure 5). In Figure 3, the hori-
zontal distributions of the cumulative surface air concentrations remain unchanged from a D, , of 0.1 um
up to a D, , of 10 um because the gravitational settling velocities are low for this size range. On the other
hand, the deposition amounts significantly increased from a D, of 10 um due to the significant increase in
dry deposition velocity because of the large inertia of the particles. Consequently, the regional impact of dry
deposition (or the deposition amount over downwind areas) was largest at a D,,, of 10 pum (these particles
were widely distributed in significant amounts). Certainly, the total deposition amount was largest at a Dy,
of 100 um, but the contaminated area was limited (to only near the emission source).

This trend is clearly shown in Figure 4. In Figure 4a, the transport distances (defined as Dists, the small-
est radius of a circle around the FINPP in which 66% of the total deposition occurred) below a D, of
10 um were almost the same (>100 km), which indicates that dry deposition velocities were unsignifi-
cant, such that the meteorology determined the dispersion and deposition of the particles. On the other
hand, when D, , was larger than 10 um, the gravitational settling velocities became significantly larger

36N F—
448 139

kBq/m?)

2 41N 41N

40N 40N

39N 39N
38N 1 | 38N~

37N 37N

— - 36N = ——
E 142E 143E 144E 139E 140E 141E 142E 143E 144E

B05 B10 B15

o VAV S I

Figure 3. The simulated (upper panels) cumulative concentration and (lower panels) deposition of **’Cs carried by type B CsMPs for different D, , values (0.1,
1, 10, and 100 pm, from left to right). The experiment names are depicted in the bottom.
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Figure 4. (a) The simulated transport distance (Dists: the smallest radius of a circle around the FINPP in which 66%
of the total deposition amount is included). The dashed line indicates the model grid resolution (Ax = 3 km), and

the dashed dotted line is a slope inversely proportional to the square of Dg,. (b) The total deposition amounts of Bcs
carried by type B CsMPs at different D, , values in the model domain over land (open circles and dashed line) and over
the whole area (land and ocean; closed circles/solid line).

and affected the transport distances of the particles. For the size ranges, the decrease in Distgs was in-
versely proportional to the square of D, , (dashed dotted line). Certainly, Dists cannot be lower than the
model Ax (= 3 km) because NHM-Chem is a Eulerian model. It cannot resolve the phenomena smaller
than Ax. However, judging from the dashed dotted line (inversely proportional to square of diameter and
thus inversely proportional to gravitational settling velocity), Distss could be extrapolated to ~1 km at a
Dy, 0f 100 pm.

While the transport distance changes with D, , values from 10 to 100 um, the deposition amounts started to
increase for particles with D, , values from 1 to 10 um due to a significant increase in dry deposition velocity
(Figure 4b). The total deposition amounts over the model domain were unchanged above 10 pm, but the
contaminated areas significantly differed (Figures 3 and 4a). Figure 4b shows the simulated depositions
over both the whole area (land and ocean) and land only. The aircraft observation data were collected only
over the land, but the simulation caused depositions over both the land and ocean due to its crude Ax (the
model grid including the FINPP was covered partly with ocean (39%) and partly with land (61%) and de-
viations in the wind direction (the simulated wind direction was shifted slightly eastward compared to the
observed wind direction). Based on observational studies (Chino et al., 2016; Satou et al., 2015), the con-
tamination caused by type B CsMPs occurred mainly over land. Serious contamination occurred northwest
of the FINPP, as shown in Figure 9. Satou et al. (2015) and Chino et al. (2016) used isotopic activity ratios
of ""™Ag/"¥Cs from soil samples and **Cs/**'Cs from an unmanned helicopter survey, respectively, and
successfully identified the source reactor units. The '*’Cs deposition due to type B CsMPs occurred not in
the center of the northwestern zone but in the vicinity of the zone and toward the north (i.e., in the NNW
direction), ~15 km from the FINPP.

In Kajino et al. (2019a), from an ensemble analysis of multiple meteorological models and physical mod-
ules, we concluded that the simulated total deposition amounts over land (1.23 PBq of Met_EnsMean), as-
suming WSPs as carriers of *’Cs, significantly underestimated the aircraft observation (2.59 PBq) due to the
underestimation of deposition rates of NHM-Chem. Among the deposition processes, we hypothesized that
the below-cloud scavenging rate could be the main reason for underestimation because the value we used
was based on theories that have been known to underestimate values derived by field experiments (e.g.,
Wang et al., 2010; Zhang et al., 2013). Figure 5 indicates another reason for the discrepancy between the
simulated and observed total deposition. The difference between the aircraft observations (2.64 PBq, with
additional deposition within 3 km of the FINPP) and the current simulation, assuming 100% WSP carriers
(1.19 PBq), was 1.45 PBq. Approximately half of this underestimation can be explained by the presence of
type B CsMPs (0.7 PBq), if the emission estimated by Katata et al. (2015) during the hydrogen explosion of
Unit 1 consisted solely of type B CsMPs and the diameters of all the particles were much larger than 10 um
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Area 0 (Who|e area) (as suggested by Satou et al., 2018 [70-400 um]) so that they were read-
i ily deposited onto the ground surface within less than 100 km from the
c . FINPP. Onozaki et al. (2019) found type B CsMPs smaller than 10 um in
o R diameter from air samples collected at a station located 25 km north of
"g 54 the FINPP. The relative contributions of radioactivity from type B CsMPs
8_ 6—‘ 1'8 0000 larger than 10 um and smaller than 10 um would have been a key factor
) m 1'5 o - controlling the surface air concentration and deposition of radio-Cs dur-
© Q—/ 1'2 SOOP e 09 ing the emission event. By considering the presence of type B CsMPs, the
© 0'9 estimated emission amounts during the emission event could be signif-
"6 0'6 o icantly different from the value previously estimated by assuming WSP
— 0'3 Obs.:land Only carrier aerosols (e.g., Katata et al., 2015), as presented in Section 3.4.
~ | Sim.:land + ocean
00 M+ 7+ 7+ 7+ 7T T T T
o
9 100% 3.2. Type A
5 -
O 8 e ® Liquid During the emission of type A CsMPs (SRV openings of Unit 2 or
= s s hydrogen explosion of Unit 3 and subsequent water injection), twin
S 8 70% extratropical cyclones, often observed in the early and late stages of
O o -~ Solid winter, were situated north and south of the Japanese archipelago and
"(3 8 ’ migrated eastward (Figure 2). Both the observed and simulated wind
< oM 50% directions were northerly during the emission period, although there
) q'_) 20% were some deviations between them. The simulated wind direction
8 O s Fog was more inland (toward the west) and more toward the ocean (to-
n > ward the east) before and after 0:00 LT on March 15. Figure 6 shows
8 o the cumulative concentration and deposition of '*’Cs for CsMPs with
9 R different D, , values (0.1, 1, and 10 um) and different o, values (1.0
(W 0% L Dry and 2.0). As shown in Figure 6, the anticyclonic circulation between
0.1 1'0 160 the two cyclones moved the air mass containing the type A CsMPs
D (pm) to the Kanto Plain (Figure 6). The transport distances and deposition
n amounts are summarized in Figure 7.
Figure 5. Upper panels: the observed (solid line) and simulated total In the type A simulation, o, was altered between 1.0 (monodispersed),

depositions of '¥'Cs for (circles) different sensitivity tests of type B CsSMPs
and (dashed line) 100% WSPs over the entire land area of Japan (denoted as
Area 0), as defined in Figure 1. Note that the simulation includes deposition

1.3 (narrowly dispersed), 1.6 (standard dispersal), and 2.0 (broadly
dispersed). The type A CsMPs were transported over a long distance;

over both land and ocean. Lower panels: the simulated contributions of therefore, substantial changes in the size distribution (D, and o) of
each deposition process to the deposition of *’Cs by type B CsMPs: red, the particles could occur during transport. This is also because, in
dry deposition; green, fog deposition; sky blue, wet deposition by solid addition to Dy, g, is also a key factor: atmospheric behaviors change

precipitation; navy, wet deposition by liquid precipitation.

substantially depending on o, even for the same D,. For example, the
ratios of the concentration of particles with a median diameter char-
acterized by mass (D, ) to those of particles with a median diameter
characterized by number (D,,) are 1, 1.2, 1.9, and 4.2 for g, values of 1.0, 1.3, 1.6, and 2.0, respectively
(see Equation 1).

In Figure 6, the Dy, values are 0.1, 0.42, 1.0, 4.2, 10.0, and 42.2 um. For the type A CsMPs, other deposition
processes, such as fog deposition and wet deposition, occurred, as shown in Figure 8, while only dry depo-
sition affected the type B CsMPs. However, features similar to those in Figure 3 are observed: no significant
difference in the cumulative concentration of particles smaller than 1.0 pum (for D, ,), gradually increasing
deposition amounts and gradually decreasing cumulative concentrations of particles ranging between 1.0
and 10 um (for D,,,), and a significant decrease in the cumulative concentration of particles with Dy,
greater than 10 um. Figures 7a and 7b also show similar features. The Distss decreased in a manner inverse-
ly proportionally to the square of D, , for g, of 2.0 and D, , values larger than ~3 um (D,,, = 12.2 um) in
Figure 7a. Adachi et al. (2013) found substantial amounts of type A CsMPs in the air samples in Tsukuba,
170 km from the FINPP; therefore, we can safely conclude that D,,, could be much smaller than 42.2 um
(Dgrn =10 um, o, = 2.0) (see the rightmost panels of Figures 6 and 7a). This finding is also supported by the
fact that type A CsMPs with diameters much larger than 10 um have not been found in any field experi-
ments so far (Igarashi et al., 2019).
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Figure 6. The information presented in this figure is the same as that in Figure 3, but for the type A CsMPs with different Dy, (0.1, 1, and 10 pm) and g, (1.0
and 2.0) values. The corresponding D, ,, and experiment names are depicted in the bottom.

Figure 8 presents the total deposition amounts over the whole terrestrial area of Japan (Area 0) and regions
affected by the deposition and transport of type A CsMPs (i.e., Areas 1, 6, 7, 8, and 9), together with the
contributions of processes to the total deposition of type A CsMPs. In Area 1, the contribution of dry dep-
osition to type A deposition was almost 100%. As the particle sizes increased, the total deposition amount
approached the observed value, but it is unlikely as described before (D, could be much smaller than
42.2 pm). In Areas 6 and 7, the simulated deposition based on an assumption of 100% WSPs (dashed line)
underestimated the observed deposition by ~50% but was larger than the results of any other sensitivity
tests for the type A CsMPs. This is because the prescribed activated fractions of the type A CsMPs, with
smaller diameters for clouds and fog, were either 0 or less than 1 (Table 3), whereas those for WSPs are
assumed to be 1. As the sizes were larger for g, values of 1.0 and 2.0, the contributions of fog deposition and
wet deposition were enhanced and peaked at 0.07 PBq in the areas. However, the total deposition decreases
as the sizes increase further (i.e., Dy, > 2 pum for g, = 2.0) because the type A CsMPs were deposited before
reaching areas such as the Ibaraki and Saitama prefectures. The contributions of wet and fog depositions
increased to 60% and 50%, respectively, at larger sizes. This is the major difference from the study by Adachi
et al. (2013), in which the activated fractions of the CsMPs are assumed to be zero. Whereas the presence
of type B CsMPs could partly explain the underestimation of simulated deposition, the presence of type

(a) Distgg of 137Cs (b) Deposition of '3’Cs
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Figure 7. The information presented in this figure is the same as that in Figure 4, but for type A CsMPs at different o,
values: 1.0 (black), 1.3 (red), 1.6 (blue), and 2.0 (green). Note that the simulated depositions over the whole area (land
and ocean) (shown by the closed circles and solid lines) are presented in Figure 7b.
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Figure 8. The information presented in this figure is the same as that in Figure 5, but for type A CsMPs at different o, values (1.0 and 2.0) over the whole land
area (Area 0), Hamadori (Area 1), Tochigi and Gunma (Areas 6 and 7), and Iwaki-Ibaraki and Ibaraki-Chiba (Areas 8 and 9). Unlike Figure 5, the simulation
results shown in this figure do not include depositions over the ocean, consistent with the observations.

A particles could not explain the underestimation of deposition in Areas 6 and 7. For Areas 8 and 9, the
contribution of dry deposition was dominant, but the same patterns were observed: the deposition amounts
increased as the sizes increased but started to decrease as the sizes grew even larger (i.e., Dg, > 3 pm for
o, = 2.0). Because Areas 8 and 9 were closer than Areas 6 and 7 to the FINPP along with the transport
pathway of type A CsMPs, the D, , showing a deposition peak of g, = 2.0 for Areas 8 and 9, which was larger
than that for Areas 6 and 7. The simulated peak depositions (0.18 PBq) exceeded the observed deposition
(0.16 PBq). For Areas 8 and 9, the presence of type A CsMPs could explain the simulated underestimation
of deposition. At smaller sizes, the total deposition in the sensitivity tests for type A CsMPs was smaller than
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that for the WSPs. This is because type A CsMPs were deposited over the ocean off the coastline of Ibaraki
prefecture by wet deposition. As presented in the upper panels of Figure 6, a part of the air mass containing
type A CsMPs was transported over the ocean. Overall, for Area 0, the presence of type A CsMPs could not
explain the underestimation of the simulated depositions. The contributions of dry deposition were the
largest, and those of wet and fog depositions were up to 45% and 10%, respectively, depending on the size
parameters.

The sizes of the type A CsMPs isolated from field experiments ranged from 0.1 to 10 um (Adachi et al., 2013;
Satou et al., 2016, 2018; Okumura et al., 2019a; Igarashi et al., 2019 and references therein). The sensitivity,
especially focusing on the observational data, can be obtained from the simulation differences at o, = 1.0
(monodispersal), as shown in Figures 6-8; the environmental behaviors of the CsMPs with diameters of 0.1,
1, and 10 um were drastically different. The horizontal distributions were also different (Figure 6). Among
the total emissions assumed in the simulation (0.475 PBq), only 0.01-0.03 PBq was deposited over the model
domain for particles with a size of 1 um or smaller, while more than 10 times (0.4 PBq; more than 80% of the
emission) that amount was deposited for particles with a size of 10 um (Figure 7b). The deposition mecha-
nisms could be drastically different, especially for Areas 6 and 7 (Figure 8): the contribution of dry deposi-
tion was almost 100% for particles with a size of 1 um or smaller, whereas the contribution of fog deposition
was the largest (50%) for particles with a size of 10 um. For particles ranging in size between 0.1 and 10 pm,
wet deposition also significantly contributed to the overall deposition and varied substantially up to 60%.

3.3. Horizontal Distributions of Cumulative Concentrations and Depositions

Figures 9 shows the horizontal distributions of the observed and simulated cumulative surface air concen-
trations (Bq m > h), while Figure 10 shows the horizontal distributions of the observed and simulated dep-
ositions (kBq m™). From left to right, the figures show the simulation results for the models using WSPs for
the whole period, sensitivity simulation results showing the maximum areal total deposition (Max_depo;
B13-A07 d), minimum areal total deposition (Min_depo; B01-A0Ola), maximum areal mean cumulative
concentration (Max_conc; B11-A0la), and minimum areal mean cumulative concentration (Min_conc;
B15-A10 d). We found that the results showing the best R in deposition was identical to Min_depo.

The correlation coefficients of the sensitivity simulations did not significantly differ for the cumulative
concentrations and showed relatively high values (0.8), as found in Kajino et al. (2019a) (Figure 9). On the
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Figure 9. Horizontal distributions of the observed and simulated cumulative surface air concentrations of **’Cs from 13 to 23 March and scattergrams between
observations and the sensitivity simulations (from left to right, with only WSPs, maximum and minimum areal total depositions (Max_depo and Min_depo,
respectively), and maximum and minimum areal mean cumulative concentrations (Min_conc and Min_conc, respectively). Note that best R in deposition

was identical to Min_depo. The correlation coefficient (R), observed areal average (Obs. Ave.), and mean bias (MB) values are embedded in the panels. The
observation data in each model grid cell were averaged and used for the comparison. The combinations of experiment names are embedded in the bottom.
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other hand, MB varied substantially, from —33.1 to —109.1 Bq m~> h, with an observed average of 376.1
Bq m~* h. In terms of MB, the best performances were yielded from the simulations with low deposition
rates (Min_depo, Max_conc), but the spatial R values were somewhat smaller than those in the other cases.
Cases with relatively high MB values were somewhat unlikely because the observed CsMPs were much
larger than these cases. However, these less likely smaller size cases (Min_depo) showed better R values
for depositions (Figure 10). In the cases in which the performance of the MB was better for given deposi-
tions (Max_depo and Min_conc), the R values were much lower (0.3-0.4). These cases were also somewhat
unlikely based on the observations (type B CsMPs might be reasonable, but type A CsMPs should not be
so large). These contradictory statistical metrics indicate that the discrepancies between the observed and
simulated depositions have not yet been resolved by considering the presence of type A and type B CsMPs.
Further studies for the improvements of simulated depositions are indispensable.

3.4. Transport Events and CsMP Pathways

Figure 11 shows the time series of the observed and simulated surface air concentrations of *’Cs at several
stations in the Fukushima, Ibaraki, and Saitama prefectures over the transport pathways of type A CsMPs.

The pathway of type B CsMPs was not depicted in the figure, because the pathway was simple and no ob-
served values were available during the period. It was not depicted also because most of **’Cs from type B
CsMPs might not be captured by the SPM filters as most of their sizes could be larger than the cut-off size
of the SPM sampling (100% cut-off at 10 um). For the type B CsMPs case, the comparison of simulated
and observed deposition may be more useful, which was presented later in Section 3.5. The type B CsMPs
were emitted in the afternoon of March 12 and arrived at a SPM station, located 25 km NNW of the F1IN-
PP, after 1 h. The simulated concentration was enhanced for 3 h, from 16 to 19 LT. Onozaki et al. (2019)
isolated CsMPs from air samples at the same station, but collected them later, from 20 to 21 LT and 0 to
1 LT on March 13. The emission of type B CsMPs could have lasted longer after the hydrogen explosion.
The simulated 3-h cumulative concentration spanned more than a 4-fold difference, from 1,470 to 6,900
Bq m~* h, depending on the particle sizes (0.1-100 um), which could substantially affect the source term
estimation, as discussed in Section 3.1. An estimated amount (0.7 PBq) was obtained from the simulation,
assuming submicron carrier particles (Katata et al., 2015). If the typical sizes of type B CsMPs (70-400 pum)
were considered, more emission would be required to explain the observed surface air concentration (or
dose rate from cloud shine). On the other hand, the dose rate from ground shine should be enhanced due
to fast settling velocities; therefore, the assumption of the relative fractions of cloud shine and ground shine
should be modified. There were also type B CsMPs with diameters of 1-5 um floating in the air (Onozaki
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Figure 10. The information presented in this figure is the same as that in Figure 9, but for the observed and simulated cumulative deposition of **’Cs. The areal

total deposition amounts over land are also embedded in the upper panels.
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et al.,, 2019). Thus, it is currently still not clear whether the estimated amount will be increased or decreased
by considering the microphysical properties of type B CsMPs.

In the time series panels on the left in Figure 11, the red shaded areas indicate the range of simulated '*'Cs
concentrations obtained from the size distribution sensitivity studies. The simulated type A particles were
emitted during the night from March 14 to 15 and transported south and southwest over southern Fuku-
shima, Ibaraki, Saitama, and Gunma prefectures due to anticyclonic circulation, which was identified as
plume P2 (Nakajima et al., 2017; Tsuruta et al., 2014). Hereafter, note that the “observed event” was defined
as a surface air concentration exceeding 1 Bq m™ (well above the higher detection limit, i.e., 0.6 Bq m~>)and
the “simulated event” was defined as a surface air concentration larger than 0.5 Bq m > (half the criteria of
observed event). The “simulated event affected by the presence of type A CsMP” (or simply “simulated type
A event”) was defined as a relative difference between the simulated maximum and minimum surface air
concentration for the type A CsMPs sensitivity tests exceeded 10%. The emission timing of the type A CsMPs
is still controversial, but both the observed and simulated surface air concentrations started to increase at 1
LT on March 15 at the earliest among the selected stations (i.e., station [d]). The observed event ended at 10
LT, while the simulated event lasted longer, up to 17 LT. The simulated event was affected by type A for the
whole event. The observed 9-h (1-10 LT) cumulative concentration was 770 Bq m ™ h, whereas the simu-
lated 16-h (1-17 LT) cumulative concentration, which was significantly underestimated, ranged from 16 to
202 Bq m ™~ h for the ranges of D, = 0.1-10 um and o, = 1.0-2.0. The underestimation was due probably to
the discrepancy of simulated plume center, because the horizontal plume size was narrow. It was also due
probably to the underestimation of emission. Still, however, the emission could be reasonable because the
observed values were well within the simulated range in the further downwind locations (e.g., station [f]).

It must also be noted here that during the transport events of the type A CsMPs, substantial amounts of
WSPs existed; as such, both the simulated and observed cumulative concentrations included both types of
particles. The cumulative concentrations purely from type A CsMPs are shown in the upper panels of Fig-
ure 6 and the right panel of Figure 11. Thus, the discrepancies between the simulated and observed cumula-
tive concentrations for the transport periods of the type A CsMPs were not associated solely with the uncer-
tainty in the type A simulations. However, the difference between the simulated maximum and minimum
concentrations was associated with the differences in the assumed size parameters for the type A CsMPs.
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Figure 11. Left panels: time series of the observed (black) and simulated (red) surface air concentrations of *’Cs (Bq m™?) at monitoring stations (a) to (g) in
Fukushima, Ibaraki, and Saitama prefectures over the transport pathways of type A CsMPs. The x-axis indicates the dates in LT. The red shaded areas indicate
the range of simulated *’Cs concentrations obtained from the sensitivity tests. The timing of assumed emissions of the type A CsMPs are shown by the red
dashed lines in the panels. The rough sequences of plume arrivals at the stations for type A CsMPs along with the plumes P2 and P3 (Nakajima et al., 2017;
Tsuruta et al., 2014) are indicated with arrows. Right panel: the locations of the monitoring stations are depicted over a map of the cumulative concentration of

type A CsMPs for D,

1.0 um and g, = 1.0 (A05a). Latitude and longitude information of each station is also depicted.
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Along with the plume P2 (stations d, g, f, and e), simulated type A CsMPs arrived at station (g) in Ibaraki
2 h after their arrival at station (d), at 3 LT on March 15, and remained for 8 h, up to 11 LT. The observed
event started at 2 LT, 1 h earlier than the simulation, remained for 16 h. The observed 16-h (2-18 LT) cu-
mulative concentration was 230 Bq m~> h, whereas the simulations ranged from 5.9 to 94 Bq m~> h. Next,
the simulated type A CsMPs arrived at station (f) at 5 LT (7 LT based on the observations) and at station (e)
at 8 LT (9 LT based on observations). The durations of observed event, simulated event, and simulated type
A events at station (f) were 15, 12, and 10 h and those at station (e) were 19, 10, and 9 h, respectively. The
observed cumulative concentrations at stations (f) and (e) were 250 and 180 Bgm ™ h, respectively, whereas
the simulated cumulative concentrations were 25-400 and 5.8-160 Bq m ™ h, respectively. There were no
observation data available for Gunma prefecture, but station (e) in Saitama prefecture is the closest to Gun-
ma prefecture. The data suggest that type A CsMPs were next transported to Gunma prefecture.

The plume P3, identified by Tsuruta et al. (2014) and Nakajima et al. (2017) could also be affected by type A
CsMPs. Along with P3, (stations ¢, b, and a), the simulated type A CsMPs arrived at station (c) in Fukushima
at 11 LT on March 15, 3 h after the onset of observed event (8 LT). The durations of observed event, simu-
lated event, and simulated type A events at station (c) were 15, 21, and 17 h, respectively. The observed cu-
mulative concentration at station (c) was 240 Bq m > h, and the simulated concentration ranged from 187 to
1,036 Bq m~> h. Next, simulated type A CsMPs arrived at station (b) at 14 LT, 2 h after the onset of observed
event (12 LT). The durations of observed event, simulated event, and simulated type A events at station (b)
were 13, 17, and 13 h, respectively. The observed cumulative concentration at station (b) was 280 Bq m~>h,
and the simulated cumulative concentration ranged from 141 to 740 Bq m™> h. The simulated type A CsMPs
arrived at stations (a) at 17 LT (same as the observation time). The durations of observed event, simulated
event, and simulated type A events at station (a) were 10, 13, and 13 h, respectively. The observed cumula-
tive concentrations at station (a) was 91 Bq m > h and the simulated cumulative concentrations at station (a)
was 43-120 Bq m™ h. Efforts to isolate CsMPs from samples along with pathway P3 are currently ongoing.

There may be a contradiction between the observed and simulated transport pathways of type A CsMPs,
given the fact that relatively large type A CsMPs (up to 6.4 um in diameter) were found in soil samples at
20 km NW of the FINPP (Satou et al., 2015). For the assumed emission periods of the type A CsMPs, a
northerly wind prevailed, causing most of the type A CsMPs to be transported first toward the south along
with the plume P2 (Figure 2). Type A CsMPs were also transported along with the plume P3 traveling north
back to Fukushima after traveling for a long distance (~100 km). It is slightly difficult to believe that such
large type A CsMPs can travel that distance (certainly, “lucky” particles can travel long distances). There is
a possibility that another emission of type A CsMPs occurred when the wind direction was southeasterly,
from 12 to 22 LT (Figure 2), as proposed by Satou et al. (2015). During this time (on the evening of March
15), there was a significant enhancement in the estimated radio-Cs emissions (Katata et al., 2015). However,
it is still difficult to estimate the timing of emission because the particles were not observed in the air sample
but in the soil.

3.5. Activity Fractions of CsMPs to the Total Cumulative Depositions

The simulated activity fractions of the CsMPs to the total cumulative depositions for all the sensitivity
tests are illustrated and compared against the observed values from the surface soil at 20 sites in Fukus-
hima (Ikehara et al., 2020) in Figure 12. The simulated spatial distributions are shown in the top panels
with the two combinations of sensitivity tests. The top-left panel shows that the fraction exceeded 90%
in the grid cell including the FINPP due to the large size of the type B CsMPs (Dg, = 100 um), and the
fraction ranged from 30% to 90% along with the plume P2 (stations d, g, f, and e; Figure 11) due to the
large dry deposition velocity of the type A CsMPs (Dy, = 10 um). Because the activated fraction of the
size of the type A CsMPs in fog was one (Table 3), significant depositions of type A CsMPs occurred over
the mountain forests in the Gunma prefecture due to fog (also see Figure 8). In the top-right panel, the
activity fraction of the CsMPs in the FINPP grid cell was lower than 5% due to the low gravitational set-
tling velocities of type A and type B CsMPs. The activity fractions exceeded 90% over wide areas north and
northeast of the FINPP, as type B CsMPs (D,,, = 10 um) could travel long distances and be deposited to
a greater extent than type A CsMPs (Figure 3). The activity fractions of the type A CsMPs (D,, = 1 um),
which are much smaller than the type B CsMPs (Dg, = 10 pum), ranged from 5% to 40% along the plume
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Figure 12. Top panels: simulated activity fractions of the CsMPs to the total cumulative depositions for the two
sensitivity tests of the type B and type A CsMPs (left: B15-A10a, right: B10-A05a). The values are depicted where

the simulated deposition exceeded 1 kBq m ™ Bottom panel: The observed (O) activity fractions of CsSMPs with
measurement errors at the 20 sites in Fukushima based on a study conducted by Ikehara et al. (2020) and ranges of the
simulated (S) maximum and minimum activity fractions of CsMPs for all the sensitivity tests.

P2 mainly due to the lower dry deposition velocity. The bottom panel of Figure 12 shows a comparison
between the observations (with the measurement errors) and simulations (with the maximum and min-
imum values of the sensitivity tests). Note that all the stations were located in Fukushima prefecture,
4.42-61.0 km from the FINPP. The station numbers were reordered based on geographical categories
(W, NW, SSW, and NNW of the FINPP and Nakadori valley) (Figure 1b), including stations (a) and (c) in
Figure 11 and the simulated pathway of the type A CsMPs along with the plume P3. It is apparent that
the simulated activity fractions of the CsMPs were substantially underestimated except at site #1 (W of
the FINPP) and sites NNW of the FINPP (#16 and #18). Site #1 is located only 4.42 km from the FINPP;
therefore, its location was difficult to simulate using a 3-km model. In fact, the model grid cell in which
site #1 was located was the same as the grid cell in which the FINPP was located, so the large variation
in the simulation (1.95%-92.2%) was simply due to the large variation in the settling velocity of the type B
CsMPs (0.01-100 um in diameter). Sites #16—18 were also located along the simulated pathway of the type
B CsMPs. The relatively better performance of the simulated activity fractions at the north-northwestern
sites indicated the successful simulations of emission, transport, and deposition of type B CsMPs. On
the other hand, the simulated values affected by the presence of type A CsMPs were all underestimated.
Among the south-southwestern sites, the location of the observed peak (#10) was the same as that for the
simulation, but the values were much smaller (the observed peak was 80.2% and the simulated peak was
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0.85%-16.2%), even though the emission during the events (0.475 PBq) was assumed to be 100% CsMPs.
The simulated cumulative surface air concentrations were not very different from those observed along
the pathways of the type A CsMPs (Figure 11), and there were two reasons for the large underestima-
tion: there were more type A particle fractions in the source term of Katata et al. (2015) or the simulated
deposition rates were underestimated. A similar assumption can be made for the Nakadori sites, along
with the plume P3, on which the observed values were ~40% and the simulated maximum was 5% at
site #8. The simulated performance at the northwestern sites (#2-7 and #19) was the worst among the
geographical categories, simply because the type A particle emissions that might have occurred during
the evening of March 15 were not included in the simulation. The observed values ranged from 7.25%
to 34.0%, whereas the simulated maximum value was 0.75% (#2). Further observational and simulation
studies are required to constrain the source term estimation and size distribution of CsMPs, especially
for type A CsMPs, to better understand the abundance and environmental behaviors of type A CsMPs.

4. Conclusions

The dispersion and deposition of radio-cesium (**’Cs) carried by two types (type A and type B) of water-insolu-
ble Cs-bearing microparticles (CsMPs) released due to the Fukushima nuclear accident were simulated for the
first time by using the multimodel meteorological ensemble mean field created in Part 1 of the current study
(Kajino et al., 2019a). The results were compared against field observations of the surface air concentration
and deposition. The results were also compared with the previous simulation, in which it was assumed that
100% of the carrier aerosols of '*’Cs were water-soluble particles (WSPs) with a submicron size range.

The presence of type B CsMPs (70-400 pum in soil (Satou et al., 2018) and 1-5 pum in air (Onozaki
et al., 2019) arising from the hydrogen explosion of Unit 1 occurred on March 12, 15:36 LT; UTC+9; 0.7
PBq) could partly explain the simulated underestimation of the total deposition over land when assum-
ing 100% WSPs. The observed deposition over land totaled 2.64 PBq, whereas the simulated deposition
assuming submicron carriers was 1.19 PBq. The type B CsMPs were so large that almost 100% of the
emission was deposited near the FINPP. The deposition of type B CsMPs (0.7 PBq) accounts for ~50% of
the total underestimation (1.45 PBq). The relative magnitudes of the radioactivity of the type B CsMPs
larger than 10 um and smaller than 10 um should be a key factor in the surface air concentration and
deposition during the emission event. Considering the presence of type B CsMPs in the source term
estimation (e.g., Katata et al., 2015) could alter the estimated amount of radio-Cs emitted by the Unit 1
hydrogen explosion.

The environmental behaviors of type A CsMPs of 0.1, 1, and 10 um could be drastically different. The ori-
gin of type A CsMPs is still controversial (it could be Units 2 or 3), but these particles were emitted in the
midnight between March 14 and 15 and transported southward over the Kanto Plain, the most populated
plain in Japan, along with the plume P2 (Nakajima et al., 2017; Tsuruta et al., 2014) and also transported to
Fukushima, along with the plume P3 (Nakajima et al., 2017; Tsuruta et al., 2014). The size of the particles
ranged from 1 to 10 um both in the air in Tsukuba, located in Kanto (Adachi et al., 2013), and in the soil
in Fukushima (Satou et al., 2016); however, recently, type A CsMPs smaller than 1 um were also found in
Fukushima (Okumura et al., 2019a). Due to the differences in size distributions, the surface air concen-
tration over Kanto varied substantially, by up to more than one order of magnitude. The major deposition
mechanisms varied among dry, wet, and fog deposition depending on the size distribution of the particles.
There might have been other emission events of type A CsMPs from Units 2 or 3 in the evening of March 15,
followed by transport toward the northwest and deposition in the mountain region in Fukushima.

The simulated activity fractions of CsMPs to the total cumulative depositions were compared to those in the
surface soil observed in Fukushima (Ikehara et al., 2020) for the first time. The observed activity fractions
could have settled within the ranges of the simulated sensitivity tests for the locations under the influence
of the type B CsMPs (near the FINPP and NNW of the FINPP). On the other hand, the simulation substan-
tially underestimated the observed activity fractions for the locations along the transport pathways of the
type A CsMPs (SSW of the FINPP and Nakadori and NW of the FINPP). There could be more fractions of
type A CsMPs in the estimated source term than assumed in this study, and/or the simulated deposition
rates might be underestimated.
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Works on the isolation of CsMPs from hourly air filters at one hundred locations (Oura et al., 2015; Tsuruta
et al., 2014) are currently ongoing (partly reported by Onozaki et al., 2019). Information on the relative mag-
nitudes of radioactivity from CsMPs and WSPs is essential. These efforts will certainly promote the precise
estimations of emission events, the timing and origins of emission events, and the amounts of radioactivity
associated with CsMPs. This may help to improve the understanding of the formation mechanisms of CsMPs
in reactors, together with the mechanisms of emission into the environment, which are still controversial.

The elementary process modeling of numerical simulations needs to be improved. The possible underesti-
mation of deposition suggested in Part 1 (Kajino et al., 2019a) has not yet been resolved. An improvement in
the below-cloud scavenging rate (Kajino et al., 2019a) and the implementation of the substantial electrical
charges of type A CsMPs (Dépée et al., 2019) will be incorporated in the future. The self-electrical charge of
type A CsMPs should enhance the rates of dry deposition and below-cloud scavenging, which may improve
the significant underestimation of the deposition fraction from CsMPs SSW of the FINPP and Nakadori.
The charging effect should be assessed in the future steps of the current work.

Numerical simulations also need to be improved in terms of horizontal grid resolution. A new simulation with
a finer grid resolution (Ax = 1 km; Sekiyama & Kajino, 2020) indicated that our Ax = 3 km simulation would be
significantly improved in terms of the reproduction of wind fields along the coastline of Fukushima, which may
lead to improvements in plume directions starting from the FINPP (e.g., for type B CsMPs). Due to the complex
topography in inland areas of Fukushima (with mountains and valleys), air masses transported inland will also
be improved by fine-scale grid simulations (e.g., type A CsMPs in Nakadori along with plume P3 and type A
CsMPs which might have been emitted in the evening of March 15 and transported to the northwest).

Data Availability Statement

The simulated and observed data used in all the figures are available at https://mri-2.mri-jma.go.jp/own-
cloud/s/pz8T2P2XfKIMi3X (last accessed: June 5, 2020). In terms of the raw observation data sets, the sur-
face air activity concentration data are available in Appendix A of Oura et al. (2015), and the activity deposi-
tion data are available at https://emdb.jaea.go.jp/emdb/en/portals/b1010301/ (last accessed: June, 5 2020).
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Abstract. Resuspension of '3’Cs from the contaminated ground surface to the atmosphere is essential for understanding the
environmental behaviors of 1*’Cs and estimating external and inhalation exposure of residents. Kajino et al. (2016) assessed
the '37Cs resuspension flux from bare soil and forest ecosystems in East Japan in 2013 using a numerical simulation constrained
by surface air concentration measurements. However, the simulation was found to underestimate the observed deposition
amounts by two orders of magnitude. The reason for this underestimation is that the simulation assumed that resuspended '*’Cs
is carried by submicron aerosols, which have low deposition rates. Based on the observational indications that soil dust and
bioaerosols are the major carriers of resuspended '3’Cs, a new simulation is performed with higher deposition rates constrained
by both surface concentrations and deposition amounts. In the new estimation, the areal total annual resuspension of '3’Cs in
2013 is 25.7 TBq, which is equivalent to 0.96% of the initial deposition (2.68 PBq). Due to the rapid deposition rates, the
annual redeposition amount is also large at 10.6 TBq, approximately 40% of the resuspended !*’Cs. The resuspension rate
through the atmosphere (0.96% y!) seems slow, but it (2.6x10” d'') may not be negligibly small compared to the actual
decreasing trend of the ambient gamma dose rate obtained in Fukushima Prefecture after the radioactive decay of '*’Cs plus
134Cs in 2013 is subtracted (1.0-7.9x10* d'): Resuspension can account for 1-10% of the decreasing rate due to
decontamination and natural decay through land surface processes. The current simulation underestimated the *’Cs deposition
in Fukushima city in winter by more than an order of magnitude, indicating the presence of additional resuspension sources.
The site of Fukushima city is surrounded by major roads. Heavy traffic on wet and muddy roads after snow removal operations
could generate superlarge (approximately 100 um in diameter) road dust or road salt particles, which is not included in the

model but might contribute to the observed '3’Cs at the site.

Keywords: Fukushima nuclear accident, resuspension of '3’Cs, submicron and supermicron aerosols, dust and forest aerosols,

source-receptor analysis, seasonal budget.
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1 Introduction

More than ten years have passed since the Fukushima Daiichi Nuclear Power Plant (F1NPP) accident. Extensive studies have
been performed thus far using field observations, laboratory experiments, and numerical simulations aiming at a full
understanding of atmospheric dispersion and deposition of directly emitted radionuclides associated with the accident, which
occurred in March 2011 (i.e., primary emission). It is difficult to cite all relevant papers here, so one can refer to review papers
such as Mathieu et al. (2018), but a few remarkable studies are introduced here with some updates. Aircraft monitoring studies
(NRA, 2012; Torii et al., 2012; 2013; Sanada et al., 2014) have provided the spatial distributions of radio-Cs and radio-I that
were deposited to the ground surface in March 2011 over all of Japan. Tsuruta et al. (2014) and Oura et al. (2015) measured
the hourly surface air activity concentrations of '’Cs at 99 stations in East Japan. These two powerful spatiotemporal
measurement datasets together with comprehensive emission scenarios provided by the Japan Atomic Energy Agency (e.g.,
Katata et al., 2015; Terada et al., 2020) enable us to identify transport and deposition events over the land surface in Japan
(e.g., Tsuruta et al., 2014; Nakajima et al., 2017; Sekiyama and Iwasaki, 2018). These data were also useful to validate the
numerical simulation results provided by various regional-scale atmospheric models (Draxler et al., 2015; Leadbetter et al.,
2015; Kitayama et al., 2018; Sato et al., 2018; 2020; Kajino et al., 2019; Goto et al., 2020) and were applied for other advanced
numerical techniques, such as inverse modeling (Yumimoto et al., 2016; Li et al., 2019), ensemble forecasting (Sekiyama et

al., 2021), and data assimilation (Sekiyama and Kajino, 2020).

In addition to spatial observations, detailed measurements have been helpful to investigate the mechanisms of
atmospheric deposition and emissions from reactors. Kaneyasu et al. (2012) used size distribution measurements of multiple
chemical components obtained in April and May 2011 to indicate that submicron sulfate aerosols can be a major carrier of
radio-Cs, and in fact, numerical simulations assuming hydrophilic submicron carrier aerosols have been successful (all models
mentioned above made this assumption). On the other hand, Adachi et al. (2013) isolated hydrophobic supermicron Cs-bearing
particles (referred to as Cs-bearing microparticles; CsMPs) from aerosol filters collected in March 2011; the atmospheric
behaviors of these CsMPs could be quite different from those of hydrophilic submicron particles. Detailed analyses of CsMPs
are helpful for understanding emission events and mechanisms (Igarashi et al., 2019a; Kajino et al., 2021) and deposition
processes (Dépée et al., 2019). Vertical measurements obtained on mountains (Hososhima and Kaneyasu, 2014; Sanada et al.,
2018) have revealed the importance of cloud deposition over mountainous forests in East Japan. Even though the cloud
deposition process is not included in other models, its importance has been inferred from some numerical simulations (Katata

et al., 2015; Kajino et al., 2019).

A great number of numerical studies have been conducted for primary emissions, but only one numerical study
(Kajino et al., 2016, hereinafter K16) has been performed on the atmospheric dispersion and deposition of radionuclides that
have been resuspended from contaminated ground surfaces (secondary emissions). For primary emissions, the emission point

is known, and many emission events can be identified, whereas for secondary emissions, the emission mechanisms are
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unknown, and the ground surfaces (as emission sources) are highly heterogeneous. It is impossible to measure radio-Cs
resuspension fluxes from every ground surface, but knowledge has been accumulated from long-term atmospheric
measurements recorded at several locations. Ochiai et al. (2016) showed that the surface concentrations of '*’Cs were high in
summer and low in winter in the contaminated forest area in the Abukuma Highlands. Ochiai et al. (2016) also showed that
the temporal variations in fine-mode (< 1.1 um in diameter) and coarse-mode (> 1.1 pm) '3’Cs behaved differently by season,
indicating that the major emission sources could be different between winter and summer. Nakagawa et al. (2018) conducted
size-resolved n-alkane and '3’Cs measurements in similar forest areas and concluded that among biogenic emission sources,
epicuticular wax is less likely and bioaerosols such as pollen and fungal spores are more likely. Based on long-term
measurements taken in the same forest area, Kinase et al. (2018) indicated the association of mineral dust in late spring and
bioaerosols in summer and autumn. Kinase et al. (2018) also found that the contribution of the forest fires that occurred in
March 2013 to the surface *’Cs concentrations was negligibly small. Kinase et al. (2018) reported that the surface
concentration of 13’Cs was positively correlated with the surface wind speed in winter but not in summer. Igarashi et al. (2019b)
further investigated the possible sources of '3’Cs-rich bioaerosols in summer and suggested the substantial involvement of
fungal spores. Atmospheric humidity plays a key role in the discharge of fungal spores, which is consistent with the findings
of Kita et al. (2020), who stated that the surface concentration of '*’Cs in mountainous forests became higher in the presence
of precipitation in summer. Cedar pollen particles could contain a considerable amount of '3’Cs in the forest areas of Abukuma
Highlands, but they are emitted from late February to early May, not during summer (Igarashi et al., 2019b). In fact, number

of pollen particles was 1/10 of number of bacteria (including spores) or less in summer (Kinase et al., 2018; Igarashi, 2021).

The numerical simulations conducted by K16 were consistent with the findings described above: the surface
concentrations in the mountainous forest area are low in winter and high in summer, the contributions of mineral dust are high
in winter, and those of bioaerosols are high in summer. However, Watanabe et al. (2021) found that the simulations of K16
underestimated the observed deposition amounts by approximately two orders of magnitude. The major reason for this large
discrepancy in deposition is the incorrect assumption of the physical properties of resuspended '*’Cs by K16. K16 constrained
the deposition efficiency of '*’Cs in their simulations to be consistent with the primary emission period (March 2011), which
involved submicron carriers; however, based on the above-described measurements, the major carriers of '*’Cs should be much
larger. In the current study, the deposition efficiency of !*’Cs in the simulation is constrained to be consistent with the measured
concentration and deposition amounts in the resuspension period (i.e., 2013). The regional budgets of '3’Cs are thoroughly
reassessed using more realistic model configurations, and the differences between the old and current estimates are clearly

compared in this study.
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Figure 1: (a) Model domain (A longitude = 0.125° and A latitude = 0.1°), terrestrial elevations, major locations, and names of
prefectures and geographical features. (b) Initial deposition amounts of '3’Cs measured by aircraft (NRA, 2012) and used as
boundary conditions for the simulation. The decay correction for the observation was made for March-May 2012, depending
on the regions. The area surrounded by the black solid line is defined as the resuspension source area (> 300 kBq m™) in the
source-receptor analysis presented in Sect. 3.5. The total areal amount is embedded at the bottom right of the panel.

2 Methods
2.1 Observation data

To constrain the deposition rates and resuspension fluxes used in the simulations, activity measurement data containing surface
concentrations and deposition amounts at three observation sites, one in a contaminated forest (Namie, Tsushima), one in an

urban/rural area near the contaminated forest (Fukushima), and one in a downwind location (Tsukuba), are used (Fig. 1).

The Namie (Tsuhima) site is approximately 30 km northwest of the FINPP, is located in the difficult-to-return zone
(DRZ; >50 mSv y™!), and is surrounded by forests in the Abukuma Highlands. The center of Namie town is located near the
coast of the Pacific Ocean, but the observation site is surrounded by mountainous forests. Thus, to avoid confusion, the site is
denoted as Namie (Tsushima) throughout the manuscript. The initial deposition amount indicated by the airborne
measurements was 2300 kBq m™? (Fig. 1b), and decontamination work was not conducted in 2013. The locations at which the

surface concentration measurements and deposition measurements are taken are different but are very close to each other (the
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direct distance is approximately 400 m). The concentration measurements are conducted in the schoolyard of a high school
(140.768°E, 37.562°N) (Ishizuka et al., 2017; Kinase et al., 2018), and the deposition measurements are made by Fukushima
Prefecture at Tsushima Screening Center (140.765°E, 37.561°N) (data available at
https://www.pref.fukushima.lg.jp/site/portal/genan225.html, last accessed June 30, 2021). The sampling intervals of the

concentration and deposition measurements at this site are 1-2 days and 1 month, respectively.

The Fukushima site is in Fukushima city, located approximately 60 km northwest of the FINPP. The Fukushima site
is located in the Fukushima Basin in the Nakadori Valley, surrounded by the Ou Mountains (the peaks of which are 1000 —
2000 m in elevation) to the west and the Abukuma Highlands (the peaks of which are mostly lower than 1000 m in elevation)
to the east (Fig. 1). The concentration and deposition measurements are conducted at Fukushima University (140.45°E,
37.68°N) (Watanabe et al., 2021). Fukushima University is located on a small hill at the southern edge of the Fukushima Basin
and is surrounded by major roads. The distances from Route 4 and national highway E4 to the university are shorter than 1
km. The land use type of the site is characterized as urban/rural. The initial deposition amount indicated by the airborne
measurement was 190 kBq m? (Fig. 1b), one order of magnitude smaller than that at the Namie (Tsushima) site.
Decontamination was conducted in 2013 in Fukushima city, and almost 90% of decontamination was completed for
agricultural fields and public facilities by March 2014 (Watanabe et al., 2021). The achievement ratios of decontamination for
other land use types are 50%, 9%, and 5% for residential areas, roads, and forests (only living areas; the removal of shrub and
litter layers within 20 meters from the forest edges), respectively (Watanabe et al., 2021). The sampling intervals of the

concentration and deposition measurements at this site are 3 days and 1 month, respectively.

The Tsukuba site is located in Tsukuba city, Ibaraki Prefecture, approximately 170 km southwest of the FINPP. It is
located in the eastern part of the Kanto Plain, the most populated area in Japan. The concentrations and deposition amounts
are measured at the Meteorological Research Institute (140.13°E, 36.06°N) (Igarashi et al., 2015). The initial deposition
amount was 21 kBq m? (Fig. 1b), one order of magnitude smaller than that at the Fukushima site and two orders of magnitude
smaller than that at the Namie (Tsushima) site. Decontamination was not conducted in most of the areas around this site due
to the low ambient gamma dose rates. The sampling intervals of the concentration and deposition measurements at this site are

1 week and 1 month, respectively.

The locations, geographical features, and airborne-measured initial deposition amounts of these sites are visualized

using Google Earth in the Supplement 1.

2.2 Numerical simulations

The Lagrangian model (LM) developed by K16 was used in this study. Thus far, a cumulus convection parameterization of
Emanuel and Zivkovic-Rothman (1999) has been implemented to the model. The model description and simulation setup used

in this study are identical to those of K16, except the cumulus convection parameterization, but are briefly repeated in this

6
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section. The differences of simulations with and without the cumulus convection are presented later in Fig. 10 in Sect. 3.4.
Errors between the original 1-D Eulerian model and the 1-D Lagrangian model developed and implemented to LM in the
current study are summarized in Supplement 2. The LM considers the advection, turbulent diffusion, dry deposition, and wet
deposition of atmospheric constituents. In the case of radionuclides, radioactive decay is also considered. As shown in Fig. 1a,
the model domain covers the eastern part of Japan, from 138—140°E and from 34-39°N, with the same horizontal resolutions
(Ax is approximately 11 km; A longitude = 0.125° and A latitude = 0.1°) as the meteorological analysis data, the Grid Point
Value-Mesoscale Model (GPV-MSM) of the Japan Meteorological Agency (JMA). The GPV-MSM provides data on three
hourly meteorological variables on the surface and at vertical layers from 1000 hPa to 100 hPa. No meteorological models are
applied to simulate finer-scale phenomena or to obtain detailed meteorological variables such as turbulent diffusivities or
hydrometeor concentrations. The fundamental variables such as the wind field, temperature, humidity, and geopotential height
obtained from the meteorological analysis data are interpolated horizontally and temporally and applied to simulate the
locations and masses (or radioactivities) of Lagrangian particles. The simulation period is from December 1, 2012, to January

1, 2013, and the analysis period is the full year of 2013, from January 1, 2013, to January 1, 2014.
2.2.1 Deposition schemes

The key parameters used in this study are introduced below using equations. The LM does not include comprehensive
deposition schemes; deposition processes are simply parameterized. The wet scavenging rate Ave (s') is expressed as a

function of the surface precipitation rate P (mm s™!) as follows:

A — 3Ec(@mm) P, (1)

wet 4 am

where E. is the collection efficiency of aerosols by the hydrometeor and a,, and r,, are the mean radii of the hydrometeor and
aerosols, respectively. Empirically, a,, is characterized by P as a,, = 0.35 P 2. E.is a function of a,, and r, but, practically, a
single constant value is used for each simulation. Eq. 1 is applied for all types of wet deposition. The differences among rain,

snow, and graupel precipitation and the differences between in-cloud and below-cloud scavenging are not considered.

The dry scavenging rate Ay (s!) is expressed as follows:

dry Zsrf Zsrf

(1) <2>

where z is the height of Lagrangian particles, z,is the surface layer height set as 100 m in this study, and v, is the dry deposition

velocity. vq depends on aerosol sizes and surface conditions such as wind speed, roughness, and land use types, but a single
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constant value is applied in this study. We only consider the difference in v; over the land and the ocean; v, over the ocean is

0.1 times smaller than that over the land (K16).

Fog or cloud deposition plays a key role in the deposition of *’Cs over the mountains in East Japan (Hososhima and
Kaneyasu, 2015; Katata et al., 2015; Sanada et al., 2018; Kajino et al., 2019; Imamura et al., 2020) but is not considered in the
study because the GPV-MSM product does not provide fog data (or cloud water in the bottom layers of the model grids).

In K16, we determined an E. value of 0.04 and a v, over land (simply referred to as v, hereinafter) value of 0.1 cm s
I, so the initial deposition amount of '*’Cs over land (2.53 PBq) simulated using the emission scenario of Katata et al. (2015)
was closest to that observed (2.68 PBq, see Fig. 1b) among the various sensitivity simulations. However, the major carriers of
137Cs during primary emissions (i.e., the direct emissions associated with the nuclear accident) are submicron particles (several
100 nm in diameter, e.g., Kaneyasu et al., 2012); thus, the optimized deposition parameters are the orders of these submicron
particles. However, the major carriers of '*’Cs resuspended from the ground surface could be supermicron particles such as
soil dust and bioaerosols (from 1-several 10 um in diameter, e.g., Ishizuka et al., 2017; Kinase et al., 2018); thus, the deposition
parameters should be much larger. In this study, £. and v, are significantly improved from those used in K16, as is extensively

described later in Sect. 2.3.
2.2.2 Resuspension schemes

K16 considered three emission sources during the analysis period of 2013: resuspension from bare soil, resuspension from
forest ecosystems, and additional emissions from the reactor buildings of the FINPP. K16 simulated the contributions from
these additional emissions as being two to three orders of magnitude smaller than the observed surface activity concentrations,
and these contributions were thus neglected in this study. The emission flux of *’Cs carried by dust aerosols from a bare soil

surface, Faus (Bq m? s), is formulated by Ishizuka et al. (2017) as follows:

qust = pZOumFM(l - fforest)BSmm(t)Cconsts (3)

where paoum 1s the surface area fraction of dust particles smaller than 20 um in diameter against soil containing a maximum
particle size of 2 mm and varies depending on the soil texture (1.3x10® for sand, 0.19 for loamy sand, 0.45 for sandy loam,
and 0.80 for silt loam), Fy is the total dust mass flux (kg m™! s*!) as a function of the friction velocity, fforest is the forest areal
fraction, and Bsmm(?) is the specific radioactivity of the surface soil (from the surface to a depth of 5 mm; Bq kg™!) as a function
of time considering radioactive decay. Changes in the vertical profiles of '*’Cs due to land surface processes or
decontamination are not considered in the study. The frrest value is obtained from the Weather Research and Forecasting model
version 3 database (WRFV3; Skamarock et al., 2018). Eq. 3 was developed based on measurements taken in a schoolyard, so

it may not be applicable for every soil surface type. For simplicity, we introduce the constant correction factor Ceonst to adjust
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the simulated '*’Cs in dust aerosols to the observed value. Ceonst Was set to five in K16. This adjustment factor differs in this
study because a larger adjustment factor is required to sustain the observed surface concentration levels for faster deposition

rates, as shown later in Sect. 2.3.

The resuspension flux of '¥’Cs from forest ecosystems (regarded as forest aerosols), Frorest (Bq m™? s7!), is formulated

by K16 as follows:

: Fforest = fforestfgreenrconstBobsRdecay(t)s (4)

where fyreen 18 the monthly mean green area fraction, reons is the constant resuspension coefficient (s™!), Bops is the observed
initial deposition amount (Bq m?, Fig. 1b), and Ryecay(?) is the radioactive decay. fucen is obtained from the WRFV3 database
and was originally derived from Advanced Very High Resolution Radiometer (AVHRR) normalized difference vegetation
index (NDVI) data. 7const is the adjustment parameter and was set as 10”7 h™!' in K16 for adjustment to the observed surface
concentrations in the forests in summer. Similar to the dust acrosol case, a larger adjustment factor is required due to the faster
deposition rates to sustain the simulated surface concentrations close to the observed values, as is shown later in Sect. 2.3.
Similar to the dust aerosol case, no *’Cs migration within the local forest ecosystems due to land surface processes is

considered in the formulation.

For both the dust and forest acrosol cases, only emissions from the grids in which the mean initial deposition amounts
exceed 10 kBq m, the detection limit of the airborne measurements, are considered (NRA, 2012). However, excluding regions
in which the deposition amount is 9.9 kBq m, for example, may not be appropriate. Thus, a sensitivity test is performed to

additionally consider areas with deposition amounts of 1-10 kBq m™ as emission sources, as is presented in Sect. 3.4.

Other sources, such as the unexpected releases associated with the debris removal operations at the FINPP site that
occurred in August 2013 (NRA, 2014; Steinhauser et al., 2015; K16), forest fires, and resuspension due to decontamination
work, are not considered in the study. The debris removal operations caused a sporadic peak in the surface concentrations
(60.4 mBq m™ from 13:00 LT on August 14 to 13:00 LT on August 15 at Namie (Tsushima), Figs. 4a and 4b), but these
elevated values may not affect the background (or steady state) concentrations for the full year, which are the target of this
study. Forest fires may not be a major source of '*’Cs resuspension in Fuskuhima because the temporal variations in
levoglucosan concentrations were not found to be associated with those of '*’Cs (Kinase et al., 2018). Resuspension due to
decontamination work should be considered, but it was hard to estimate because the emission factor and the precise location
and time of decontamination are unknown. It should be noted here that, as described in Sect. 2.1, decontamination was not
performed around the Namie (Tsushima) or Tsukuba sites, and decontamination might have been performed around the

Fukushima site in 2013.
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2.3 Constrained deposition parameters and emission flux adjustments based on field observation data

2.3.1 Constraint of modeled deposition parameters

Since K16 was published, several emission sources of resuspended '*’Cs have been indicated, such as soil dust
(Ishizuka et al., 2017; Kinase et al., 2018) and bioaerosols (Kinase et al., 2018; Nakagawa et al., 2018; Igarashi et al., 2019b;
Kita et al., 2020; Minami et al., 2020; Igarashi, 2021), but the relative contributions of these sources, the spatiotemporal
variations in the associated emission fluxes, and their size distributions are still not well understood. Kita et al. (2020) indicated
the associations of rain with fungal spore emissions, and Minami et al. (2020) estimated the emission flux of '3’Cs associated
with bioaerosols; however, the emission flux has not yet been formulated as a function of meteorological or land surface
variables. Therefore, the same formulations as those applied in K16 (Egs. 3 and 4) are used in this study. It is also noted here
that the same deposition rates are applied for both dust and forest aerosols, even though the size distributions of these two

aerosol types should be different.

K16 had two major drawbacks: (1) K16 constrained the deposition parameters (i.e., E. and v,) by using the primary
137Cs emission and initial '*’Cs deposition amounts measured in March 2011, and (2) K16 did not compare their simulation
results against the deposition amounts. Recently, Watanabe et al. (2021) evaluated the performance of the K16 model using
concentrations and deposition amounts measured at Fukushima sites and found that the seasonal variations in simulated
concentrations were opposite to those observed and that the simulated deposition amounts were underestimated by one to two
orders of magnitude. The reason for this underestimation of the deposition amounts is obvious; the typical deposition rates of
major carrier aerosols (submicron aerosols) are much smaller than the resuspension rates (supermicron aerosols). For example,
the dry deposition velocities of acrosols with diameters of approximately 10 um are two to three orders of magnitude larger
than those of acrosols with diameters of approximately 0.1-1 um (e.g., Petroff and Zhang, 2010). The difference between these
two size ranges for below-cloud scavenging due to rain is also two to three orders of magnitude (e.g., Wang et al., 2010). To
constrain the deposition parameters suitable for '*’Cs resuspension, we performed a climatological deposition velocity analysis

similar to that conducted by Watanabe et al. (2021).

Suppose there is a simple nonlinear relationship between the periodic mean deposition flux (D) (Bq m? s!, for

example) and periodic mean surface concentration (C) (Bq m™):

D =ac?, 16

where a represents the removal rate and b represents nonlinear features such as spatial and temporal variabilities. If b = 1, the
unit of @ is m/s, which is on the dimension of the deposition velocity. If long-term averaging is conducted, Eq. 5 may hold. Eq.

5 is reformulated as follows:

10
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log(D) = b log(C) + log(a). o

A log-log scatter plot between the monthly mean surface concentrations and monthly cumulative depositions is shown in Fig.
2. The purple, orange, and green symbols indicate the observations, simulations by K16 (£, = 0.04 and v; = 0.1 cm s!) and
simulations conducted in this study (E. = 0.4 and v; = 10 ¢cm s!). This analysis is novel because emission flux adjustments
(Ceonst in Eq. 3 and reonst in Eq. 4) do not change the slope of the regressions, so the deposition parameters can be adjusted
independently from the emission flux adjustment. The intercept of the y-axis indicates the deposition velocity. Among the
several sensitivity tests with the combinations of £, = 0.04 and 0.4 and v, = 0.1, 1, and 10 cm s™!, the y-axis intercept of the

simulation with E. = 0.4 and v, = 10 cm s”! matched best with that of the observations.

The slope of the observed regression line, b, is 0.92, so the relationship between the concentrations and depositions
of resuspended *’Cs in East Japan is almost linear, but the relationship itself is not very solid (coefficient of determination
(R = 0.018). However, by excluding two exceptional data points, the observations obtained in January at Fukushima
(maximum deposition) and August at Namie (Tsushima) (maximum concentration), the R? increases to 0.65, and b becomes
0.98 (not shown in the figure). In January at Fukushima, the measured deposition is extremely high compared to the surface
concentration. Watanabe et al. (2021) hypothesized the existence of superlarge particles (~100 pm in diameter) whose
gravitational deposition velocities are too fast (as fast as drizzle) to enter the high-volume air samplers used for the
concentration measurements but are efficiently collected deposition samplers, as the traveling distance is approximately 1 km
(e.g., Kajino et al., 2012; Kajino et al., 2021). January is the month with the highest snow cover in Fukushima city and the
highest snow removal operations (using snowblowers and deicing agents), and heavy traffic on the major roads within 1 km
of the Fukushima site produce substantial amounts of superlarge particles from wet and muddy road surfaces. The August data
at Namie (Tsushima) are also exceptional because the surface concentrations are biased due to the sporadic peak associated
with the debris removal operation in the FINPP (K16). Because the aerosols associated with the debris removal operation
traveled a sufficiently long distance (i.e., 30 km), the deposition velocity was not significantly large and did not affect the
monthly mean deposition, although it did affect the monthly mean concentration. Therefore, the data obtained in August at
Namie (Tsushima) are exceptional when compared to the trends shown by other datasets. The slopes of the simulated regression
lines are b =1.17 for K16 (orange line) and b =1.16 for this study (green line). R? values of 0.71 and 0.97 were obtained by
K16 and this study, respectively. The difference in the magnitude of R? can be explained by the differences in the deposition
rates. Because the deposition rates obtained in this study are much faster than those applied by K16, the deposition amounts
are more strongly associated with the concentrations in this study. In other words, this climatological deposition velocity
analysis was successful (by excluding the two exceptional datapoints) because the sizes of the major carrier aerosols of
resuspended '¥’Cs in reality are sufficiently large (the observed deposition amounts are sufficiently associated with the
observed concentrations). The regression slopes of the simulations (b ~ 1.2) are somewhat different from those observed (b ~

0.9 or 1.0). Nevertheless, the regression line of this study crosses that of the observations at the middle points of the
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concentration and deposition ranges (approximately 0.1 mBq m™ and 50 Bq m?, respectively). This indicates that the
constrained deposition rates may be consistent with the average features of the environmental behaviors of resuspended '*’Cs

in East Japan.

This analysis is conventional but has been found to be quite successful in constraining the deposition rates of

310 resuspended *’Cs in East Japan.
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Figure 2: Scatter diagram of the depositions of 1*’Cs over the monthly mean (purple crosses) observed surface concentrations
at Namie (Tsushima), Fukushima, and Tsukuba in 2013 and those simulated by Kajino et al., 2016 (K16) (£, and v, are 0.04

315 and 0.1 cm s’!, respectively) considering different emission sources: the open orange squares represent mineral dust particles
from bare soil (dust aerosols), and the closed orange squares denote bioaerosols emitted from forest ecosystems (forest
aerosols). The green open and closed squares are the same as the orange squares but are simulated by this study (£, and v, are
0.4 and 10 cm s, respectively). The purple, orange, and green lines indicate the regression lines of the purple crosses, orange
squares (open plus closed), and green squares (open plus closed), respectively.
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2.3.2 Adjustment of emission fluxes

In K16, the emission fluxes of '3’Cs associated with dust and forest aerosols were adjusted to match the surface
concentrations at Namie (Tsushima). In K16, first, Cconst in Eq. 3 was set to five so that the simulated dust '*’Cs concentrations
matched the observations in winter, when the temporal variation in the observed '3’Cs concentration at Namie (Tsuhima)
correlated well with that of the wind speed (Kinase et al., 2018) and when the vegetation activity was supposed to be low. The
adjusted dust '*’Cs concentrations could not reproduce the enhanced concentrations measured at Namie (Tsushima) in summer
(Fig. 4a). Thus, 7eonst in Eq. 4 was set to 107 h! so that the simulated forest '3’Cs concentrations matched the observations in

summer. The temporal variation of '*’Cs was not correlated with that of the wind speed in summer (Kinase et al., 2018).

Because the deposition rates are significantly increased in this study, we require much larger emission fluxes to sustain
the simulated surface concentrations at the observed levels. The same adjustment procedure as that used in K16 could be
applied to the simulations in this study; however, for example, adjusting the values at Namie causes the values to be
underestimated at Tsukuba, so it is hard to find a combination of Ceonst and 7cons: that is best for all aspects (i.e., concentrations
and depositions of the three sites). Thus, for simplicity, we multiplied both fluxes used in K16 by 20 so that Cconst was 100 and
Feonst Was 2x107 h'!. The discrepancies between the simulated and observed concentrations and depositions at the three sites

are summarized later in Sect. 3.1.

3 Results and discussion
3.1 Seasonality and quantity of surface air concentrations and depositions

Figure 3 shows the observed and simulated (dust and forest) activity deposition amounts of *’Cs at Namie (Tsushima),
Fukushima, and Tsukuba for the submicron (K16) and supermicron (this study) cases. Statistical measures such as the
correlation coefficient (R), simulation-to-observation median ratio (Sin/Obs), numerical fraction of data within a factor of two
(FA2), and numerical fraction of data within a factor of five (F45) are embedded in the panels. Note that the simulated temporal
variation lines show the dust and forest amounts separately, but the statistical measures are derived using the summation of
the two aerosol sources. As discussed in the previous sections and presented in Fig. 2, the underestimation of simulations
assuming submicron particles is remarkable, with simulated values approximately two orders of magnitude lower than the
observations at all sites. On the other hand, the simulations assuming supermicron particles are significantly improved. Positive
correlations are found at Namie (Tsushima) and Tsukuba (R ~ 0.6-0.7), and the same order of median ratios are found at
Fukushima and Tsukuba (Sim/Obs = 1.2—1.3, FA5 = 0.9-1.0). In terms of the seasonal variations, the monthly trend (high in
winter and spring and low in summer) at Tsukuba is explained well by the simulated dust aerosols. Due to the land use types
around the site (over the plain), the '3’Cs of dust aerosols is larger than that of forest aerosols throughout the year. In summer,

the contributions of forest aerosols are larger than those of dust aerosols at Namie (Tsushima) and Fukushima, which are
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surrounded by mountainous forest and close to the forest area, respectively. Despite the overestimation at Namie (Tsushima)
(Sim/Obs = 4.8), the monthly trend is reproduced well by the model: both the observations and simulations show double peaks
in winter and summer. Most likely, the same emission factors of mineral dust should not be applied to the whole area.
Nevertheless, we regard this application as acceptable in the current study, as this study aims to grasp a rough outline of the
atmospheric behaviors of resuspended '*’Cs. The monthly variations output by the simulations do not match those of the
observations at Fukushima due to the exceptionally high deposition amounts observed in January. This is possibly due to the
existence of superlarge particles, as described in Sect. 2.3.1. The snow coverage in Fukushima city is highest in January, but
there are certain areas of snow coverage in December and February as well. However, the R value of deposition at Fukushima

is not greatly improved if the winter datasets are excluded.

The initial ’Cs depositions at the three sites are 2300, 190, and 21 kBq m™, and the differences are approximately
on one order of magnitude. The orders of the monthly depositions in 2013 at the three sites are 0.1% of the initial deposition,
at 102-10°, approximately 102, and approximately 10' Bq m, which are similar to the order differences obtained for the initial
depositions. A value of 0.1% per month is 1% per year. K16 reported an annual resuspension ratio of 0.048% y-!, but this
simple order estimation readily shows that this value is excessively underestimated. As shown later in Fig. 8, the improved
annual resuspension ratio is 0.96%, which is consistent with the deposition measurements at the three sites. From this
estimation, one can assume that the observed deposition amounts at Fukushima in January (3100 Bq m™) are exceptionally

high.
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Figure 3: Monthly deposition amounts of (black) observed '3’Cs and simulated *’Cs associated with (red) dust aerosols and
(lime) forest aerosols at Namie (Tsushima), Fukushima, and Tsukuba (Bq m2). The simulation results assuming submicron
particles (K16; E. and v, are 0.04 and 0.1 cm/s, respectively) and those assuming supermicron particles (this study; E. and vy
are 0.4 and 10 cm/s, respectively) are shown on the left and right, respectively. The statistical measures, such as the correlation
coefficient (R), simulation-to-observation median ratio (Sim/Obs), numerical fraction of data within a factor of two (F'42), and
numerical fraction of data within a factor of five (FA5), between the observations and the simulations (dust plus forest) for

each simulation result are embedded in each panel.
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Figure 4: Same as Fig. 3 but for the surface activity concentrations of '*’Cs (mBq m™). The sampling intervals are used for
the observations, but daily mean values are depicted for the simulations.

Figure 4 shows the observed and simulated (dust and forest) surface air activity concentrations of '3’Cs at the three
sites for the submicron (K16) and supermicron (this study) cases. The statistical measures R, Sim/Obs, FA2, and FA5 between
the observations and simulations (dust plus forest) are also embedded in the panels. The lines are depicted using different
temporal resolutions (sampling intervals for the observations and daily for the simulations), but the temporal resolutions are
unified to the sampling intervals to obtain the statistical measures. The measurements of the three sites are not directly
comparable because their temporal resolutions are different (1 d for Namie (Tsushima), 2-3 d for Fukushima and 1 w for

Tsukuba), but those of the two aerosol cases (submicron and supermicron) are comparable. Although R is low for the submicron
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case at Namie (Tsushima), good consistency Sim/Obs (0.99) and FA5 (0.94) values are obtained because the emission factors
Ceonst and 7const are adjusted to this case. However, the unrealistic assumption of aerosol sizes results in the opposite simulated
seasonal trend at Fukushima: the simulations are high in summer due to forest aerosols. The Fukushima site is located
downwind of the contaminated forest in the Abukuma Highlands in summer (Fig. S1), so the transport of '¥’Cs from the forest
area is dominant. However, as the particle sizes are larger and the traveling distances are shorter, the summer enhancement
due to forest aerosols is less dominant (Fig. 4d). The observed surface concentrations are high at Fukushima in winter, and the
observed short-term peaks correspond to the simulated dust acrosols, indicating that the emission of resuspended *’Cs at
Fukushima in winter is driven by wind. The Sim/Obs, FA2, and FA5 values of submicrons and supermicrons at Fukushima are
similar, but R is substantially improved. At Tsukuba, like the Fukushima site, the contribution of forest aerosols is less in the
supermicron case than in the submicron case due to less transport from the forest area. The contribution of dust particles is
dominant in winter, but the simulated dust aerosols are underestimated compared to the observations in winter. Nevertheless,
Sim/Obs is not very low (0.80), and the R value obtained for supermicrons is improved from the submicron case (from 0.18 to
0.45).

The orders of the surface concentrations at the three sites are 10°, 10°, and 102-10"! mBq m™. These order differences
are similar to those of the initial depositions. One can assume that the resuspension and redeposition of '3’Cs occurs within a
limited areal scale (e.g., several tens of km) and that long-range transport (i.e., hundreds to a thousand km) from the emission

source is not very dominant.

In the following subsections (Sects. 3.2 and 3.3), the source-receptor relationship and annual resuspension ratios are
discussed, but it should be noted that the numbers presented in these sections are associated with the discrepancies in the
simulations described in the current section. Nevertheless, we can safely conclude here that the supermicron simulations are

more (or maybe much more) consistent with the observations than the submicron simulations are.
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Figure 5: (top panels) Seasonal mean surface concentrations of (a,c) submicron (K16; E. and v, are 0.04 and 0.1 cm s,
respectively) and (b,d) supermicron (this study; E. and v, are 0.4 and 10 cm s, respectively) '*’Cs associated with (a,b) dust
aerosols in winter to early spring (January, February, and March) and (c,d) forest aerosols in summer (June, July, and August)
(mBg m™). The seasonal mean surface wind vectors are also depicted in the panels. (bottom panels) Same as top panels but
for the fractional contributions from the resuspension source area (defined as the initial depositions of *’Cs exceeding 300
kBq m?, see Fig. 1b) to the surface concentrations (%).

3.2 Source-receptor relationship and its seasonality

Figure 5 shows the simulated seasonal mean concentrations and the horizontal distributions of the source-receptor relationship.
The resuspension source area is defined as grids in which the grid-mean initial deposition exceeds 300 kBq m~ (Fig. 1b). Thus,
Namie (Tsushima) (2300 kBq m™) is located within the source area, but Fukushima (190 kBq m) and Tsukuba (21 kBq m™)
are outside the source area (or are regarded as being in downwind area). The source-receptor relationship maps (or source
contribution maps) (Figs. 5e-5h) are derived using the seasonal mean concentrations from 300-kBq m™ areas divided by those
from whole areas (i.e., > 10 kBq m?). Because of the shorter atmospheric lifetime of supermicron '3’Cs-bearing particles, the
concentration maps of the supermicron cases are patchy due to insufficient amounts of Lagrangian particles (Figs. 5b and 5d)
compared to the submicron cases (Figs. 5a and 5c¢), especially in areas where the seasonal mean surface concentrations are

below 0.01 mBq m?. There are substantial numerical errors in these areas, so the source contribution shades (Figs. 5e-5h)
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depict only areas in which the seasonal mean concentrations exceed 0.01 mBq m (Figs. 5a-5d). We select two three-monthly
means, covering January, February, and March for winter to early spring (or simply winter hereinafter) when the simulated

dust aerosols are dominant and June, July, and August for summer when the simulated forest acrosols are dominant.

In winter, northwesterly monsoon winds prevail over Fukushima Prefecture (Figs. 5a and 5b). In particular, fall and
gap winds from the Ou Mountains caused strong winds in the Nakadori Valley, which in turn cause high dust aerosol surface
concentrations in these areas in winter. Even though the surface concentrations of supermicron particles over Fukushima
Prefecture are larger than those of submicron particles (Fig. 5b), the supermicron concentrations over the downwind regions
are smaller (e.g., concentrations > 0.01 mBq m™ over Saitama (#6 in Fig. 1) for the submicron case but of < 0.01 mBg m for
the supermicron case) due to the shorter lifetime of supermicron particles. This feature is also significant for the source
contribution maps (Figs. 5¢ and 5f). Due to the northwesterlies, most of the resuspended '3’Cs is transported toward the
southeast over the ocean, the values are 40-90%, and the source contributions of the downwind regions over the land are lower
than 10%, except the coastal regions in Ibaraki (#3 in Fig. 1) and Chiba (#7 in Fig. 1) Prefectures for the submicron case (20—
30%) due to the longer lifetimes of these particles in air (Fig. 5e).

In summer, southerly winds prevail over East Japan due to the marginal flows of the Pacific High. The wind speeds
are generally lower in summer than in winter (please see that the lengths of the arrows are different in Figs. 5a—5b and 5¢—5d).
The seasonal mean wind patterns are complex over land (Figs. 5¢c—5d), but the seasonal mean source contribution maps reflect
the seasonal mean transport patterns from the source areas (Figs. 5g—5h). Even though the seasonal mean wind fields over the
ocean close to land are directed toward the land, substantial proportions of '3’Cs in forest aerosols are transported toward the
ocean in summer (the source contributions are > 60% for submicron and >70% for supermicron cases). Then, the '3’Cs
transported toward the ocean are transported toward the land again to Ibaraki and Miyagi (#1 in Fig. 1) prefectures. The source
contributions over Ibaraki and Miyagi are substantial for the submicron case (30-70%). For the supermicron case, the source
contributions over Ibaraki and Miyagi exceeded 30% at a limited number of grids, but the mean concentrations were much
lower (Fig. 5d) than those in the submicron case (Fig. 5¢) over the prefectures. Due to the lower wind speeds in summer and
the short lifetime of the supermicron particles, the horizontal spread of the mean concentrations (e.g., areas > 0.01 mBq m™)

of supermicron forest aerosols in summer (Fig. 5d) is obviously smaller than that of any other case (Fig. 5a-5c).
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Figure 6: Monthly mean fractional contributions from the resuspension source area (defined as initial depositions of '3’Cs
exceeding 300 kBq m™) to the (a,b) surface concentrations and (c,d) deposition amounts assuming (a,c) submicron (K16; E.
and v, are 0.04 and 0.1 cm s, respectively) and (b,d) supermicron (this study; E. and v, are 0.4 and 10 cm s™!, respectively)
sizes of 1*’Cs-bearing particles at Namie (Tsushima), Fukushima, and Tsukuba.

Figure 6 shows the simulated monthly mean source contributions for the concentrations and depositions at the three
sites and compares these contributions between the submicron and supermicron cases. At Namie (Tsushima), more than 90%
of the surface concentrations originate from the source area. The annual mean values are 90% for the submicron case (Fig. 6a)
and 94% for the supermicron case (Fig. 6b). It is natural that the source contributions are larger in the source area (Namie
(Tsushima)) for the supermicron case, as the lifetime of these particles is shorter than that of submicron particles. As previously
discussed, the submicron source contributions at Fukushima are larger in summer and autumn (approximately 40% in June,
September, and October and 20% in July and August) (Fig. 6a). The source contributions of supermicrons in summer and
autumn are approximately 50% smaller than those of submicrons in July and August (10%) and are slightly smaller in June,
September, and October (20-30%) (Fig. 6b). The annual mean concentration values at Fukushima are 16% for submicrons
(Fig. 6a) and 9% for supermicrons (Fig. 6b). As observed in Figs. 4e—4f and Figs. 5e—5h, the source contributions of

submicrons and supermicrons at Tsukuba are remarkably different. The source contributions of submicrons are larger in
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summer and autumn at approximately 30%, with an annual mean value of 21% (Fig. 6a). On the other hand, those of

supermicrons are smaller than 20% for all months, and the annual mean value is 5% (Fig. 6b).

In terms of deposition, the source contributions of submicrons (Fig. 6¢) are similar to those for the concentrations
(Fig. 6a), but the source contributions of supermicrons (Fig. 6d) are remarkably different. As presented later in Fig. 7,
approximately 40% of supermicron emissions were deposited in the same grid. Thus, the local deposition contributions become
much larger than the concentration contributions. Consequently, as shown in Fig. 6c, the annual mean source contributions are
95%, 13%, and 19% for Namie (Tsushima), Fukushima, and Tsukuba, respectively, which are equivalent to those of the
concentrations (90%, 16%, and 21% in Fig. 6a), whereas in Fig. 6d, the annual mean source contributions of supermicron

depositions are shown to be 99.5%, 2.2%, and 1.0% for Namie (Tsushima), Fukushima, and Tsukuba, respectively.

3.3 Annual total resuspension amounts

Figure 7 presents the simulated annual resuspension and redeposition amounts for the submicron and supermicron cases. The
areal summation values are embedded in the panels. Figure 8 shows the annual resuspension ratio, which is the annual total
resuspension amount divided by the initial deposition (Fig. 1b), and the annual redistribution amount, which is the deviation
between the annual total redeposition amount and the resuspension amount. Negative redistribution values indicate a decrease
in deposition due to resuspension, and positive values indicate an increase in deposition due to resuspension. The annual total
amounts embedded in Figs. 8b and 8d (-1.06 TBq and -15.1 TBq) indicate the amount of '*’Cs transported outside the model

domain.

As previously discussed, due to the faster deposition rates and thus larger emission fluxes necessary to sustain the
surface concentrations at the observed levels, the annual resuspension and redeposition amounts are both larger for the
supermicron case than for the submicron case (Figs. 7c—7d). In K16, the total areal resuspension amount was 1.28 TBq (Fig.
7a), equivalent to only 0.048% of the initial deposition (2.68 PBq), and the redeposition amount was approximately 20% of
the resuspension amount. On the other hand, based on the new estimations, the annual resuspension amount (25.7 TBq) is
approximately 20 times the previous estimate, and the redeposition amount is even larger (10.6 TBq), at 50 times the previous

estimate (0.22 TBq).

The areal mean annual resuspension ratio obtained by K16 (Fig. 8a) was 0.048%, with high values above 0.1% in
Nakadori Valley and the mountainous areas of Tochigi (#4 in Fig. 1) and Gunma (#5 in Fig. 1) Prefectures. The new estimate
of the annual mean areal resuspension ratio is 0.96%, with high-value areas showing values of 1-3% (Fig. 8c). Iwagami et al.
(2017) evaluated that the annual discharge rate from the local environment through rivers was 0.02-0.3% y*!. The new estimate
of the resuspension rate through air (0.96% y™') is much larger than the discharge rate through rivers but is still not very large
(i.e., only 1% per year of surface contamination). We can conclude here that the ground surface *’Cs stays or circulates within

the local terrestrial ecosystems and is hardly discharged through the air or rivers.
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However, when these values are compared with the actual decreasing trends in the ambient gamma dose rate in
Fukushima Prefecture, we can reach a different conclusion. The first-order decrease rate of the dose rate in Fukushima
Prefecture ranged from 1.0 to 7.9x10* d'! in 2013 after the radioactive decay of '*’Cs plus '3*Cs (3.0-4.2x10™* d"! in 2013)
(K16) was subtracted. The previous and current resuspension rate estimates, 0.048% y! and 0.96% y!, are equivalent to
1.3x10 d! and 2.6x10° d, respectively. K16 concluded that the impact of resuspension to the atmosphere was negligibly
(two to three orders of magnitude) small in the gross decreasing rate of ground surface contamination, such as by land surface
processes or decontamination. However, the difference between the current estimate (2.6x10” d™!) and the decreasing trend
without radioactive decay (1.0-7.9x10** d'!) is only one to two orders of magnitude. The annual resuspension ratio in 2013
was only 0.96% of the initial deposition amount, but the amount of '3’Cs discharged due to resuspension through the air could

contribute approximately 1-10% of the gross decreasing rate, which may not be negligibly small.

For the submicron case (Fig. 8b), the positive redistribution area (area enhanced deposition due to resuspension) is
limited, and the amounts are up to 10 Bq m™ per year. On the other hand, for the supermicron case (Fig. 8a), even though the
transport distance is shorter than that for submicrons, the positive redistribution area for 1-10 Bq m is much larger, and the
maximum values are up to 100 Bq m™ for the downwind regions close to the emission sources, especially over the ocean close
to the land of Fukushima Prefecture. Nevertheless, these values are much smaller than those obtained for the initial deposition
amounts (the lowest limit value is 10 kBq m™, which is two to three orders of magnitude larger than the annual enhanced

deposition amounts of 10-100 Bq m™2).
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520 Figure 7: Horizontal distributions of (a,c) the annual total amounts of resuspended *’Cs (Bq m?) and (b,d) redeposited
amounts of resuspended 3’Cs (Bq m™) obtained from the simulations assuming (a,b) submicron (K16; E. and v, are 0.04 and
0.1 cm 57!, respectively) and (c,d) supermicron (this study; E. and v, are 0.4 and 10 cm s, respectively) sizes of '¥’Cs-bearing
particles. The areal total amounts are embedded at the bottom right of each panel.
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Figure 8: Horizontal distributions of (a,c) the annual total resuspension ratio (ratio of resuspension amounts to initial
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%) obtained from simulations assuming (a,b) submicron (K16; E. and v, are 0.04 and 0.1 cm s’!, respectively) and (c,d)
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ratios (a,c) and the areal total amounts (b,d) are embedded at the bottom right of the panels.

24



https://doi.org/10.5194/acp-2021-687 Atmospheric
Preprint. Discussion started: 20 September 2021 Chemistry
(© Author(s) 2021. CC BY 4.0 License. and Physics

Discussions
BY

3.4 Sensitivities

535 Several sensitivity tests are performed, as shown in the current section. Since the cumulus convection parameterization scheme
is installed, a comparison is made between the simulations performed with (in the current study) and without (in K16) this
scheme. The current study assumes that resuspension occurred from the grids in which the grid-mean initial deposition amount
exceeded 10 kBq m?, the reliable limit of the aircraft measurement. On the other hand, it is inappropriate to exclude grids in
which, for example, the deposition amount was 9.9 kBq m™, so additional sensitivity tests include resuspension from grids

540 with 1-10 kBq m™. As was discussed in part in the previous sections, the snow cover effect is also tested. In summary, for
each aerosol size case, we conduct four sensitivity tests: (1) No cumulus parameterization, denoted as [No. cuml.], (2) with
cumulus parameterization [Cuml.], (3) [Cuml.] plus the inclusion of resuspension from 1-10-kBq m? grids [1-10kBg m™],
and (4) [Cuml.] plus [1-10 kBq m™] plus the snow cover effect [Snow cover]. Thus, the submicron case of [No cuml.] was
used in the study of K16, and the supermicron case of [Cuml.] is used as the simulation in this study. Note that the submicron

545 simulations shown in the current study are [Cuml.]. While this parameterization is complicated, the differences between

[Cuml.] and [No cuml.] are exceedingly small.

Figure 9 presents monthly mean snow cover data interpolated to the model grids. The original data are the MODerate
resolution Imaging Spectroradiometer (MODIS) snow cover collection 6 level-3 data (MOD10CM, global, monthly, 0.05°
resolution) (Riggs et al., 2016). In the presence of snow cover, the simulated dust emission is suppressed by the snow cover

550 fraction (Eq. 3 is multiplied by one minus snow cover). No impact of snow cover on forest emissions is assumed in the
simulation. December, January, and February are the months with the widest snow coverage in East Japan. In November, only
small snow cover fractions are observed in the high-mountain areas (i.e., > 1000 m in Fig. 1a). In March, the snow cover in
the low-elevation areas (i.e., < 1000 m in Fig. 1a and over all prefectures numbered in Fig. 1b except the western part (Ou
Mountains) of Fukushima Prefecture) is mostly melted. The snow cover in the Nakadori valley, including at the Fukushima

555  site, is highest in January. Some areas over the Kanto Plain are covered with snow in January. Extensive snow cover is also

observed in the Abukuma Highlands, including in Namie (Tsushima), in February.

Figure 10 compares the statistical metrics R, Sim/Obs, FA2, and FA5 of the concentrations (daily to weekly depending
on the site) and monthly depositions for the eight sensitivity tests. As previously discussed, the statistical scores of the
supermicron simulations are significantly greater than those of the submicron simulations, especially the R values of the

560 concentrations at Fukushima and Tsukuba, the R value of deposition at Tsukuba, the Sim/Obs values at Fukushima and Tsukuba,
and the FA2 and FA5 values of deposition at all sites. Including the cumulus parameterization was successful in the sense that
it did not cause any significant deterioration in the statistical scores. The supermicron simulations indicate slight improvements
due to cumulus convection, such as increased R values of the concentrations at Fukushima and Tsukuba, but the F42 values

of the concentrations at Fukushima and Tsukuba are slightly decreased. The impact of including a 1-10-kBq m™ area would
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be larger at Tsukuba, which is surrounded by less contaminated regions. The supermicron simulations indicate a slight

improvement in the R value of the concentrations at Tsukuba, but the R value of the deposition at Tsukuba decreases.
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Figure 9: Monthly mean MODIS snow cover fractions interpolated to the model grids.
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Figure 10: Summary of statistical measures between the observations and the simulations (dust plus forest) for various
sensitivity tests, such as (from left to right) the correlation coefficient (R), simulation-to-observation median ratio (Sim/Obs),
numerical fraction of data within a factor of two (F¥42), and numerical fraction of data within a factor of five (F45) for (top)
the surface concentrations and (bottom) depositions at (blue) Namie (Tsushima), (orange) Fuklushima, and (gray) Tsukuba.
The four sensitivity tests are conducted for both the submicron and supermicron cases and consider no cumulus convection
parameterization [No cuml.], the addition of the cumulus convection parameterization [Cuml.], cumulus convection plus
emissions from grids in which the initial deposition amounts are 1 — 10 kBq m™ [1-10 kBq m?], and cumulus convection plus
emissions from the 1 — 10-kBq m™ areas plus suppressed emissions in the presence of snow coverage [Snow cover]. Thus,
“Submicron of [No cuml.]” is the simulation setting of K16, “Submicron of [Cuml.]” is the setting denoted as K16 in this
paper, and “Supermicron of [Cuml.]” is the setting of this study.
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Figure 11: (Left) Temporal variations in the surface concentrations of (black) observed '*’Cs and simulated '*’Cs associated
with (red) dust aerosols (denoted as [1-10 kBq m™] in Fig. 10), (pink) dust aerosols with emissions suppressed by surface
snow coverage (denoted as [Snow cover] in Fig. 10), and (lime) forest aerosols (denoted as “1-10 kBq m” in Fig. 10),
assuming supermicron sizes of '¥’Cs-bearing particles at (top to bottom) Namie (Tsushima), Fukushima, and Tsukuba (mBq
m-). The sampling intervals are used for the observations, but weekly mean values are depicted for the simulations. (Right)
Same as the left panels but for the monthly cumulative deposition amounts (Bq m™).

Among the sensitivity tests, implementation of the cumulus convection parameterization [Cuml.] and the inclusion
of less-contaminated areas [1-10 kBq m™] do not cause any substantial differences in the performances of simulating the
concentrations and depositions, but the difference induced by including the snow cover effect [Snow cover] is significant. The
supermicron simulations indicate that including snow cover improves the performance at Namie (Tsushima) (indicated by the
Sim/Obs and FAS5 values of the deposition) but deteriorates the performance at Fukushima (as indicated by the R value of the

concentrations and the FA5 value of the deposition). Fig. 11 compares the simulated dust between these two settings, [1-10

kBq m™] and [Snow cover], to analyze the concentrations and depositions of the supermicron case at the three sites. Apparently,
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[Snow cover] improves both the concentration and deposition simulations at Namie (Tsushima) in January, February, and
December, but deteriorates both the concentration and deposition simulations at Fukushima. This result is consistent with the
fact that no decontamination work occurred in the DRZ around Namie (Tsushima) in 2013, so snow cover suppressed
resuspension from the bare soil. On the other hand, people lived in Fukushima city and the surrounding municipalities, so
snow removal operations (deicing agents and snowblowers) are applied after each snowfall. In fact, substantial amounts of
road salts are observed in road-side PM;o measurements in Nordic countries in winter (Denby et al., 2016), indicating the
presence of road dust emissions after snow removal operations. In Fukushima city in 2013, most public facilities and
agricultural fields were already decontaminated, but the achievement ratios of decontamination on roads and forests were
lower than 10% (Watanabe et al., 2021). Thus, snowfall did not suppress the dust emissions around Fukushima city, which
may be the reason why [Snow cover] deteriorated the model performance at the Fukushima site. In addition, as previously
discussed, we hypothesize that the deposition amount in January 2013 at Fukushima was much higher than that at Namie due
to the opposing impacts of snow cover on dust emissions over the two different locations: the suppression around the Namie

site and the production of very large road dust particles around the Fukushima site.

4 Conclusions

The regional budget of resuspended '*’Cs originating from the Fukushima nuclear accident assessed by Kajino et al. (2016)
(K16) for 2013 is reassessed in this study. K16 assumed resuspension aerosol sizes similar to those of primary emissions (the
direct emissions from the FINPP associated with the accident), which are submicron-sized. However, Watanabe et al. (2021)
determined that the deposition amounts simulated by K16 were significantly underestimated. Based on recent cumulative
knowledge, major resuspension aerosols could be supermicron-sized, such as soil dust (Ishizuka et al., 2017; Kinase et al.,
2018) and bioaerosols (Kinase et al., 2018; Igarashi et al., 2019b; Kita et al., 2020; Minami et al., 2020; Igarashi, 2021). Lower
possibilities of submicron particle involvement, such as that resulting from forest fires (Kinase et al., 2018) and epicuticular
wax (Nakagawa et al., 2018), have been reported. Thus, the regional budget considering supermicron aerosols is significantly
different from that considering submicron aerosols: faster supermicron deposition rates necessitated higher emission fluxes to

sustain the simulated surface concentrations at the observed levels.

To evaluate the simulations, measured concentration and deposition data obtained at three stations, Namie (Tsushima),
Fukushima, and Tsukuba, are used. In this study, the resuspension source area is defined as areas in which the initial deposition
amounts exceed 300 kBq m. The Namie (Tsushima) site (2300 kBq m™) is in the resuspension source area and is surrounded
by mountainous forests in the Abukuma Highlands. The Fukushima site (190 kBq m?) is characterized as an urban/rural region
located outside but nearby the source area. The Tsukuba site (21 kBq m™) is characterized as a downwind region. A source-

receptor relationship analysis is performed, and resuspension ratios and redistribution amounts are derived. The effects of snow
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cover on resuspension and the contributions of resuspension to the actual decreasing trends in the ambient gamma dose rates

are discussed.
The major findings in the context of contrasting the two different particle sizes are summarized as follows.

Regarding the submicron particles, the surface concentrations of '3’Cs at Namie (Tsushima) in winter are quantitatively
explained by multiplying the dust emission scheme of Ishizuka et al. (2017) by five, but these values are significantly
underestimated in the summer. Additional forest emissions with a factor of 107 h'! explain the enhancement of the
observed *’Cs surface concentrations in summer at Namie (Tsushima). However, this effect causes opposite seasonal
variations at the Fukushima site: the simulated concentrations are high in summer, but the observations are low in summer.
In addition, this factor causes deposition underestimations by two orders of magnitude at all sites, Namie (Tsushima),
Fukushima, and Tsukuba. The annual mean source contributions for the concentrations are 90%, 16%, and 21%, and those
for the depositions are 95%, 13%, and 20% for Namie (Tsushima), Fukushima, and Tsukuba, respectively. The total areal
annual resuspension of *’Cs is 1.28 TBq, which is equivalent to only 0.048% of the initial deposition in March 2011, i.e.,
2.68 TBq. The decreasing trend of the observed gamma dose rate in Fukushima Prefecture was 1.0-7.9x10* d"! in 2013
after the radioactive decay of '3*Cs and '*’Cs was excluded. The decreasing trend is due to decontamination and natural
decay, such as that occurring due to land surface processes. The resuspension rate through the atmosphere is 0.048% y!
(1.3x10°% d'"), which is negligibly small compared to the decreasing trend. Together with the discharge rate through rivers
estimated as 0.02-0.3% y! (Iwagami et al., 2017), K16 concluded that ground-surface *’Cs stays or circulates within

local terrestrial ecosystems and is hardly discharged through the atmosphere or rivers.

Regarding the supermicron particles, by using the climatological deposition velocity analysis proposed by Watanabe et al.
(2021), the dry and wet deposition parameters are successfully constrained by the concentrations and depositions measured
at the three sites. The constrained dry and wet scavenging rates of supermicrons are 100 times and 10 times those of
submicrons, respectively, resulting in the emission fluxes of both dust and forest acrosols to be enhanced twenty-fold.
Compared to the submicron case, the source contributions of supermicrons are higher in the source areas and lower in the
receptor regions. The annual mean source contributions for the concentrations are 94%, 9.1%, and 5.4%, and those for the
depositions are 99.5%, 2.2%, and 1.0% at Namie (Tsushima), Fukushima, and Tsukuba, respectively. The areal total
annual resuspension of 1*’Cs is 25.7 TBq, which is equivalent to 0.96% of the initial deposition. Due to the rapid deposition
rates, the annual redeposition amount is also large, at 10.6 TBq; thus, approximately 40% of emissions are redistributed
over East Japan. However, the traveling distance should not be large because the source contributions of the depositions
at Fukushima and Tsukuba are only 2.2% and 1.0%, respectively. The resuspension rate through the atmosphere is 0.96%
y! (2.6x10” d'), which may not be negligibly small, as it can account for 1-10% of the decreasing rate due to

decontamination and natural decay except radioactive decay (1.0-7.9x10** d!). The areas with positive redistribution
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amounts (enhanced deposition due to resuspension) of 1-10 Bq m are much larger for the supermicron case than those
for the submicron case, and the maximum values are up to 100 Bq m?, especially over the ocean close to the coast of

Fukushima Prefecture.

From the current analysis, it is likely that snow cover in winter (January, February, and December) suppressed the
dust emissions in the source areas around the Namie (Tsushima) site but did not suppress emissions around the Fukushima
site. This is because Namie (Tsushima) is located in the DRZ and human activities in this region were very limited in 2013,
whereas snow removal operations involving deicing agents and snow blowers were performed in Fukushima city and the
surrounding municipalities at this time. In addition, heavy traffic on the major roads close to the Fukushima site (< 1 km) may
produce substantial numbers of superlarge road dust (or road salt) particles (~100 pm, which can travel only 1 km) from wet
and muddy surfaces, which may cause exceptionally large deposition amounts in Fukushima in January. The completion of

decontamination in 2013 was lower than 10% for roads and forests in Fukushima city.

More than ten years have passed since the accident but the issues to be resolved in the future are still the same as
those listed in K16. The current study represents an order estimation of the regional budget for only one year using a simple
model and schemes. In addition to the utilized model and schemes, the current horizontal grid resolution is too coarse to reflect
the heterogeneous distributions of various land use types. Soil dust and road dust emissions are relatively well-formulated, but
bioaerosols are not. Substantial efforts have been made to understand the emission mechanisms and quantifications of
bioaerosol emission fluxes (Igarashi et al., 2019b; Kita et al., 2020; Minami et al., 2020), but it is still difficult to establish a
set of formulas that is applicable for various vegetation surfaces. Our hypothesis of the existence of superlarge particles is not
proven at all. The decreasing trends in atmospheric '3’Cs differ between the periods before and after approximately 2015
(Watanabe et al., 2021), but the reason for this distinction is not clear. A long-term (i.e., 10-year) assessment using long-term
measurements and numerical simulations is required. The quantification and formulation of size-resolved '*’Cs emission fluxes

from various sources should directly connect to the comprehensive understanding of the regional budget of resuspended '*’Cs.
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Abstract

Using two horizontal resolutions (3 km and 250 m), this study examined the performance of Eulerian models
in simulating dispersion fields at two coastal monitoring stations in the vicinity of a pollutant source (3.2 km and
17.5 km distant) under the situation of the Fukushima 2011 nuclear accident. A 250-m grid simulation was newly
conducted for the examination and was able to reproduce the wind and concentration fields in detail over complex
terrain. The 3-km grid model could not reproduce the details of the winds and plumes around the Fukushima
Daiichi Nuclear Power Plant but occasionally yielded a higher performance with a lower undetected error rate
compared with the 250-m grid model due to the large numerical diffusion of the former. A disadvantage of Eule-
rian dispersion models is expected to be the artificial numerical diffusion in the advection process near emission
sources. The artificial numerical diffusion increases the false alarm ratio (number of strikeouts while swinging)
but fortunately decreases the undetected error rate (number of strikeouts while looking). This characteristic is
appropriate for environmental emergency response (EER) systems. Furthermore, the 250-m grid model result was
improved by a plume augmentation (i.e., max pooling) process, which enlarged the plume widths and masked
short time lags and small plume drifts. Plume augmentation was advantageous to the high-resolution model for
improving statistical scores, which is beneficial for EER systems.
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1. Introduction

The authors have previously investigated the
dependence of dispersion model performance on the
horizontal resolution using the data of the Fukushima
2011 nuclear accident (Sekiyama et al. 2015, 2017;
Sato et al. 2018, 2020; Sekiyama and Kajino 2020).
These studies have essentially found that when using
15-, 5-, 3-, and 1-km grid models, higher-resolution
models yield better performance over complex Japa-
nese terrain. Specifically, while the 3-km and 1-km
grid models performed comparably over plain regions
more than 100 km from the Fukushima Daiichi
Nuclear Power Plant (FDNPP), the 1-km grid model
was evidently superior to the 3-km grid model over
mountainous regions approximately 50 km from the
FDNPP. Unfortunately, the 15-km and 5-km grid
models exhibited poorer performance compared with
the 3-km and 1-km grid models.

The Cs-137 concentration data used for validation
in these studies were retrieved by Tsuruta et al. (2014)
and Oura et al. (2015) and recorded at approximately
100 monitoring stations. However, most of the stations
are located more than 50 km from the FDNPP; among
them, the nearest station is 26 km away. Consequently,
these studies did not evaluate the model performance
in the area immediately surrounding the FDNPP. In
principle, Eulerian models, which were utilized in
these studies, are generally not expected to be good at
simulating plume dispersion in the vicinity of emis-
sion sources (cf. Rood 1987). However, it is not theo-
retically trivial to estimate the poor performance of a
Eulerian model, especially when the horizontal reso-
lution is almost comparable to the distance between a
monitoring point and an emission source. Therefore,
the model performance should be evaluated through
observations at not only distant but also close ranges.

In this paper, the close-range performance of Euleri-
an dispersion simulations is evaluated using two hori-
zontal resolutions, namely, 3 km and 250 m. The 3-km
grid simulation is derived from Sekiyama and Kajino
(2020), whereas the 250-m grid simulation is newly
conducted for the evaluation. Fortunately, Tsuruta
et al. (2018) released new Cs-137 concentration data
retrieved at two monitoring stations in the vicinity of
the FDNPP (3.2 km and 17.5 km distant). This new
dataset allows the authors to evaluate the close-range
dispersion model performance. The 250-m grid plume
dispersion is categorized as a sub-kilometer-scale
simulation, which is currently being examined by an
increasing number of studies, mainly for complex
terrain (e.g., Bao et al. 2018; Wiersema et al. 2020)
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and urban pollution (e.g., Lateb et al. 2016; Nakayama
et al. 2016; Li et al. 2018; Hamer et al. 2020). The
authors would like to contribute to the studies on
high-resolution geophysical model by focusing on the
rural and coastal locations near the FDNPP.

In addition, in the case of environmental emergency
responses (EER; cf. World Meteorological Organiza-
tion 2006), both the Eulerian and Lagrangian plume
dispersion models would be required, especially in
the areas very close to emission sources. Hence, we
should understand beforehand what types of models,
what model resolution, and what model configuration
are needed for EER. The authors hope that this paper
will provide insight into what model resolution and
configuration are suitable for supporting EER.

2. Methodology

2.1 Models

The 3-km grid meteorological analysis was provid-
ed at an hourly resolution by Sekiyama et al. (2017)
and Sekiyama and Kajino (2020). This simulation was
performed using a 4-dimensional data assimilation
system consisting of a nonhydrostatic regional weath-
er prediction model (referred to as the NHM; cf. Saito
et al. 2006, 2007), a local ensemble transform Kalman
filter (LETKF; cf. Miyoshi and Aranami 2006; Kunii
2014), and Japan Meteorological Agency (JMA)
operational observation datasets. The NHM was being
operationally used by JMA at the time of the Fuku-
shima nuclear accident (March 2011) for daily nation-
al weather forecasts with four-dimensional variational
assimilation (cf. Honda et al. 2005). The analysis has
60 vertical layers from the surface to a 22-km eleva-
tion within the model domain over eastern Japan, as
presented in Fig. 1a. The boundary conditions for the
model domain were provided by the JMA operational
global analysis system. The details of the model and
data assimilation settings are described in Sekiyama
et al. (2017) and Sekiyama and Kajino (2020). This
meteorological analysis has been employed not only
by the above studies referenced but also by Sato et al.
(2018), Sekiyama and Iwasaki (2018), Iwasaki et al.
(2019), Takagi et al. (2020), and Goto et al. (2020) for
nuclear accident air pollution modeling.

The 250-m grid meteorological analysis was calcu-
lated by the NHM nested by the 1-km meteorological
analysis within the model domain, as presented in Fig.
1b. The 1-km analysis was provided by Sekiyama and
Kajino (2020), who implemented a one-way nested
data assimilation scheme (Kunii 2014) nested by the
3-km meteorological analysis aforementioned. Note
that the 3-km, 1-km, and 250-m grid analyses were
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calculated using the same model and physical config-
urations, except for the model domains and horizontal
resolution-dependent setups. All the resolution models
implemented the improved Mellor—Yamada level 3
closure model (Nakanishi and Niino 2004, 2006) as
a turbulence scheme. A cumulus parameterization
was not utilized for any models in this study. The
250-m grid NHM calculation lasted 20 h for a 24-h
simulation using 96 cores of Fujitsu FX100 with 840
x 980 grids. On the other hand, the 3-km grid NHM
calculation lasted 4 h for a 24-h simulation using one
core of Fujitsu FX100 with 215 x 259 grids.

Cs-137 plume dispersion was calculated by an
offline Eulerian regional air quality model, which was
driven by either the 3-km or 250-m grid meteorolog-
ical analysis. This model was previously developed
and evaluated by Kajino et al. (2012, 2016, 2018,
2019a, b) and Mathieu et al. (2018). The 3-km and
250-m grid meteorological analyses were input at 1-h
(3-km grid) or 10-min (250-m grid) intervals into the
offline air quality model, in which the dynamical time
step was set to 24 s (3-km grid) or 2 s (250-m grid)
using the time-interpolated meteorological analysis.
The Cs-137 emission scenario was provided by Katata
et al. (2015). In this model, Cs-137 was assumed to
be mixed in sulfate-organic mixture aerosol particles,
which were injected into a grid cell above the FDNPP
at 20—150-m heights, following the time-varying
emission scenario. The details of the model settings
are described in Sekiyama et al. (2015, 2017) and
Sekiyama and Kajino (2020). The 250-m grid offline
model calculation lasted 12 h for a 24-h dispersion
simulation using 112 cores of Intel Xeon (Haswell)
with the same domain as the 250-m grid NHM. On the
other hand, the 3-km grid offline model calculation
lasted 0.5 h for a 24-h dispersion simulation using
eight cores of Intel Xeon (Haswell) with the same
domain as the 3-km grid NHM.

2.2 Observations

The observational Cs-137 concentrations were re-
trieved hourly from filter tapes installed in prefectural
governments’ suspended particulate matter (SPM)
monitors, of which the theoretical detection limit
was 0.1 Bq m” (Tsuruta et al. 2014, 2018). The two
SPM monitoring stations, as reported by Tsuruta et al.
(2018), were located at Futaba and Naraha in the vi-
cinity of the FDNPP along the east coast of Fukushima
Prefecture (Fig. 1c). The Futaba and Naraha monitor-
ing stations were located 3.2-km northwest and 17.5-
km south—southwest of the FDNPP, respectively. The
plume arrivals were defined with a threshold of 1.5

domain of 3-km model
138° 140° 142° 144

(a) »

40°
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36°

34°

37.5°

37.4°

37.2°

domain oft1-km ngodel

140.8° 140.9° 141° 141.1°

Fig. 1. Model domains of (a) the 3-km grid model

and (b) the 250-m grid model. (c) Detailed loca-
tions of the Fukushima Daiichi Nuclear Power
Plant (FDNPP), Futaba monitoring station, and
Naraha monitoring station with 50-m interval
elevation contours.
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Fig. 2. Time series of the hourly averaged Cs-137 concentrations in March 2011 local time at the (a) Futaba
monitoring station and (b) Naraha monitoring station. [A] and [B] indicate the snapshot times for Figs. 3a and 3b,
respectively. Closed and open circles are observations defined as plumes (equal to or more than 1.5 Bq m™) and

non-plumes (less than 1.5 Bq m ™), respectively.

Bq m " using hourly averaged concentrations. The
modeled concentrations were spatially linear-interpo-
lated at each monitoring station. Sekiyama et al. (2017)
and Sekiyama and Kajino (2020) utilized a threshold
of 1.0 Bq m ’; the reason why this study used a thresh-
old of 1.5 Bqm is described below.

The major leakage of radioactive substances caused
by the Fukushima nuclear accident lasted for 2 or
3 weeks starting on March 12, 2011, the day after
the great earthquake. Most of the plumes flowed
offshore to the Pacific Ocean with the Siberian winter
monsoon. Nakajima et al. (2017) reported that the
time windows of onshore plumes were limited to less
than 50 h in total. However, the plumes often reached
both Futaba and Naraha, as reported by Tsuruta et al.
(2018), as these stations are near the FDNPP along the
Pacific Ocean coast. Tsuruta et al. (2018) reported that
high Cs-137 concentrations were observed at Futaba
intermittently at a local time (LT) between March
12 and March 25, 2011, and at Naraha intermittently
(LT) between March 14 and March 23, 2011. The
observed concentrations are presented in Fig. 2, where
the closed (open) circles indicate the existence (non-
existence) of a plume defined by a threshold of 1.5
Bqm .

The background concentration seems to be ap-
proximately 1 Bq m ™ at Futaba (Fig. 2a), which is
probably due to equipment contamination and filter
tape cross-contamination (cf. Tsuruta et al. 2014,
2018). The background concentration at Naraha is
also higher than the detection limit (0.1 Bq m™) with a
large deviation, in which the maximum values seem to
exceed 1 Bq m™ (Fig. 2b). This is also probably due
to contamination and cross-contamination. Although
turbulent diffusion may have partially influenced
the background concentrations near the FDNPP, it is
unnatural that the values did not fall below 1 Bq m,
even during time slots in which winds are strongly
directed toward the ocean at the FDNPP. Therefore,
the threshold of plume existence/nonexistence was
defined as 1.5 Bq m to avoid contamination errors at
these two locations. The sensitivity of the statistical
scores to the threshold value was small between 1.5
Bq m” and 3 Bq m°, although the scores evidently
deteriorated with the threshold of 1 Bqm™.

In this study, the model performance was evaluated
by the following statistical scores, namely, the propor-
tion correct (PC), false alarm ratio (FAR), undetected
error rate (UER), bias score (BS), and threat score
(TS) (see Appendix). These statistics are based on
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Table 1. Statistics (cf. Appendix) of each model at the Futaba monitoring station and the Naraha monitoring station.

Proportion  False Alarm  Undetected  Bias  Threat
FO X0 FX XX Cgrrect Ratio Error Rate  Score  Score

3 km-grid model 140 48 41 122 0.75 0.23 0.26 0.96 0.61

Futaba 250 m-grid model 104 84 35 128 0.66 0.25 0.45 0.74 0.47

g@%" rﬁf’g’;lilc‘l‘il odel 139 49 67 96 067 0.33 0.26 110 0.55

3 km-grid model 49 11 49 194 0.80 0.50 0.18 1.63 0.45

Naraha 250 m-grid model 41 19 23 220 0.86 0.36 0.32 1.07 0.49

Max pooling 44 16 27 216 0.86 0.38 027 118 051

250 m-grid model

the occurrence of a binary event, in this study, the
existence/nonexistence of a Cs-137 plume. Thus, a
threshold was required to determine the plume arrival
period. Plume arrivals can be detected by not only the
concentration but also the radiation dose rate at each
station. However, since the equipment for measuring
the radiation dose rate is often seriously contaminated
in the environment, especially after rainfall, concen-
tration observations are favorable for detecting plumes
with high temporal resolution (cf. Tsuruta et al. 2018).
Unlike the observational plume arrivals, the modeled
plume arrivals were easily detected without the influ-
ence of the threshold. This is because the plume edge
concentration is increased by more than five orders of
magnitude in the model simulations (cf. Iwasaki et al.
2019).

3. Results and discussion

3.1 Model simulations

Figure 2a presents the modeled concentrations at
Futaba, which is located in the grid immediately next
to the grid of the FDNPP in the 3-km grid model. The
3-km grid model (blue lines) and 250-m grid model
(red lines) are often synchronized with each other.
However, the concentration spikes in the 3-km grid
model tend to be broader than those in the 250-m grid
model. In other words, the plumes tend to stay for a
longer time in the 3-km grid model than in the 250-m
grid model upon their arrival. This tendency is expect-
ed as low-resolution Eulerian models experience large
numerical diffusion near emission sources. Moreover,
at Naraha (five times farther from the FDNPP than
Futaba), the synchronization between the 3-km and
250-m grid models is less prominent, as presented in
Fig. 2b. The plumes in the 3-km grid model evidently
arrive more often at Futaba than at Naraha. This is
mainly due to the large numerical diffusion of the
3-km grid model. Note that both models tend to

overestimate the concentration at Futaba (nearer to
the FDNPP), which is probably due to the model’s
dynamic errors rather than the emission scenario error,
as the models are less likely to overestimate the con-
centration at Naraha.

Within the time windows presented in Figs. 2a and
2b, the statistical scores were calculated for Futaba
and Naraha (Table 1). At Futaba, the PC is higher
for the 3-km grid model as the UER (the number of
strikeouts while looking, if using a baseball analogy)
is much lower. In this case, since the FARs (the
number of strikeouts while swinging, if using a base-
ball analogy) are similar between the 3-km and 250-m
grid models, a lower UER results in a higher PC. The
lower UER is due to the larger numerical diffusion of
the 3-km grid model. Since the BS is smaller than 1
for the 250-m grid model, the horizontal diffusion in
the models might be weaker than that in reality. This
is because the model probably underestimates the
frequency of high-concentration events when the BS
is much smaller than 1.

In contrast, at Naraha, the 250-m grid model has
a slightly higher PC than the 3-km grid model. In
this case, the 3-km grid model has a much lower
UER but a much higher FAR due to large numerical
diffusion, as half of the alarms are false (“the boy
who cried wolf” events). Consequently, the BS value
is inflated, and the TS value deteriorates in the 3-km
grid model. The combination of a high BS and a low
TS leads to people adopting a normalcy bias, which is
not appropriate for an EER model. Conversely, super
high-resolution models generally tend to have a high
UER due to the narrowness of plumes, which is also
not appropriate for an EER model. Therefore, plume
augmentation, or image processing for model results,
might raise the statistical scores when using super
high-resolution models. Such processing is described
and evaluated in the next section.
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3.2 Max pooling model

To augment the plume widths, a max pooling
process was applied to the 250-m grid model result.
At each grid point, an alternative value was sampled
by taking the maximum value inside of a circle with
a radius of 1.5 km from the grid point. This process
is equivalent to the max-pooling layer of an artificial
neural network with a 1-grid stride and a 12-grid pool-
ing size. In the output distributions, the plumes were
broadened to be comparable to the 3-km grid plumes.
The time series of the concentrations and statistical
scores for the max-pooling 250-m grid model are
presented in Fig. 2 indicated by green lines and listed
in Table 1, respectively.

As presented in Fig. 2a, compared with the original
250-m grid model, the plumes arrive more frequently
at Futaba (nearer to the FDNPP) in the max-pooling
model, and the concentration spikes are evidently
broader and higher for the max-pooling model. Conse-
quently, the BS value is improved, and the UER value
is successfully decreased to the level of the 3-km grid
model (see the rows for Futaba in Table 1). In the
case of the original 250-m grid model, the BS value
was much smaller than 1 as FO was small while (FO
+ XO) was large. Therefore, the improvement in the
BS indicates the increase in FO, which results in the
improvement in the TS. Although the improvement
in the PC is small because of the deterioration in the
FAR, the TS value is significantly improved from 0.47
to 0.55. In contrast, the difference between the original
and max-pooling 250-m grid models is very small at
Naraha, as presented in Fig. 2b. This is probably be-
cause Naraha is farther from the FDNPP than Futaba,
and thus, the pooling size (1.5-km radius) is relatively
small in comparison with the plume width or distance
between the plumes and Naraha. Consequently, there
is slight improvement in the PC and FAR (see the
rows for Naraha in Table 1). However, since the UER
value is slightly improved, the TS value increases
from 0.49 to 0.51. Note that the TS is higher than
0.5 for the max-pooling 250-m grid model at both
stations, which is relatively good in comparison with
the operational scores of heavy rain (> 10 mm h™")
weather forecasts (cf. Appendix).

The scores were improved by the max-pooling
process, especially at Futaba (nearer to the FDNPP).
These improvements are presented in Fig. 3 for two
time slots, [A] and [B], indicated in Fig. 2a. At time
[A], the 3-km grid model successfully simulates the
observed high concentration, but the original 250-m
grid model fails with a sharp drop in its concentration
(see Fig. 2a). In this case, as presented in Fig. 3a,
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while the 3-km grid plume spreads over the monitor-
ing station with large numerical diffusion, the original
250-m grid plume slightly misses covering the moni-
toring station. Since the difference between the 3-km
and 250-m grid surface wind fields is small around
the FDNPP, the plume coverage mainly depends on
the magnitude of numerical diffusion. In contrast, the
edge of the max-pooling 250-m grid plume success-
fully covers the monitoring station.

At time [B], while the 3-km grid model completely
fails, the original 250-m grid model almost success-
fully simulates the observed high concentration (see
Fig. 2a). However, since the observed concentration
rapidly fluctuates, the original 250-m grid model
regrettably fails with a very small time lag. In this
case, as presented in Fig. 3b, the 3-km grid plume
misses covering the monitoring station as the surface
wind around the FDNPP continuously flows in one
direction opposite to the monitoring station. However,
in the 250-m grid model, the surface wind around the
FDNPP is not homogeneous and instead follows the
complicated terrain near the FDNPP. Consequently,
while the prevailing wind is in the opposite direction
to the monitoring station, the fluctuating edge of the
plume sometimes covers the monitoring station. Even
if the timing of plume intrusion at Futaba is slightly
lagged in the original 250-m grid model, the augment-
ed plume constantly covers Futaba in the max-pooling
250-m grid model, which provides a lower UER (but
a higher FAR) and a better TS.

This study examined the concentration data from
two monitoring stations located along the Pacific
coast (not in a mountainous region) in the vicinity of
the FDNPP (only 3.2 km and 17.5 km distant). The
topographical difference was one of the reasons why
the higher-resolution model did not perform over-
whelmingly better than the lower-resolution model
in this study. Previous studies (Sekiyama et al. 2015;
Sekiyama and Kajino 2020) mainly focused on inland
complex terrain. Although the 3-km grid model
could not reproduce the details of the wind direction
and plume dispersion near the FDNPP (e.g., at time
[B]), the low-resolution model was superior to the
original 250-m grid model at Futaba due to the large
numerical diffusion therein. This empirical knowledge
is not trivial for the construction of EER systems.
In addition, a max-pooling (or plume augmentation)
process is probably beneficial to high-resolution EER
systems. However, the optimal pooling size (or plume
augmentation width) depends on the situation. In this
study, 4-grid (500-m radius) and 40-grid (5-km radius)
pooling sizes were also tested (not shown), but the 12-
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140.9E

Hourly averaged surface Cs-137 concentrations (green shading) and lowermost layer winds (red arrows)

near Futaba and the FDNPP calculated using the models at (a) 0800—0900 local time on March 14, 2011, and (b)
2100-2200 local time on March 16, 2011. The 250-m grid winds are plotted every 6 grids (1.5 km). Gray shading
indicates the elevation used in the 250-m grid models. The open triangle indicates the FDNPP. The open circle in-

dicates the Futaba monitoring station.

grid (1.5-km radius) pooling size employed above was
superior to the other options.

4. Conclusion

Generally, large numerical diffusion near an emis-
sion source is a disadvantage of Eulerian dispersion
models, as increasing numerical diffusion increases
the FAR (the number of strikeouts while swinging).
Fortunately, this drawback, however, will decrease the
UER (the number of strikeouts while looking). This
characteristic is suitable for EER systems. We demon-
strated that the performance of the 3-km grid model at
Futaba (very close to the FDNPP) is better than that
of the original 250-m grid model. On the one hand,
it is scientifically important to determine the causes
of plume errors on a case-by-case basis. On the other
hand, it is technically troublesome that such a tiny
plume location error can cause the pollutant concen-
tration to not exceed a warning threshold. Therefore, it

would be ideal for EER systems to use high-resolution
models with augmented plumes, i.e., the max-pooling
process. Note that high-resolution models are able to
simulate the wind and dispersion fields affected by
complex terrain in detail, as presented in Fig. 3b. In
addition, plume augmentation effectively masks short
time lags and small plume drifts in sub-kilometer-scale
high-resolution models. Unfortunately, the computa-
tional burden is, however, theoretically 12 x 12 x 12
= 1728 times different between the 3-km and 250-m
grid models when compared in the same area accord-
ing to the Courant—Friedrichs—Lewy (CFL) condition.
Therefore, enhancing the model resolution to the
sub-kilometer-scale is not cost-effective, considering
the available computational resources as of 2021. The
operationalization of sub-kilometer-scale dispersion
models will be a future issue in the construction of
EER systems.
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Appendix

This appendix highlights the statistical indices ref-
erenced in this study. First, we define the following:
FO is the number of positive simulations and positive

observations (correct hits),

XO is the number of negative simulations but positive
observations (misses),

FX is the number of positive simulations but negative
observations (false alarms), and

XX is the number of negative simulations and nega-
tive observations (correct rejections),

where positive simulations/observations indicate high

Cs-137 concentrations (equal to or more than 1.5

Bq m ) in this study.

The proportion correct (PC) is the ratio of the
number of correct events (hits and rejections) to the
number of total events, defined by

_ FO + XX
" FO+XO+FX+XX’

(0<PC<1).

A higher PC indicates higher model performance,
especially when the number of positive observations
is comparable to the number of negative observations.

The false alarm ratio (FAR) is the ratio of the
number of false alarm events to the number of positive
simulations, defined by

FX
FO+FX’
Cases with a high FAR are likened to “the boy
who cried wolf” (or the number of strikeouts while
swinging). Therefore, a lower FAR is better to prevent

people from adopting a normalcy bias.
The undetected error rate (UER) is the ratio of the

FAR = (0<FAR <1).
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number of missed events to the number of positive
observations, defined by

X0
FO+XO’
High-UER forecast models are apt to miss disasters
(strikeout while looking), which is not desirable for an
emergency management system.

The bias score (BS) is the ratio of the number of
positive simulations to the number of positive obser-
vations, defined by

BS= FO+FX ,

FO+XO

UER = (0< UER <1).

(0 < BS).

If the frequency of positive simulations is equal to that
of positive observations, the BS is unity, which is the
best score. The models with a high FAR (the models
that “cry wolf”) are more apt to yield a much higher
BS than 1.

The threat score (TS) is the ratio of the number of
correct hit events to the number of events other than
correct rejections, defined by

T§S=— 1O
FO + FX +XO

The TS is often referred to as the critical success index
(CSI). When the number of negative observations
is increased, such as no rain or no tornado, XX (the
number of correct rejections) tends to be large. In that
case, the PC approaches unity and is less affected by
the informative values, namely, FO, FX, and XO. In
contrast, the TS excludes correct rejection events and
thus is applicable to validation with a large number of
negative observations. While the best value of the TS
is 1, the TS rarely approaches the best value. For ex-
ample, operational TS values vary between 0.1 and 0.5
for heavy rain (> 10 mm h™") forecasts in Japan with
0-h or 3-h lead times (Japan Meteorological Agency
2019).

0<TS<I).
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Abstract: We conducted single-model initial-perturbed ensemble simulations to quantify uncertainty
in aerosol dispersion modeling, focusing on a point-source radioactive aerosol emitted from the
Fukushima Daiichi Nuclear Power Plant (FDNPP) in March 2011. The ensembles of the meteorolog-
ical variables were prepared using a data assimilation system that consisted of a non-hydrostatic
weather-forecast model with a 3-km horizontal resolution and a four-dimensional local ensemble
transform Kalman filter (4D-LETKF) with 20 ensemble members. The emission of radioactive aerosol
was not perturbed. The weather and aerosol simulations were validated with in-situ measurements at
Hitachi and Tokai, respectively, approximately 100 km south of the FDNPP. The ensemble simulations
provided probabilistic information and multiple case scenarios for the radioactive aerosol plumes.
Some of the ensemble members successfully reproduced the arrival time and intensity of the radioac-
tive aerosol plumes, even when the deterministic simulation failed to reproduce them. We found that
a small ensemble spread of wind speed produced large uncertainties in aerosol concentrations.

Keywords: probabilistic simulation; plume dispersion; data assimilation; ensemble spread; Fukushima
nuclear accident; radioactive cesium

1. Introduction

Ensemble simulation is a set of multiple numerical simulations that have slightly differ-
ent initial conditions, boundary conditions, parameters, or models that are all geophysically
plausible. Such a simulation enables the estimation of the predictability or reliability of
the model simulation by providing a spread of ensemble forecasts. The simulation is most
certain if the ensemble members are close to each other; otherwise, the ensemble provides
a possible range of different events. Thus, probabilistic model information can be obtained
from an ensemble simulation. Additionally, an ensemble simulation provides an ensemble
average that is often more accurate than a deterministic single simulation because the
model errors tend to be averaged out.

From a scientific viewpoint, the model predictability indicates not only the imperfec-
tion of simulation models but also the Lorenz’s deterministic chaos of Earth systems. The
error growth and propagation in the model simulation depend on the chaotic advection,
diffusion, precipitation, thermodynamics, and chemistry, which all should be explored
in detail. From a practical perspective, probabilistic model information complements
deterministic model information, especially for atmospheric forecasts. Therefore, ensemble
prediction systems (EPSs) have been developed worldwide by operational weather fore-
cast centers. These systems have adopted initial-condition ensemble simulations that are
suitable for error growth evaluation.

However, it is difficult to generate the ensemble perturbations of initial conditions
because randomly chosen (Monte Carlo) perturbations are likely to fade away or fail to
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grow through the simulations [1]. Therefore, more sophisticated perturbation methods
are generally used for weather forecasts, e.g., the singular vector method or the ensemble
Kalman filter method. The singular vector (SV) method was developed and implemented
initially by the European Centre for Medium-range Weather Forecasting (ECMWF) [2].
This method inevitably requires the adjoint code of the forecast model. In contrast, the
ensemble Kalman filter (EnKF) method, which is newer than the SV method, e.g., [3], does
not require the adjoint code of the forecast model and hence has been used throughout this
decade. In the EnKF method, the generation of initial perturbations is united with the data
assimilation for building the initial conditions.

By contrast, atmospheric environmental EPSs have not been developed as extensively
as weather EPSs, and hence the application of ensemble dispersion simulations (EDSs) has
not been thoroughly explored. Most previous EDS studies were sensitivity tests validated
by parameter/model ensembles, e.g., [4-8] that were relatively easily executable with a
very small number of ensemble members, or they were Monte Carlo tests that were simply
conducted with an offset modification of the initial/boundary conditions, e.g., [9-12]. Only
a few EDS studies have been conducted with sophisticated initial perturbations, e.g., the
ozone predictability experiments performed by Holt et al. [13] using an ensemble transform
method, the CO, source/sink inversion experiments performed by Lauvaux et al. [14]
using the SV method, the schematic dispersion experiments performed by Lattner and
Cervone [15] using an ensemble particle filter method, and the global aerosol dispersion
experiments performed by Haszpra et al. [16] using the ECMWE global ensemble forecasts.

Here, we have investigated the model uncertainty of a regional aerosol dispersion sim-
ulation with the meteorological initial perturbation generated by the EnKF. The knowledge
of the dispersion model uncertainty will provide insight regarding what model configura-
tion is suitable for scientific and operational model usage. Unfortunately, the dispersion
model uncertainty has not been well explored with ensemble simulations because (1) it
is difficult to prepare meteorological perturbations with sophisticated methods like the
SV and EnKF methods and (2) even if ensemble simulations are performed, it is difficult
to examine the probabilistic results in detail when tracer concentration observations and
emission inventories are not sufficiently available.

Therefore, we introduced two original approaches to resolve these difficulties. (1) We
generated the meteorological initial ensembles ourselves using an EnKF data assimilation
system with an arbitrary model resolution and domain. (2) We examined the dispersion
process of the radioactive aerosol tracer (Cs-137) stemming from a point source, i.e., the
Fukushima Daiichi nuclear power plant (FDNPP). Point-source pollution data are ideal
for the validation of dispersion models. Especially in the case of the FDNPP accident, the
emission location is exactly identified, the emission time and strength can be estimated
within a reasonable range to some extent, and the aerosol tracer concentration has been
accurately observed using radiation measurements. The model uncertainty will be effec-
tively investigated with these approaches. Meanwhile, the emission term was unperturbed
and thus not investigated in this study.

2. Methodology

The EnKF is an approximate treatment of the Kalman filter for application to high-
dimensional systems such as the atmosphere cf. [17,18]. The Kalman filter defines an
analysis as an arithmetic weighted mean of forecasts and observations, imposing a min-
imum variance estimation of the analysis error on the weight optimization [19]. We
simultaneously obtain data assimilation products (i.e., analysis) and perturbations (i.e.,
ensemble members) by repeating the EnKF procedure. The analysis is the mean of the
ensemble members. The perturbations generated by the EnKF are qualitatively superior
to a random perturbation because they reflect the model uncertainty distribution and are
flow-dependent, similar to the SV method. Furthermore, Wang et al. [20] reported that
when the ensemble size is small, the EnKF method has a statistical advantage because the
other methods consistently generate symmetric positive-negative paired ensemble mem-
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bers to keep the average value and thus cannot make statistical full use of the ensemble
dimension. In contrast, the EnKF does not generate symmetric pairs but keeps the overall
average. While the EnKF has several numerical implementation methods, the square root
EnKF is implemented in this study. In the square root EnKF, each ensemble member retains
its identity through the data assimilation cycle because its relative position in the state
space among the ensemble members is invariant.

Prior to calculating the radioactive aerosol dispersion, we prepared the ensemble
analysis and forecast of the meteorological variables to drive the dispersion model using
an EnKF data assimilation system that was developed by Kunii [21]. This data assimilation
system consists of the local ensemble transform Kalman filter (LETKF), i.e., one of the
square root EnKF implementations [22], and the Japan Meteorological Agency’s non-
hydrostatic regional weather forecast model ((MA-NHM) [23,24]. The LETKF method has
been applied to weather forecast modeling, e.g., [21,25-30] and tracer dispersion modeling,
e.g., [31-41].

In this study, the model domain covered eastern Japan as shown in Figure 1 and its
horizontal resolution was set to 3 km, which represented a typical grid scale for the regional
simulations implemented for the FDNPP accident cf. [37,39]. The model settings, such as
map projection, vertical coordinate, turbulence scheme, convective scheme, and terrain
features, were the same as those of the 3-km grid simulation performed by Sekiyama
et al. [37,39]. The domain consists of 215 x 259 horizontal grid points in the Lambert
conformal projection and 60 vertical levels including 11 levels below 1 km above ground
level. The terrain features were generated from the global digital elevation data with a
horizontal grid spacing of 30 arc seconds (GTOPO30) provided from the U.S. Geological
Survey. The turbulence scheme was based on the improved Mellor-Yamada level 3 closure
model [42,43]. A cumulus parameterization was not used in this study.

The data assimilation system was initiated at 06:00 UTC on 10 March 2011 with
20 ensemble members and a 3-h time window. The assimilation settings, such as time
slots (3 h), prognostic variables (three wind components, temperature, pressure, water
vapor mixing ratio, and water/ice microphysics variables), inflation scheme (adaptively
multiplicative factors at each grid point), and covariance localization (1/e%% within 150 km
in the horizontal and 0.2 natural-logarithmical p-coordinate in the vertical), were the same
as those of the 3-km grid simulation performed by Sekiyama et al. [37,39]. We obtained the
initial condition and the boundary conditions from the JMA operational global 15-km grid
analysis.

We assimilated J]MA’s operational observation dataset, which was integrated and
quality-controlled for the JMA mesoscale Non-hydrostatic-model four-dimensional Vari-
ational data Assimilation system (JNoVA) [44], similarly to Kunii [21] and Sekiyama
et al. [37]. Additionally, we assimilated surface wind observations acquired by the Auto-
mated Meteorological Data Acquisition System (AMeDAS) similarly to Sekiyama et al. [39].
AMeDAS is a nationwide meteorological observation network managed by JMA. The data
assimilation system generated 20 ensemble members every 3 h (hereafter called ensemble
analysis members) and simultaneously calculated the mean value of the ensemble mem-
bers as a deterministic analysis. The forecasts were calculated by the identical JIMA-NHM
using these 20 ensemble members and a deterministic analysis as the initial conditions.
Hereafter, these forecasts are called ensemble forecast members and a deterministic forecast,
respectively.

Using the meteorological analysis or forecast outputs, Eulerian dispersion simulations
were conducted with the Regional Air Quality Model version 2 (RAQM?2) [45-50]. All of
the radioactive Cs-137 was contained in sulfate-organics-mixed aerosol particles when
it was transported in the atmosphere. The details of the modeled aerosol physics are
described in work of Kajino et al. [46] and Sekiyama et al. [37,39]. Note that the RAQM?2
used in this study implements simplified aerosol dynamics compared with those of Ka-
jino et al. [46] by assuming perpetual particle size distribution similarly to Sekiyama
et al. [37,39]. The combination of the JMA-NHM, the LETKF, the []NoVA+AMeDAS ob-



Atmosphere 2021, 12, 662

40f13

servations, and the RAQM?2 has been successfully used for the Fukushima radioactive
pollution simulation [37,39-41,51-54].

We used the emission scenario of the radioactive Cs-137, which was released from
the FDNPP, estimated by the Japan Atomic Energy Agency (JAEA) [55-57]. Cs-containing
sulfate-organics-mixed aerosol particles [58] were injected at every time step into a grid cell
above the FDNPP. The emission scenario has been revised by JAEA several times after 2012,
e.g., [59]. However, the difference between the previous ones and the revised ones is not
very large in comparison with the dispersion model uncertainty (i.e., ensemble spread) of
Cs-137 concentrations in this study. Since we focus on the quantification of the dispersion
model uncertainty, the revision of the Cs-137 emission scenario scarcely affects the results
of the uncertainty evaluation in this study:.

The data assimilation cycle and the dispersion simulations were performed continu-
ously from 11 March to 1 April 2011. The “analysis” run contained 20 ensemble simulations
and one deterministic simulation. Although the analysis is only provided every 3 h, the
dispersion simulations require the meteorological variables at much smaller time intervals.
Therefore, the meteorological variables were generated between the 3-h analysis points
by the 3-h forecast runs using the identical IMA-NHM. The variables were stored at every
10 min of simulation time and inputted into the RAQM2, and the variables were linearly
interpolated during each 10-min interval. Additionally, we performed a “forecast” run
for 24 h in two specific periods (15 March and 21 March, see Section 3). Each forecast was
started at 21:00 local time (JST) of the previous day using the “analysis” run as the initial
condition. The “forecast” run also contained 20 ensemble simulations and one deterministic
simulation.
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Figure 1. Model domain of the JIMA-NHM and the RAQM2 used in this study, in which the model
resolution is 3 km. The distance between the Fukushima Daiichi nuclear power plant (FDNPP) and
Tokai is approximately 100 km.

3. Results and Discussion

Here, we focused on March 15 (Period 1) and 21 (Period 2), 2011 local time to inves-
tigate the radioactive plumes that were carried landward. Nakajima et al. [60] pointed
out that the plume intrusion inland occurred twice on a large scale; i.e., 15 March and
20-21 March. The comparison of the radioactive aerosol concentration was performed at
the model grid corresponding to the location of Tokai, where JAEA has been operationally
monitoring radionuclide concentrations and clearly detected highly radioactive plumes
on both 15 and 21 March, 2011 [61]. The JAEA Tokai facilities are located approximately
100 km south of the FDNPP (Figure 1). The meteorological components were compared
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at the model grid corresponding to the location of Hitachi (Figure 1), where the nearest
AMeDAS station (10 km north) to Tokai was located.

3.1. Period 1 (15 March 2011)

Figure 2a shows the time series of the meteorological ensemble analysis at the model
surface layer (below 40 m) of the Hitachi AMeDAS station from 21:00 14 March to 21:00
15 March 2011 JST. The ensemble members are illustrated with the deterministic analysis,
AMeDAS observations, and the JMA operational 5-km gridded analysis. The wind speed (u
and v) ensemble had a small spread and was almost synchronized with the JMA operational
analysis winds. The wind errors of the analysis members (i.e., the distance from filled
circles to a bunch of black lines) were larger than the difference between the wind ensemble
members (i.e., the spread width of a bunch of black lines). Figure 2b shows the forecast
(initiated at 21:00 14 March 2011 JST) in which the wind ensemble had a large spread.
However, the wind forecast spread was still smaller than the wind forecast error (i.e., the
averaged distance from filled circles to a bunch of black lines).

(a)

A L s Ly [
Observation @ Observation @ Observation @ Tall 1

u=wind.(m/s) L & Iv=wind.(m/s) L ( )
° \ 7 JMA Analysis X 6 \ 7 JMA Analysis X 41| IMAAnass X preC|p|tat|c n (mm/ht
" Deterministic =sssses || 4 Deterministic sssssss || Deterministic ssssese
A Ensemble 5 Ensemble Ensemble
0 + p 0
> o 040" °.° P h )

>
°e

4 = -4 . 0
6 ‘ -6
8 e : -8 : : 0

03/14 03/15 03/15 03/15 03/15 03/15 03/15 03/15 03/15 03/15 03/15 03/15 03/14 03/15 03/15 03/15 03/15 03/15 03/15 03/15 03/15 03/15 03/15 03/15 03/14 03/15 03/15 03/15 03/15 03/15 03/15 03/15 03/15 03/15 03/15 03/15

22:00 00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00
A L 8 L [

Observation L] Observation L] Observation L] - H

u-windi(mi/s) L v—windi(mi/s) L ( )
s {u~wind (m/s) v e | {V—WIRG-(/S) s e[ || commnon - PTeCIpitation (mm/hr
4 | Ensemble L4 Ensemble L Ensemble
2 2 3
0+ 0

o
Y S o e 40 2 2
L) L)
. . o
4

6 6 ;
-8 " -8 —— 0

03/14 03/15 03/15 03/15 03/15 03/15 03/15 03/15 03/15 03/15 03/15 03/15 03/14 03/15 03/15 03/15 03/15 03/15 03/15 03/15 03/15 03/15 03/15 03/15 03/14 03/15 03/15 03/15 03/15 03/15 03/15 03/15 03/15 03/15 03/15 03/15

22:00 00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00

Figure 2. (a) Ensemble analysis members and a deterministic analysis member of east-west wind (u component), north-south
wind (v component), and precipitation at the model surface layer (below 40 m) of the grid corresponding to Hitachi from
21:00 14 March to 21:00 15 March local time. (b) Same as (a) except for forecast members, which were initiated at 21:00 14
March local time. Circles indicate AMeDAS observations. Crosses indicate the JMA operational 5 km gridded analysis for
the daily weather forecast.

The Cs-137 concentrations at the model surface layer (below 40 m) of the Tokai JAEA
station are shown in Figure 3a with the JAEA observations from 21:00 14 March to 21:00 15
March 2011 JST. In contrast to the wind speed ensemble, the Cs-137 ensemble concentrations
had a large spread. Some of the ensemble members successfully represented the real peak
concentration but failed to represent the peak timing, appearing two hours early. The
deterministic analysis underestimated the real concentration. In Figure 3b, the Cs-137
forecast members presented a larger ensemble spread for the concentration. Some of the
Cs-137 forecast members presented large overestimations before and after the peak.

In this period, the radioactive aerosol plume projected from the FDNPP to the south,
coastwise, and then swept across Tokai (Figure 4). The percentile distribution of the 20 en-
semble members was narrow in the analysis (Figure 4a) but relatively broad in the forecast
(Figure 4b), which was in agreement with the time series of the ensemble analysis/forecast
concentrations at Tokai that are shown in Figure 3. The threshold (15 Bq/m?) used here
was defined as the half value of the air quality standard of Japan’s radioisotope regulations.
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The percentile distribution of aerosol concentrations can be usefully applied to probabilistic
forecasts such as the chance-of-rain forecast. The probabilistic forecasts provide multiple
scenarios for environmental pollution or disasters. Generally, the accuracy of the forecast
decreases with time, and consequently the percentile distribution tends to diffuse with
time. Figure 4 shows that the forecast percentile distributions were very similar to the
analysis percentile distributions in the short forecasts (02:00 15 March and 06:00 15 March),
indicating the high accuracy of the forecast. However, the distributions were less similar
in the longer forecast (10:00 15 March), in which the forecast percentile distribution was
diffused.

The ensemble analysis of the surface wind speed (u and v) exhibited a relatively
small spread, which was usually less than 1 m/s even though the analysis errors (i.e.,
analysis minus observation) were generally 1 or 2 m/s. For example, the relative standard
deviation (RSD) of the ensemble analysis for the specific 4 h during Period 1 (02:00-08:00
15 March) was 5% on average (Table 1). By contrast, the ensemble of the surface Cs-137
concentration had a large spread, in which some members occasionally presented almost
zero concentrations, whereas others presented very high concentrations. The RSD of the
Cs-137 concentration analysis for the same time periods was 93 % on average (Table 1). This
result indicates that a small ensemble spread in meteorology produces a large ensemble
spread for aerosol concentration. Thus, the uncertainty on the concentration is amplified in
comparison with that on the wind field.

The ensemble forecast exhibited the same behavior as the analysis. The ensemble
spread was relatively small in the meteorological simulation and very large in the disper-
sion simulation. The forecast RSD of the wind speed for the same time periods mentioned
above (02:00-08:00 15 March) was 7% on average (Table 1). In contrast, the forecast RSD
of the Cs-137 concentration was 82% (Table 1). A comparison of the analysis and forecast
RSDs indicates that the errors of the dispersion models are not linearly correlated with the
errors of the meteorological models.
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Figure 3. (a) Ensemble analysis members and a deterministic analysis member of Cs-137 concentra-
tion at the model surface layer (below 40 m) of the grid corresponding to Tokai from 21:00 14 March
to 21:00 15 March local time. (b) Same as (a) except for forecast members, which were initiated at
21:00 14 March local time. Circles indicate the measurements at Tokai.
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Figure 4. (a) Percentile distributions of the 20 ensemble analysis members, where the surface Cs-137 concentration is higher
than the threshold (15 Bq/ m?). White contour lines indicate the 15 Bq/ m? concentration of the deterministic analysis
member. The open triangle and circle illustrate the locations of the FDNPP and Tokai, respectively. The local time of the
snapshots was 2:00, 6:00, and 10:00 on 15 March, respectively. (b) Same as (a) except for the forecast, which was initiated at
21:00 14 March local time. The forecast duration was 5, 9, and 13 h, respectively.

Table 1. Relative Standard Deviations (RSD) 2 of the 20-member Ensembles.

2:00-8:00 15 March 4:00-10:00 21 March
Analysis Forecast Analysis Forecast
Wind speed 5% 7% 10% 23%
Cs-137 concentration 93% 82% 77% 235%
2 RSD was calculated for the specified 4 h during Period 1 or Period 2 at Hitachi (wind speed) or Tokai (Cs-137

concentration).

3.2. Period 2 (21 March 2011)

In comparison with Period 1, the ensemble spreads tended to be larger in Period 2.
Figure 5 shows time series of the meteorological ensembles at the Hitachi AMeDAS station
similar to those in Figure 2 but for the time period from 21:00 20 March to 21:00 21 March,
2011 JST. Note that it was raining or snowing on this day in a wide area of eastern Japan.
As seen in Figure 5b, the ensemble forecast (initiated at 21:00 20 March 2011 JST) presented
chaotic motions of the wind speed (u and v). Furthermore, the ensemble spread of the
precipitation forecast was extremely large.

The time series of the Cs-137 concentrations at the Tokai JAEA station are shown in
Figure 6 similar to those in Figure 3, except that they are in the time period from 21:00
20 March to 21:00 21 March 2011 JST. The ensemble spreads were very large, similar to
those in Period 1. As shown in Figure 6a, the deterministic analysis failed to represent the
peak timing with a two-hour delay. However, some of the ensemble analysis members
successfully represented the real peak timing and concentration. In contrast to the deter-
ministic analysis, the deterministic forecast completely failed to represent the plume arrival
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(Figure 6b). Many of the ensemble forecast members behaved similarly to the deterministic
forecast. This failure was caused by the wet deposition (below-cloud scavenging) that
occurred before the plume arrived at Tokai in the forecast simulations.
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Figure 5. Same as Figure 2 but for the time period from 21:00 20 March to 21:00 21 March local time. The forecasts were
initiated at 21:00 20 March local time.
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Figure 6. Same as Figure 3 but for the time period from 21:00 March 20 to 21:00 21 March local time.
The forecasts were initiated at 21:00 20 March local time.

In Period 2, the RSD of the wind speed analysis for the specified 4 h (04:00-10:00
21 March) was 10% on average (Table 1). However, the RSD of the Cs-137 concentration
analysis for the same time periods was 77% on average (Table 1). These scores also
indicate that the uncertainty on the concentration is amplified as shown in Period 1. This
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finding implies that if we deterministically pursue an accurate dispersion, it is necessary
to unrealistically increase the accuracy of the meteorological simulation. As expected, the
percentile distributions of the Cs-137 concentration (Figure 7) tended to be broader than
those in Period 1 in both the analysis and forecast before raining (approximately 08:00 JST).
The percentile distributions rapidly shrank after the rain because the radioactive aerosols
were deposited through precipitation. In the forecast, the precipitation area or timing was
slightly shifted from the actual values, and consequently, the distribution of wet deposition
was inadequately distorted.
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Figure 7. Same as Figure 4 but for 21 March. The local time of the snapshots was 4:00, 8:00, and 12:00 on 21 March,
respectively. In the lower panels, the forecast duration was 7, 11, and 15 h, respectively.

The forecast RSD of the wind speed for the same time periods was 23% on average
and that of the Cs-137 concentration was 235% (Table 1). The extremely large forecast errors
of the Cs-137 concentration were caused by the forecast errors of the precipitation (not only
the strength but also the timing). Specifically, the deterministic forecast almost completely
failed to reproduce the Cs-137 plume arriving at Tokai (Figure 6b). In comparison with the
extreme error of the Cs-137 concentration, the precipitation error was moderate as shown
in the right panel of Figure 5b.

On this day, light precipitation was widespread over Japan (Figure 8a; derived from
the JMA Radar/rain-gauge Analyzed Precipitation data [62]) and reasonably reproduced
by the deterministic analysis (Figure 8b). The deterministic forecast (Figure 8c) produced
a different distribution from the observed values (Figure 8a) and the analyzed values
(Figure 8b). This difference caused the Cs-137 concentration to have a high error, indicating
that the error of the dispersion models is not only amplified in comparison with the error
of the wind speed but also crucially magnified by the error of the precipitation because of
the high sensitivity of aerosol deposition on precipitation. However, even so, some of the
ensemble members were successful in reproducing the high concentration at Tokai. This is
the advantage of ensemble simulations.
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Figure 8. Precipitation (mm/hr) from 11:00 to 12:00 21 March local time derived from (a) the JMA operational radar/rain-

gauge analyzed observations, (b) the deterministic analysis, (c) and the deterministic 15-h forecast. The cross mark illustrates

the location of Tokai.

4. Conclusions

We conducted ensemble simulations for the dispersion of a point-source aerosol
using perturbed meteorological fields. The ensemble simulations provided probabilistic
information and multiple case scenarios for the aerosol dispersion. We found that a small
ensemble spread of wind speed resulted in a large uncertainty in aerosol concentrations,
i.e., the uncertainty on the aerosol dispersion was amplified in comparison with that on
the wind simulation. This finding implies that a high accuracy of dispersion modeling
requires much higher accuracy of meteorological modeling, thus representing a limitation
of deterministic dispersion simulations for analyzing/predicting the location and intensity
of aerosol plumes. Therefore, the probabilistic information of ensemble simulations exhibits
great potential for aerosol analysis and prediction.

The deterministic simulation did not provide the best analysis/prediction in this study.
However, some of the ensemble members successfully reproduced the arrival time and
intensity of the aerosol plumes. With only a deterministic simulation, it is not possible to
account for another event. Regrettably, in the field of atmospheric chemistry modeling, too
much emphasis has been placed on deterministic simulations uncritically. The usefulness
of ensemble simulations should be recognized to a greater extent.

The errors in the aerosol simulation were not only cumulative with the errors in wind
speed simulation but also crucially magnified by the errors in the precipitation simulation
because of the dependence of aerosol deposition on precipitation. Although the single-
model initial-perturbed ensemble simulation as used in this study is a powerful tool to
explore probabilistic analysis/prediction, the limitations of the single-model simulation
should also be considered because the single-model simulation implements only a single
module for the precipitation.
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Abstract. After the Fukushima nuclear accident, atmospheric **Cs and '*’Cs measurements were taken in Fukushima city for
eight years, from March 2011 to March 2019. The surface air concentrations and deposition of radio-Cs were high in winter
and low in summer; these trends are the opposite of those observed in a contaminated forest area. The half-lives of '3’Cs in the
concentrations and deposition before 2015 (275 d and 1.11 y) were significantly shorter than those after 2015 (756 d and 4.69
y). The dissolved fractions of precipitation were larger than the particulate fractions before 2015, but the particulate fractions
were larger after 2016. The half-lives of 1*’Cs in the concentrations and deposition were shorter before 2015, probably because
the dissolved radio-Cs was discharged from the local terrestrial ecosystems more rapidly than the particulate radio-Cs. X-ray
fluorescence analysis suggested that biotite may have played a key role in the environmental behavior of particulate forms of
radio-Cs after 2014. However, the causal relationship between the seasonal variations in particle size distributions and the
possible sources of particles is not yet fully understood. The current study also proposes a method of evaluating the consistency

of a numerical model for radio-Cs resuspension and suggests that improvements to the model are necessary.

Keywords: Fukushima nuclear accident, long-term observation, radiocesium, atmospheric radioactivity, precipitation

radioactivity
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1 Introduction

We conducted eight-year measurements of atmospheric **Cs and '*’Cs in Fukushima city after the Fukushima Daiichi Nuclear
Power Plant (FDNPP) accident that occurred in March 2011 to understand the time variations in and emission sources of **Cs
and *’Cs and to propose effective ways to reduce atmospheric radioactivity. Among the various radionuclides released to the
environment, radio-Cs is particularly important due to its abundance in terrestrial ecosystems (the impacts of other nuclides
were negligibly small 100 days after the accident; Yoshimura et al., 2020), long half-lives (2.06 y for **Cs and 30.17 y for
137Cs), and bioaccumulation (accumulation in muscle tissues, with biological half-lives of 30-150 d; WHO, 2011). Radio-Cs
forms aerosols in the air and is therefore efficiently deposited onto the ground surface via precipitation in addition to via dry
deposition. Approximately 30 % of the radio-Cs released in March 2011 was deposited onto the ground surface in Japan (the
aircraft-measured deposition on the ground was 2.7 PBq for '3’Cs; NRA, 2012, and the most updated estimate of '3’Cs
emissions by the Japan Atomic Energy Agency is 10 PBq; Terada et al., 2020). (The activity of '3*Cs in the environment was
equivalent to that of 1*’Cs in March 2011). Once radio-Cs is deposited onto the ground surface, it circulates within local
terrestrial ecosystems, so the discharge from the local environment to downstream or downwind regions may not be substantial
(0.02 - 0.3 % y! to river; Iwagami et al., 2017, approximately 1 % y™' to atmosphere'). Thus, long-term monitoring of
atmospheric radio-Cs at even one station may allow us to understand the mechanisms of its circulation in the local terrestrial
ecosystems, to estimate the external and inhalation exposure risks to the local residents, to propose efficient ways to reduce

health risks to the residents, and to assess the effectiveness of decontamination efforts.

To date, a great number of studies have focused on the circulation of radio-Cs in terrestrial ecosystems (Onda et al.,
2020). In terms of the long-term monitoring of atmospheric radio-Cs with a focus on resuspension from the ground surface to
the atmosphere, several papers have been published. Based on atmospheric measurements taken in the contaminated forest
area of the Abukuma Highlands (30 km northwest of the FDNPP) from October 2012 to December 2014, Ochiai et al. (2016)
reported that the surface activity concentrations of '*’Cs were higher in summer and lower in winter and that the time variations
of the fine-mode (< 1.1 um in diameter using an impactor) and coarse mode (> 1.1 pm) behaved differently. The coarse-mode
fractions were larger in summer, and the fine-mode fractions were larger in winter. Kinase et al. (2018) conducted surface
concentration measurements at four locations in the forest area of the Abukuma Highlands from July 2011 to March 2014 and
found that the concentrations of '3*Cs and '3’Cs were lower in winter and early spring and higher from late spring to autumn.
Their size-resolved measurements with a six-stage cascade impactor showed that the backup filter (< 0.39 pum) activity
concentrations were high in winter, consistent with Ochiai et al. (2016). However, Kinase et al. (2018) found through scanning
electron microscopy (SEM) that there were significant amounts of soil dust particles in the backup filter; these particles were

larger but bounced off the upper impactor stages. Therefore, they concluded that the sizes of radioactive particles were not

! The annual resuspension rate to the atmosphere was estimated as 0.047 % y™! by Kajino et al. (2016). However, the current
study found that the resuspension rate was likely substantially underestimated (see Sect. 3.5 and Fig. 9). A value of
approximately 1 % y™! was obtained from improved simulations, but that manuscript is still in preparation.
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small but were actually large (coarse-mode particles). In late spring, the surface concentrations were positively correlated with
the wind speed, so they concluded that the wind-blown soil particles carried radio-Cs in this season. In the summer and autumn,
the concentrations were positively correlated with temperature but negatively correlated with wind speed, so they concluded
that the resuspension mechanisms were different in the winter and summer. The SEM analysis revealed that there were more
abundant bioaerosols in summer than in winter. Based on simulations, Kaijno et al. (2016) indicated that the summer peaks in
surface concentrations in the Abukuma Highlands could be accounted for by the bioaerosol emissions from forest ecosystems,
even though the emission mechanism remains unknown. Igarashi et al. (2019a) further investigated the mechanisms of
bioaerosol emissions in forests in summer by using fluorescent optical microscopic observation and high-throughput DNA
sequencing techniques. They suggested that the fungal spores that accumulate radio-Cs may be significantly involved in
resuspension in the forest in summer. Kita et al. (2020) suggested that rain induced the emission of radio-Cs associated with
fungal spores in the forest in summer. Minami et al. (2020) combined aerosol flux measurements and a multilayer atmosphere-
soil-vegetation model and estimated that the bioaerosol emission flux was on the order of 102 ug m? s™!, which could account
for the surface concentrations of 1*’Cs in the forests in summer (Kajino et al., 2016; Kinase et al., 2018; Igarashi et al., 2019a).
Kinase et al. (2018) also showed that there was no enhancement in the '*’Cs concentration associated with forest fire events in
the region. The surface concentration of '*’Cs was not correlated with that of levoglucosan, which is often used as a marker of
biomass burning. These results are distinct from those from Chernobyl, where wildfire plays a key role in the migration of
radio-Cs associated with the event (Ager et al., 2019; Igarashi et al., 2020). The contributions of additional 3’Cs emissions
from the nuclear reactor buildings of FDNPP to the surface concentrations in Japan were negligibly small compared to the
resuspensions from the ground surface (Kajino et al., 2016). On the other hand, unintentional emissions in the premises of
FDNPP such as debris removal operations contributed to some observed sporadic peaks (Steinhouse et al., 2015; Kajino et al.,

2016), although the impacts of such events might be small in terms of long-term averages and trends.

The current study is distinct from other studies, as it includes long-term comprehensive measurements (time-resolved
and size-resolved measurements of surface air activity concentrations together with measurements of dissolved and particulate
forms of activity in precipitation) at an urban/rural location in the Fukushima Basin in the vicinity of contaminated forests in
the Abukuma Highlands. The field observation and the simulation methods are described in Sect. 2. Sect. 3 presents the results
for the surface concentrations (Sect. 3.1), deposition amounts (Sect. 3.2), size distribution (Sect. 3.3), chemical compositions
(Sect. 3.4), comparison with simulations (Sect. 3.5), and comparison with measurements taken outside Fukushima Prefecture
(Sect. 3.6). The seasonal variations and possible emission sources are discussed in Sect. 4.1, the impacts of decontamination
and natural variations on the differences in trends before and after approximately 2015 are discussed in Sect. 4.2, the reasons
for the substantial deposition amount in January in Fukushima city are discussed in Sect. 4.3, and major findings and future
issues are summarized in Sect. 5. The observation data used in the study are provided as a Microsoft Excel file in the

Supplement.
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Figure 1: Map of Fukushima Prefecture and the surrounding prefectures. The locations mentioned in this study and terrestrial
elevations are depicted in the map.

2 Methods
2.1 Sampling site

The observation site, Fukushima University, is located in Fukushima city, located in the northernmost basin (Fukushima basin)
in the Nakadori Valley, surrounded by the Ou mountains to the west and the Abukuma Highlands to the east (Fig. 1). The
distance of the observation site from the FDNPP is approximately 60 km. The Nakadori Valley was formed by the Abukuma
River, which starts in the mountains in Fukushima Prefecture near the border of Tochigi Prefecture and flows northeast through
the central parts of Fukushima city to the Pacific Ocean in Miyagi Prefecture. The major radioactive plumes arrived twice in
Fukushima city, on March 15 and 20 (plume #3 and #8, as identified by Nakajima et al. (2017), respectively). These plumes
were transported over the Abukuma Highlands (where the peaks are mostly lower than 1,000 m) but were blocked by the

5
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higher Ou Mountains (peaks are 1,000 - 2,000 m) and thus transported along the Nakadori Valley (Nakajima et al., 2017). The
land surface of Fukushima city was contaminated mainly on the afternoon of March 15 with plume #3. The air dose rate in
Fukushima city started to increase at 17:00 local time (LT), associated with the weak rain that started at 13:00 LT, and peaked
at 19:30 LT at a value of 24.0 uSv h!,

2.2 Surface air concentrations

2.2.1 High-volume air sampler, cascade impactor, and radioactivity measurement

The air samples were collected using high-volume air samplers (Kimoto electric Co., Ltd., Model-120SL) placed on the roof
of the building at Fukushima University (37.68°N, 140.45°E) at a height of 25 m from ground level. In this study, we carried
out two types of air sampling: time-resolved observations and aerosol size-resolved observations. In the former case, aerosol
samples were collected on a quartz fiber filter (Tisch Environmental, Inc., TE-QMA-100). The air suction rate of the sampler
was 700 L min!. The typical duration of each sample collection was 24 hours, from May 8 to September 2, 2011. Then, we
switched to 72 hours of collection until December 27, 2017; after that, 1 week of continuous collection was performed until
March 28, 2019. For the latter observations, a cascade impactor system (Shibata Scientific Technology Ltd., HV-RW) was
placed into a high-volume air sampler. The air suction rate was 566 L min™!. The aerosols were collected separately by diameter
on six quartz filters (Kimoto, TE-236). The range of particle sizes in this system was 0.39-0.69, 0.69-1.3, 1.3-2.1, 2.1-4.2, 4.2-
10.2, and >10.2 pm. (Note that the sizes in the manuscript indicate the 50 % cutoff aerodynamic diameters.) Fine particles
with a size of <0.39 um were captured on a backup filter (Kimoto, TE-230-QZ). The typical sample collection time for the
size-resolved observations was three weeks. In types of both observations, activated carbon fiber filters (Toyobo Co., Ltd.,

KF-1700F 84 mme) were also placed at the exit of the high-volume air samplers to collect gas-state aerosols.

The collected aerosol samples were sealed into polyethylene bags at Fukushima University. After being shaped into
definite shapes, the gamma rays from the samples were measured by high-purity germanium detectors (coaxial with 15, 35
and 40 % relative efficiencies, SEIKO EG&G, ORTEC and coaxial with 40 and 60 % relative efficiencies, CANBERRA)
connected to a multichannel analyzer system (MCA7600, SEIKO EG&G) at the Radioisotope Research Center, Osaka
University. The radioactivities of '**Cs and “’Cs were identified at gamma-ray intensities of 605 keV and 662 keV,
respectively. The detection efficiencies of the respective detectors for each gamma ray were determined from the same-shape
filter samples from standard '**Cs and '3’Cs solutions obtained from the Japan Radioisotope Association. The typical
measurement time of each sample was 1-3 days. Under these conditions, the detection limits of '**Cs and '*’Cs were
approximately 5 x 103 Bq. The errors in the measured values are derived from the systematic error of geometrical configuration
and the standard sample itself in addition to statistical error. All radioactivities determined by our measurements were corrected

at mid sampling times.
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The radioactivities of both '**Cs and *’Cs were identified for most filter samples. The deviation in concentration
between '**Cs and '*’Cs became larger over time due to the relatively short half-life of '**Cs. According to the radioactive
decay correction performed in March 2011, the activity ratios of '**Cs/!**’Cs were approximately 1. These ratios are consistent
with those in other reports related to FDNPP accident, so we concluded that the detected radiocesium originated from FDNPP
accident. During the measurement period, no radioactivity from **Cs and '*’Cs was detected from the carbon filters; that is,

the component of gaseous radioactive cesium was negligibly small.
2.2.2 Impactor/cyclone system

Since the filters for the high-volume air samples were quartz fiber filters, they could not be used for elemental analysis with
X-ray fluorescence spectrometry (XRF). For the XRF analysis, we used an impactor/cyclone system (Tokyo Dylec Corp., no-
number special order, 1100 L min™') in which the aerosols were separated by size into <2.5 pm and > 2.5 wm using an impactor;
those < 2.5 um and >0.1 pm were sampled in glass bottles (As One corp., 2-4999-07) using a 0.1 pm cyclone with sampling
intervals of one month from September 2014 to January 2018. Aerosols larger than 2.5 pm were collected on quartz fiber
filters in the system. Aerosol samples in glass bottles (0.1 — 2.5 um) were defined as fine-mode PM (PMy), and those on quartz
fiber filters (> 2.5 um) were defined as coarse-mode PM (PM.). The radioactivities of '**Cs and '*’Cs in the samples were also

measured in the same manner.
2.2.3 Possible artifacts of impactor measurements

Size separation by an impactor is associated with the artifacts caused by bouncing effects. In fact, in cascade impactor
measurements, Kinase et al. (2018) observed abundant coarse-mode particles such as mineral dust and bioaerosol particles in
the backup filters due to bouncing effects. In the impactor/cyclone system, the glass fiber filters used as an impaction surface
were immersed in silicone oil to prevent particles from bouncing (Okuda et al., 2015). In this study, silicone oil was not used
for the cascade impactor but was used in the impactor/cyclone system. However, the long-duration measurements (such as the
monthlong measurements) could be associated with the larger particles that rebounded at the impactor and were collected in

glass bottles (Okuda et al., 2015).

2.3 Deposition (dry plus wet deposition, dissolved and particulate fractions)

The total deposition (dry plus wet deposition or fallout) samples were collected with a precipitation sampler (Miyamoto Riken
Ind. Co., Ltd., RS-20) with a funnel diameter of 20 cm. Since a heating device was not installed on the sampler, any snow in
the funnel was manually melted in a water bath in winter. The accumulated snow in the funnel never reached the top of the
funnel during the whole observation period. A filtration device was installed in the sampler using membrane filters (Advantec,
4-880-03) with a pore size of 0.45 um. The radioactivities of '*Cs and '*’Cs in the filtered water stored in the polyethylene

bottle and those on the filters were both measured by high-purity germanium detectors at Osaka University and were defined

7
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as the dissolved and particulate fractions of the deposition, respectively. It should be noted here that this separation does not
perfectly differentiate water-soluble and insoluble radio-Cs. The clogging of the pores of the membrane filter can occur during
filtration. The measured total (dissolved plus particulate) deposition amounts were compared with those measured by the
official method at the Fukushima Prefecture Nuclear Power Center (Fig. 1), which is located 6.5 km north-northwest of
Fukushima University. Our method was found to be consistent with their official method: the correlation coefficient R was
0.81, with a slope of 1.158 (the values from Fukushima University were larger by 16 %). Differences in locations and sampling
intervals (daily at the Fukushima Prefecture Nuclear Power Center; monthly at Fukushima University) could also have

contributed to the differences in the measured values at the two sites.

2.4 X-ray fluorescence analysis (aerosols, deposition, and river sediments)

X-ray fluorescence (XRF) analysis was carried out by using a RIX1000 (Rigaku Corp.) at Fukushima University. The
measurement setup recommended by the manufacturer was used for the XRF. The major and trace element contents were
analyzed by the fundamental parameter method and calibration curve method, respectively (Takase and Nagahashi, 2007).
Measurements were conducted for PM; (see Sect. 2.2.2), the particulate fractions of precipitation (see Sect. 2.3), and the river
sediments. River sediments were collected at 15 sites upstream and downstream of Fukushima city in the Abukuma River and
its tributaries in 2010. Samples were taken from the gravel layer of the lower terrace at 5 sites, from alluvial fan deposits at 1
site, and from current riverbed sediments at 9 sites. The dried sediment samples were sieved and divided into two grain size
groups: particles smaller than 180 pum (defined as fine sediment particles) and particles 180 um - 2 mm (coarse sediment

particles).

2.5 Numerical simulation and validation data

Kajino et al. (2016) used a Lagrangian model (LM) to simulate the atmospheric dispersion and deposition of 1*’Cs resuspended
from bare soil and forest ecosystems from January to December 2013. Since the resuspension fluxes and size distributions
were unknown, they adjusted the flux from bare soil (forest ecosystems) so that the simulated surface concentrations matched
those measured in Namie (Tsushima) (Namie High School Tsushima Campus, 37.56°N, 140.77°E, 30 km northwest of the
FDNPP) (Fig. 1) in the winter (summer) of 2013, and they adjusted the dry and wet deposition parameters (reflecting the size
distributions and hygroscopicity) so that the simulated total (dry plus wet) deposition over land in March 2011 matched those
measured by the aircraft measurements (NRA, 2012). Thus, note that the size distribution of the simulation was assumed to
have submicron size ranges that were consistent with those of the primary emissions (the direct emissions associated with the
FDNPP accident in March 2011) but that may not be applicable for resuspension events; the carrier aerosols are presumed to
be soil dust or bioaerosols, which are usually larger than the submicron size range. Kajino et al. (2016) concluded that their
simulations are likely reliable because the simulated differences between the surface concentrations in the contaminated area

(or emission source area) (i.e., Tsushima) and those in the downwind area (Meteorological Research Institute (MRI), Tsukuba
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city, 36.06°N, 140.13°E, 170 km southwest of the FDNPP) (Fig. 1) were consistent with the observed differences at the two

locations.

However, Kajino et al. (2016) used only surface concentration measurements to validate the simulations. The current
study also used concentration and deposition measurements from Fukushima University for model validation. The previous
study compared only the two locations in the contaminated forest areas and in the downwind urban/rural regions; the current
study includes an additional location in the urban/rural region near the contaminated forest of the Abukuma Highlands (60 km

northwest of the FDNPP).

3 Results
3.1 Surface air concentrations

Figure 2 shows the time variations in the atmospheric radioactivity concentrations of '*’Cs from May 2011 to March 2019.
Just after the accident, the '*’Cs concentrations were higher than 0.01 Bg/m?, and the maximum concentration of 0.0169 Bg/m?
was detected on May 23, 2011. The concentration quickly decreased to a level of 10 Bg/m?, and the minimum concentration
0f 4.05 x 10"° Bg/m> was obtained on December 5, 2018. By taking the annual averaged value, the decreasing tendency in the
atmospheric concentration could be expressed as ¥ = 0.0418X%47 where Y indicates the annual mean '3’Cs concentration and
X means the number of years elapsed. The coefficient of determination, R?, is 0.993. This demonstrates that the surface
concentration decreased exponentially and halved in approximately 4 years; thus, the decrease rate was higher than the rate of

radioactive decay of '*’Cs.

It is remarkable that the decreasing trends in the earlier stage and the later stage were different. The regression lines
of the raw data time intervals for the whole period (red; May 2011 - March 2019), the earlier stage (blue; May 2011 - December
2014), and the later stage (green; January 2015 - March 2019) are shown in Fig. 2, with the half-life (7}) in days and the
decrease rate (Ry) in % y!. The decreasing trend (7, = 275 d, Ry = 92.0 % y*') of the earlier stage is approximately three times
faster than that of the later stage (7, = 756 d, Ry = 33.5 % y™"). It is shown later in Fig. 3 in Sect. 3.2 and discussed in Sect. 4.2,
but this could be related to the relative abundance of particulate and dissolved fractions of radio-Cs in the environment. The
dissolved fractions of radio-Cs may discharge faster than the particulate fractions from contaminated environments, such as
soils and plants. The relative abundance of the dissolved fractions was larger in the earlier stage than in the later stage such
that the decreasing trend in the surface air concentration was faster than that in the later stage. In addition to the natural
variability, decontamination work, which was completed by March 2018 in Fukushima city and the surrounding municipalities,

may also have contributed to the difference in the decrease rates; this possibility is also discussed in Sect. 4.2.
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Figure 2: Time series of surface air activity concentrations of '*’Cs on the left axis. The red, blue, and green lines indicate the
regression lines of the whole period, before 2015, and after 2015, respectively. The half-lives (7) and decay rates (R;,) are also
depicted. The gray line indicates the ratio of the running mean of 20 data points (an approximately monthly cycle) to the
running mean of 160 data points (an approximately annual cycle) on the right axis to show its seasonal variation.

It is also interesting that our data show different seasonal variations from those measured in Tsushima by Ochiai et
al. (2016) and Kinase et al. (2018). The levels in their studies were high in summer and low in winter, but as depicted in the
gray line in Fig. 2, the concentration rose starting in October, with maxima in the spring season around March and minima in
the summer. The maxima in the spring are approximately one order of magnitude larger than the minima in the summer. The
measurements of their studies were conducted in high-dose areas in the mountain forest (approximately 400 m above sea level
(a.s.l.)), and the high-volume samplers were set near the ground surface. In contrast, the current air sampling was conducted
in a relatively low-dose area (10 times lower than that in Tsushima) located in an urban/rural region on a hill (approximately
200 m a.s.1.) at the southern end of the Fukushima Basin. The heights of the samples were 25 m from the ground surface. Such

geographical and altitude differences could have caused these differences.
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3.2 Deposition amounts

Figure 3 shows the monthly cumulative deposition of '3’Cs from March 2011 to March 2019. The monthly deposition amount
peaked in March 2011 as 202200 Bq m, decreased to 1 % of the initial amount after one year, and decreased to an order of 1
Bq m? after eight years. It also showed seasonal variation and was high from winter to spring. Nevertheless, the current level
is from two to three orders of magnitude larger than that before the Fukushima nuclear accident. The monthly trend is expressed
as Y =48232X"%% where Y indicates the monthly cumulative '*’Cs deposition and X means the number of months elapsed.

R?is 0.697.

The decrease rates of deposition (7, = 1.11 — 4.69 y) were generally slower than those of the surface concentrations
(T =275 - 756 d). 1t is hard to identify the reason for this phenomenon. A perfect simulation could answer this question, but
high uncertainties in atmospheric deposition modeling and land surface modeling inhibit a perfect understanding of these long-
term circulations of radio-Cs in the environment. It is safe to presume here that the decreasing trends in deposition and surface
concentrations are different because the contributions of major emission sources to deposition and surface concentrations are
different. If the dominant source of the surface concentration is near (far from) the observation site and that for of deposition
is far from (near) the site, the faster decrease rate in concentration is due to the faster (slower) reduction rate in the nearby

sources of emissions than in the far sources.

There is also a distinct difference in the decreasing trends before and after 2015. In addition to the effect of
decontamination work, as previously discussed in Sect. 3.1, the relative abundances of the dissolved and particulate fractions
of ¥7Cs could be a part of the reason. The particulate fraction made up 72.6 % of the deposition of March 2011, which is
presumed to be largely influenced by primary emissions. Here, it is interesting to note that most primary radio-Cs emissions
are thought to be composed of water-soluble submicron aerosol particles (e.g., Kaneyasu et al., 2012 and almost all numerical
simulations afterwards, such as Sato et al., 2020), while water-insoluble Cs-bearing microparticles (CsMP; Adachi et al., 2013,
Igarashi et al., 2019b) may contribute somewhat to primary emissions (Ikehara et al., 2020, Kajino et al., 2021). If the primary
radio-Cs in aerosols were 100 % in water-soluble forms, the particulate fraction should have made up 0% of the precipitation
in March 2011 (although, some of the water-soluble Cs could have converted to a water-insoluble form through adsorption to
soil particles accumulated on the membrane filter during filtration). After April 2011, as the contributions of resuspension
were thought to be dominant, the dissolved fractions became larger. The ratio varied, but the dissolved fractions were generally
higher before 2016, and the particulate fractions became dominant after 2016. There seemed to be a regime change in the
physicochemical properties of radio-Cs circulating in the environment in the area in approximately 2015 and 2016, which
could have changed the decreasing trends of both the surface concentrations and deposition before and after 2015. This result
is consistent with the finding of Manaka et al. (2016), who reported that the exchangeable proportions of radio-Cs rapidly

decreased in forest soils from two to four years after the accident, i.e., from 2013 - 2015.
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Figure 3: (Top) Time series of 1*’Cs activity deposition. The red, blue, and green lines indicate the regression lines of the
whole period, before 2015, and after 2015, respectively. The half-lives (Th) and decay rates (Rd) are also depicted. (Bottom)
Time series of particulate and dissolved forms of '*’Cs deposition on the left axis and the ratio of particulate to dissolved '*’Cs
on the right axis.
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The seasonal variations in particulate and dissolved '3’Cs were slightly different from each other and different from
those of the surface concentration. The surface concentration peaked in March in almost all years, and the total deposition
peaked in January. The peaks of the total deposition in January coincided with those of the dissolved '3’Cs before 2016, but
the peaks of the dissolved '3’Cs became unclear afterwards. The peaks of particulate '*’Cs occurred in March before 2016,
which coincided with those of the surface concentrations. After 2016, there were no clear seasonal variations in particulate
137Cs. There are clear and different seasonal variations in the surface concentration and deposition. However, at the current

stage, we have no knowledge of or numerical tools to reveal the hidden mechanisms underlying these variations.

3.3 Size distributions

Figure 4 shows the time series of the seasonal mean atmospheric radioactivity concentrations of '3’Cs obtained from the
cascade impactor measurements. The sampling interval for the cascade impactor measurements was three weeks. The seasonal
means included a sampling period if any part of the sampling period was included in the season. For example, the raw data
from the sampling period from February to March contributed to the averages of both DJF (December, January, and February,
i.e., winter) and MAM (March, April, and May, i.e., spring). The seasonal mean total (all sizes) concentrations of cascade
impactor measurements during the sampling period agreed well with those of the time-resolved observations (Fig. 2), with R’
=0.93. The same seasonal variation discussed for the time-resolved observations (Sect. 3.1) was also observed; the atmospheric
137Cs concentration was relatively high in DJF and MAM compared to that in JJA (June, July, and August, i.e., summer) and

SON (September, October, and November, i.e., autumn).

The most dominant size range in activity was the backup filter (< 0.39 pum, or rebounded particles such as soil dust
and bioaerosols; Kinase et al., 2018), and its seasonal variation agreed well with that of the total particle concentration (high
in DJF and MAM). On the other hand, the second largest contribution was made by the size range of 4.2-10.2 um, which
showed the opposite seasonal variation and was relatively high in JJA and SON. The seasonal variations in the largest particle
fraction, larger than 10.2 um, are interesting. The trend appears to be synchronized with that of the backup filter particles (high
in DJF and MAM)), but the opposite trend was observed in 2016 and 2017 (high in JJA). The contributions of other fractions,
i.e., 0.49-4.2 um, were small in the measured period. Even though the contributions were small, the seasonal trend of 0.39-
0.69 um was similar to that of the backup filter particles, but that of 1.3-2.1 pum was similar to that of 4.2-10.2 pm. The current
measurement indicates that the dominant particles and their sizes may be distinct depending on the season. The decrease rates
of each size were different before and after approximately 2015, as discussed in Sects. 3.1 and 3.2, but the size distribution of

the surface activity did not change substantially before and after approximately 2015.
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Figure 4: (Top) Time series of seasonal mean size-resolved surface activity concentrations of '*’Cs and (bottom) their relative

fractions.
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Figure 5: (Top) Time series of surface activity concentrations of '*’Cs in PM¢ (0.1-2.5 um) and PM, (>2.5 um) collected by
the impactor/cyclone system and those of the backup filter of the cascade impactor. (Bottom) Correlation coefficients of
temporal variations among seasonal mean '*’Cs activity concentrations of different sizes measured by the impactor/cyclone
and the cascade impactor. Correlation coefficients higher than approximately 0.4 and lower than approximately -0.4 are colored
blue and orange, respectively.
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Cascade impactor sampling is associated with the bouncing effect, whereas filters for the impactor/cyclone system
were immersed in silicone oil to prevent the bouncing effect. Thus, compared the cascade impactor and the impactor/cyclone
measurement data, as shown in Fig. 5. The top panel of Fig. 5 shows the data with the same measurement time intervals (three
weeks for the cascade impactor data and one month for the impactor/cyclone data). The surface activity concentrations of '*’Cs
in the backup filters were well correlated with those of PMy. No remarkable seasonality was observed in PMc, but some

enhancements were observed in JJA in 2015 and SON in 2016.

The bottom panel of Fig. 5 shows the correlation coefficients among the seasonal mean size-resolved data from the
cascade impactor and impactor/cyclone measurements. If we assume that the bouncing effect on the impactor/cyclone
measurements was negligible, the cascade impactor data and the impactor/cyclone data were consistent. There was a positive
correlation between PMand the backup filter data. There were also positive correlations between PM. and the 1.3-2.1 pm and
4.2-10.2 um data. There was a negative correlation between PM, and PM;. We can assume that fine-mode particles are the
dominant carriers of '*’Cs in winter and spring and that coarse-mode particles are the dominant carriers of '*’Cs in summer
and autumn. However, there was also a contradiction in the data. There were low or negative correlation coefficients between
the backup filter data and the cascade impactor data at smaller size ranges, such as 0.39-0.69, 0.69-1.3, and 1.3-2.1 um, but
the backup filter data were positively correlated with the impactor data for > 10.2 pm. It appears that bouncing effect occurred;
particles larger than 10.2 pm bounced in the latter stages and were captured in the backup filter. However, as previously
discussed, the behaviors of the >10.2 pm-particle data were not consistent in time, i.e., they were generally high in DJF and
MAM and were high in JJA in 2016 and 2017 (Fig. 4). Kinase et al. (2018) and Igarashi et al. (2019a) considered that the
dominant carriers of resuspended '*’Cs were coarse-mode particles such as soil dust and bioaerosols. Ochiai et al. (2016)
conducted two-stage impactor sampling and measured the surface activity concentrations of '**Cs and *’Cs above and below
1.1 pm from 2012 to 2014. They showed that the contributions of coarse-mode particles (> 1.1 pm) were dominant, with
maxima in summer. The contributions of the fine-mode particles (< 1.1 um) were much smaller, and no significant seasonal
variations were found. All of their measurement sites were surrounded by contaminated forests in the Abukuma Highlands
(Tsushima and the nearby sites), so the sampling sites were different from those in our study. Such larger particles may have
contributed to the backup filter data in the current measurements; however, based on the fact that the backup filter data were
positively correlated with PMy and not with PM, fine-mode particles (< 2.5 pm) should also play a key role in determining the

surface air concentrations in Fukushima city.

On the other hand, if we assume that the bouncing effect is also significant in the impactor/cyclone system due to the
long sampling duration, as suggested by Okuda et al. (2015), the positive correlation between the backup filter particles and

PM¢ was simply due to the bouncing effects of the larger particles in both systems.
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Even though the emission sources of the dominant particles collected by the size-resolved measurements could not
be identified in this study, the possible aerosol sources that would explain the differences in size and seasonality of the two

locations are discussed later, in Sect. 4.1.

3.4 Chemical characterizations of particles in the air, rainfall, and river sediments

Figure 6 shows the relative abundance of the XRF-measured atomic number concentrations of elements in the PM¢ monthly
sample from September 2014 to January 2018. Among the 15 detected species, PM¢was mainly composed of SiO», Al,Os, and
SOs. The fractions of SiO, show clear seasonal variations and were higher around May. The seasonal variations in Al,O3 and
SOj; are the opposite of that of SiO,. A positive temporal correlation was obtained between the '*’Cs in PMy and SiO; (R =
0.30). Negative correlations were obtained for Al,O3 and SO3, with correlation coefficients of -0.36 and -0.35, respectively.
Note that these results do not prove that the SiO»-bearing aerosols are the carriers of resuspended '*’Cs, but we can safely
conclude that the origins of SiO, and '*’Cs may be close to each other (i.e., that both come from the same source or the same

area/direction).

Figure 7 shows comparisons of the relative abundance of the periodic mean XRF measured atomic number
concentrations in different samples, fine sediment particles, coarse sediment particles, PMy, and particulate fractions of
precipitation. The PM¢ and precipitation data over the same period, from October 2014 and December 2012, were averaged.
The sediment samples were collected in 2010. The 10 species that were common to all samples are shown in Fig. 7. The
correlation coefficients for the compositions among samples are above 0.9, showing that the samples have similar origins. The
features of the PMr composition were distinct from the others. PM¢ included SO; (17.8 %) and CI (2.65 %), while the others
did not.

Weathered biotite is abundant in the soil in Fukushima and absorbs radio-Cs efficiently (Kogure et al., 2019). The
compositional correlation coefficients between the weathered biotite (Takase, 2020) and the four samples were high, at 0.73
to 0.87. However, when the two major components SiO; and Al,Os were excluded, the compositional correlation coefficients
changed significantly. The eight compositional correlation coefficients between the fine and coarse sediment particles were
0.98, but those between the sediments and PMrwere 0.01 and 0.19 for the fine and coarse sediment particles, respectively. The
eight compositional correlation coefficients for the particulate fractions of precipitation were moderate, at 0.36, 0.44, and 0.45
for fine sediment particles, coarse sediment particles, and PMj, respectively. The eight compositional correlation coefficients
for weathered biotite were 0.76, 0.71, 0.50, and -0.14 for fine sediment particles, coarse sediment particles, particulate fractions

of precipitation, and PMy, respectively.
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Figure 6: Temporal variations in the chemical composition of PMy as measured by XRF.
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The findings from the current section are summarized as follows. The mean compositions of both fine and coarse
sediment particles are similar to those of biotite, which absorbs radio-Cs efficiently. The similar composition feature was
observed for the particulate fractions of precipitation. The composition of PMy was slightly different from those of the other
samples, but the '*’Cs concentrations in PM¢become larger when the relative fractions of SiO,, the major component of biotite,
increased. Thus, biotite may have played a key role in the environmental behavior of radio-Cs in Fukushima city since
September 2014. However, the major carriers of radio-Cs before September 2014 and those in the dissolved fractions in

precipitation are still unknown.

3.5 Comparison with the simulation results and climatological deposition velocity analysis

In Fig. 8, the surface concentrations of *’Cs in 2013 simulated by Kajino et al. (2016) are compared with the time-resolved
observation data (Fig. 2). Kajino et al. (2016) included *’Cs resuspended from bare soil, '3’Cs resuspended from forest
ecosystems, and additional *’Cs emissions from the FDNPP. The additional *’Cs emissions were negligibly small, the
concentrations of which in East Japan were two to three orders of magnitude smaller than those from the two sources. Therefore,
they are not depicted in the figure. The simulation was successful in explaining the magnitude and seasonal variations in
surface concentrations at Tsushima and the MRI, but the simulation at Fukushima city disagreed with the observations. The
simulation showed an enhancement of 3’Cs from forests in the summer, but that was not detected in the observations. The

observed magnitude and seasonal trends are rather similar to those simulated for '3’Cs from soil dust.

137Cs concentration at Fukushima Univ. in 2013
10’
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Figure 8: Time series of (black) measured surface activity concentrations of '3’Cs and those simulated (by Kajino et al., 2016;
K16) considering different emission sources, (red) mineral dust from bare soil and (green) aerosols emitted from forest
ecosystems.
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Kajino et al. (2016) used only the observed surface concentrations to estimate the regional budget of resuspended
137Cs in the air, but we used the observed deposition to evaluate the model, as shown in Fig. 9. Suppose there is a simple

nonlinear relationship between the deposition (D) and surface concentration (C):

D = ac?, ()

where a represents a removal rate and b represents nonlinearity, such as spatial and temporal variabilities. If one can take a

long-term average of D and C, Eq. (1) may hold. Eq. (1) is reformulated as

log(D) = b log(C) + log(a). 2)

The log-log scatter plot between the monthly mean surface concentrations and monthly cumulative deposition of observed
(purple) and simulated (orange) '*’Cs are depicted in the left panel of Fig. 9. The coefficient of determination of the observation
was 0.678, with a risk factor for < 0.1 %. Eq. (1) holds for the monthly mean resuspended '*’Cs at Fukushima University. As
seen in Eq. (2), the intercept of the Y-axis indicates the removal rate a. log(a) is dimensionless, but if & is close to one, the unit
of a can be m s™!. From Fig. 9, b of observation is close to one. Therefore, the ratios of the monthly deposition amounts to the
monthly mean surface concentrations are referred to as the climatological deposition velocity (m s™'). Time series of the

climatological deposition velocity are presented in the right panel of Fig. 9.
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Figure 9: (Left) Scatter diagram of (purple circles) observed surface concentrations and deposition of '*’Cs and those simulated
(by Kajino et al., 2016; K16) considering different emission sources, (orange open squares) mineral dust from bare soil and
(orange close squares) aerosols emitted from forest ecosystems. The purple and orange lines indicate the regression lines of
the observed data and the simulated (both dust and forest) data. (Right) Time series of (blue) climatological deposition velocity
on the left axis and (gray) precipitation amounts on the right axis.
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The left panel of Fig. 9 clearly shows that the removal rate (a) used in Kajino et al. (2016) can be underestimated by
one to two orders of magnitude. The deposition velocities used in Kajino et al. (2016) were estimated from the observation of
137Cs in March 2011, which was supposed to be mainly composed of submicron water-soluble particles. However, the current
study and the series of previous studies regarding resuspended '*’Cs indicated that the host particles of '3’Cs could be
substantially larger (e.g., soil and bioaerosols). This may be the reason for the overestimation of simulated '*’Cs from forests
in the summer in Fukushima city. If the deposition velocities of the model increased by one to two orders of magnitude, the
transport of *’Cs from the contaminated forest to Fukushima city in summer may decrease such that the simulated surface
concentration in Fukushima city agrees with the observation. Certainly, their simulated regional budget needs to be reassessed

using the realistic deposition velocities indicated in the current study.

The observed climatological deposition velocity varied by more than one order of magnitude over time. There are
two main deposition mechanisms: dry deposition and wet deposition. Wet deposition is associated with precipitation. The
variations in the climatological deposition rate seem to agree with the observed precipitation, but almost no correlation was
observed (R ~ 0.10). The mean climatological deposition velocity was 5.3x10"' m s”!, and the peak values occurred in January.
The maximum value was 4.9 m s™! in January 2013, when the monthly precipitation was not very high (81.2 mm). Possible
reasons for these peaks in January are discussed later, in Sect. 4.3. The typical order of the dry deposition velocity of
supermicron (1-10 pm in diameter) particles is approximately 10°-102 m s (e.g., Petroff and Zhang, 2010), which is
substantially lower than the values in our climatological deposition velocity analysis. Certainly, the magnitudes of the instant
deposition velocity and our climatological deposition velocity are not directly comparable, but it seems that wet deposition

plays an important role in the removal of resuspended '3’Cs-bearing atmospheric aerosols.
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Figure 10: (Left) Scatter diagram of the observed surface deposition of '*’Cs at Fukushima University and the MRI from
March 2011 to March 2019, with a regression line. (Right) Time series of the ratio of deposition at Fukushima University to
deposition at the MRI, with a regression line.
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3.6 Comparison of deposition amounts at Fukushima University and the MRI

Figure 10 compares the deposition amounts of *’Cs at Fukushima University (60 km northwest of the FDNPP) and the MRI
(170 km southwest of the FDNPP) from March 2011 to March 2019. The deposition data at the MRI are available from
Environmental Radioactivity and Radiation in Japan (https://www.kankyo-hoshano.go.jp/data/database/, last accessed: June
14, 2021). There was a significant positive correlation between the deposition amounts of '3’Cs at the two sites. The slope of
the regression indicates that the ratio of deposition at Fukushima University to that at the MRI did not change significantly
from the initial ratio during the eight years, which is approximately 8-9 times (202200 Bq m at Fukushima University and
23100 Bq m? at the MRI). This indicates that deposition was influenced by emissions from nearby sources and was not
substantially influenced by long-range transport at either site. The right panel of Fig. 10 indicates that the deposition ratios at
the two sites were approximately 10, with a variation of more than one order of magnitude and peaks in winter (especially
January) that decreased slightly over time. The right panel of Fig. 9 shows that the January peak is a feature of Fukushima city
and was not observed at the MRI. The possible reasons for the January peak in Fukushima City are discussed later, in Sect.
4.3. The slight decreasing trend was probably due to decontamination, which was ongoing in Fukushima during the period

until 2018, as shown later in Table 1. Certainly, natural variations could also have contributed to the decreasing trend.

4 Discussion

Even eight years after the FDNPP accident, the surface air activity concentration of '3’Cs had not fallen to the level before the
accident, which was at an order of magnitude of 10® Bq m™. In difficult-to-return zones, the surface concentrations sometimes
still exceed 102 Bq m=. Based on long-term measurements, this study tries to understand the characteristics of radio-Cs in the
air and its deposition and to reveal its origins in order to identify effective ways to reduce radioactivity in contaminated

terrestrial ecosystems.

4.1 Seasonal variation and possible sources

The current study clearly shows that the surface concentrations of '3’Cs are high from winter to spring, with peaks in March
and lows from summer to autumn, in the urban/rural area of Fukushima city (60 km northwest of the FDNPP). It also shows
that the deposition amounts of *’Cs are high in the winter, especially in January, and low from summer to autumn. This
seasonal trend is the opposite of that observed in a forested area in the Abukuma Highlands (Tsushima, 30 km northwest of
the FDNPP), which was high in the summer (Ochiai et al., 2016; Kinase et al., 2017). From winter to spring, northwesterly
winds prevail over the region associated with migrating disturbances, while southeasterly winds prevail over the region
associated with the Pacific high. The three simulated monthly mean surface wind fields for January to March and June to

August are shown in Kajino et al. (2016).
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In summer, Fukushima city is downwind of Tsushima. The surface concentrations of '*’Cs at Tsushima are
approximately ten times greater than those at Fukushima city, and Fukushima city is downwind of Tsushima, but there is no
enhancement of '3’Cs in summer. The traveling distances of carrier aerosols depend on their aerodynamic diameters. The
distance between the two sites is approximately 30 km. The traveling distances of aerosols below < 10 um are not very different
and are larger than 100 km because their gravitational deposition velocities are negligibly small. On the other hand, the
traveling distances rapidly decrease proportionally to a square of the diameter above 10 um, and the traveling distance of an
aerosol with a diameter of 100 pm is an order of 1 km (Kajino et al., 2021). Aerosols below < 10 um can travel longer distances,
but their dry deposition amounts increase significantly from 1 pmto 10 pm (Kajino et al., 2021). Igarashi et al. (2019a) reported
that the major proportions of bioaerosols in forests in summer are smaller than 5 um in diameter and can travel a fairly long
distance. Pollen is much larger than 10 um, but pollen emission is limited in summer (Igarashi et al., 2019a). Consequently,
there was a significant enhancement in surface concentrations in the forests in summer but no enhancement in the downwind
urban/rural areas, probably because the carrier acrosols were efficiently deposited onto the ground surface before significant
amounts of atmospheric '3’Cs reached the downwind areas. Consistent with our findings presented in Fig. 5, '¥’Cs in PM, was
more abundant than that in PMyand the backup filter particles in summer. To obtain a quantitative understanding of the regional

cycle of atmospheric '*’Cs in the northern part of Fukushima Prefecture, accurate simulations are required in the future.

In winter and spring, the surface concentrations of 1*’Cs are probably enhanced due to the local emissions from the
nearby sources because the location of the sampling site is upwind of the Abukuma Highlands and the ground surface in the
upwind areas of the sampling site in the season (northwest directions) is less contaminated than the site. In winter and spring,
137Cs in the backup filter particles and PMy are pronounced in Fukushima city. These characteristics are somewhat different
from those reported in previous studies. Miyamoto et al. (2014) measured the size distributions of radio-Cs with a cascade
impactor for two periods, from March 17 to April 1 and May 9 to 13, 2011, at a site 120 km southwest of the FDNPP. They
showed that the peak size ranges were 1.2 - 2.1 um and 0.65 - 1.1 pm in the former and latter periods, respectively. Doi et al.
(2013) reported that the peak diameters of the '*’Cs concentration from April 4 to 11 were 1.0 um and 1.5 pm at Tsukuba, 170
km southwest of the FDNPP. Kaneyasu et al. (2017) measured the size distributions of '*’Cs and other chemical components
six times at Tsukuba from April to September 2011. The peak diameter ranges were 0.49 - 0.7 um in the earlier stages (before
June 9), but the contributions of coarse-mode particles (> 1 um) increased after June 9, and the second modes appeared in the
ranges of 3.5-5.2 yum and 7.8 - 11 um in July and September, respectively. Judging from their measured mass size distributions
of Ca, which is assumed to originate from mineral soil, Kaneyasu et al. (2017) concluded that soil particles could be the major
carrier of resuspended radio-Cs in Tsukuba. Our XRF analysis indicated that radio-Cs is carried mainly by soil particles in
Fukushima city, but the size distributions are greater in PM; (<2.5 um) and in the backup filter particles. If radio-Cs is carried
by soil particles, it is natural to presume that the fractions of radio-Cs in PM, would be large (e.g., Fig. 3 of Kaneyasu et al.,
2012 or Fig. 4 of Kaneyasu et al., 2017). One could argue that the bounced coarse mode soil particles are observed in the

backup filters, but in fact, the seasonal mean Cs concentrations in the backup filter are positively correlated with PMy and
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negatively correlated with PM. (Fig. 5). One could further argue that bounced large particles are also collected in PM¢ despite

the special procedures employed to prevent rebound in the impactor/cyclone system.

There are four possible explanations for these results: (1) If the bouncing effect did not occur in either system, the
major sources of radio-Cs in Fukushima city are probably related to combustion (a mass peak below 0.39 um means that the
number peak is approximately 100 nm). If the bouncing effect occurred only in the cascade impactor, (2) if the origin of radio-
Cs is soil particles, the size distributions of soil particles in Fukushima city are smaller, or radio-Cs in the soil exists more
within finer particles; (3) if the origin of radio-Cs is soil particles, the coarse-mode fraction deposits to the ground surface
faster than the fine-mode fraction, such that the proportion of Cs in PMy is larger in Fukushima city. (4) The bouncing effect
occurs in both systems, and the origin of radio-Cs is coarse-mode soil particles. (1) is less likely because there is little chance
of the artificial combustion of contaminated biomass. In fact, there were no temporal correlations between the *’Cs and
levoglucosan (a biomass burning marker) surface air concentrations at Tsushima during the forest fire event in the Abukuma
Highlands that occurred in March 2013 (Kinase et al., 2018). (3) is also less likely because long-range transport (at least 100
km) is required for the major proportions of coarse-mode particles to deposit to the ground surface, whereas Fukushima city
is characterized as the emission source region in that season. In terms of (2), the latter sentence, “radio-Cs in the soil exists
more with finer particles”, contradicts Kaneyasu et al. (2017), suggesting that the radio-Cs is uniformly distributed on the
surface of soil particles. (4) is possible, but rebound is prevented in the impactor/cyclone system, and there is also no evidence
that rebound occurred in the impactor/cyclone system (certainly, there is also no evidence that rebound did not occur). Further
experiments are required to determine whether (2) or (4) is more likely and whether some sources are missing. As Kaneyasu
et al. (2012) and (2017) reported, comparing the size distributions of '3’Cs with those of other chemical components in
Fukushima city would be an effective way to investigate the origin of resuspended radio-Cs from winter to spring. Alternatively,
a PM» s cyclone or virtual impactor could be used to separate the fine-mode and coarse-mode particles, that can completely

exclude the bouncing effect.

4.2 Differences in trends before and after approximately 2015 (natural variation and decontamination)

As described in Sects. 3.1 and 3.2, distinct decrease rates were observed before and after approximately 2015 in both the
surface concentrations and the deposition. There may be two main reasons for this: natural variation and decontamination. The
natural variation (the dissolved fractions of precipitation or the exchangeable proportions of forest soils discharging faster than
other forms from the local ecosystems (Manaka et al., 2016)) was previously described, and the effect of decontamination is

presented in some detail here.
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Table 1: Decontamination achievement ratios in Fukushima City and the surrounding municipalities (Nihonmatsu City,
Kawamata Town?, Date City, and Koori Town)

March 2014 | March 2015 March 2016 | March 2017 March 2018

Fukushima City

Residential area (Number of houses) 50.2 % 62.3 % 100.0 % 100.0 % 100.0 %
Public facility (Number of facilities) 89.3 % 923 % 97.5% 100.0 % 100.0 %
Road (km) 9.1 % 16.1 % 39.6 % 50.2 % 100.0 %
Agricultural field (ha) 94.0 % 94.4 % 95.2 % 96.0 % 100.0 %
Forest (living area)® (ha) 5.0% 6.3 % 373 % 80.8 % 100.0 %

The surrounding municipalities

Residential area (Number of houses) 87.2% 97.4 % 99.6 % 100.0 % 100.0 %
Public facility (Number of facilities) 343 % 553 % 80.2 % 94.9 % 100.0 %
Road (km) 48.7 % 56.8 % 67.5% 82.0 % 100.0 %
Agricultural field (ha) 99.0 % 99.0 % 99.6 % 100.0 % 100.0 %
Forest (living area)® (ha) 239 % 36.7 % 64.1 % 88.6 % 100.0 %

?Only the western part of Kawamata town. The decontamination of areas with an annual cumulative dose exceeding 20 mmSv
was assigned to the central government, and that in areas with a dose below 20 mmSv was assigned to municipal governments.
The decontamination of the eastern part of Kawamata town was conducted by the central government.

"Removal of the litter layer in forests within 20 meters of the forest edge.

Table 1 summarizes the achievement ratios of the scheduled decontamination of different land use types in Fukushima
city and the surrounding municipalities (available at https://www.pref.fukushima.lg.jp/site/portal/progress.html, last accessed:
June 14, 2021). The municipalities are in the northern part of Fukushima Prefecture, which comprises 55 % forest area, 15 %
farmland area, 6 % residential area, and 23 % other areas (https://www.pref.fukushima.lg.jp/uploaded/attachment/42042.pdf,
last accessed: June 14, 2021). More than 94 % decontamination was achieved for the farmland area by March 2014. For the
residential and public facility areas, some parts were decontaminated by March 2014, but some others were not fully
decontaminated until March 2018. For the road and forest areas, decontamination was not completed in most areas by March
2014, but extensive decontamination was conducted from 2014 to 2018. Note that only a part of the forest (20 m from the
forest edges) was decontaminated, which accounts for approximately 1 % of the whole forest area of the northern part of

Fukushima Prefecture. Additionally, only the litter layer of the forest was removed, and the soil layer remained.

Suppose that if contamination occurred independently of the land use type, approximately 30 % (farmland + half of
residential and other) of northern Fukushima was decontaminated by 2014, and an additional 15 % (half of residential and

other) was continuously decontaminated by 2018. The difference between the decrease rate from May 2011 to December 2014

(93.1 % y‘l) and that after (30.7 %y™") was higher than the decontamination rate (30 - 45 % per three to seven years). If the

25



10

15

20

25

30

https://doi.org/10.5194/acp-2021-591 Atmospheric
Preprint. Discussion started: 30 July 2021 Chemistry
(© Author(s) 2021. CC BY 4.0 License. and Physics

Discussions
By

surface concentration at Fukushima University was affected mainly by the emissions from nearby sources (i.e., within the
northern part of Fukushima Prefecture), decontamination would not be the sole reason for the change in the decrease rates
before approximately 2015 and after. Natural variation (i.e., regime changes in the chemical forms of radio-Cs) would likely
occur during that period. As previously discussed, biotite may have played a key role in the environmental behaviors of radio-
Cs in Fukushima city after approximately 2015, but the current study could not identify the key aerosol particles that carried

dissolved (or exchangeable) radio-Cs and were abundant in Fukushima city before approximately 2015.

4.3 Substantial deposition amounts in January in Fukushima city

The climatological deposition velocities (or the ratios of the deposition rate to the mean surface concentration) in
Fukushima City were remarkably high in January 2013, 2014, 2015, and 2017 (Fig. 9). They were approximately one order of
magnitude larger than those in the other months. The ratio of the deposition in Fukushima and to that at the MRI was
approximately 10 on average, but those in January of those years exceeded 100 (Fig. 10). On the other hand, no peaks were

observed in January of 2012, 2016, or 2018.

There are two possible explanations for these results: vertical distribution and the existence of superlarge particles.
In terms of the former, the substantial proportions of '*’Cs in the upper air may have caused lower surface concentrations but
higher deposition due to the wet removal of '*’Cs aloft. However, due to the northwesterly winter monsoon, the upper air over
Fukushima city is also upwind of the Abukuma Highlands; thus, this possibility is less likely. In terms of the latter, superlarge
particles (~100 um or larger in diameter), have settling velocities that are too high (as high as those of drizzle droplets) to enter
the high-volume air sampler but that allow them to settle efficiently in a deposition sampler. A similar feature has been
observed in the relationship of the deposition and surface concentration of sodium at observation sites near coastal areas (e.g.,
particles denoted as large sea salt particles (LSPs) in Kajino et al., 2012). The travel distance of such large particles is
approximately 1 km (e.g., Kajino et al., 2021), and Fukushima University is surrounded by major roads, such as Route 4 and
National Highway E4, within 1 km. January is the month when the highest snow depth occurs in the Fukushima Basin, and
the road surface may be wet and muddy due to snow removal work using deicing agents and daytime snow melt on pavements;
therefore, road dust emissions from busy transportation activities may be enhanced. The muddy surface conditions may
produce even larger road dust particles. Although there is no evidence of the existence of such superlarge particles, they may
be a possible reason for the substantial deposition amounts in January in Fukushima city. In fact, substantial amounts of road
salt from deicing agents could contribute to roadside PM;o samples in winter (Denby et al., 2016), indicating that there could
be emissions of particles even larger than 10 pm in diameter. In addition to the direct deposition of '*’Cs to the rain sampler
at Fukushima University, the immediate resuspension of deposited *’Cs associated with road dust or road salt from nearby
roads around the university could contribute additional deposition to the rain sampler. Unfortunately, analyses of the surface

meteorological observational data for Fukushima City from the JMA, such as temperature, precipitation, snow cover, and wind
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speed data, did not reveal the differentiating features between the years with (2013, 2014, 2015, and 2017) and without (2012,
2016, and 2018) high deposition peaks.

5 Conclusions

Eight-year measurements of atmospheric **Cs and '*’Cs conducted at Fukushima University from March 2011 to March 2019
are summarized in this study. A high-volume sampler, a cascade impactor, and an impactor/cyclone system were used to collect
aerosol samples, and the activity concentrations of radio-Cs were detected by high-purity germanium detectors. A precipitation
sampler was used to collect deposition samples, and the dissolved and particulate fractions of radio-Cs in the samples were
measured. X-ray fluorescence (XRF) analysis was carried out to measure the elemental contents of the acrosol and precipitation
samples. The concentration and deposition data measured at Fukushima University were compared with numerical simulation

results.
The major findings are itemized as follows:

(1) The observed surface concentrations and deposition at Fukushima University (an urban/rural area of Fukushima city, 60
km northwest of the FDNPP) were high in winter and low in summer; these seasonal trends are the opposite of those observed
in a contaminated forest area (Ochiai et al., 2016; Kinase et al., 2018) (30 km northwest of the FDNPP, in the Abukuma
Highlands). Resuspension due to bioaerosol emissions (Kinase et al., 2018; Igarashi et al., 20192a) may be substantial in forests
but may not be in urban/rural areas. The half-life (7,) and decrease rate (R,) for the eight years were 456 d and 55.6 % y™! for
the concentrations and 2.35 y and 29.5 % y! for the deposition, respectively.

(2) The decreasing trends changed in approximately 2015 and were associated with changes in the dissolved/particulate
fractions of '*’Cs in precipitation. The 7, and R, for concentrations before 2015 were 272 d and 93.1 % y*!, whereas they were
825 d and 30.7 % y! after 2015. The T}, and R, for deposition before 2015 were 1.10 y and 63.2 % y!, whereas they were 5.39
y and 12.9 % y! after 2015. The dissolved fractions were higher before 2015, whereas the particulate fractions were higher
after 2016. This may have been because the dissolved proportion of radio-Cs discharged faster than its particulate forms from
the local terrestrial ecosystems. This is consistent with the findings of Manaka et al. (2016). Decontamination likely also
contributed to the difference because the decontamination of some land use types, such as agricultural fields, was completed
before 2014, and 100 % of the planned decontamination was completed by March 2018. The contribution of decontamination
was estimated in this study to be 30 - 45 % for the three to seven years, which is significantly smaller than the differences in
the R, of the concentrations (93.1 % y! before 2015 and 30.7 % y™! after 2015). Therefore, decontamination may play a partial
role in explaining the differences in 7) and R, before and after 2015, but changes in the chemical forms of radio-Cs likely play

a major role.
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(3) The size-resolved measurements showed that the dominant size range in activity in the cascade impactor data was the
backup filter (<0.39 pum in diameter, or particles rebounded from larger stages), followed by the 4.2-10.2 pm and >10.2 um
sizes. The backup filter particles were abundant in winter. The seasonal mean '*’Cs concentrations in the backup filter of the
cascade impactor were positively correlated with those in the fine-mode aerosols collected by the impactor/cyclone system
(PMy) and negatively correlated with those in the coarse-mode aerosols (PMc). PM, was high in summer. The impactor/cyclone
system prevented the bouncing effect, but bouncing may still have occurred during long-duration samplings. The XRF analysis
showed that biotite may have played a key role in the environmental circulation of particulate forms of resuspended radio-Cs

in Fukushima city after September 2014.

(4) The deposition amounts of '*’Cs in January were remarkably high compared to the surface concentrations of '*’Cs and the
deposition amounts of '*’Cs at the MRI. Although we have no observational evidence, we hypothesize that the existence of
superlarge particles (~100 pm or larger, with a distance of ~ 1 km or less) associated with snow removal operations on major

roads near Fukushima University may be one of the reasons for the remarkable high deposition amounts in January.
Certain issues remained unresolved, and topics for future study are summarized as follows:

(1) The Abukuma Highlands are upwind of Fukushima city in summer. The enhancement of *’Cs in PM. in summer is
consistent with the fact that most bioaerosols exist in coarse mode. However, if radiocesium is carried mainly by biotite (i.e.,
soil particles) in winter, there should be an enhancement of '*’Cs in PM, because major proportions of soil particles exist in
coarse mode (e.g., Kaneyasu et al., 2017). On the other hand, sources of Cs-bearing fine-mode particles such as combustion
emissions may be less likely. Thus, the main carrier of radio-Cs may be biotite in winter, but this is still not fully confirmed.
XRF measurements were conducted for PM¢ from September 2014 to January 2018, when the particulate proportions were
dominant in the precipitation. Thus, the carrier aerosols of dissolved radio-Cs in Fukushima city are still unknown. As
Kaneyasu et al. (2012) and (2017) reported, comparisons of the size distributions of *’Cs with those of other chemical
components in Fukushima city would be an effective way to investigate the origin of resuspended radio-Cs from winter to
spring. Alternatively, a PM, s cyclone or virtual impactor could be applied to separate the fine-mode and coarse-mode particles,

which can completely exclude the bouncing effect.

(2) The simulation used in this study was made to be consistent with the surface concentrations in a contaminated forest
(Tsushima) and those in a downwind area (the MRI, 170 km southwest of the FDNPP). However, the current study found that
the simulated seasonal variation in Fukushima city was totally opposite to the observations. The current study indicated that
the deposition velocities applied in the simulation were significantly underestimated. Numerical simulation is a powerful tool
for quantitative assessment, but the current simulation requires further improvement. The reasons for the seasonal variations

in concentrations and deposition in the different locations need to be investigated with an improved model.
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Temporal variations of °°Sr

and *’Cs in atmospheric
depositions after the Fukushima
Daiichi Nuclear Power Plant
accident with long-term
observations

Takeshi Kinase!™, Kouji Adachi?, Tsuyoshi Thomas Sekiyama?, Mizuo Kajino?, Yuji Zaizen' &
Yasuhito lgarashi®3

We have measured artificial radionuclides, such as °°Sr and 1*’Cs, in atmospheric depositions since
1957 in Japan. We observed the variations in °°Sr and 3’Cs, which were emitted from atmospheric
nuclear tests and nuclear power plant accidents, due to their diffusion, deposition, and resuspension.
In March 2011, the Fukushima Daiichi Nuclear Power Plant accident occurred in Japan, and significant
increases in °°Sr and 3’Cs were detected at our main site in Tsukuba, Ibaraki. Our continual
observations revealed that the *’Cs monthly deposition rate in 2018 declined to ~ 1/8100 of the peak
level, but it remained more than ~ 400 times higher than that before the accident. Chemical analysis
suggested that dust particles were the major carriers of °°Sr and 13’Cs during the resuspension period
at our main site. Presently, the effective half-life for *3’Cs deposition due to radioactive decay and
other environmental factors is 4.7 years. The estimation suggests that approximately 42 years from
2011 are required to reduce the atmospheric *’Cs deposition to a state similar to that before the
accident. The current °°Sr deposition, on the other hand, shows the preaccident seasonal variation,
and it has returned to the same radioactive level as that before the accident.

Atmospheric nuclear tests and nuclear power plant accidents have released artificial radionuclides into the atmos-
phere, land surface, and ocean. No artificial radionuclides occurred in the environment before 1945, and human
activities have led to increases in environmental radioactivity levels. Thus, the monitoring of artificial radionu-
clides has been a global assignment"?. We have continuously monitored artificial radionuclides in atmospheric
depositions for more than 63 years in the Kanto areas around Tokyo, Japan. Our long-term observations clarified
the historical variations in artificial radionuclides in atmospheric depositions as a result of nuclear tests and their
atmospheric transport and circulation from the 1950s to the 1970s*%. For example, after the Partial Test Ban
Treaty (PTBT) in 1963, atmospheric radionuclide deposition from the stratosphere, called global fallout, started
to decline. However, the decline of the deposition rate was slowed because China and France continued nuclear
tests until 1980. After the last nuclear test in 1980, the decrease rate increased until ~ 1990 (Fig. 1). In 1986, the
Chernobyl accident caused a temporary increase in radionuclide deposition®*!. From ~ 1990 until March 2011,
the decrease of the deposition rate was slowed again because of the change in radionuclide deposition processes,
i.e., resuspension of artificial radionuclides hosted by local and remote dust particles'*"'°. These long-term obser-
vations of atmospheric deposition have demonstrated that the radionuclide changes in the environment depend
on both global and local phenomena. The radionuclides in atmospheric deposition continued to decrease even
after the cessation of their direct emissions.

In March 2011, an earthquake with a magnitude of 9.0 occurred and the subsequent tsunami severely dam-
aged the Fukushima Daiichi Nuclear Power Plant (FDNPP). The accident resulted in enormous emissions of
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Radiation and Nuclear Science, Kyoto University (KURNS), 2, Asashiro-Nishi, Kumatori, Sennan, Osaka 590-0494,
Japan. 3lbaraki University, 2-1-1, Bunkyo, Mito, Ibaraki 310-8512, Japan. *’email: tkinase @mri-jma.go.jp
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Figure 1. Historical observation of the activity of (b) **Sr and (a) '¥Cs in atmospheric depositions (mBq m™2)
and the change from 1957 to 2019 at site A (closed black circles) and that after 2007 at site B (open red squares).

artificial radionuclides including ?°Sr, '**Cs, and '¥Cs (radiocesium) into the atmosphere and ocean'®-?!. Stud-
ies have estimated the amount of radioactive materials released from the accident'®'*** and their geographic
distributions®-?*. Other studies showed the chemical and physical properties of the carriers of radionuclides,
such as glassy particles?®?” and sulfate?®, and estimated the resuspension processes of *’Cs in the atmosphere?-3¢
through dust suspensions**~* or emissions of bioaerosols**~.

The radionuclides released into the environment eventually decline due to radioactive decay and other envi-
ronmental processes. The rate of radioactive decay is inversely proportional to the respective physical half-life,
which is 28.9, 2.1, and 30.2 years for *Sr, 1**Cs, and '*’Cs, respectively’”*%. However, the rate of decline due to
environmental removal processes is complex and depends on the weather, environment, and physical and chemi-
cal properties of radionuclides. It is crucial to understand the time scale of environmental decay to predict the
fate of radioactive materials from accidents and to evaluate their long-term influences on the environment and
human health. Hence, this study aims (1) to show our long-term observation results, (2) to estimate the current
resuspension carriers of radionuclides, and (3) to evaluate their environmental decay period. To achieve this goal,
we measured the radioactivities of *Sr, 1**Cs, and '*’Cs and stable elements and isotopes (Na, Mg, Al, K, Ca, Ti,
Mn, Fe, Ni, Cu, Zn, Sr, Ba, ?Be, **Cs, *?Th, and ***U) of monthly atmospheric deposition samples collected at
two sites in different environments: suburban site A and mountain site B (Supplementary Fig. S1).

Results and discussion

Changes in radioactivity in atmospheric depositions after the accident. In March 2011, 1*Cs was
detected with the same activity as that of 1*’Cs. As **Cs had not been detected before the accident except during
the emission period resulting from the Chernobyl accident in 1986'4%%, the observed **Cs/**Cs ratio verified
that the only source of '**Cs and '¥Cs was the FDNPP (Supplementary Fig. S2). Our atmospheric aerosol sam-
ples indicated that at least three plumes resulting from the FDNPP accident passed across site A (Supplementary
Fig. $3). When these plumes arrived at site A, the activities of **Sr and *’Cs in atmospheric deposition increased
t0 2.7 x 10® and 3.2 x 10° times, respectively, higher than those before the accident (between July 2009 and June
2010) (Fig. 1). The '*’Cs/*°Sr activity ratio calculated from our observational results in March 2011 was 4.5x 10°.
This large difference in the rate of increase between **Sr and '¥Cs reflects the discrepancy between their emis-
sion rates, i.e., the total amounts of *°Sr and '¥’Cs released were estimated as 0.02 PBq* and 14.5 PBq*, respec-
tively. These estimations indicated that the *°Sr emission level was much lower than that of *’Cs. The monthly
137Cs deposition peak due to the FDNPP accident (2.31 x 10* Bq m™2) was much higher than those resulting from
nuclear weapon tests (548 Bq m™; June 1963) and the Chernobyl accident (131 Bq m™; May 1986) (Fig. 1a). On
the other hand, the ?°Sr activity due to the FDNPP accident (5.2 Bq m™2) was lower than that due to the nuclear
tests in the 1960s (170 Bq m™% June 1963) (Fig. 1b). For comparison, the average '*’Cs values in atmospheric
depositions before the FDNPP accident (between July 2009 and June 2010) were 7.0 (1.2-22.5) mBq m™ at
site A and 25.0 (6.1-76.4) mBq m™ at site B, while those for **Sr amounted to 1.9 (ranging from not detectable
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Figure 2. Activity of *°Sr and "*’Cs in atmospheric depositions after the FDNPP accident from 2011 to 2018. (a)
Cesium-137 in atmospheric depositions. (b) Strontium-90 in atmospheric depositions. The black points indicate
the observational results. In panel (a), the pink lines indicate the regression curves. The green and blue curves
indicate the exponential curves obtained via multiple exponential fitting. The red lines indicate the preaccident
levels (the average monthly deposition between June 2009 and July 2010).

(N.D.)-6.0) mBq m™ at site A and 26.0 (6.5-116.8) mBq m™ at site B. The possible causes of the higher deposi-
tions rates at site B than those at site A are the differences in altitude (site A: 40 m; site B: ~ 1390 m) and local
environmental effects (site A: open area; site B: surrounded by forestland).

The activity of *°Sr and '*’Cs in atmospheric depositions and that of '*’Cs in aerosol samples rapidly decreased
after the first surge in March 2011 (Fig. 2 and Supplementary Fig. S3). The decrease rate of radioactivity in
atmospheric depositions at site A was due to the change in radionuclide emission, transport, and deposition
processes®. We classify the period after the FDNPP accident into three phases. The first phase is dominated by
direct emissions (March 2011), the second phase is dominated by tropospheric circulation and removal (from
April to December 2011), and the third phase is dominated by resuspension (after January 2012). In the first
phase, the direct discharge/emission of radioactive materials during the FDNPP accident and meteorological
conditions governed the radionuclide concentration in the environment***-%, In the second phase, tropospheric
transport of the radioactive materials remaining in the atmosphere after the FDNPP accident and their removal
processes dominated atmospheric depositions'”?. The third phase (after January 2012) mainly depended on the
resuspension of radioactive materials?®~***-3, For comparison, the corresponding decrease rates (first, second,
and third phases) resulting from the Chernobyl accident were shorter than those resulting from the FDNPP
accident (for more discussion details, please refer to Supplementary Fig. S4 and the text). More discussions
regarding the first and second phases were also presented in previous studies?***, and hence the scope of the
present study is restricted to the third phase.

The latest average monthly *’Cs atmospheric depositions in 2018 at sites A and B reached ~1/8100
(2.9 Bq m™) and ~ 1/4500 (3.0 Bq m™), respectively, with regard to the peak levels after the accident. But these
levels were still ~ 400 and ~ 130 times, respectively, higher than those before the accident (Figs. 1a and 2a, respec-
tively). On the other hand, the *Sr depositions in 2018 amounted to 3.0 (1.2-10.5) mBq m™and 33.8 (3.1-117)
mBq m™ at sites A and B, respectively (Figs. 1b and 2b, respectively). These **Sr deposition levels were almost
at the same level as the preaccident deposition levels, and we concluded that the **Sr deposition levels at our
observation sites had returned to the preaccident levels in at least 2015 (Fig. 2b).
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indicate the median values in each month after the FDNPP accident (from 2012 to 2018). The gray curves
indicate those before the accident (from 2000 to 2010 at site A and from 2007 to 2010 at site B).

Before the FDNPP accident, the *Sr and *’Cs activity in atmospheric deposition showed seasonal variations
(Fig. 3 and Supplementary Figs. S5 and S6). The *’Cs deposition value peaks in spring (April) at site A. On
the other hand, it peaks twice in May and September at site B (Supplementary Figs. S4 and S5). Similarly, *°Sr
deposition reaches peak values during the spring season (March and April) at site A and during the fall season
(September and October) at site B (Fig. 3). Studies have suggested that the *°Sr and '*Cs deposition peaks during
the spring season at site A are caused by local and long-range transported dust particles!*!>344>4,

After the FDNPP accident, direct emissions and their tropospheric removal processes governed the **Sr and
37Cs activity in atmospheric depositions at sites A and B, and seasonal variations were not apparent in the first
and second phases (Fig. 2). After 2012 (in the third phase), although the mean *’Cs deposition value at site A
had slightly increased in spring (peaking in April), no seasonal variations in *’Cs at either site were observed
(Fig. 2 and Supplementary Figs. S5 and S6). After 2014, in contrast, the seasonal variations in the *Sr radioac-
tivity in atmospheric deposition at both sites showed similar trends to those before the accident (Figs. 2 and 3).

Possible carriers of °°Sr and 137Cs at sites A and B.  The radionuclides in the atmosphere are generally
carried by aerosol particles (host particles) emitted through, for example, geochemical and biological cycles. The
correlations between dust components (e.g., Al and Fe) and radionuclides (*°Sr and *’Cs) within the collected
samples before the accident suggest that mineral dust particles are the dominant carriers of these radionuclides
at site A (Fig. 4a). Previous studies have also demonstrated that the sources of these radionuclides are mainly
resuspension of contaminated dust originating from long-range transport (large-scale phenomenon) and neigh-
boring areas (local-scale phenomenon)!#!153344546 After the accident, chemical analysis results indicate that
dust particles are the dominant carriers of **Sr and ¥’Cs at site A, except from 2012 to 2014 for *°Sr when the
contributions from the accident were high (Fig. 2).

The correlations between the dust components and radionuclides after the accident at site B were poor
(Fig. 4b). However, the *Sr activity showed correlations with inorganic salts such as Mg, K, and Ca at site B.
Scanning electron microscopy (SEM) observation exhibited the presence of inorganic salt particles including KCI,
NaCl, and CaSO, in dried deposition samples (Supplementary Fig. S7). Although these salt particles had possibly
crystallized during the preparation of the atmospheric deposition samples, it is probable that *°Sr coexists with
these components in the environment as they are abundantly present in the samples. Studies have indicated that
the biological cycle may be a source of these inorganic elements in forests*~*, i.e., the Mg, K, and Ca concentra-
tions in throughfall depositions increase in forests due to foliar leaching. As Sr exhibits a similar geochemical
behavior to that of Ca, the occurrence of Sr could be synchronous to that of Ca in the neighboring forest.

Before the accident, the '¥Cs activity at site B showed positive correlations with major mineral dust compo-
nents such as Mg, Mn, Ca, K, Fe, and Al (Fig. 4), suggesting that dust particles were the dominant host particles
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Figure 4. Correlations between radionuclides and stable elements at sites (a) A and (b) B. The units for **Sr and
137Cs are mBq m™, and those for the stable elements are mg m™2. The red points reveal that the correlations are
significant (p <0.05) based on the correlation coeflicient values. The gray points show that the correlations are
not significant (p 20.05).

for ¥Cs. However, no significant correlation was detected between mineral dust and the ¥’Cs activity after 2014.
Previous studies have suggested that bioaerosols contribute to the resuspension of *’Cs at forest sites in the
contaminated area within the evacuation zone in Fukushima Prefecture®>?¢. Thus, it is possible that bioaerosols
carry '¥Cs at site B. The differences between the possible carriers may cause the observed differences in the
activity ratios of sites B and A (Rg,,) for *°Sr and '*’Cs deposition after the accident (Supplementary Fig. S7).

Estimation of the environmental decrease in 1¥Cs.  With the use of regression curve fitting of the
activity of '¥’Cs in atmospheric deposition, we estimated its effective half-life due to radioactive decay and
environmental removal processes (Fig. 2). We adopted a single-exponential function before the accident from
January 1990 to July 2010 and a multiple exponential function after the accident (2012-2018; the resuspension
phase). The detailed method of the calculation is described in the Supplementary Information.

The effective half-lives of the short- and long-lived components (t; and t,, respectively) of the *’Cs deposition
were 195 days and 4.7 years, respectively, at site A, and those at site B were 148 days and 5.9 years, respectively.
Interchange of the predominant short- and long-lived components occurred during the period between Septem-
ber and December 2013 (Fig. 2). Our estimation of the effective half-life of the long-lived component at site A is
longer than the estimation by the previous study (~ 1.1 years)®’ possibly because our estimation 1) excluded the
direct emission period and 2) extended observation data by the end of 2018. The effective half-life of the long-
lived component of *’Cs at site A after the FDNPP accident is shorter than that before the accident (8.5 years).
There are two possible reasons for the difference between the effective half-lives before and after the accident.
First, the dominant resuspension processes are different before and after the accident. Second, the elapsed time
after contaminations is different between the pre and postaccident periods, i.e., more than 30 years had passed
for the analysis period before the accident since the last atmospheric nuclear test, on the other hand, only 8 years
had passed since the significant pollution after the FDNPP accident.

The above estimated effective half-lives imply that, based on the atmospheric *’Cs deposition level, ~ 42
and ~ 48 years will be required from the year of the accident to reach the preaccident level at sites A and B,
respectively. These estimates contain uncertainties due to the short observation period compared to the effective
half-life before the FDNPP accident (8.5 years). A better understanding of the carriers, resuspension processes,
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and environmental circulation conditions of radionuclides is needed to confirm the above estimates. The radio-
nuclide decreasing trend may change in the future if resuspension process, biological recycling, and their car-
riers changed. Finally, our observations only pertain to atmospheric deposition and provide limited features
of the environmental radionuclide cycle. The contamination in other fields, such as surface soils, forests, and
oceans, will exhibit different effective half-lives. Nevertheless, our continuous observations of the radionuclides
in atmospheric deposition before and after the accident enable the evaluation of the atmospheric phases and the
changes in various processes to regain the environmental conditions before the nuclear power plant accident.

Material and methods

We collected monthly atmospheric deposition samples at two sites: a suburban site in the Kanto Plain (site A;
36.1°N, 140.1° E) and a mountain site in the northwestern corner of the Kanto Plain (site B, 36.5°N, 138.9° E)
(Supplementary Fig. S1). Site A is the main observation base and was established in 1980 at the Meteorological
Research Institute (MRI), Tsukuba, Japan. From 1957 to 1980, the main observation site was located in Koenji,
Tokyo, which was shifted to the current base due to the move of the MRI in 1980°°. Sampling trays were placed
on the rooftop of one-story (1980-2011) and six-story buildings (2011-) on the MRI campus. Site B was estab-
lished in 2007 at the top of the Mt. Haruna (1390 m above sea level), Gunma, Japan. Sites A and B are 170 and
250 km away, respectively, from the FDNPP.

Atmospheric deposition samples, which include both rain (wet deposition) and dry deposition, were collected
using the above plastic trays with a total open area of 1-4 m?, depending on the sampling period. The samples
were sieved through a 106 um mesh. The deposition samples were dried using rotary evaporators (Eyela NE-12,
Tokyo Rikakikai Ltd., Japan) and evaporating dishes followed by weight measurements. After March 2011, we
collected aerosol samples using high-volume air samplers (HV-1000F, Shibata Scientific Technology Ltd., Japan)
on quartz fiber filters (QR100, Advantech Ltd., USA) at a flow rate of 700 L per minute to observe the atmospheric
radioactivity concentration.

The activity of radiocesium was measured by Ge semiconductor detectors (of the coaxial type from ORTEC
EG&G and Eurisys) coupled with a computed spectrometric analyzer (Oxford-Tennelec Multiport or Seiko
EG&G 92x) using a maximum live time of 10 s after the FDNPP accident. After the radiocesium measurement,
%Sr was radiochemically separated, purified, and solidified as Sr-carbonate precipitates. After leaving the sample
for several weeks in order to achieve *°Sr and *°Y radioequilibrium, the p-activity was measured with an alpha/
beta counting system (Tennelec LB5100, Mirion Technologies, USA) using a maximum live time of 10> min. The
detection limits were 1.55 and 39.6 mBq m™ for *°Sr and '¥’Cs, respectively, in the deposition samples, which
were, obtained by multiplying each counting error measured in 2018 by three. Details on the sample preparation
and measurement methods have been described in a previous study®'.

The stable elements (Na, Mg, Al, K, Ca, Ti, Mn, Fe, Ni, Cu, Zn, Sr, and Ba) and isotopes (°Be, '**Cs, 2**Th, and
2381) were measured by inductively coupled plasma atomic emission spectrometry (CIROS-120, Rigaku Corp.,
Japan, or Vista-PRO, Varian Inc., USA) and inductively coupled plasma mass spectrometry (Agilent7500c or
Agilent8000, Agilent, Ltd., USA), respectively, based on aliquots of the samples (3.6% in mass) during the acid
decomposition processes. The detection limit and quantification values were estimated as three and ten times
the standard deviation of ten measurements of 10 ppb standards. An SEM (SU-3500, Hitachi High Technologies
Co., Japan) with an energy-dispersive X-ray spectrometer (EDX; E-max 50 mm, Horiba Ltd., Japan) was adopted
for chemical and physical analysis of the dried deposition samples.
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Rain-induced bioecological
resuspension of radiocaesium
in a polluted forest in Japan

Kazuyuki Kita'™, Yasuhito Igarashi»’**, Takeshi Kinase*®, Naho Hayashi?,
Masahide Ishizuka®, Kouji Adachi?, Motoo Koitabashi®, Tsuyoshi Thomas Sekiyama® &
Yuichi Onda®

It is the conventional understanding that rain removes aerosols from the atmosphere. However, the
question of whether rain plays a role in releasing aerosols to the atmosphere has recently been posed
by several researchers. In the present study, we show additional evidence for rain-induced aerosol
emissions in a forest environment: the occurrence of radiocaesium-bearing aerosols in a Japanese
forest due to rain. We carried out general radioactive aerosol observations in a typical mountainous
village area within the exclusion zone in Fukushima Prefecture to determine the impacts and major
drivers of the resuspension of radiocaesium originating from the nuclear accident in March 2011. We
also conducted sampling according to the weather (with and without rain conditions) in a forest to
clarify the sources of atmospheric radiocaesium in the polluted forest. We found that rain induces

an increase in radiocaesium in the air in forests. With further investigations, we confirmed that the
fungal spore sources of resuspended radiocaesium seemed to differ between rainy weather and
nonrainy weather. Larger fungal particles (possibly macroconidia) are emitted during rainy conditions
than during nonrainy weather, suggesting that splash generation by rain droplets is the major
mechanism of the suspension of radiocaesium-bearing mould-like fungi. The present findings indicate
that radiocaesium could be used as a tracer in such research fields as forest ecology, meteorology,
climatology, public health and agriculture, in which fungal spores have significance.

We found a novel rain-related mechanism of bioecological resuspension of radiocaesium in a contaminated area
in Japan. The research background is described below. It is widely known that atmospheric aerosols are removed
by rain (wet removal, including in-cloud and below-cloud scavenging). However, in recent atmospheric studies,
several examples of atmospheric aerosol releases supposedly related to rain have been reported!-®. The exist-
ence of odours known as petricor’ and geosmin'’, which occur with the start of rain or with light rain, has been
acknowledged for a long time, but their formation mechanism was revealed very recently>”®. In these cases, the
suspension flux from the surface overwhelms the deposition flux of the aerosols in question in the near-surface
air layer. The underlying mechanisms include (1) microbubbles bursting inside raindrops upon contact with
the Earth’s dried porous surface®”, (2) active fungal spore dispersion due to high humidity (e.g., ref.>*), and (3)
aerosol bursts caused by the splashing of raindrops (e.g. ref.!"). Details of these phenomena are given in the Dis-
cussion section. Through such mechanisms, soil organics, fungal spores, bacteria and their fragments/contents
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Figure 1. Observation site locations along with a land-cover map of the eastern part of Fukushima Prefecture
before the FINPP accident. Triangle, FDNPP (FINPP); circle, Kawamata site; square, Namie site. The map was
created by commands in GDAL version3.0.4 (open source under an X/MIT style Open Source License) and
Microsoft PowerPoint 2018 for Mac and by using data from the High-Resolution Land Use and Land Cover
map published by the Japan Aerospace Exploration Agency Earth Observation Research Center ALOS/ALOS-2
Science Project and the Earth Observation Priority Research: Ecosystem Research Group. The contour line
shows the deposition density of '¥’Cs originating from the FINPP accident (MBq m™?) at the end of May 2012.
Permission to use the data was granted. Deciduous forest is a mixture of various broadleaved trees, excluding
evergreens. Coniferous forest excludes deciduous needleleaved trees, which are rare in the region.

(possibly formed during the rupture process'?) can be liberated into the air. Radiocaesium (belonging to the
same chemical family as potassium) can be involved in active bioecological circulation processes and can return
to the atmosphere with bioaerosol release'>'*, which is likely to be partially induced by rain.

We carried out atmospheric observations of radiocaesium (***Cs and '*’Cs) initially originating from the
Fukushima Dai-ichi Nuclear Power Plant (FINPP or FDNPP) accident in March 2011'" to determine its con-
centrations, the processes involved in its aerosolization and the corresponding carrier'>'*!°. Although the initial
primary emission surge from the FINPP site by the accident decreased circa the fall of 2011'7'8, radiocaesium
has been detected continuously in the atmosphere since 2011. The source of these continuous atmospheric
radiocaesium levels is considered to be resuspension (i.e., secondary emissions from polluted surfaces'); nota-
bly, the measured radiocaesium concentrations in the range of 10™! to 10> Bq m (Supplementary Informa-
tion Figure S1) have not reached a level with certain health impacts (see Annex in Igarashi et al.'®). In a typical
mountainous village area in Fukushima (see Fig. 1 and Supplementary Photographs 1 and 2), we attempted to
identify the key resuspension processes and carriers of radiocaesium in the atmosphere!*'**. A Chernobyl
study?! described radioactive particle resuspension processes, such as wind uplift of the dust from contami-
nated surfaces, human activity and forest fires (e.g., ref.?>?®). The Japanese summer is characterized by high
rainfall and humid air, which may be unfavourable for both fugitive dust and general aerosol suspension due
to wind uplift and forest fires. Furthermore, there is no evidence that photochemical reactions produce a burst
of radiocaesium-bearing aerosols. We assume no emission/liberation of volatile organic Cs compounds under
environmental temperatures (if any salt forms) from biota, as Cs is an alkaline metal. Our previous conclusion
is that in cold seasons, a typical major driver of resuspension is the uplift of contaminated soil dust by gusts'®,
while in warm seasons, the major factors are bioaerosols, including contaminated fungal spores’>!* and cedar
pollen®’. Suspension of contaminated pollen was reported 6 years in Germany after the Chernobyl nuclear power
plant accident®. Deposited radiocaesium was absorbed and strongly fixed by soil minerals, and a limited por-
tion was taken up by vegetation. The time lapse from the accident suggests that the radiocaesium in pollen was
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134Cs activity conc. in | ¥’Cs activity conc. in
Sample number | Total* sampling span | air** airt*
Sampling site Conditions (n) (yyyy/mm/dd) (Bqm™) (Bqm™)
Namie (deciduous With rain 6 2014/06/06-2014/07/18 | 4.79 (3.47-6.27)x 10 | 1.21 (0.87-1.67) x 10~
forest) Without rain | 6 2014/06/06-2014/07/18 | 0.19 (0.10-0.26)x 10* | 0.50 (0.28-0.70) x 10~
Kawamata (coniferous | With rain 7 2014/06/06-2014/08/01 | 0.76 (0.38-1.18)x 10+ | 2.04 (1.10-3.68) x 10-*
forest) Without rain | 7 2014/06/06-2014/08/01 | 0.52 (0.39-0.84) x 10~ 1.48 (1.17-2.34)x 107*

Table 1. Summary of radiocaesium average concentrations in the air of the mountainous village area in the
contaminated restricted zone of Fukushima Prefecture for samples with and without rain in the summer

of 2014. *Real sampling durations were dependent on the rain sensor response, and several samples were
collected during the span. **Minimum and maximum data are shown in parentheses.

related to water-soluble radiocaesium in the upper soil layer. Fungi are also a well-known bio-concentrator of
radiocaesium (e.g., Ref.?*2). We refer to these biologically/ecologically mediated atmospheric phenomena as
bioecological resuspension of radiocaesium.

The radiocaesium concentration in the atmosphere over the polluted mountainous village area investigated
in this study is several times higher in summer than in winter'>!*. Carbon with a biological origin in filter
samples had a good correlation with radiocaesium concentrations, and there were sometimes close to 1 million
bioaerosols per m?® in summer'. In addition, based on a combination of optical and electron microscopy, state-
of-the-art DNA analysis, and radiological measurement, it was confirmed that fungal spores, one of the major
components of bioaerosols?**, were possibly the major host bioaerosol of radiocaesium (e.g., Ref.’!) during
summer’®. A 3-D transport model study also revealed the significance of the secondary emission of radiocaesium
from the forest during summer®. The seasonal trend of enhanced radiocaesium concentrations in summer has
not changed significantly up to the present (Supplementary Figure S1). Here, we conducted specially designed
sampling in a forest area in Fukushima Prefecture according to the weather, with the goal of determining the
detailed radiocaesium emission mechanisms during the warm season. Our findings described below confirm
that the polluted forest is the radiocaesium resuspension source'**2° and provide details on the rain-induced
emission mechanism of radiocaesium-bearing aerosols during the Japanese wet summer. It is shown that rain
may induce bursts of radiocaesium-bearing aerosols (coarse bioaerosols mostly of macroconidia) inside both
deciduous forests and coniferous forests.

Results

In 2014 and 2016 in Fukushima Prefecture, the amount of rain was higher than usual in the rainy season (from
late spring to early summer), with a few to several hundred mm of rain in each month (see Supplementary
Figures S2 and S3, respectively). At the end of June 2014, a temperate cyclone (on June 29, not a typhoon) devel-
oped and brought heavy rain to northern and northeastern Japan. Additionally, in August 2016, three typhoons
(Chanthu, Minduleand and Lionrock on August 16-17, 22-23 and 29-30, respectively) brought large volumes
of precipitation. We conducted atmospheric sampling under both rainy and nonrainy conditions at two heavily
contaminated forest sites, the Namie site and the Kawamata site (Fig. 1 and Supplementary Photographs 1 and
2), which are dominated by deciduous trees and coniferous trees, respectively. The data for 2014 are presented
in Table 1 and Fig. 2. More details of the high-volume aerosol (HV) sampling results are given in Supplementary
Table S1. On average, the sampling time lengths of the nonrainy periods in 2014 were approximately 2.6 times
longer than those of the rainy periods in both the deciduous and coniferous forests. We found that the concentra-
tions of *’Cs in the deciduous forest atmosphere with rain (average 1.21x 107 (£2.61 x 10™*) Bq m™) were 2.42
times higher than those without rain (average 5.00x 10~ (+ 1.89 x 10™*) Bq m™®) (Fig. 2a) on average. This differ-
ence was significant, with a p value of 0.0082 for a significance level of 1% using the paired t-test. Furthermore,
this trend occurred in every consecutive sampling period. In the coniferous forests, this trend was observed in
half of the sampling cases (Fig. 2b); on average, the *’Cs concentration during the rainy period was 1.37 times
higher than that during the nonrainy period. The average difference was only significant with a p value of 0.25,
giving a significance level of 25%; thus, this difference was not as clear as that in the other case. The weighted
average of the radiocaesium concentration, as shown below, was also applied to the results for the deciduous
forest to determine whether the difference was robust.

>R x Fi/ Froal)
i

where R; is the individual '*’Cs concentration, F; is the individual sampled air volume and F,,, represents the
total sampled air volume. The '*’Cs concentration was higher during the rainy period (1.11x 107 (+ 1.00x 10™)
Bq m™) than during the nonrainy period (4.68 x 10~* (+2.61 x 10~°) Bq m™?), indicating that the difference was
robust.

Considering that, among bioaerosols, fungal spores are major 137Cs carriers in Fukushima forest areas'>!4, the
different results for deciduous and coniferous forests could be caused by differences in the fungal populations or
fungal phyla between the two types of forests*’. Deciduous forests may be richer in fungal activity than coniferous
forests*. Previous authors studied litter decomposition in coniferous and deciduous forests using the litter bag
method. Their results suggested that the decomposition of litter is faster in deciduous forests than in coniferous
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(a) Deciduous forest in 2014
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Figure 2. Atmospheric '¥Cs concentration inside the contaminated forest in Fukushima Prefecture, Japan,
during the summer of 2014. Rainy/nonrainy sampling was carried out from June 6 to August 2, 2014. The
sampling period was shorter in the deciduous forest than in the coniferous forest. Samples collected during

rain periods are shown in blue, whereas those collected during periods without rain are shown in red.
Horizontal error bars indicate the whole duration of the sampling, while the vertical bars exhibit errors in the
activity measurement. The top (a) and bottom (b) panels show the data from the Namie deciduous (n=6) and
Kawamata coniferous (n=7) forests, respectively. In the deciduous forest (a), the '*’Cs concentrations are always
higher during the rainy period than during the nonrainy period. On the other hand, in the coniferous forest (b),
the ¥’Cs concentrations tended to be higher during the rainy period than during the nonrainy period, except in
two observation spans of June 6-13 and June 29-July 4. Caesium-137 data and sampling details are summarized
in Supplementary Table S1.

forests (Castanopsis eyrei) and that the species richness of fungi in deciduous forests (Pinus massoniana) is greater
than that from coniferous forests, as indicated by the Shannon-Weaver diversity index®.

To determine the relationship between fungal particles in the air and the *’Cs activity concentration, we
performed coloured fungal spore counting (Supplementary Figures S4 to S7) at the Namie site during the warm
season in 2016; the results are shown in Fig. 3 (detailed information is given in Supplementary Table S2). Some of
the data for nonrainy periods published (n=6) in Igarashi et al.’* were re-evaluated using the present spore count-
ing method. The data set (total n=14) is a composite of those obtained at a forest site (F) and at a bare ground site
(G; school ground) near the forest (Supplementary Photograph 1). Regression curves were obtained by assuming
that ¥7Cs was carried only by fungal spores in order that the curves pass through the origin. Although there is
uncertainty in the spore counts (see “Discussion” section), when the curves pass through the origin, fitted curves
are evident, which suggests that the spore count has significance. The obtained linear relationship between the
activity concentration of '*’Cs (Y) and the fungal spore number concentration (X) in a unit volume of air during
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Figure 3. Relationship between the coloured fungal particle number concentration and *’Cs activity
concentration in the air at the Namie site (inside the forest (F) and the bare ground (G)) during the warm
season in 2016. Sampling data are expressed as mm/dd (e.g., m,/d,-m,/d,). Six of the present plotted data for the
nonrainy period that had been published in Igarashi et al."* were re-evaluated using the present spore counting
method (see the text and Supplementary materials). The collection duration for nonrainy samples was 24 h in
the daytime or nighttime (G:8/31-9/2, G:9/4-6 and G:9/24-26) of the dates shown next to each data point. For
instance, daytime data of G:10/1-2 indicate that the sampling was performed from 6:00 to 18:00 on October

1 and October 2 for a total of 24 h. On the other hand, the collection duration for rainy samples encompassed
several weeks due to the small percentage of the whole sampling period represented by rain. Here, regression
curves were obtained by assuming that '*’Cs was carried only by fungal spores; thus, the curves should pass the
origin. Caesium-137 data and sampling details are summarized in Supplementary Table S2.

the nonrainy period is expressed as Y =0.541 x 10 x X. The slope of the regression curve gives the *’Cs content
in a single fungal spore, confirming the previous hypothesis that fungal spores carry radiocaesium'. On the other
hand, the data for rainy periods exhibit the relationship of Y =1.67 x 10~® x X. Notably, the slope is approximately
3 times larger during the rainy period than during the nonrainy period.

This finding indicates two possibilities: (1) during the rainy period, spores with a relatively high Cs con-
centration are dominant or (2) the spores suspended during the rainy period have larger volumes than those
suspended during the nonrainy period, although the Cs concentrations of the spores are similar during both
periods. Figure 4 shows a comparison of typical optical microscopic photographs of HV filter samples collected
during rainy and nonrainy periods at the bare ground site. Notably, the rainy and nonrainy collection durations
differed significantly (the duration was approximately 7 times longer during rainy conditions; see the explanation
of Fig. 4), resulting in differences in the particle number concentrations in the filter samples. However, Fig. 4
shows that long and coarse elliptical particles (some exceeding 20 pm), which may be macroconidia (based on
size and morphology, see the Methods section), were significant components of the rainy samples.

To address the abovementioned hypothesis, we investigated whether there were changes in the size distribu-
tion of bioaerosol particles between rainy and nonrainy periods. Figure 5a shows the average size distribution
of bioaerosols (projection area) for periods with and without rain, while Fig. 5b presents the normalized distri-
bution (Supplementary Figure S8 presents the individual data). One pixel represents approximately 0.008 um?
(Supplementary Figure S5 for reference). In Fig. 5a,b, the bin width W is set as follows:

W = log,,(Area(i)) —log,,(Area(i— 1)) = 0.05

where Area(i) and Area(i—1) express the ith and (i—1)th bins highest edges, respectively. Therefore, the summa-
tion of the normalized size distribution of dN/dlogArea is dN/(W)/>" N, yielding 10 instead of unity (Fig. 5b).
Figure 5a indicates that the average total number of fungal spores suspended in rainy periods was significantly
less than that in nonrainy periods (with a ratio of 0.34). However, Fig. 5b shows that the portion of particles
larger than approximately 15 pm?* was higher in rainy periods than in nonrainy periods (1.75 times; proportion
in nonrainy periods: 0.19, proportion in rainy periods: 0.3) and that more particles finer than approximately
3 um? were suspended in nonrainy periods than in rainy periods (1.24 times; proportion in nonrainy periods:
0.57, proportion in rainy periods: 0.46). Considering the results shown in Figs. 4, 5, 6, different types of bio-
aerosols (undoubtedly fungal spores) are emitted under rainy conditions than under fine weather conditions.
The larger fungal spores released during rainy weather are macroconidia (often with multiple septa) according
to the literature®-*” and based on size and morphology. Although we need more evidence to support these
results (see the Discussion section), the coarse elliptical particles resemble the conidia of graminicolous fungi,
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Figure 4. Comparison of typical optical microscopy photographs of HV filter samples (left: collected during
the rainy period of September 2 to October 5, 2016, total volume of 9,094 m?; right: collected during the
nonrainy period of September 5 to September 6, 2016, total volume of 1,296 m?). Samples from the rainy
period display many coarse club- and oval-shaped particles, with some hypha-like materials. These are
considered macroconidia. A portion of the particles exhibit sizes greater than 20 um (red bar). On the other
hand, the sample from the fine period displays many small dot-like particles of a few um or smaller in size.
Note that no size cut-off was applied during the sampling. The total pixel size of the photograph was originally
2,728 x 2,198 =5,996,144.

such as Bipolaris, Exserohilum and Drechslera, as described in the abovementioned NARO encyclopaedia®.
Photographs of fungal particles appearing in Fig. 6 validate our conclusion; beyond a 15 um? projection size
range, macroconidia are evident.

Conclusions

Compared to nonrainy conditions, rain induces the release of approximately twice as much radiocaesium-bearing
coarse bioaerosols (especially with a projection size of > 15 um?) into the atmosphere in a polluted temperate
forest range in Japan, although the total number concentration of bioaerosols is reduced to approximately one-
third under rainy conditions. Macroconidia particles (e.g., ref.>*) may represent the coarse bioaerosol particles
based on the analysis of size and morphology (see Fig. 6 and the Discussion section, too). Therefore, one of the
mechanisms behind the summer maxima in radiocaesium over the polluted forest'*'#?° was revealed to be rain
splash (e.g., ref.!*%-4%). As Fukushima forests are ordinary temperate forests, the finding has many implications
for forest ecology, meteorology, climate, public health, agriculture, and other fields (see the Discussion section) in
which fungal spores play significant roles. However, there are limitations to the present study; we investigated the
increase in bioaerosols on the basis of only radiocaesium and coloured spores, while other bioaerosol components
such as organics*"** were not studied in detail. In future research, sampling and measurements with increased
temporal resolution (e.g., hourly) using a real-time monitoring tool, for instance, UV-APS or WIBS (e.g., ref.),
should be applied, and a more detailed analysis of other bioaerosol components is needed. To understand the
full range of rain-induced bioaerosol emission phenomena in forest areas, we need more observational research.

Discussion

Considering the projection sizes of the coloured fungal spores shown in Supplementary Figure S5, we determined
the typical volume ratio of fungal spores suspended in the air for periods with and without rain. For example, in
nonrainy periods, characteristic fungal spores exhibited a spherical size of 1,400 pixels (area size: approximately
11 um?). Using the circle area equation of nir?, r is approximately 1.9 um. In contrast, the typical size for spores
during rainy periods was larger than 4,600 pixels (approximately 38 pm?, as displayed in Supplementary Fig-
ure S5). We found that the aspect ratios of these particles were 1-1.8 and 2.6-3.4 for typical nonrainy and rainy
periods, respectively. We calculated the average single-particle volumes by considering the rotating body of each
particle with a rotation axis along the minimum particle diameter. The single-particle volumes were 4.28 x 10°
pm? and 11.5% 10° um? for typical nonrainy and rainy periods, respectively. The ratio between the volumes of
rainy and nonrainy periods was 2.69. This number is close to the ratio between the slopes during periods with
and without rain for the activity concentration of *’Cs (Y) and the coloured fungal spore number concentration
(X) in the air (Fig. 3), i.e., 1.67/0.541~3.1. Each slope represented the relationship between '*Cs air concentration
(Y), the coloured fungal spore number concentration (X), the *’Cs volume concentration (C) and the typical
fungal spore volume (V) during the rainy and nonrainy periods as follows:

Y =CxVxX
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(a) Coloured particle size distributions at Namie sites in 2016
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(b) Normalized coloured particle size distributions at Namie sites in 2016
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Figure 5. (a) Averaged (number concentrations per unit air volume (Y)) and (b) normalized (dividing by the
sum of the total number (Y)) size distributions of fungal particles collected on the HV filters (n=6 and 8 for
rain and nonrain, respectively) obtained in 2016 using image analysis. In total, 4,672 and 3,764 particles were
counted for nonrainy and rainy samples, respectively. The bin size of the horizontal axis (X; dlog Area) is 0.05

on the scale of the base 10 logarithm. Analysed optical microscopic images were taken from the same filter
samples as those shown in Fig. 2. The size of each fungal particle is expressed in terms of the projected area. One
pixel corresponds to approximately 0.008 pm?. Particles beyond the size of approximately 120 um? (more than
15,000 pixels) were cut-off to avoid overlapping images of particles. The scale of the typical bioaerosol sizes is the
projection area shown in Supplementary Fig. 3. (a,b), respectively, reveal that the total number concentrations of
coloured fungal spores decreased during rainy periods compared to during nonrainy periods (0.34) and that the
portion of large spores (larger than approximately 15 um?) increased from 0.19 (nonrainy period) to 0.31 (rainy
period), an increase of 1.75 times.

Therefore, we assumed the simplest case, in which only spherical spores were suspended in nonrainy periods,
only spheroid (prolate) spores were suspended in rainy periods, and C remained the same. In this case, the slope
ratio represents the ratio between the fungal particle volumes of the rainy and nonrainy periods. The above-
mentioned approximate calculation could indicate that the assumptions are close to reality. The results in Fig. 5a
show a decreasing number of fungal spores suspended in the air (the total number concentrations were lower
during rainy periods than during nonrainy periods; 0.34), while Fig. 5b suggests that larger fungal spores are
suspended in the air during rainy periods than during nonrainy periods (the proportion of large spores > 15 um?
was higher; 1.75). We concluded, as indicated in Fig. 6, that the conidia types of fungal spore, which are larger
in size but have a similar Cs concentration as typical fungal spores, become predominant in the air when it rains
in Fukushima forests. Therefore, in this study, we provide evidence that increases in bioaerosol concentrations
occur due to rain in Japanese forest areas. Notably, this rain-induced bioaerosol phenomenon was once thought
to occur only in specific forests, such as tropical rain forests*, boreal forests® and semidry forests?, and has never
been considered in Japan, as the country is located in the temperate climate zone.

There are three possible major mechanisms for aerosol emissions due to rain:

(1) When araindrop touches the bare, dry surface of the Earth containing many apertures (porous in nature),
the raindrop does not penetrate the earth immediately, and for a short time, the raindrop retains its shape
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Figure 6. Typical examples of fungal spore particles on the HV filter samples taken at the Namie site during the
2016 summer, which are plotted along 4 projection size bins based on experimental/convenient classification.
The size distribution plot is from Fig. 5b. Arrows indicate the particles concerned, and the bar length is 20 pm.
Fungal spore particles are sorted according to the projection area. Beyond the 15 um? range, macroconidia were
dominant, as shown in this figure.

as a small water mass. Air bubbles are generated inside this water mass from the Earth’s surface and then
rise. When the tiny air bubbles rupture at the rain drop surface, very tiny droplets are ejected and result
in aerosol generation®’. Additionally, microbubbles burst inside a raindrop touching the Earth’s surface.
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The emitted aerosols can transfer material that was within/on the Earth’s surface into the atmosphere; for
example, this transfer explains why the smell of soil occurs during rain®’. However, dry bare surfaces are
scarce in the forest areas of Fukushima Prefecture, so this mechanism is not applicable in the present case.

(2) Fungi disperse spores using rain and high humidity**~*%. Active spore dispersion could be a possible major
process of bioaerosol releases in response to rain. The phyla Basidiomycota and Ascomycota in the king-
dom Fungi are classified according to their different spore dispersion systems. They utilize atmospheric
water in a highly dedicated structure and emit spores into the air; then, the spores become entrained due
to turbulence over the Earth’s surface. This is a plausible process that provides fungal spores (especially
basidiospores) to the atmosphere. In our present observation, however, we could not see this effect clearly;
the total number spore concentration decreased to approximately one-third during rain, as depicted in
Figs. 3 and 5.

(3) It has been known for a long time (for instance, ref.***) that phytopathogens (e.g., rust fungi, which
belong to Ascomycota) proliferate by rain splash®>*%34% Recently, high-speed video imaging technology
has been applied, and the associated physical mechanisms have been studied'***!. Pathogen-bearing tiny
droplets are dispersed by rain drop impacts on vegetation leaves. A more recent study”' revealed that rain
drop impacts induce the formation of small air vortexes, effectively liberating dry spores from leaves into
the air. These studies have revealed the role of splashing in the spread of fungal pathogenic spores (mostly
mould and anamorphic Ascomycota). Moreover, rain drop impacts deliver mechanical force onto the
surface materials covering the leaves, branches and trunk of trees, etc., thereby liberating any surficial
materials'"*. In addition, canopy interception losses of rainfall*> may play a role in the hydrological and
biogeochemical cycles in forested areas'**4*, in which a quantity of rainwater is intercepted by the forest
canopy and thus does not reach the forest floor (throughfall). This interception varies between 15 and 45%
in coniferous forests®. Possible mechanisms are described in the literature (e.g., ref.>**>>¢). One explanation
could be that water splashes evaporate®, which thus could leave aerosols. We hypothesize that rain splash
evaporation might add more '*’Cs to the atmosphere. Related to this, it would be interesting to know from
which vertical region of the forest the emissions mostly occur: canopy or ground. The maximum height
of the canopy of the Fukushima forest is 20-25 m. However, currently, we do not have the detailed data
on the height distributions of bioaerosols necessary to form a conclusion. This will be a future task to be
addressed. We consider litter to be important, as described later, so emissions could mainly occur from the
ground.

As concluded above, rain can induce emissions of larger fungal spores (macroconidia, often with multiple
septa) carrying radiocaesium. Igarashi et al.”® reported that the spores and debris suspended during summer over
the Fukushima typical mountainous village areas belonged to the phyla Ascomycota and Basidiomycota. They
also noted that “rainwater samples exhibited larger proportions of Ascomycota, represented by the orders Cap-
nodiales, Pleosporales, Dothidiales, Helotiales, Diaporthales, Hypocreales, and Xylariales, than did air samples”
Their findings naturally suggest that rain splash also contains spore (conidia) of these orders. Furthermore, this
assumption leads to the hypothesis that conidia particles may arise from mould species covering not only living
trees but also contaminated litter. Litter should be covered with more mould than the living leaves of trees. This
hypothesis is the most plausible for cases in which rain drops impact contaminated forest areas.

To confirm the conidia and ascospore hypothesis, we isolated and incubated fungal strains (Supplementary
Figure S9) and used DNA analysis to identify the fungi. As shown in Table 2, 45 strains of fungi (4 of which were
unidentified) were isolated from the four HV filter samples collected during rain in the summer of 2016 (data
from the samples are shown in Fig. 3). Six strains, including Trametes versicolor, were derived from Basidiomy-
cota, while the other 39 strains (87% of isolated strains) were identified as filamentous fungi derived from Asco-
mycota (see Table 2). These experimental results indicated that ascospores are more dominant than basidiospores
in the typical mountainous village area in Fukushima during rain. In other words, the fungal spore sources in
rainy weather seem to be different from those during fine weather (though the atmosphere has high humidity).

However, we do not have clear evidence that mould (Ascomycota) in general bioconcentrates radiocaesium,
which mushroom fungi (mostly Basidiomycota) are known to do?*-*. Another major uncertainty of the present
study is related to the use of optical microscopy for fungal spore counting. In the present case, we counted only
coloured spores (on the order of 10* to 10° grains per m?), although we tried to count faintly coloured spores
as often as possible. As mentioned in the Methods section, the spore counting method itself involves errors of
approximately 10%. However, the present spore counting method gives an average that is approximately 3 times
higher than the average of the previous counting method of Igarashi et al.'>. As described in a previous report'?,
“the total fungal spore number concentration, including both coloured and colourless ones, might be about one
order of magnitude larger” (10° to 10° grains per m?), as shown in Fig. 3 in the report". Optical microscopy with
fluorescent staining may miss dark-coloured spores, while coloured spore counting disregards transparent spores.
Presently, fungal spore counting is methodology dependent, which is clearly a major source of uncertainties
and limitations. However, these uncertainties and limitations do not subtract from the conclusions that fungal
spores are carriers of radiocaesium and that rain induces the emission of bioaerosols. Certainly, more quantita-
tive evaluations are necessary, and therefore, the application of sequential automated bioaerosol counting, such
as UV-APS* or WIBS™, to reveal if any correlation exists among bioaerosol counts, radiocaesium and weather
parameters is another attractive challenge.

We add that the number of pollen particles suspended in the air was not significant during summer, as
reported in ref.!>!*. Pollen particles can contain a considerable amount of '*’Cs*; if significant numbers of
these particles had been mixed with the other bioaerosols, the concentration of '*’Cs would have increased. As
explained in Igarashi et al.'%, the major bioaerosols serving as radiocaesium carriers in summer are fungal spores,
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Sample collection Isolated and identified fungi (order level)
Cladosporium sphaerospermum | Ascomycota
Penicillium sp. Ascomycota
Bjerkandera adusta Basidiomycota
Talaromyces sp. Ascomycota
Forest site in Namie during Aug. 11 to Sep. 2
Thanatephorus cucumeris Basidiomycota
Cephalotheca sulfurea Ascomycota
Acremonium sp. Ascomycota
Daedalea dickinsii Basidiomycota
Toxicocladosporium irritans Ascomycota
Pseudocercosporella fraxini Ascomycota
Toxicocladosporium irritans Ascomycota
Forest site in Namie during Sep. 2 to Oct. 5
Thanatephorus cucumeris Basidiomycota
Tilletiopsis sp. Basidiomycota
Other
Penicillium sp. Ascomycota
Cladosporium sp. Ascomycota
Trametes versicolor Basidiomycota
Bare ground site in Namie during Aug. 11 to Sep. 2
Cladosporium sp. Ascomycota
Oidiodendron sp. Ascomycota
Fibulomyces mutabilis Basidiomycota
Fusicolla sp. Ascomycota
Toxicocladosporium irritans Ascomycota
Pestalotiopsis microspore Ascomycota
Fusicolla sp. Ascomycota
Arthrinium phaeospermum Ascomycota
Xylomelasma sp. Ascomycota
Pestalotiopsis microspora Ascomycota
Talaromyces purpureogenus Ascomycota
Xylomelasma sp. Ascomycota
Fusarium merismoides Ascomycota
Valsaria insitiva Ascomycota
Bare ground site in Namie during Sep. 2 to Oct. 5 Sordariomycetidae sp. Ascomycota
Pestalotiopsis neglecta Ascomycota
Pestalotiopsis microspora Ascomycota
Pestalotiopsis microspora Ascomycota
Hypoxylon sp. Ascomycota
Arthrinium phaeospermum Ascomycota
Penicillium sp. Ascomycota
Xylariaceae sp. Ascomycota
Hypoxylon sp. Ascomycota
Xylomelasma sp. Ascomycota
Sordariales sp. Ascomycota
Others

Table 2. Summary of isolated and identified fungi from the HV filter samples collected during the rainy
period in the summer of 2016 at the Namie site. The identified fungi are attributed to the phyla Ascomycota or
Basidiomycota. The 4 unidentified strains are expressed as other/others.

not pollen. Kinase et al."* manually counted the relative numbers of “pollen” and “bacteria” (note that the latter

included “spores”), representing typical bioaerosols in the warm season, using scanning electron microscopy
(SEM) images and concluded that the “pollen” concentration was indeed smaller than 1/10 of the “bacteria”
concentration.

Thus, one of the possible mechanisms of radiocaesium resuspension from the polluted forest environment
during the wet and warm periods was revealed in this study. In other words, radiocaesium can be used as a tracer
to reveal unknown processes related to bioaerosol emissions from forest environments. Although the atmospheric
radiocaesium activity concentration is decreasing (Supplementary Figure S1), radiocaesium can be measured
more easily and precisely than bioaerosols, as described here. We estimated the apparent half-life of 1*’Cs in air
at the Namie site, and we found that at least 19 years will be necessary until the '*’Cs concentration decreases
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below the limit of detection. Radiocaesium will certainly disappear in the future in the study region, and the cur-
rent radiocaesium concentration level (107 to 10> Bqm™) in air can indeed help us to clarify the radiocaesium
resuspension process, in which bioaerosols are certainly involved. However, to model rain-induced bioaerosol
emissions, further research is necessary. In addition, we disregarded the possibility of bacterial suspension into
the air by rain splash®, although bacteria might also carry radiocaesium. Thus, to further reveal the radiocaesium
cycle within the contaminated forest environment, we need to conduct additional research. In particular, we
need more sophisticated definitions and measurement methodologies not only for bioaerosol counting but also
emission/deposition flux observations.

No previous studies have reported the resuspension of radiocaesium by bioaerosols, namely, fungal spores,
during summer in a forest, except for studies in which the present authors were involved!>!*?. We searched
for any prior similar bioaerosol/primary biological aerosol particle (PBAP) study in Japan, but no studies have
addressed rain and its relevance to the PBAP number concentration. Furthermore, even though a study on sec-
ondary organic aerosol (SOA) generation from isoprene and terpene derived from vegetation was carried out®*-%2,
primary material outflow from forest ecosystems has received almost no attention. Because two-thirds of the
country is covered by forest, we strongly feel that there is a need for a full-scale study on bioaerosol and/or organic
matter emissions in response to rain in Japan, and the results may be applicable for all temperate mixed forests
worldwide. Additionally, the emitted fungal spores released during rain are primarily mould spores, so an allergy
pandemic (e.g., ref.®®) and agricultural pathogen epidemic (e.g., ref.!***>°1) in the rainy season might occur.

It has been discussed whether fungal spores can influence the weather or climate (e.g., ref.**), which is also
an underlying motivation of the present research. We are collecting fungal fruits and obtaining spores not only
from Fukushima but also from Tsukuba, Ibaraki and are trying to analyse their ice nuclei (IN) activity. Although
the results are very preliminary, an example of a basidiospore is presented in Supplementary Figure S10. The ice
nucleation onset was — 18 °C for the present case. Atmospheric IN in a pine forest (Colorado, United States) were
measured in the summer of 20112*%, and the results revealed that bioaerosol and IN concentrations increased
during and after rain events. These studies also found that typical IN were basidiospores**, although the bioaero-
sols released due to rain/high humidity varied. Huffman et al.? thus noted the possibility that ascospore are also
potential IN. The rain-induced spore species were different from the ones in the current study, a possible result
of differences in the ecosystems or the effects of the particle size cut-off of the sampling methods. We applied
no size cut-off in the HV filter sampling, which might have resulted in the observation of coarser bioaerosols in
this study than in other studies. Very recently, in 2019, Iwata et al.%° published a study stating that rain enhances
the IN number (working >—22 °C) in the air and that some of the IN seemed to be fungal spores based on
observations on the coast of the Sea of Japan. They applied an impactor with a 50% cut-off diameter of 1.1 um
for sample collection®; thus, they might have observed different types of bioaerosols than we did. However, the
report is agreement that fungal spores, compared to other IN materials, function at high temperatures of a few
degrees below 0 °C to — 15 °C (e.g., ref.*®). Fungal spores might also work as especially large cloud condensation
nuclei (CCN)), referred to as a giant CCN (GCCN)*. GCCN can form large droplets within a shorter period of
time than small CCN, thereby removing water from the air column efficiently and contributing to enhanced
precipitation strength. Macroconidia have a larger size than other PBAPs and might thus work more efficiently
as GCCN than other PBAPs. However, we need to confirm these hypotheses in the future.

Methods

We have used two forest sites in a mountainous village area in the range of the evacuated zone (the administra-
tive border is not shown) in Fukushima Prefecture: one is in Namie town and the other is in Kawamata town, as
depicted in Fig. 1. This figure was created by using data from the High-Resolution Land Use and Land Cover map
(JAXA EORC®), and the *’Cs contour line was drawn based on the data of Torii et al.®® The sampling points are
also described in detail elsewhere!*!'*16%, The environment of the sampling sites is displayed in Supplementary
Photographs 1 and 2 for reference. The Namie site is located approximately 30 km northwest of the FINPP, and
deciduous trees are dominant, although some red pine trees are present. This site is on a small hill, and the school
athletic grounds (bare soil originally, though gradually covered by glasses with a few small pine trees) was within
a few tens of metres. Decontamination work was later carried out within a range of 1 km (see ref.'), although
most of the forest remained contaminated. The Kawamata site is approximately 6 km northwest of the Namie
site, and the level of radioactive contamination is lower than that of the Namie site because the contamination
by the radioactive plumes in 2011 was relatively lower. This site was an artificial conifer plantation (cedar forest)
on a small hill. The contamination level of '**Cs and '*’Cs was at approximately a few MBq m™ at both sites in
2012, as evidenced by the contour in Fig. 1.

High-volume aerosol samplers (HV; Sibata HV 1000F and R, Tokyo, Japan) were employed to collect the
resuspended '¥Cs with carrier aerosols (see Supplementary Photographs). No size cut-off was used for the sam-
pling. One of the two HV samplers was automated to work for an hour after a sensor (Climatec, Tokyo, Japan)
detected rain, while the other HV worked when the HV sampler for rain was not in operation. The automatic
switch equipment was composed of a rain sensor (CPR-PPS-03), a logger (C-CR800-4 M), a 2-channel relay
control driver (C-CPC-2), an alternating current (AC) relay, a power supply, a lightning arrester (C-PT10), USB-
RS232C conversion cables, etc. When the sensor detected rain drops larger than 0.5 mm¢, HV sampling started,
which continued for one hour. Therefore, we could compare '*’Cs concentrations between periods with and with-
out rain. The filters were made of silica fibre (Advantech QR100 or Pal flex 2,500 QAT-UP; 203 mm x 254 mm),
which were treated in a furnace at 400 °C before use. The sampling was performed approximately 1.5 m above
the ground from June 6 to August 1, 2014 (see Table 1 and Supplementary Table S1) at the Kawamata (rainy plus
nonrainy samples, n=14) and Namie (same as above, n=12) sites (Supplementary Photographs 1 and 2). In the
summer of 2016, a sampling campaign was conducted (same as above, n = 14) only at Namie from August 11 to
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October 29 (see Supplementary Table S2). After sampling, the filters were wrapped by aluminium foil and then
packed in a plastic sealing bag at the site and taken back to the laboratory. At the laboratory, they were kept at
room temperature mostly with desiccation in a sealed plastic case, and a portion of approximately 2% of the
filter area was punched out as circles (usually 8 pieces in total 16%) and used for the bioaerosol (fungal spore)
counting (2 pieces kept at room temp.) and future chemical analysis (6 pieces kept in a refrigerator). Some of
the latter punched-out samples were subjected to DNA analysis. The rest of the HV filters (84%) were subjected
to radioactivity measurements.

The activity of 1*’Cs in the HV filter samples was obtained by y-ray spectrometry with an intrinsic germa-
nium semiconductor detector (coaxial type from Ortec EG&G, Eurisys or Canberra, all from Tokyo, Japan)
coupled with a computed multichannel analyser (Oxford-Tennelec Multiport or Seiko EG&G MCA7600, both
from Tokyo, Japan). The detection limits of the measurement of **Cs and '*’Cs at the Meteorological Research
Institute (MRI) were approximately 9 and 10 mBq per sample, respectively, for approximately 10° s. The temporal
change in '¥’Cs air concentrations derived from the FINPP accident at the Namie site is shown in Supplementary
Figure S1.

The fungal spore counts were performed using optical microscopy (OM). The OM instrument was an Axio
Imager M2m (Carl Zeiss, Tokyo, Japan), and photographs were captured at 50 times magnification in reflection
mode. A portion of the HV filter samples was placed directly on a slide glass and subjected to OM observation.
The OM photograph was taken by a CCD camera (6 M pixels, Zeiss Axiocam 506 colour) equipped with self-
adjustment functions for white balance and exposure time. Five sections of the OM photograph that minimized
overlap and maximized the number of spore images were chosen, avoiding lumpy surfaces and pollen. To count
coloured fungal spores digitally to the best extent possible, we defined a coloured particle as a particle darker
than the filter fibre or as a particle with a different colour than the filter fibre. For these reasons, the original
photograph was digitized by adjusting (a) contrast and brightness and (b) chroma saturation, and then coloured
particles were selected. During the image retouching process with the free software Image]*, the “Brightness/
Contrast” and “Color Threshold” functions were used. The “Brightness” and “Contrast” setting were adjusted
during the “Brightness/Contrast” process, and “Saturation” on the “Colour Threshold” palette was adjusted to
obtain clear and distinct images. The obtained images were converted into binary images, and low levels of noise
were removed using the median filter for two pixels. Two binary images were combined, and a final binary image
(edge detected) of coloured fungal spores was obtained. In this procedure, the overlapped image was manually
separated into single particles. Additionally, the particle hang on the frame was removed. The “Analyse particle”
command was finally applied, and this automated counting procedure provided statistics on the coloured fungal
spores. An example of the image analysis procedure is given in Supplementary Figure S4. For spore detection,
the minimum spore size was set to approximately 0.4 pm? (50 pixels), and the maximum spore size was set to
approximately 124 pm? (15,000 pixels). This corresponds to an equivalent diameter range of 0.73-12.6 um. A typi-
cal size analysis of the coloured bioaerosol is shown in Supplementary Figure S5. The current counting method
resulted in more coloured fungal spore counts than the previous method of Igarashi et al."*. The differences in
the particle counts are shown in Supplementary Figure S6. In the figure, the present counting method yielded 1.8
times more coloured spores than the previous method!?, while on average, approximately 3 times more particles
were identified. The present method identified a higher number of faintly coloured and small fungal spores. This
is a methodological limitation, which should be solved in future studies.

Figure 5 was thus created based on the counting mentioned above. For the data plot, 584+ 284 (n=8; 1 s.d.)
and 627 £316 (n=6) particles on average were counted for nonrainy and rainy samples collected in 2016, respec-
tively. Converting these values into totals yields 4,672 and 3,764 particles for nonrainy and rainy samples, respec-
tively, which seem statistically significant. Additionally, the error in the spore counting was estimated on the basis
of 3 factors: (1) the reproducibility of the counting and (2) and (3) the size measurement. (1) The same optical
photograph (sample number NHVR-281029 Photo#6) was analysed 10 times for total spore counts, and the
resulting average and standard deviation were 89.9 £ 11.1 fungal particles (relative error =12.3%), so the fungal
spore counting involves an error of approximately 10%. (2) A given scale printed on the photograph (20 pum)
was measured 10 times and the average and standard deviation were obtained (average =220.1+0.43 pixels
(relative error=0.19%)). (3) Three coarse particles were measured for size 10 times (see also Supplementary
Figure S7). Two spores with lengths of 13.7 and 17.4 um yielded areas of 5,515+ 218 pixels (relative error=3.9%)
and 9,581 + 230 pixels (relative error = 2.4%), respectively. The largest spore was out of the current measurement
range, which certainly represents a limitation of the present counting method. In total, simple summation of the
errors in scale measurement and replication yields an error of less than 10%, so fungal spore counting is expected
to involve an error of approximately 10%. The data reveal the current limitations of the methodology employed.

The samples subjected to DNA analysis were collected by HV filtering during rain in August and September
2016 in the deciduous forest and over bare ground (Namie). A piece of the quartz fibre filter was subjected to
culturing on threefold diluted Gellan gum powder (2%, wt/vol) (plant tissue grade; Wako, Osaka, Japan) at 28 °C
for a week, and a single colony was picked for further incubation. Supplementary Figure S9 displays examples
of the incubated samples, indicating that they were well-isolated single species. Genomic DNA was extracted
from the individual incubated samples according to the method described by Lee and Taylor’’. Polymerase
chain reaction (PCR) was performed as described by White et al.”! using primers for internal transcribed spacers
(ITSs; ITS1 and ITS4) with Tag DNA polymerase (Takara Bio Inc., Kusatsu, Shiga, Japan). The PCR products
were purified and then sequenced using an Applied Biosystems 3730x] DNA Analyzer (Applied Biosystems,
Foster City, CA, USA). Sequencing reactions were performed employing ABI PRISM Big Dye Terminator, v
3.1 (Applied Biosystems) using the primer ITS1. Sequence data of the ITS regions were downloaded from the
DNA Data Bank of Japan and the European Molecular Biology Laboratory/genomic data bank (DDBJ/EMBL/
GenBank) databases, and the Basic Local Alignment Search Tool (BLAST) was utilized to search for regions of
similarity between biological sequences.
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Meteorological conditions can influence bioaerosol species, some of which carry *’Cs, and the number
concentrations of bioaerosols. Therefore, precipitation data in 2014 (Supplementary Figure S2) were obtained
from the AMeDAS (Automated Meteorological Data Acquisition System) Japan Meteorological Agency weather
station at Tsushima (37°33.6" N, 140°45.2" E, altitude 400 m), which is approximately 6.2 and 1.2 km from the
Kawamata and Namie sites, respectively. Additionally, we obtained data from an automated weather station
(AWS) at the Namie bare ground site in 2016; these data are summarized in Supplementary Figure S3. The main
types of measurements of the AWS are as follows: precipitation (Takeda Keiki Kougyou, TKE-1), wind speed
(three-cup anemometer, R. M. Young, Model 3,102, and sonic anemometer, R. M. Young, Model 81,000), air
temperature, and humidity (Vaisala Corp., HMP155D), with data recorded by a data logger (Campbell Scientific
Inc., CR1000-4 M). Details are also given elsewhere!>!*16.

Data availability
The data that support the findings of this study are available upon request. Please contact the corresponding
authors.
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ABSTRACT

The reproducibility of surface wind and tracer transport simulations from high-resolution weather and
transport models was studied over complex terrain in wintertime in Japan. The horizontal grid spacing was
varied (5-, 3-, and 1-km grids), and radioactive cesium (Cs-137) from the Fukushima nuclear power plant was
used as a tracer. Fukushima has complex terrain, such as mountains and valleys. The model results were
validated by observations collected from the national networks of the automated meteorological data ac-
quisition system and the hourly air pollution sampling system. The reproducibility depended on the model
resolution, topographic complexity, and synoptic weather conditions. Higher model resolution led to higher
reproducibility of surface winds, especially in mountainous areas when the Siberian winter monsoon was
disturbed. In contrast, the model improvement was negligible or nonexistent over plain/coastal areas when
the synoptic field was steady. The statistical scores of the tracer transport simulations often deteriorated as a
result of small errors in the plume locations. However, the higher-resolution models advantageously per-
formed better transport simulations in the mountainous areas because of the lower numerical diffusion and
higher reproducibility of the mass flux. The reproducibility of the tracer distribution in the valley of the
Fukushima mountainous region was dramatically improved with increasing model resolution. In the range of
mesoscale model resolutions (commonly 1-10 km), it was concluded that a higher-resolution model is defi-
nitely recommended for tracer transport simulations over mountainous terrain.

1. Introduction hours), the spatial scale is limited (e.g., mesoscale or
less), and the background concentration is extremely
low (e.g., point source pollution). In that case, the
tracer distributions are not continuous, and their
plumes have sharply outlined edges with concentra-
tion jumps of more than several orders of magnitude.

Modeling these sharp-edged plumes in the troposphere
is crucial for urban pollution predictions or environ-
mental emergency responses (World Meteorological
Organization 2006). However, model performance of
sharp-edged plumes is lower than that of continuous

The time scale of atmospheric tracer transport simu-
lations ranges from seconds to decades. The spatial scale
also ranges from microscale to global. Global or
synoptic-scale tracer simulations often assume that
the tracer species are well mixed or continuously
distributed in the atmosphere. The assumption is
justified in treating carbon dioxide, ozone, or water
vapor, which are universally present with widespread
sources and sinks. However, the assumption often

fails when the time scale is short (e.g., minutes or

& Supplemental information related to this paper is available at
the Journals Online website: https://doi.org/10.1175/JAMC-D-19-
0241.s1.
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distributions because small errors in the plume location
lead to large uncertainties in the concentration varia-
tions. Generally, the plume location is strongly influ-
enced by the accuracy of wind fields (Angevine et al.
2014; Sekiyama et al. 2017), in which the acceptable
range of wind velocity errors is narrower than usually
expected. Especially in the planetary boundary layer
(PBL), the wind field becomes complicated over complex

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright
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terrain, which impairs the reproducibility of surface wind
and plume transport simulations (Srinivas et al. 2016).
Consequently, the topographic model resolution has a
large impact on the accuracy of plume transport simu-
lations over complex terrain (Sekiyama et al. 2015).
Therefore, plume transport simulations are more chal-
lenging than continuous transport simulations.

Meanwhile, the model validation of PBL wind and
plume simulations is not straightforward because it re-
quires widespread and frequent observations over com-
plex terrain, including rural or mountainous areas, for
both wind velocity and tracer concentration. Therefore,
the reproducibility of PBL wind and plume simulations
over complex terrain has not been investigated in detail.
Although some previous studies addressed the model
resolution dependence of tracer transport simulations,
such as inert gases, nitrogen oxides, sulfur dioxide, carbon
dioxide, and ozone, using high-resolution models (e.g.,
Nachamkin et al. 2007; Tie et al. 2010; Pillai et al. 2011;
Cécé et al. 2016; Dingwell et al. 2016; Feng et al. 2016;
Tang et al. 2019), they validated the tracer distributions
at only a few selected observatories over complex terrain.
They did not conduct plume verifications that required
many concentration/wind observations. Although Sugiyama
etal. (2012), Katata et al. (2012a,b), and Sekiyama et al.
(2015) performed high-resolution simulations for ra-
dionuclide plumes over complex terrain, they did not
validate the plume concentrations and motions focus-
ing on model resolution.

Sekiyama et al. (2015) conducted plume simulations of
radioactive cesium (Cs-137) emitted by the Fukushima
Daiichi Nuclear Power Plant (FDNPP) accident af-
ter the 2011 Tohoku great earthquake in Japan. The
Japanese archipelago consists of steep mountains, nar-
row plains/basins, and small peninsulas/islands; that
is, the terrain is highly complex (Fig. 1). In particular,
Fukushima is one of the mountainous regions in Japan,
and the FDNPP is located on the coastline of the Pacific
Ocean and only a few kilometers from mountains as
high as 1000 m. Fukushima also has 2000-m mountain
peaks and a narrow basin between the 2000-m mountain
peaks and the 1000-m mountains behind the FDNPP. In
contrast, Tokyo, more than 200km south-southwest of
Fukushima, is located in the largest plain in Japan.
Nevertheless, the largest Japanese plain, or the Kanto
Plain, is only 100-150 km in diameter and is surrounded
by 1000-2000-m mountains. The Cs-137 that originated
from Fukushima is an ideal tracer over the complex
terrain (cf. Bieringer et al. 2013); therefore, Sekiyama
et al. (2015) proceeded with their tracer model experi-
ments. However, Sekiyama et al. (2015) could not obtain
enough Cs-137 concentration data to validate the plume
simulations. Therefore, they validated only 1-month
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FIG. 1. Observation stations used in this study for (a) surface Cs-
137 concentrations provided by the SPM sampling network and
(b) surface winds provided by the AMeDAS network. Capital
letters P and T indicate the locations of the Fukushima Daiichi
Nuclear Power Plant and Tokyo City, respectively. Brown shades
indicate the elevations. Blue, gray, and red triangles represent
coastal, interior, and mountainous stations, respectively.
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accumulated deposition distributions without wind
comparison.

Since then, the Cs-137 concentrations at more than
100 monitoring stations have been retrieved hourly by
Tsuruta et al. (2014), Oura et al. (2015), and Tsuruta
et al. (2018). These authors analyzed filter tapes for
ambient suspended particulate matter (SPM) sampling
in and near Fukushima and Tokyo. In addition, high-
quality meteorological variables are universally measured
in Japan by the Japanese government even immediately
after the Tohoku great earthquake and during the FDNPP
accident (cf. Sekiyama et al. 2017). These widespread and
frequent observations for both surface winds and Cs-137
concentrations are used in this study to overcome the dif-
ficulty with plume transport model validation over com-
plex terrain. This study must be the first attempt to
investigate the reproducibility of both surface winds and
plume concentrations over complex terrain and its de-
pendence on the model resolution using high-resolution
(5, 3, and 1km) meteorological analyses and models.
The details of the observational data are described in
section 2a. Then, the meteorological analyses used
for the tracer transport simulations are explained in
section 2b. The transport model descriptions are also
presented in section 2b. The results and discussion are
presented in section 3, and the conclusions are given in
section 4.

2. Data and models

a. Observational data

1) SURFACE Cs-137 OBSERVATIONS

Tsuruta et al. (2014) developed a method to retrieve
hourly averaged surface Cs-137 concentrations using
SPM sampling filter tapes with a theoretical detection
limit of 0.1Bqm™>. The SPM sampling network is na-
tionwide and deployed by national and local govern-
ments. Some of the local governments provided the
SPM sampling filter tapes for researchers to retrieve
the Cs-137 concentrations during the FDNPP accident.
Tsuruta et al. (2014) and Oura et al. (2015) released
Cs-137 concentration data for 99 SPM sampling stations
in eastern Japan. The air intakes are usually installed
at a height of several meters at each sampling station. In
addition, the Japan Atomic Energy Agency (JAEA)
was operationally measuring hourly Cs-137 concentra-
tions on the premises of their Tokai facilities (36.46°N,
140.60°E) located between Tokyo and Fukushima
(Ohkura et al. 2012). These locations are illustrated in
Fig. 1a for both the SPM sampling stations and Tokai
facilities. As illustrated in Fig. 1a, the sampling sta-
tions are mainly distributed around the FDNPP (P in
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the figure) and Tokyo (T in the figure). While the terrain
surrounding the FDNPP is complex with mountains,
valleys, and basins, the terrain surrounding Tokyo is
relatively flat (the Kanto Plain). These Cs-137 obser-
vations are used for model validation when the value is
larger than the practical detection limit (approximately
1.0Bgm™°).

2) SURFACE WIND OBSERVATIONS

To acquire widespread and frequent surface wind ob-
servations for model validation, we used a dataset from
the automated meteorological data acquisition system
(AMeDAS) managed by the Japan Meteorological
Agency (JMA) of the Japanese government. The
AMeDAS is a land surface observation network that
comprises more than 1000 stations throughout Japan
with an average interval of 10-20km. Anemometers
are usually installed at a height of 10m at each
AMeDAS station (hereinafter, we call the 10-m-
height winds U;q or Vig). Although a few of the
AMeDAS stations stopped working immediately af-
ter the earthquake, almost every station was opera-
tional even during the FDNPP accident. In this study,
hourly AMeDAS data (5-min averages on the hour)
were used. To restrict the wind field validation to the
area with Cs-137 observations, the AMeDAS data
in this study were limited within southern Tohoku
(around the FDNPP), the Kanto Plain (around Tokyo),
and the mountainous vicinity of these areas, as shown
in Fig. 1b.

In general, AMeDAS stations are located in popu-
lated areas, that is, coasts, plains, and basins. However,
fortunately, some of the stations are installed in moun-
tainous locations. Thus, in this study, we categorized the
AMeDAS stations into three location types, as shown in
Fig. 1b: coastal, interior, and mountainous stations,
which have approximately 40, 80, and 40 stations, re-
spectively. The mountainous stations were selected only
if they are surrounded on all four sides by steep terrain
and located more than 350m above sea level (MSL).
Some stations were classified as interior locations since
they are between steep slopes that shape valleys.
We calculate the statistics classifying wind observation
locations into these three categories (mountainous,
interior, and coastal winds) and present them in the
following sections.

b. Meteorological analyses and models

1) METEOROLOGICAL ANALYSES

Prior to the tracer transport simulation, we prepared
meteorological analyses with three different horizontal
resolutions (5-, 3-, and 1-km grids) to drive a tracer
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FIG. 2. Domains for the 5-, 3-, and 1-km meteorological analyses.
Grid lines are drawn every 100 grids for not only the 5-km analysis
but also the 3- and 1-km analyses.

transport model. The 5-km-grid analysis was made from
the operational mesoscale gridpoint value (hereinafter,
meso GPV) dataset that is produced by the JMA and
distributed to the public as a part of weather information.
The 3-km-grid analysis was performed by Sekiyama et al.
(2017). The 1-km-grid analysis was uniquely performed
for this study. All of these analyses were calculated by
the same weather forecast model using the unified
observations.

The 5-km operational meso GPVs are calculated by
the JMA nonhydrostatic-model four-dimensional vari-
ational data assimilation (JNoVA) system (Honda et al.
2005), whose domain covers East Asia (Fig. 2). The
JNoVA system consists of the JMA nonhydrostatic re-
gional weather forecast model (JMA-NHM,; Saito et al.
2006, 2007) and a four-dimensional variational (4DVar)
data assimilation module. The lateral boundary condi-
tions are obtained from the JMA operational global
analysis with an approximately 20-km horizontal reso-
lution (World Meteorological Organization 2011). The
JNoVA system assimilates meteorological observations
quality controlled by the JMA; these data include land
surface pressure, sea surface winds, and observations
from radiosondes, pilot balloons, wind profilers, air-
crafts, ships, buoys, radars, and satellites. Although the
5-km operational meso GPV dataset has been archived
with a 3-h time interval, the tracer transport simulation
requires meteorological analysis stored at higher time
resolution. Therefore, we conducted a 5-km-grid JMA-
NHM run every 3 h with the same model parameters as
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the operational JINOVA settings using the 3-hourly 5-km
operational meso GPVs as the initial and boundary
conditions to obtain new hourly meteorological variables.

The 3-km-grid analysis was provided by another data
assimilation system (Kunii 2014), which consists of the
JMA-NHM and the four-dimensional local ensemble
transform Kalman filter (4D-LETKF; cf. Miyoshi and
Aranami 2006). Hereinafter, we call this system NHM-
LETKEF. This data assimilation system has been applied to
Fukushima nuclear pollutant simulations (Sekiyama et al.
2015, 2017; Sekiyama and Iwasaki 2018; Iwasaki et al.
2019). Sekiyama et al. (2017) calculated the 3-km-grid
analysis using the same JMA-NHM configurations as the
5-km-grid analysis or the operational meso GPVs except
for the model resolution and the convective parameteri-
zation (not activated for the 3-km-grid JMA-NHM). The
model domain covered only eastern Japan, of which lateral
boundary conditions were obtained from the JMA oper-
ational global analysis same as the operational meso GPVs
(Fig. 2). Sekiyama et al. (2017) assimilated the JNoVA
observations except for radar precipitation and satellite
radiance (but included satellite-observed wind velocities).
Additionally, AMeDAS surface wind observations were
assimilated for the 3-km-grid analysis.

The 1-km-grid analysis was calculated by the NHM-
LETKEF with the same observations and configurations as
the 3-km-grid analysis (Sekiyama et al. 2017), except for
the model domain and resolution. The lateral boundary
conditions and perturbations were obtained from the
outputs of the 3-km-grid analysis (Sekiyama et al. 2017),
which implemented a one-way nested data assimilation
scheme (Kunii 2014). In the same way as the 3-km-grid
analysis (Sekiyama et al. 2017), the LETKF was driven by
20 ensemble members with a covariance localization of
50km in the horizontal dimension, 0.1 natural-logarithm-
pressure coordinate in the vertical dimension, and 3h in
the time dimension, employing an adaptive inflation
scheme (Miyoshi 2011; Miyoshi and Kunii 2012). The
model domain consisted of 461 X 509 horizontal grid
points on the Lambert conformal projection and 60 ver-
tical levels up to approximately 22km in the terrain-
following hybrid vertical coordinates, which included
11 levels below 1 km above ground level (the lowermost
level is at 20 m above the ground), the same as the 5- and
3-km-grid analyses.

Terrain features in the model domains of the 5-, 3-,
and 1-km-grid JMA-NHMs were generated from global
elevation data with a horizontal grid spacing of 30 arc s
(GTOPO30) from the U.S. Geological Survey (https:/
doi.org/10.5066/F7DF6PQS), which is approximately
700m in the east-west direction and 900m in the
south-north direction. The terrains were numerically
smoothed in the models of all resolutions to satisfy the
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FIG. 3. Fukushima topography depicted by the 5-, 3-, and 1-km grid resolutions. The filled black circle is the location of the FDNPP.
Arrows and green lines indicate the surface (10-m height) wind vectors of the analyses and their convergence zones, respectively, at 1500
Japanese standard time (JST) 12 Mar 2011. The arrows for the 1-km-grid wind field are shown at every third grid point (=3-km spacing).

Thin black lines depict the coastline and a prefectural borderline.

maximum slope of 150%, (=~ 8.6°). This smoothing
procedure was done to avoid numerical instability due
to steep slopes. Fukushima’s complex topography is
depicted by the 5-, 3-, and 1-km-grid analyses in Fig. 3.
Fine structures of small valleys and ridges are well re-
produced by the 1-km-grid analysis, while the 5-km-
grid analysis fails to detect them and barely reproduces
the rough shapes of mountains and basins.

As described above, the 3-km-grid analysis (Sekiyama
et al. 2017) and 1-km-grid analysis are perfectly consistent
using completely the same model (JMA-NHM), data as-
similation scheme (LETKF), observation dataset, and
configurations except for the model resolution setup. Note
that the 5-km-grid analysis is calculated by a different data
assimilation scheme (4DVar) assimilating a slightly dif-
ferent observation dataset, although the same forecast
model is used. However, previous studies have confirmed
that the 4DVar and the LETKF generally provide com-
parable performances as meteorological data assimilation
schemes (cf. Kalnay et al. 2007). Furthermore, all three of
these analyses are confirmed to reproduce very close
structures of synoptic-scale disturbances because they
share the same global analysis as lateral boundary condi-
tions. The lack of satellite radiance data assimilation does
not have a large impact on the 3- and 1-km-grid wind fields,
probably due to their small domain sizes. In addition, we
find that the 3-km analysis often shows intermediate be-
havior between the 5- and 1-km analyses in the lower
troposphere. For example, the location of the surface wind
convergence zone undergoes a gradual transition from
west to east with increasing resolution in the case of Fig. 3.

2) OFFLINE TRANSPORT MODEL

The tracer (Cs-137) transport simulations were per-
formed by an offline Eulerian regional air quality
model, which was driven by the 5-, 3-, and 1-km-grid
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meteorological analyses mentioned above. The offline
Eulerian regional air quality model was originally
developed by Kajino et al. (2012, 2019a) for nonra-
dioactive aerosol simulations and has subsequently
been used for Fukushima nuclear pollutant simula-
tions by Adachi et al. (2013), Sekiyama et al. (2015,
2017), Kajino et al. (2016, 2018, 2019b), Inomata et al.
(2018), Kitayama et al. (2018), Mathieu et al. (2018),
Sato et al. (2018), Sekiyama and Iwasaki (2018), and
Iwasaki et al. (2019).

In this model, the radionuclide Cs-137 was assumed to
be well mixed with sulfate aerosol particles when it was
transported in the atmosphere. The aerosol particle size
was assumed to be log-normally distributed with a
number equivalent geometric mean dry diameter =
0.5 um, a geometric standard deviation = 1.6, a parti-
cle density = 1.83gcm >, and a hygroscopicity = 0.4
assuming a sulfate-organic mixture. Compared with
Kajino et al. (2012), simplified aerosol dynamics was
implemented by assuming a constant particle size dis-
tribution, in which nucleation, condensation, and coag-
ulation were not considered. However, the model still
simulated the important nature of the aerosol dynamics,
such as dry deposition and in-cloud/below-cloud scav-
enging (i.e., wet deposition) processes, based on the
prescribed size distribution as described in Sekiyama
et al. (2015).

The meteorological analysis was taken into the offline
Eulerian model every 1h and linearly interpolated
to suitable time intervals (30, 24, and 8s for the 5-, 3-,
and 1-km-grid models, respectively). The vertical model
coordinate was converted from 60 layers in the NHM-
LETKF analyses (expanded from the surface to ap-
proximately 22km) to 20 layers (expanded from the
surface to approximately 10km) to reduce the compu-
tational burden of calculations within the stratosphere.
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FI1G. 4. Taylor diagrams for a comparison of surface wind analyses
with AMeDAS observations categorized as (a) outer-sea plume
periods, (b) interior plume periods, and (c) coastal plume periods.
Open triangles, squares, and circles indicate mountainous, interior,
and coastal locations, respectively, for the surface wind observations.
Blue, green, and red colors indicate 5-, 3-, and 1-km-grid analyses,
respectively. Black filled circles indicate observations.
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The vertical resolution in the PBL was mostly un-
changed. The 5- and 3-km-grid simulations shared the
same model domain equivalent to that of the 3-km-grid
meteorological analysis. The 1-km-grid simulation cov-
ered a smaller domain equivalent to the 1-km-grid me-
teorological analysis, as shown in Fig. 2. The Cs-137
emission scenario was provided by Katata et al. (2015),
which was based on a source term estimation method
(cf. Bieringer et al. 2013, 2017). Aerosol particles with
Cs-137 were injected into a grid cell above the FDNPP
at heights of 20-150m above ground level based on a
time-varying emission scenario, which was the same for
all simulations. Each tracer transport simulation was
performed from 11 to 31 March 2011.

In addition, a test simulation was performed to sepa-
rate the effects of atmospheric resolution and topo-
graphic resolution. The additional simulation was run
by the 1-km-grid-spacing model in the same way as the
1-km-grid simulation but driven by the 5-km-grid me-
teorological analysis as used in the 5-km-grid simulation.
The 5-km-grid meteorological analysis was interpolated
at 1-km intervals in the additional simulation, in which
the numerical resolution was finer, but the terrain ele-
vation and land use remained coarse. The additional
simulation result was used for discrimination between
the benefits of a highly resolved atmosphere and a highly
resolved terrain. Hereinafter, the additional simulation
is called the ‘‘5-to-1-km-grid” run.

3. Results and discussion
a. Plume classification

Major leakage of radioactive substances by the
Fukushima nuclear accident lasted for three weeks
from the day after the great earthquake (Hatamura
et al. 2012). Most of the radioactive plumes during the
three weeks flowed offshore (eastward) to the Pacific
Ocean with the Siberian winter monsoon. The time
windows of onshore (westward) plumes were limited
to less than 50h in total during the three weeks
(Nakajima et al. 2017). Tsuruta et al. (2014) classified
the onshore Cs-137 propagations into nine plumes
(P1-P9) based on the time, location, and direction
detected by their SPM sampling filter-tape observa-
tions. Sekiyama and Iwasaki (2018) clearly illustrated
these nine plumes, as shown in the online supple-
mental material, using time- and column-integrated
mass flux analysis. The plume numbers (P1-P9) in this
study are unchanged from Tsuruta et al. (2014).

We categorize these nine plumes into three groups:
outer-sea plumes (P1, P5, and P6), interior plumes
(P2, P3, and P8), and coastal plumes (P4, P7, and P9),
as shown in the online supplemental material. The
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outer-sea plumes were detected only at a few SPM
sampling stations along the coastline very close to the
FDNPP. Therefore, the prevailing wind direction
during the periods of the outer-sea plumes was west-
erly, which appears to be the typical Siberian winter
monsoon with the Siberian high and the Aleutian
low, as indicated in weather charts. The areas of
Fukushima and Tokyo were under the stable condi-
tion of high pressure systems during these periods. In
contrast, cyclones were moving through the area of
Fukushima and Tokyo during the periods of the in-
terior and coastal plumes. During the interior plume
periods, cyclones were centered on Fukushima or
Tokyo and completely disturbed the Siberian winter
monsoon over the area. This information means that
the radioactive plumes never intruded inland unless
low pressure disturbances passed over Japan in win-
tertime. The statistics of the surface wind and Cs-137
concentration are determined using these three cate-
gories (outer-sea, interior, and coastal plumes) in the
following sections.

b. Surface winds

Figure 4 shows Taylor diagrams (Taylor 2001) for
a comparison of the surface wind analyses to the
AMeDAS 10-m wind observations. The analyses are
snapshots on the hour, while the observations are
5-min averages on the hour. The zonal winds (U,() and
meridional winds (Vo) were collectively processed
to calculate the Pearson correlation coefficients and
standard deviations because the same tendencies were
consistently maintained for the U;o/V;o combined and
separate statistics. The wind analyses at 0000, 0300,
0600, 0900, 1200, 1500, 1800, and 2100 UTC are the
initial fields, but those at other hours are the forecast
fields because the analyses were calculated with a 3-h
assimilation time window. Meanwhile, the AMeDAS
10-m wind observations were used for the assimilation
of the 3- and 1-km-grid analyses. Although the influence
of the AMeDAS wind data assimilation on the analyses
is minute (Sekiyama et al. 2017), the Taylor diagrams
were drawn by a comparison of 1-h forecast fields, that
is, the analyses at 0100, 0400, 0700, 1000, 1300, 1600,
1900, and 2200 UTC, to avoid a direct comparison of the
initial fields with the assimilated observations.

Taylor diagrams indicate how observations and model
results compare in terms of their correlation, root-mean-
square error (RMSE), and standard deviations. Pattern
similarities between the observed (y;) and modeled (x;)
fields can be quantified by the Pearson correlation co-
efficient r. Amplitude similarities can be quantified by
their standard deviations o, and o,. Now define the
centered RMSE (CRMSE):
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N 12
CRMSE = {%; [C, —X)— (O, — y)]Z} ,

where X (or Y) indicates the sample mean of x; (or y;)
and N is the number of samples. The CRMSE indicates
the model errors and tends to zero when the patterns
and amplitudes of the two fields are very similar. Taylor
(2001) indicated that these quantities (r, oy, oy, and
CRMSE) are related by

(CRMSE)* = ol + 0'5 —20.0,r.

In Taylor diagrams, the standard deviations o, and o,
are represented by the radial distances from the origin.
The mark of observation data is always located on the x
axis with the value of o, since the autocorrelation co-
efficient is 1 at all times. The Pearson correlation coef-
ficient r between observations and model results is
shown by the azimuthal position. Then, the distance
between the observation mark and the model result
mark shows the value of the CRMSE because of the law
of cosines when the azimuth is represented by cos™'r.
Taylor diagrams are often drawn with normalized stan-
dard deviations (NSD), in which o, o, and CRMSE are
normalized to the standard deviation of observations o,
(as shown in Fig. 4). This normalization allows multiple
data plots with different locations and/or time periods.
Nevertheless, the distance between the observation (r = 1;
NSD = 1) and the model result indicates the relative

model error.
Figure 4 illustrates that the model errors in surface

winds, or the distances from the observation (r = 1;
NSD = 1), are always in the order of ‘“mountainous
location > interior location > coastal location” for any
model resolution (5-, 3-, and 1-km grids) or plume cat-
egory (Figs. 4a—c). The spread of the CRMSEs is much
smaller for the outer-sea plume periods (Fig. 4a) than
for the interior/coastal plume periods (Figs. 4b,c). This
result indicates that the topographic dependence of the
model performance is small when the atmosphere is
stable under high pressure systems with the prevailing
Siberian winter monsoon. Interestingly, the accuracy of
winds at coastal stations (indicated by open circles) is
lower for Siberian winter monsoon conditions (Fig. 4a)
than for cyclonic conditions (Fig. 4b), while the accuracy
of winds at mountain stations (indicated by open trian-
gles) demonstrates the opposite behavior.

In terms of the model-resolution dependence, the
differences are completely negligible among the 5-, 3-,
and 1-km-grid models even for mountainous locations
when the Siberian winter monsoon prevails under high
pressure systems (Fig. 4a). This finding is contrary to
common expectations that a higher resolution leads to a
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better performance. However, the 1-km grid resolution
demonstrates the best performance among the three
model resolutions during the interior plume periods
(Fig. 4b), in which the Siberian winter monsoon over
Japan is completely disturbed by cyclones. The model
errors are consistently in the order of ““5-km grid > 3-km
grid > 1-km grid” for any location (mountainous, inte-
rior, and coastal areas) as expected. Although the 1-km
grid resolution is constantly superior to the 5- and 3-km
grid resolutions during the interior plume periods, the
difference is particularly large for mountainous loca-
tions. This result is reasonable given that the complexity
of the terrain features is remarkable in mountainous
areas. The complexity results in a large discrepancy in
modeled terrains between different resolutions. The
different terrains yield different dynamics (=wind fields)
in the models. On the other hand, the superiority of the
1-km grid resolution is not very noticeable during the
coastal plume periods (Fig. 4c). Although the 1-km-grid
model performs better than the others in the mountain-
ous and interior locations (indicated by open triangles
and squares, respectively), the 3-km-grid model is supe-
rior in the coastal location (indicated by open circles).
Note that the improvement of the plume transport per-
formance is significant even when the surface wind per-
formance improves only slightly (Nachamkin et al. 2007;
Sekiyama et al. 2017) because the transport error is
accumulated along the route. Therefore, we expect the
1-km-grid model to produce superior transport simu-
lations in the next section.

c. Cs-137 plumes

Figure 5 shows a Taylor diagram for a comparison of
the modeled Cs-137 concentrations to the SPM sampling
filter-tape observations. The outer-sea plumes are ex-
cluded from the statistics since only a few observations
were obtained over land during the outer-sea plume
periods. Station locations are not classified as in the
comparison of the surface wind validation because 1) the
number of Cs-137 observation stations is fewer than that
of the AMeDAS, 2) only a few “mountainous” stations
observed Cs-137, and 3) almost no concentration record
is available in the interior areas during the coastal plume
periods. The comparison is performed by using time-
integrated concentrations at each station to avoid a
deterioration of statistical scores caused by small dif-
ferences in plume arrival times. The time integral in-
tervals are 6h since all interior plumes (plumes 2, 3,
and 8) and coastal plumes (plumes 4, 7, and 9) lasted
for 6h by definition, as indicated by Tsuruta et al.
(2014), Oura et al. (2015), Nakajima et al. (2017), and
Sekiyama and Iwasaki (2018) (also see the online
supplemental material).
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Certainly, the 1-km grid resolution (indicated by red
marks in Fig. 5) demonstrates a good performance
among the three model resolutions during both the in-
terior and coastal plume periods. However, the corre-
lations are evidently weak for all resolutions and plume
periods. In addition, the model performance is unex-
pectedly in the order of “3-km grid < 5-km grid < 1-km
grid” for both categories. The normalized standard de-
viations range more widely (0.35-1.25) than those of the
surface wind analyses (0.8-1.2). This contrast is partly
caused by the wet deposition of aerosols, which leads to
large discrepancies in the aerosol concentration when
the precipitation location and timing are differently
simulated. The precipitation and foggy areas are not
exactly identical among the three resolution models,
which leads to large discrepancies in the deposition lo-
cation. The authors have previously performed some
Fukushima simulations with and without deposition
processes (Sato et al. 2018; Iwasaki et al. 2019). The
impact of wet deposition on the simulations appeared
large in the northern part of the Kanto Plain probably
because of drizzle or fog on 15 March 2011 over the
Kanto Plain. However, unfortunately, no observations
for Cs-137 were obtained in the northern part of the
Kanto Plain (Fig. 1a) because the local governments had
disposed of the SPM sampling filter tapes. In addition,
rainy areas (especially on 21 March 2011) were mainly



MAY 2020

located in the ocean or coastal regions, where the model
resolution effect is quite small. Therefore, the impact of
wet deposition on the statistics cannot be evaluated
adequately in this study. Perhaps, transport error accu-
mulation is also the cause of the contrast because
transport errors are accumulated along the route with
wind errors (Nachamkin et al. 2007; Sekiyama et al.
2017). The 5-to-1-km-grid simulation statistics were
nearly identical to those of the 5-km-grid simulation
(not shown), which implies that the impact of topo-
graphic resolution on plume simulation is much larger
than that of atmospheric resolution.

Scatter diagrams are exhibited in Fig. 6 for the com-
parison between Cs-137 observations and model results
to clarify the situation of the interior plume statistics
shown by the abovementioned Taylor diagram. The plot
is partly magnified (from the right panels to the left
panels in Fig. 6) since most of the samples range within
100hBqm 3. The distributions for both the 3- and
1-km-grid models are clearly split into two clusters,
while the 5-km-grid model evidently results in a
widely scattered distribution, that is, a weak correla-
tion. In Fig. 6b, cluster (p) indicates good perfor-
mance by the 3-km-grid model with a high correlation
and a moderate slope angle. This cluster extends to a
higher-concentration area, as shown by (p’). However,
cluster (q) is almost parallel to the x axis with a weak
correlation, in which the modeled concentrations scarcely
fluctuate even when high concentrations are detected at
each station in actuality. The combination of clusters
(p) and (q) results in the underestimation (i.e., NSD < 1)
of the 3-km-grid model for the interior plumes shown in
Fig. 5. Likewise, cluster (r) for the 1-km-grid model also
shows a high correlation (Fig. 6¢), although it overesti-
mates the concentrations. This cluster smoothly extends
to a higher-concentration area, as shown by (1'). Cluster
(r') seems better than cluster (p’) in terms of the corre-
lation. Meanwhile, cluster (s) underestimates with a
gradual slope. The combination of clusters (r) and (s)
results in a plausibly good amplitude (NSD =~ 1), as
shown in Fig. 5. The problem is that these split distribu-
tions for the 3- and 1-km-grid models make their overall
correlations extremely lower even if each cluster is not
widespread. Clusters (q) and (s) are formed by plumes
that are slightly shifted from their real locations (as shown
later), which is hardly avoidable in simulations of sharply
edged plumes.

In contrast, in the case of the coastal plumes (Fig. 7),
the differences are very small among the 5-, 3-, and
1-km-grid models, although the 1-km-grid model per-
forms slightly better. The data points are almost evenly
scattered, and no cluster is formed except for ones on
the x axis. The reason for no plots on the y axis is that
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the observations have a detection limit. The transport
models have only small dependence on the model
resolution for the coastal plumes since the coastal
winds originally differ just slightly between the model
resolutions at all times, as shown in Fig. 4 (indicated by
open circles). Both the plume locations and Cs-137
observations are mostly located in the coastal areas for
this plume category. Therefore, most of the plots are
not sampled from complex terrain in Fig. 7. Although
the coastal winds show a good performance (r = 0.7 ~ 0.9,
NSD = 1), the transport simulations perform much
worse due to small errors in the plume locations and
precipitation areas. Small errors in the plume locations
lead to deterioration of the correlation. Small errors in
the precipitation lead to deterioration of the amplitude
similarity.

Figures 8-10 illustrate the geographical distributions
of the interior plumes over the Fukushima mountainous
region, which is a typical example of a complex terrain,
to detail the cluster formation described above in the
scatter diagrams. At first glance, the plume shape of
the 1-km-grid simulation appears sharper than those
of the 5- and 3-km resolutions. The plume edges of the
5- and 3-km-grid simulations are blurred and broadened
due to the strong numerical diffusion (or discretization
error). The plume shape of the 5-to-1-km-grid simula-
tion is very similar to that of the 5-km-grid simulation,
but the plume edge diffusion is smaller in the 5-to-1-km-
grid simulation. This indicates that the benefit of a highly
resolved terrain is much larger than that of a highly re-
solved atmosphere. Moreover, the 5-km-grid plumes not
only are numerically broadened but also are not blocked
by the mountain range, or the Ou Mountains, and do
not follow the shapes of valleys. Plume 8 (Fig. 8) of the
1-km-grid simulation coincides fairly well with obser-
vations, whereas that of the 5-km-grid simulation com-
pletely fails to move south along the central Fukushima
Valley that is located between the mountain range
(1000-2000 m MSL) and the Abukuma Highlands (500—
1000 m MSL). These results indicate that the mountain
range is not well reproduced in the 5-km-grid model. In
the case of plume 8, the mass flux (shown by arrow-
heads) is evidently directed southward along the central
Fukushima Valley in the 1-km-grid simulation, directed
incorrectly northward in the 5-km and 5-to-1-km-grid
simulations, and directed moderately southward in the
3-km-grid simulation. The mass flux along the valley
strongly depends on the topographic resolution because
the mountains/highlands seriously lower down using
low-resolution terrains.

In contrast, in the case of plume 3 (Fig. 9), the high-
concentration tail of the plume is successfully blocked
by the mountains and does not intrude into the central
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FIG. 6. Scatter diagrams for a comparison between Cs-137 observations and transport model results at each
station for the interior plume category for the (a) 5-, (b) 3-, and (c) 1-km-grid models. The concentrations are
6-hourly time-integrated at each station. (left) Magnified views of a portion (range: 0-100 h Bqm ™) of the (right)
full plots (range: 0-800 h Bqm ). The symbols p, p', g, 1, ', or s indicate each cluster of data points. The black lines
with these symbols approximately indicate cluster locations and slopes, which are not regression lines.
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FIG. 7. As in Fig. 6, but for the coastal plume category.
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(@) Plume 8 (5-km grid)

[hrBg/m?)

(b) Plume 8 (3-km grid)

[hrBg/m?]

FIG. 8. Geographical distributions of the 6-h time-integrated
surface Cs-137 concentration over the Fukushima region for the
time period of plume 8. Shaded colors indicate the (a) 5-, (b) 3-,
(c) 1-, and (d) 5-to-1-km-grid model results. Color circles indicate
SPM sampling filter-tape observations. Arrowheads indicate the
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Fukushima Valley in the 1-km-grid simulation. However,
the tails intrude broadly into the valley in the 5- and 3-km-
grid simulations in contradiction to the observation re-
sults. This discrepancy is probably caused by the modeled
height of the Abukuma Highlands that is properly re-
produced by the 1-km-grid terrain but failed by the 5- and
3-km-grid terrains. The FDNPP is located at a narrow
coastal area between the Abukuma Highlands and the
Pacific Ocean. Therefore, the reproducibility of the
Abukuma Highlands is crucial for the plume simula-
tion. Meanwhile, the wide diffusion at the plume edges
sometimes avoids large concentration errors. For exam-
ple, in the case of plume 2 (Fig. 10), only the 1-km-grid
simulation fails to reproduce the high-concentration ob-
servations in the central Fukushima Valley. This error
results in cluster formation adjacent to the x axis, such as
cluster (s). Numerical diffusion (or discretization error)
improves the plume correlation in some situations. For
example, plume 2 is broadened and extended to the
central Fukushima Valley passing over the Abukuma
Highlands in the 5- and 3-km-grid simulations. This is also
caused by the lower altitude of the Abukuma Highlands
in the lower-resolution simulations. Although the real
plume distribution is unknown here, a large discrepancy
is avoided because of this numerical diffusion, which
probably results in good scores for the 5-km-grid simu-
lation in Fig. 5. In both cases of plumes 2 and 3, the plume
distributions of the 5-to-1-km-grid simulation are close to
those of the 5-km-grid simulation because of the same
terrain resolution. However, striped patterns often ap-
pear only in the 5-to-1-km-grid plumes, especially near
the emission source. This is probably caused by spacing
imbalance between wind fields and a transport resolution
or by small diffusion of the 5-to-1-km-grid simulation
relative to the 5-km-grid simulation.

In contrast with the Fukushima region, no large dif-
ferences in the plume distribution among the three
model resolutions (5-, 3-, and 1-km grids) are observed
in the Kanto Plain or the Tokyo region (not shown).
Unfortunately, these modeled plumes are slightly
shifted from the actual distributions; therefore, the
samples from the Kanto Plain compose cluster (q) or
(s) close to the x axis in the scatter diagrams. Similar
to the interior plumes arriving in the Kanto Plain, the
coastal plumes do not show any noticeable differences
among the three model resolutions since most of the
coastal plumes are observed only in the Kanto Plain
far from mountainous regions. We maintained the

«—

direction of the 6-h time-integrated mass flux (Sekiyama and
Iwasaki 2018) at the ground surface in the models. The open tri-
angle is the location of the FDNPP.
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FIG. 9. As in Fig. 8, but for plume 3.
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FIG. 10. As in Fig. 8, but for plume 2.
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same vertical resolution and physics schemes for all
the 5-, 3-, and 1-km-grid models in this study. The
nuclear accident occurred in the cold winter season,
when the PBL is relatively stable. In addition, vertical
plume distribution strongly depends on modeled physics
schemes for vertical diffusion, not the meteorological
analysis (Iwasaki et al. 2019). Therefore, we could not
find any noticeable differences in the boundary layer
depth, static stability, and vertical plume distribution
among the three model resolutions.

4. Conclusions

The surface wind and plume transport simulations in
this study revealed that the model performance depends
on the horizontal resolution, topographic complexity,
and synoptic weather conditions. Higher model resolu-
tion surely led to higher reproducibility of surface winds
in mountainous areas only when the synoptic weather
conditions were disturbed. No resolution dependence
was observed when the synoptic field was steady at least
in the areas and periods we investigated in this study.
Only a small dependence on the model resolution
appeared in the coastal and plain areas. The concen-
tration correlations tended to deteriorate due to small
errors in the plume locations. However, the higher-
resolution models could advantageously perform better
transport simulations in the Fukushima mountainous
region because of the lower numerical diffusion and
higher accuracy of the mass flux. The model performance
of the plume distribution in the valley of the Fukushima
mountainous region was dramatically improved in the or-
der of the model resolution (1, 3, and Skm). The im-
provement was caused by the benefit of a highly resolved
terrain, not a highly resolved atmosphere. The spatial
representabilities of the observations for the surface winds
and tracer concentrations are probably less than 1 X 1km?
over complex terrain under disturbed synoptic conditions
and more than 5 X Skm? otherwise. Mesoscale numer-
ical weather prediction models are operated world-
wide with horizontal resolutions of 1-10km as of 2019
(World Meteorological Organization 2017). In this
range of mesoscale model resolution, we conclude that
a higher-resolution model is definitely recommended
for tracer transport simulations over complex terrain.
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We observed the atmospheric resuspension of radiocaesium, derived from the Fukushima Dai-ichi
Nuclear Power Plant accident, at Namie, a heavily contaminated area of Fukushima, since 2012. During
the survey periods from 2012 to 2015, the activity concentrations of radiocaesium in air ranged from
approximately 105 to 102 Bq per m? and were higher in the warm season than in the cold season.
Electron microscopy showed that the particles collected on filters in summer were predominantly of
biological origin (bioaerosols), with which the observed radiocaesium activity concentration varied.

We conducted an additional aerosol analysis based on fluorescent optical microscopic observation and
high-throughput DNA sequencing technique to identify bioaerosols at Namie in 2015 summer. The
concentrations of bioaerosols fluctuated the order of 106 particles per m?, and the phyla Basidiomycota
and Ascomycota (true Fungi) accounted for approximately two-thirds of the bioaerosols. Moreover,
the fungal spore concentration in air was positively correlated with the radiocaesium concentration at
Namie in summer 2016. The bioaerosol emissions from Japanese mixed forests in the temperate zone
predominately included fungal cells, which are known to accumulate radiocaesium, and should be
considered an important scientific issue that must be addressed.

Several years have passed since the March 2011 accident at the Fukushima Dai-ichi Nuclear Power Plant (FDNPP)
operated by Tokyo Electric Power Company. Approximately 71% of Fukushima Prefecture is covered by forest
(see Supplementary Fig. S1), and 44% of the forested area was contaminated with at least 10-30kBqm™2 of ¥’Cs
(corresponding to 1 mSvy ! of excess exposure) by the accident!. The forest contamination by the FDNPP acci-
dent was most serious to the northwest>*. This heavily contaminated (>0.5 MBq m™2 of '*’Cs) forest area consists
of 428 km? (approximately 3% of the total area of Fukushima Prefecture; ca. 14,000 km?)*. Since the accident, the
radiological contamination of the forested area by **Cs and *’Cs (radiocaesium) has decreased mainly due to
radioactive decay, and not by erosion or other environmental mechanisms?. Therefore, the forest ecosystem is a
large radiocaesium reservoir’? and a potential secondary source of atmospheric radiocaesium?. The Chernobyl
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study?® listed three mechanisms of secondary radioactive aerosol emissions (resuspension); (1) wind-blown sus-
pension, (2) suspension due to human activities involving the contaminated fugitive dust; and (3) forest fires.
Although resuspension sometimes refers only to (1), herein, we use the term in a more comprehensive sense.
Notably, the Fukushima contamination exhibits bioecological resuspension from the contaminated forest, a new
type of resuspension.

We measured radiocaesium resuspension® in the atmosphere at Kawamata and Namie, Fukushima Prefecture,
after the accident”®. In this area, which is 30 to 35km northwest of the FDNPP and surrounded by heavily con-
taminated forest, as defined above, the effects of the primary emission of radiocaesium from the FDNPP likely
ceased in fall 2011%1% then, from 2012-2015, the radiocaesium activity concentration in the air slowly decreased,
although seasonal fluctuations were observed, with increases during the warm season and decreases during the
cold season (Supplementary Fig. S2). At Namie, the average summer concentration (June-August 2013-2014)
was approximately 6 times the average winter concentration (December-February 2013-2014). This seasonal
pattern is the opposite that observed in urban areas®!!, but emission inventory calculations with an aerosol trans-
port model have shown that direct/delayed primary emissions from the FDNPP cannot explain the seasonal
fluctuations in 2013*. Monthly radiocaesium activity concentrations (September 2012 to December 2014) at a
site in Namie close to that used in this study were previously reported!?. The study showed summer maxima for
both the '¥’Cs concentration and the coarse particulate fraction (>1.1 um) that support our radiocaesium record.
However, the study attributed the seasonal trends to changes in the prevailing local wind direction and the distri-
bution of surface contamination.

Optical microscopic observations suggested that the radiocaesium host particles in summer were fugitive
dust (numerous coarse particles); their presence was initially attributed to the fact that no aerosol size cutoff
was applied during high-volume (HV) aerosol sampling, but the radiocaesium host particles were subsequently
shown to be of biological origin® (also see Supplementary Fig. $3). Biological origin particles, which include
microorganisms, pollen, animal debris, and plant debris, are defined as bioaerosols. The bioaerosol concentra-
tions and the 1¥’Cs activity concentration determined by the filter samples from Kawamata and Namie were both
high in the warm season and low in the cold season, and these results suggested that bioaerosols may play an
important role in radiocaesium resuspension during the warm season®. The previous work also suggested® a cor-
relation between the '¥Cs concentration and air temperature from August to September. A 3D aerosol transport
model with soil dust resuspension’ and forest ecosystem emission schemes was employed to analyse the source
and budget of radiocaesium in the air and showed that the resuspension of contaminated dust from the bare soil
could not explain the summertime atmospheric radiocaesium level*.

In this study, we examined the bioecological resuspension of radiocaesium and the composition of the bio-
aerosols that serve as host particles at Namie in August and September 2015. Fungi are known to accumulate
radiocaesium, which they incorporate as analogue of potassium'*!%, and a very high radiocaesium concentration
(629Bqg™! dry weight) was reported in fungal spores'. Therefore, we hypothesized that contaminated fungal
spores may primarily account for the increased resuspension of radiocaesium during the summer. Here, we pres-
ent novel data on the bioaerosols and the radiocaesium contamination of fungal spores and examine the associ-
ated relationships.

Results
At Namie, the activity level of *’Cs in the air (based on HV aerosol sampling from 19 August to 25 September
2015) varied from approximately 100 to 600 pBq m~2, and this variation was coincident with that of the carbon
content based on scanning electron microscopy coupled with energy-dispersive X-ray spectrometry (SEM-EDS)
(Fig. 1). Due to the absence of heavy industrial and urban activities near the observation site, we inferred from
this correlation that organic particles (bioaerosols) carry radiocaesium originating from the FDNPP accident.

We observed aerosol particles in bioaerosol samples collected during the sampling days using a fluorescent
optical microscope observation with 4,6-diamidino-2-phenylindole (DAPI) staining. The fluorescent aerosol
(FA) could be classified according to their fluorescence colour and morphology (Fig. 2). In general, the most
abundant FAs were yellow particles (diameter <5 pm; indicating fungal cells/debris), blue particles (microbial
particles), and particles identified as sporangia or ascospores. In particular, numerous particles with multiple
septa, which are most likely fungal spores of the phylum Ascomycota, were observed. Only small amounts of
white FA (<5 pm in size) and black aerosols, identified as mineral particles and black carbon, respectively, were
observed. The total concentrations of FAs ranged from 1.7 x 10° to 7.9 x 10° particles m~ (Fig. 3). Fewer yellow
particles were observed in September than in August (Figs 3 and 4), possibly because of a seasonal change in the
bioaerosol source or rainy weather on the sampling days in September (Supplementary Fig. S4 and Table S1).
The total FA concentration differed little between forest and adjacent bare soil observation sites. The bioaerosol
concentration ranged from 2 to 8 x 10° particles m—, of which 30 to 65% were of fungal origin.

High-throughput DNA sequencing analysis (Fig. 4 and Supplementary Tables S3 and S4) revealed that the
sequences of the phylum Basidiomycota accounted for more than 80% in the total sequences of all aerosol sam-
ples, regardless of the land cover (forest or bare soil) at the observation site. In August, the members of the order
Polyporales in Basidiomycota composed dominant communities in the forest, whereas Russulales sequences was
dominantly detected in September. At the bare soil location, the members of the orders Agaricales, Boletales,
Russulales, and Hymenochaetales in Basidiomycota were dominant in August. In September, rainwater samples
exhibited larger proportions of Ascomycota, represented by the orders Capnodiales, Pleosporales, Dothidiales,
Helotiales, Diaporthales, Hypocreales, and Xylariales, than did air samples. Ascomycota is the most species-rich
phylum of Kingdom Fungi, and it includes numerous taxa with a prominent anamorphic (mould) stage during
their life cycle'®. Therefore, these results suggest that moulds were abundant in the observed environment.

We compared the number of coloured fungal spores (colourless spores were not counted) countable by opti-
cal microscopy (without DAPI staining) and the *’Cs activity in aerosol samples collected by an HV sampler
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Figure 1. (a) Time series and (b) scatter plot of '*’Cs activity concentrations and the average carbon content
(area-averaged relative percentage) in August and September 2015. Carbon data were obtained by scanning
electron microscopy coupled with energy-dispersive X-ray spectroscopy. Error bars indicate the measurement
error (10). The good correlation between the two parameters suggests that organic particles (bioaerosols) are
carriers of radiocaesium.

at Namie in summer 2016 (Fig. 5). Sampling was conducted over 24 hours of daytime or nighttime (see the
explanation of Fig. 5). Weather information on the 2016 sampling days is given in Supplementary Fig. S5 and
Table S2. Although the data show considerable scatter, the correlation is relatively good in Fig. 5. The spore num-
ber concentration reached 5 x 10*m™3, and the average *Cs activity per fungal spore (grain), which is the slope
of the correlation curve, was approximately 1.7 X 10~® Bq/grain; this value is near the median of the estimated
range (2.8 x 107 to 2.6 x 10~7) (Supplementary Information and Tables S5-S7). Some uncertainty (one order of
difference) was associated with the spore number counting, as colourless spores were neglected (see the following
discussion). Despite the uncertainty, the estimated and observed '¥Cs activities in a single fungal spore were gen-
erally in good agreeance, which suggested that fungal spores are likely a significant atmospheric source of radi-
ocaesium derived from the FDNPP accident, especially in late summer in the heavily contaminated forest area.

The monthly distribution of fungal specimens (fruiting bodies) collected from 2012-2015 at the Tsukuba
Botanical Garden (36.10°N, 140.11°E, approximately 170 km southwest of FDNPP; area of ~140,000 m?; Fig. 6)
supports our data on the fungal spore content of aerosols. The largest number of specimens was collected in
July (all years), and the second largest number was collected in October (2012 and 2013) September (2014), and
June (2015). In each year, the number of fruiting bodies collected was high from June-October, although fewer
were collected in August. Additionally, relatively few fruiting bodies were collected from winter to early spring
(December to March).

Discussion

Recently, it was reported that in a temperate forest in Wakayama, Japan, approximately 3.5° latitude south of
Namie in August 2010, fungal spores accounted for 45% of organic carbon aerosol at nighttime and 22% in the
daytime, whereas biogenic volatile organic compound oxidation products accounted for 15% of organic carbon
at nighttime and 19% during the daytime'”. The results support our inference that in the forest at Namie, fungal
spores rather than other bioaerosols are the major source of radiocaesium in the air in summer. The taxonomic
composition varied even over the short observation period (Fig. 4), perhaps reflecting the seasonality of the fun-
gal groups or the occurrence of rain. However, some members of Basidiomycota and Ascomycota would be the
major carriers of radiocaesium at Namie.
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Figure 2. Fluorescent micrographs of DAPI-stained particles (indicated by red arrows) in the bioaerosol
samples collected at Namie site in August and September 2015 (a). The aggregated particles observed as yellow
particles (b,c), yellow and blue particles (d), blue particles (e), black (indicated by the white arrow) and white
(indicated by the red arrow) particles (f), white particles (g) and spores form particles that are likely ascospores
(h,i). The bars indicate a length of 10 pum. The assignment results were used to construct Fig. 3. In the photo,
white and yellow particles may not exhibit the colours seen by the naked eye on the microscopic screen.
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Figure 3. Number concentrations of DAPI-stained particles observed in the air samples collected from the
forested and bare soil areas at Namie on 19 and 28 August and 7 and 17 September 2015, and the weather
conditions on each sampling day. Particles have been classified by their colour and morphology: yellow
particles >5 um, organic aggregates; yellow particles <5 pm, organic particles/fungal spores; white particles
>5um, mineral particles; white particles <5 um, microbial particles; bacteria particles, bacteria; and black
carbon particles, soot (so-called black carbon). Spore forms (orange bars), likely ascospores, were identified by
morphology (see Fig. 2h,i).

A single sample of shiitake mushroom (Lentinula edodes) spores obtained in the northwestern evacuation
area in 2014 was contaminated with 122 Bqg™! dry weight of **Cs and 629 Bqg~! dry weight of 1*’Cs'*. These
concentrations are 1.9-9.0 and 2.5-10.9 times, respectively, higher than those in the fruiting bodies, suggesting
radiocaesium bioaccumulation in fungal spores. It is probable that other fungi in the heavily contaminated area
have similar radiocaesium activity levels in their spores.
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Figure 4. Results of the metagenomic analysis showing the relative abundance of identified fungal taxa in the
samples collected at the forested and bare soil sites in Namie and contained in rain water collected at the site
during summer 2015. Ascomycota are indicated in blue font, Basidiomycota in red font. Sampling dates are
expressed as mm/dd. The compositional differences among sampling dates may reflect seasonal and weather
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Figure 5. The relationship between the concentration of coloured fungal spores (countable without DAPI
staining by optical microscopy) and the ¥’Cs activity in air at the Namie site in summer 2016. The sampling
duration was 24 hours of daytime or nighttime (circled data; e.g., daytime data from Aug. 24-25 indicates that
sampling was performed from 6:00 to 18:00 on August 24 and 25, a total of 24 hours). Despite the large scatter,
the spore number and *’Cs concentration exhibited a positive correlation (rank correlation; significant at

8% based on a t-test). The slope of the fitted curve (1.66 x 10~® Bq/grain) corresponds to the lower range of
estimated values (see Supplementary Tables S5-S7).

These data and various other assumptions were used for the estimation that, on average, the *’Cs activity
per fungal spore (Supplementary Tables S5-S7) ranges from 2.8 x 107 to 2.6 x 1077 Bg/grain (see Methods and
Supplementary Information). We should also note that the '*’Cs concentration frequency distribution in fungi is
very long tailed'*. Using the '¥Cs activity in shiitake mushroom spores (629 Bqg~! dry)"’, the weight of a single
basidiospore (spore produced by Basidiomycota; 33 pg) and the weight of a single ascospore (spore produced by
Ascomycota; 65 pg) reported in the literature'®, we estimated '*’Cs activity values of 2 x 1077 and 4 x 10~7 Bq/
spore, respectively. Considering the decrease in the 1¥’Cs air concentration in each year (Supplementary Fig. S2),
similarly, the '*Cs activity in a single spore would become lower annually. In our data, the slope of the relation-
ship between the number of coloured fungal spores and the *’Cs concentration (Fig. 5), approximately 1.7 x 1078
Bq/grain, is one order of magnitude lower than the abovementioned value, although it remains in the estimated
range (Supplementary Tables S5-S7). The total fungal spore concentration, including both coloured and colour-
less spores, might be approximately one order of magnitude larger based on the data shown in Fig. 3. We have
no reason to assume that coloured and colourless fungal spores have different mechanisms of emission, and they
should move through the air in a similar manner and to similar extents. In this case, the '*’Cs activity in a spore
(the slope of Fig. 5) might be on the order of 10~° Bq/grain as a mixture of coloured and colourless spores, which
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Figure 6. Monthly distribution of fungal specimens (both Basidiomycota and Ascomycota) collected at the
Tsukuba Botanical Garden (Tsukuba, Japan) from 2012-2015 and the average values.

is also within the estimated range. These results strongly support fungal spore involvement in the resuspension of
radiocaesium in the forested area at Namie during summer (bioecological resuspension).

Using a 3D aerosol transport model, the radiocaesium resuspension flux at Namie in summer 2013 was esti-
mated* to be approximately 22 mBqm 2 h~'. Spores with a radiocaesium content of 2.8 x 10~° to 2.6 x 1077 Bq/
grain must be released from the forest at a rate of 2.2 x 10 to 2.4 x 10° grains m~2 s~! to produce this *’Cs flux.
These values are similar to or an order of magnitude larger than the maximum spore emission rate from the forest
(387 grains m~2 s~!; Table 2 of ref.'?). These findings suggest that fungal spores in Japan potentially have extensive
environmental impacts, though internal radiation exposure via radiocaesium inhalation should be negligible (see
the Appendix in the Supplementary Information).

The high-throughput DNA sequencing analysis showed that not only macroscopic fruiting bodies (i.e., mush-
rooms, mostly Basidiomycota) but also moulds (mostly Ascomycota), especially during precipitation periods,
could provide major sources of bioaerosols (Fig. 4). Many species of Ascomycota are known to be plant pathogens
or endophytes (fungi living inside plant tissues), and hyphae and spores on the tissue surfaces may concentrate
radiocaesium and emit it into the air when the spores are launched. In the rain samples collected in September,
Ascomycota accounted for as much as approximately 65% of the fungal groups, suggesting that the emission
mechanism may be weather dependent (dry or wet).

It has been reported that the fungal spore count in air is high in summer and low in winter at several places
around the world?*?!. A review?? also noted seasonal differences in the atmospheric fungal aerosol concentration.
These findings are consistent with our results from the Tsukuba Botanical Garden (Fig. 6) for a temperate forest
in Japan. We did not calculate the biomass of mushroom fruiting bodies because only the number of specimens,
each with a varying number of fruiting bodies, was recorded. Although the number of specimens can only indi-
rectly indicate the mushroom biomass, these data are nonetheless consistent with the findings based on inde-
pendent observations, such as the high-throughput DNA sequencing analysis targeting gDNA extracted directly
from forest bioaerosol samples (Fig. 4) and the fluorescence microscopic observation of aerosol particles (Fig. 2).
These seasonal cycles were demonstrated using the global model®.

Although no intensive fungal survey has been conducted in Namie area, and no intensive metagenomic anal-
yses have been conducted in the Tsukuba Botanical Garden, both areas share similar climatic pattern and veg-
etation type (dominated by Quercus serrata and Q. acutissima of Fagaceae family). It is therefore mycologically
unrealistic to assume that fungal flora between Namie and Tsukuba are dramatically different. Species compo-
sition between two areas may slightly differ, but we can empirically assume that family- and genus-level com-
positions, and seasonal patterns of fruiting, between Namie and Tsukuba are almost identical. Several pieces of
direct and indirect evidence support this assumption. For example, all major orders of mushrooms detected by
metagenomic analyses in Namie area (depicted in Fig. 4) have been reported from the Tsukuba Botanical Garden.
In addition, all mushroom species, though sampling effort is limited, collected as the form of fruit bodies from
Namie area during the 2017-2018 season (ca. 40 specimens) have been identified as genera and/or species that are
also present in the Tsukuba Botanical Garden. Also, fluorescence microscopic observation indicated the airborne
fungal spores and bacterial cells of Namie are similar to those in Tsukuba Botanical Garden site (Supplementary
Fig. S6). Supplementary Fig. S7 also demonstrate similarities of bioaerosols over Namie and Tsukuba during sum-
mer rainy period. Besides, literature reports match our findings and suggest that radiocaesium activity associated
with the movement of fungal spores is high in summer and low in winter. In addition, the high humidity and
rainy conditions of the Japanese summer may favour the emission of fungal spores into the air?*-2.

In addition to fungal spores, one possible source of radiocaesium in the air is contaminated cedar pollen.
At Namie, radiocaesium activity concentrations up to approximately 253 Bqg~" dry weight were observed
in cedar pollen from November 2011 to January 20122°-3!, but by 2015, they had decreased to no more than
25.4Bqg™". Therefore, in recent years, cedar pollen has likely played a limited role in radiocaesium resuspension.
Furthermore, in Japan, cedar pollen is emitted from late February to early May? therefore, it would not have
been a source of the radiocaesium at Namie in summer.

Considering other possible secondary bioecological sources of radiocaesium in the forest environment, radi-
ocaesium contamination in pollen and bee honey was reported in Munich, Germany, following the Chernobyl
accident (surface ’Cs contamination, 17.4kBqm™2 in early May 1986)*. The highest '*’Cs concentration in
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pollen (>1Bqg™") was recorded in May 1986, but this level rapidly decreased to approximately 0.2Bqg~" by July
1986. By considering the surface contamination level of 1.5 MBq m~2 at Namie'? and assuming that the pollen
contamination would be proportional to the surface contamination level, a pollen contamination level of up to
20Bqg ! can be estimated. In northern Italy during the early 2000s, the 1*’Cs effective half life in honey was 1.25
years on average™. If the halflife in pollen is similar to that in honey, then after 4 years, the concentration would
be reduced to 1/10 of the original level. Therefore, the level of radiocaesium contamination in pollen in the heav-
ily contaminated areas of Fukushima Prefecture would have been approximately 2Bqg™'. In addition, we detected
no appreciable pollen, such as during the counting of bioaerosol fluorescent particles, because the sampling sea-
son (August and September) did not coincide with the flower bloom season. A previous work® counted relative
numbers of bioaerosols in air (“pollen” and “bacteria” categories, the latter including “spores”) in the warm season
using scanning electron microscopy (SEM), and the results indicated that the “pollen” concentration was 1/10
of the “bacteria” concentration or less (Figure 12 in ref.?). Nevertheless, the pollen contribution to radiocaesium
resuspension should still be considered because of the large size of pollen grains (>30 um?°). Thus, even a small
number of pollen grains might carry a detectable amount of radiocaesium.

Although no heavy radiocaesium contamination of pollen other than cedar has been reported in Japan,
the suspension of pollen lasts until June, except for pollen from gramineous plants (Poaceae), ragweed, worm-
wood, and Japanese hop emitted from August to October based on an allergy study?. Furthermore, a significant
amount of pollen was not found in the present DAPI-stained FA analysis or direct optical microscope observa-
tions (see Supplementary Information). Radiocaesium transfer in forest and aquatic ecosystems was examined
in Fukushima Prefecture, and '*’Cs accumulation was found to occur in the following order: litter > detriti-
vores > fungi > predators > plants > herbivores®. This result suggests that any plants in the forest can accumulate
radiocaesium as fungi. Previous work suggested that contaminated pollen grains may have contributed to an
increase in the radiocaesium concentration in the air at Namie in May and June 2015%. During this early sum-
mer peak period, the radiocaesium concentration correlated with wind speed, which suggests a wind-blown
source, such as pollen or fungal spores. In the future, year-round changes in the bioaerosol composition at Namie
should be examined. In addition to mushrooms and moulds, lichens (mostly Ascomycota), algae, mosses, and
bryophytes also produce microscopic spores, and lichens*” and mosses are known to amass radiocaesium.
Other spore-producing organisms may also be candidate sources of bioecological radiocaesium resuspension.
Furthermore, bacteria can accumulate radiocaesium*+°. Currently, we cannot exclude these other possible bio-
ecological sources of radiocaesium resuspension.

Primary bioaerosols, including fungal spores, suspended in the atmospheric environment can have impacts on
air quality'®?>*!, agriculture?, and human health*>*. In addition, bioaerosols often act**~*® as ice-forming nuclei
(IN) and cloud condensation nuclei (CCN). Thus, bioaerosols can have an appreciable effect on climate?>4148,
Previous reports of high fungal spore fluxes (1,000 or more spores m~2 s~!) have been limited to tropical and
subtropical rainforest regions®?, but the present findings suggest that even temperate-zone forests, such as those
found in eastern Japan, can provide large sources of fungal spores and other bioaerosols. Our results are sup-
ported by those of a different study*’, which demonstrated that the diversity of some groups of fungi (e.g., ecto-
mycorrhizal mushrooms) in temperate and boreal areas equals or even exceeds those in tropical regions. The
bioaerosols emission inventory in temperate forests should be investigated worldwide, as should the bioaerosol
activity as IN and CCN in different regions. Furthermore, radiocaesium, as a useful chemical tracer, resuspension
studies should also focus on the origins of other organic aerosols, such as humic-like substances and water-soluble
organic compounds possibly sourced from primary bioaerosols.

Methods

Atmospheric radiocaesium observations have been conducted in the contaminated area of Fukushima Prefecture
since July 2011 (Supplementary Fig. S1). All sites are within 45km to the northwest of the FDNPP and are inside
the Planned Evacuation Area of 2011. Samples were collected using an HV aerosol sampler. The sampling loca-
tions and observations are described elsewhere in detail*”®. The activities of radiocaesium were measured at the
Meteorological Research Institute (MRI) and at Osaka University by ~-ray spectrometry, following a procedure
described elsewhere®. The morphology and elemental composition of aerosols collected on the filters were exam-
ined using SEM coupled with an energy-dispersive X-ray spectrometer (EDS), as well as a digital optical micro-
scope (OM) with a data analyser.

Bioaerosols were sampled on sterilized polycarbonate filters at Namie from August—September 2015.
Bioaerosols suspended in a few rain water samples were also collected on the filter by extracting a few tens of
ml of the water by syringe. Bioaerosols on the filters were washed off with 1.5mL of sterilized ultra-pure water
containing 0.9% (w/v) of NaCl and shaken, and the solution samples were pelleted via centrifugation at 20,000 G.
Genomic deoxyribonucleic acid (gDNA) was extracted using the combination of a phenol-chloroform extraction
and the cell degradation by lysozyme, protease and sodium lauryl sulphate (SDS)*. Fragments of the internal
transcribed spacer (ITS) region (approximately 400 base pairs; bps) were amplified from the extracted gDNA by
polymerase chain reaction (PCR) using universal fungal primers ITS1-F -KYO1 (5'- Seq A - CTH GGT CAT TTA
GAG GAA STA A -3') and ITS2- KYO2 (5’- Seq B - TTY RCT RCG TTC TTC ATC -3/)*! for the ITS region. The
first PCR fragments were amplified again using the second PCR primers, which targeted the additional sequences
of the first PCR primers and included 8 tag nucleotides, such as Seq A and Seq B, designed for sample identifica-
tion barcoding. Thermal cycling conditions were employed from a previous investigation®’. PCR amplicons were
used for high-throughput sequencing with a MiSeq Genome Sequencer (Illumina, CA, USA). The paired-end
sequences with a read length of 461 bp were grouped based on the tag sequences of each sample. In the PCR
analysis steps, negative controls (no template and template from unused filters) contained no fragments of ITS
amplicons exhibiting the absence of contamination during the process. After the forward and reverse paired-end
reads in the raw sequencing database were merged, the irregularly merged reads (lengths outside the 200-500 bp
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range or exceeding 6 photopolymers) and the error sequences with low Q-scores were removed. The remaining
sequences were clustered into phylotypes using QIIME (Quantitative Insights Into Microbial Ecology; ver. 1.8.0)
software with a minimum coverage of 99% and a minimum identity of 97%. The fungal compositions of the phy-
lotypes were analysed using the Basic Local Alignment Search Tool (BLAST) to compare their sequences with
references from the DNA Data Bank of Japan. Supplementary Tables S3 and S4 give numbers of ITS sequences
classified into phylum and order, respectively. All sequences have been deposited in the DDBJ database (accession
number of the submission is DRA007277).

We estimated the radiocaesium activity of a single fungal spore at Namie by assuming that the radiocaesium
activity in fungi is proportional to the level of surface contamination. Potassium-40 concentration in fungi is
often measured with the ¥7Cs activity, K content in fungi and *°K activity in the unit mass of K are known, and
this approach could be employed to estimate the '*’Cs content in a single fungal spore (Supplementary Tables S5-
S7). In the calculation, we applied no decay correction for *’Cs due to its small effect on the estimation results.
In the first and second approaches, fungal spores were assumed to be droplet and wooden particles, as shown in
Supplementary Tables S5 and S6. The third approach (Supplementary Table S7) directly used the transfer factor
in a forest. The estimates obtained by the three approaches overlap (approach 1, 8.1 x 10~ to 7.8 x 1078 Bq/
grain; approach 2, 2.8 x 1077 to 1.5 x 1077 Bq/grain; and approach 3, 3.3 x 107 to 2.6 x 1077 Bq/grain), which
suggests that they are plausible and that the *’Cs content in a single fungal spore at Namie ranges from 10~°
to 1077 Bq. The range of estimates mostly results from (1) the size (volume) difference of the basidiospore and
ascospore fungal spores and (2) the difference in the '*’Cs/*’K activity ratios of fungi based on the level of surface
contamination.

Monthly fungal fruiting body abundance levels were retrieved from a mushroom survey project at the
Tsukuba Botanical Garden (Tsukuba, Ibaraki, Japan). The survey was conducted every week from 2012-2015.
Fruiting bodies of both Basidiomycota and Ascomycota of visible size were surveyed and collected weekly from
forested areas of the garden by 3 to 30 investigators. Here, a specimen is defined as one or more fruiting bodies of
the same species growing in the same vegetation type (section) in the garden. On the same day, multiple speci-
mens of the same species could be collected if they were found in different section of the garden. The total number
of mushroom specimens collected each month, regardless of species, was counted, and the monthly average from
2012-2015 was calculated.

The Supplementary Information gives additional details of the above methods.
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Keywords: The utilization of numerical atmospheric dispersion prediction (NDP) models for assisting the emergency re-
Environmental emergency response sponse to emission of radionuclides has been recommended by a working group of the Meteorological Society of
Numerical atmospheric dispersion prediction Japan. This paper verifies the feasibility of the recommendation through NDP model intercomparison with
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limited emission source information for the case of the Fukushima Dai-ichi Nuclear Power Plant accident caused
by the Great East Japan Earthquake in 2011. According to the recommendation of the working group, the NDP
models are run under the assumption of a constant rate of emission during the whole forecast period. This is the
worst-case scenario when limited source information is available. Generally, no information is provided on the
temporal variability and strength of the emissions, while the source location is known. Surface air radionuclide
forecasts are utilized for providing warnings of the risk of inhaling radioactive substances suspended in the low-
level atmosphere, whereas column-integrated radionuclide forecasts are utilized for estimating the potential
maximum wet deposition of radioactive materials on the ground due to precipitation. The NDP model short-
range forecasts were validated with observational data for three locations, at the times when the most serious
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contamination events occurred at each of the three monitoring stations. The NDP models successfully predicted
the risk of surface air contamination and/or ground surface contamination caused by wet deposition in these
cases. Particularly, the NDP model forecasts allow us to disseminate warnings at effective lead times before
exposure to radiation. The different NDP models gradually deviate their forecasts as the lead time progresses.
The deviations may indicate the magnitude of forecast errors. Thus, the use of multi-model forecasts is of greater
benefit than the single model forecasts, because forecast error information is suggested.

1. Introduction

1.1. Discontinuation of the use of NDP model forecasts for aiding emergency
response

The Fukushima Dai-Ichi Nuclear Power Plant (FDNPP) was da-
maged during the Great East Japan Earthquake and subsequent tsunami
on 11th March 2011, and released a huge amount of radionuclides to
the atmosphere through explosions, ventilations and leaks from a
broken reactor pressure vessel (Chino et al.,, 2011). The released
radionuclides were transferred by the wind and deposited on the
ground. The wet deposition seriously contaminated land, forests,
houses and water, even at locations outside the urgent protective action
planning zone (UPZ) of 30 km from the emission source (MEXT, 2011).
On that occasion, however, the public was not provided with sufficient
information on the contamination to properly mitigate their exposure
to radiation.

The World Meteorological Organization (2006) has recommended
the use of computer-based atmospheric dispersion simulations for en-
vironmental emergency response activities, including nuclear acci-
dents. A numerical atmospheric dispersion prediction (NDP) model of
radioactive substances, named the System for Prediction of Environ-
mental Emergency Dose Information (SPEEDI), was developed by the
Japan Atomic Energy Research Institute as a government-commissioned
project for environmental emergencies caused by the release of radio-
active substances (Imai et al., 1985). In the FDNPP accident, however,
forecasts by SPEEDI were not utilized for the mitigation of radiation
exposure. The reason for this was that the time series of radionuclide
emission intensity could not be obtained. Information on the emission
intensities would normally have been provided to SPEEDI by the
Emergency Response Support System (ERSS). At that time, the ERSS did
not work, since its power supply was broken by the earthquake
(Hatamura et al., 2011, 2012). As a result, evacuation orders were is-
sued only by considering the distance from the emission source. In
2014, three years after the accident, the Nuclear Regulation Authority
of Japan (NRA) decided to discontinue the use of SPEEDI for environ-
mental emergencies, because of uncertainties both in the temporal
variation of the emission intensity and in the weather forecasts (NRA,
2014). The Meteorological Society of Japan (MSJ) disagreed with the
decision by the NRA and issued a proposal on the use of NPD model
forecasts of radioactive substances accidentally released from nuclear
power related facilities, based on the recommendations of a report by a
working group of the MSJ (2015).

1.2. Recommendation on utilization of NDP model forecasts

The working group of the MSJ recommended the following ap-
proach to utilize NDP models in environmental emergencies for the
mitigation of radiation exposure. Basically, NDP model forecasts should
be provided to avoid the risk of “failure to notice” rather than to avoid
that of “false alarm” by considering the worst-case scenario, because
the accidental release of radioactive substances causes a risk of serious
radiation exposure to many people. NPD model forecasts for the worst-
case scenario can help us choose a safer time and place of evacuation
and greatly reduce exposure to radiation.

Generally, it is hard to obtain the time series of emission intensity
just after an accident. If these data are not available, NDP models

should be run assuming a constant emission rate during an environ-
mental emergency (cf. World Meteorological Organization, 2010) with
limited source information. Note that this assumption corresponds to
the worst-case scenario, since breaks in the emission tend to reduce the
size of the area at risk of contamination. If evacuation orders are issued
under the assumption of a constant rate of emission, then the affected
people are expected to be safe under any emission scenario. Of course,
if a reliable emission scenario is available in real time, it should be used
for the NPD model forecasts.

We briefly explain the NDP model products to be disseminated to
the public. One of the most serious forms of radiation exposure is the
direct inhalation of radioactive substances suspended in the low-level
atmosphere. To mitigate the inhalation of suspended substances, we
should utilize a geographical map of radioactive substance density in
the low-level atmosphere (hereafter called the surface air contamina-
tion). When surface air contamination is expected, we can mitigate the
radiation exposure by advising people to stay indoors.

Another exposure process arises through the deposition of radio-
active substances resulting in internal exposure through the intake of
contaminated water/food and the external exposure to radiation from
the environment. Precipitation deposits almost all substances below
rainmaking clouds on the ground. Sometimes the ground surface is
heavily contaminated, even though the radioactive substance density is
small in the surface atmosphere. NDP models can directly forecast the
amount of wet deposition using the output variables of precipitation
and radiative substance density. However, we do not recommend the
utilization of model-derived wet deposition, since it has the risk of
failing to issue a warning when the model fails to forecast precipitation.
In brief, wet deposition forecasts cannot be used to predict the worst-
case scenario. Instead, we recommend the use of the column-integrated
amount of radioactive substances to estimate the maximum wet de-
position (hereafter called the column-integrated contamination). We
note that there is a possibility that the precipitation is contaminated at
locations where NDP forecasts indicate high column-integrated con-
tamination. Unless it rains at these locations, the warning associated
with serious wet deposition may be withdrawn. If it does rain at these
locations, we can effectively survey the contamination area by limiting
only to locations where the actual precipitation coincides with high
column-integrated contamination. In fact, the wet deposition can result
in serious contamination over a much greater area than the UPZ of
30km away from the emission source. We can quickly estimate the
range of the contaminated area with the help of the NDP forecasts.

NDP model forecasts contain uncertainty arising from imperfections
in the atmospheric initial conditions and NDP models. When utilizing
the model forecasts, both for the surface air contamination and column-
integrated contamination, we ought to assume the contaminated area
and period to be larger and longer than in the NDP model forecasts by
considering the uncertainty of the forecasts. In addition, the model
uncertainty could be estimated or reduced by multi-model forecasts. In
this study, we perform multi-model prediction experiments to clarify
the advantages of the model prediction for environmental emergencies
when the emission source information is limited.
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2. Experiments
2.1. NDP model forecast intercomparison

We conduct an intercomparison of the NDP models to validate the
NDP model performance with the observation data for the FDNPP ac-
cident, and to confirm the suitability of the recommendations by the
MSJ working group. In this experiment, the reliability of NDP models is
assessed on the basis of the forecast consistency among models. Multi-
model ensemble approaches are used to provide information on the
forecast reliability for tropical cyclone track forecasts (Goerss, 2000).
Information on the forecast reliability is useful for decision-making
regarding evacuation during extreme events. Here, we consider the
effectiveness of multi-model ensemble forecasts of NPD models.

After the Chernobyl nuclear accident in 1986, many types of NDP
models have been developed to forecast the atmospheric dispersion of
radioactive substances during environmental emergencies (e.g.,
Ehrhardt, 1997; Brandt et al., 2002; Hoe et al., 2009). After the FDNPP
accident, many model intercomparison experiments have been con-
ducted (e.g., Draxler et al., 2015; Kristiansen et al., 2016; Kitayama
et al., 2018; Sato et al., 2018). However, they were all reanalysis model
studies. To the best knowledge of the authors, there is no study dealing
with forecast (or hindcast) model intercomparions for the FDNPP ac-
cident. Our intercomparison experiment was focused on short-range
forecasts (from several hours to several days), during which the serious
contamination occurred. In the FDNPP accident, radionuclides were
spread over several hundred kilometers from the source over the course
of about 2 days. Thus, we compared NDP models, which have domains
of about 800 km x 800 km around the source position and a horizontal
resolution of about 3 km. Passive tracers were released from the low-
ermost layer at FDNPP at a constant rate of 1 Bq/h. We need only re-
lative concentration values when the outer edge of radioactive plumes
has to be detected. This is because the background concentration of
anthropogenic nuclear products is almost zero. The plume edge has a
jump of concentration values by 10'°-10%° times in model simulations
even though the constant emission rate is a unit amount (1 Bq/h). It is
exactly the reason why WMO recommends assuming an emission rate of
1 Bg/h (World Meteorological Organization, 2010). The definition of
plume outer edges is 10~ x Bq/m® or 10~ ' x Bq/m? in this study
because this definition makes a jump of concentration between the
inside and outside of plumes larger than ten digits to detect the edge
line of potential contaminated areas.

The forecast period was 30 h, because lateral boundary conditions
for NDP models could be taken from the stored JMA's operational
mesoscale forecasts that extend to up to 33 h. The forecast products to
be compared were the geographical distributions of the surface air
contamination and the column-integrated amount. For the worst-case
scenario, no dry/wet deposition was included in the NDP models, so
that the maximum potential contamination was provided by the fore-
casts. While the output time interval of the NDP models is generally
variable, we used hourly outputs for the model validation.

In this study, four NDP models participated in the short-range
forecast experiment for radioactive substances. These models were
developed by the National Institute for Environmental Studies (NIES) of
Japan, the Japan Atomic Energy Agency (JAEA), the Meteorological
Research Institute (MRI) of Japan, and the French Institute for
Radiological Protection and Nuclear Safety (IRSN). The model domains
were set to cover eastern Japan with an approximately 3-km horizontal
resolution. The dynamical frameworks of the NIES and JAEA models
were based on the weather research and forecast model (WRF) version
3 (Skamarock et al., 2008), and the initial and lateral boundary con-
ditions were obtained from the Japan Meteorological Agency (JMA)
operational mesoscale analysis and forecast, respectively. The disper-
sion calculation of the NIES model was performed by the Community
Multiscale Air Quality (CMAQ) Eulerian model version 4.6 (Byun and
Schere, 2006) as described in detail in Morino et al. (2013) and
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Nakajima et al. (2017). The JAEA dispersion calculation module was a
Lagrangian model, and was included in the Worldwide version of the
System for the Prediction of Environmental Emergency Dose Informa-
tion (WSPEEDI) used for planning the response to environmental
emergencies (Terada and Chino, 2008; Katata et al., 2015).

Both the MRI and IRSN models adopted a Eulerian scheme for
material transport and shared the same meteorological forecasts that
were prepared by MRI using the JMA non-hydrostatic weather forecast
model and local ensemble transform Kalman filter (JMANHM-LETKF)
data assimilation system (Kunii, 2014; Sekiyama et al., 2015, 2017)
with JMA's operational meteorological observations, including the
near-surface wind velocities. The JMANHM-LETKF data assimilation
system was implemented with a 3-km horizontal resolution, where the
lateral boundary conditions were obtained from the JMA operational
global deterministic and ensemble forecasts. The NDP configuration
details of the MRI model were described in Sekiyama et al. (2017) and
Kajino et al. (2018), in which the model performance was quantita-
tively examined. The JMANHM-LETKF meteorological field was also
used to drive the offline NDP model of IRSN. The dispersion calculation
for the IRSN model was detailed in Mathieu et al. (2012, 2018), Saunier
et al. (2013), Groéll et al. (2014), and Quérel et al. (2015). For Eulerian
NPD models (NIES, MRI, and IRSN models), the time series of con-
tamination at each monitoring station was extracted by the linear in-
terpolation of the nearest grid cells. For a Lagrangian NPD model (JAEA
model), the gridded output was calculated from the particle density and
then the time series was extracted by the linear interpolation of the
nearest grid cells.

2.2. Monitoring data for validation

Three cases were chosen to assess the performance of NDP model
forecasts. Fig. 1 shows the time series of the air dose rate and pre-
cipitation intensity at the Iwaki and Fukushima monitoring stations
(Working group of MSJ, 2015) for validating the model forecasts. At
Iwaki station, the most serious event occurred in the early morning on
15th March. The air dose rate suddenly increased to more than 20 uSv/
h in the early morning, and then rapidly decreased to less than 2 uSv/h
around noon. The high level of radiation mostly came from a radio-
active plume in the low-level atmosphere (cloud shine). It did not come
from deposited substances on the ground (ground shine), because no
precipitation was observed at Iwaki.

At the Fukushima monitoring station, the most serious event oc-
curred in the evening on the 15th of March. Around 1700 JST, the air
dose rate rapidly rose to about 20 pSv/h at the same time of pre-
cipitation was observed as shown in Fig. 1. Since the air dose rate did
not rapidly return to the normal value, the radiation is considered to
come from substances deposited on the ground (ground shine). If it had
not rained, the radioactive substances would not have contaminated the
ground so much. The large amount of wet deposition resulted from the
spatiotemporal overlap of the precipitation with the column-integrated
contamination. After the 16th of March, the radiation gradually de-
creased in accordance with the volatilization and decay of iodine's
isotope, '3'I, whose half-life is about 8 days, and partly due to soil in-
filtration of radioactive metal ions.

Kashiwa City in the Kanto area was also contaminated as shown in
Fig. 2 (Working group of MSJ, 2015). At the Kashiwa Campus of the
University of Tokyo, the air dose rate increased between the evening of
the 20th and the morning of the 21st of March, and remained constant
afterwards. Precipitation was observed from 0800 JST on the 21st at the
nearest Automated Meteorological Data Acquisition System (AMeDAS)
observation station at Abiko. It is likely that precipitation deposited
radioactive substances on the ground at that time.

Detailed observations exist for the above-mentioned contamination
events at the Iwaki, Fukushima and Kashiwa stations, and thus these
events were selected as the targets of the model intercomparison ex-
periment. The locations of these stations are illustrated in Fig. 3. The
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Fig. 1. Time series of the hourly air dose rate (red line, uSv/h) and precipitation
(black bars) at monitoring stations in Iwaki City (140.88 °E, 37.05 °N, upper
panel) and in Fukushima City (140.47 °E, 37.76 °N, lower panel), hourly from
March 14 to 31, 2011, respectively. Precipitation was observed at the Onahama
AMeDAS station, which is about 12 km southeast of the Iwaki station, and at the
Fukushima Local Meteorological Observatory, which is about 1km from the
Fukushima monitoring station. This figure was reproduced from an earlier
study (Working group on “Radioactive substances accidentally released from
nuclear power related facilities”, Meteorological Society of Japan, 2015) for
validation of model results. (For interpretation of the references to color in this
figure legend, the reader is referred to the Web version of this article.)
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Nal(TI) scintillation detector at a height of 1 m. Observations were only made in
the day time. This figure was reproduced from an earlier study (Working group,
Meteorological Society of Japan, 2015) for validation of model results. (For
interpretation of the references to color in this figure legend, the reader is re-
ferred to the Web version of this article.)
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Fig. 3. Locations of the Fukushima Dai-ichi Nuclear Power Plant (FDNPP), and
the Fukushima, Iwaki, and Kashiwa monitoring stations. Gray shading indicates
the ground elevation at intervals of 250 m.

Iwaki station is located about 40 km SSW from the emission source at
FDNPP, the Fukushima station is located about 60 km NW, and the
Kashiwa station is at about 200 km SSW. In addition, we were able to
acquire the ground surface concentration data of radioactive cesium
(Oura et al., 2015) in Kashiwa City very close to the Kashiwa station.

3. Results and discussion

3.1. NDP model forecasts for surface air contamination at Iwaki and
Kashiwa

At first, the NDP model intercomparison was conducted with a focus
on the maximum air dose rate observed at the Iwaki monitoring station.
The NDP models were initialized at 0000 JST on March 15th, where
radioactive substances were assumed to be emitted at a constant rate
from the same initial time, 0000 JST. As mentioned above, the high
level of radiation observed at Iwaki is considered to come from the
plume suspended in the low level atmosphere (cloud shine). Therefore,
the forecasts of the surface air contamination are validated with the
observations at Iwaki. As shown in Fig. 4, all four models forecast a
dense plume moving SSW which extended over Iwaki at a forecast time
of 6 h (FT = 6). After that, the surface wind gradually turned clockwise
and the plume moved away from Iwaki. At a forecast time of 30h
(FT = 30), the models again forecast a low-level plume moving
southward and air contamination around the Iwaki station. These
forecasts are consistent with the monitoring results of a large peak in
the air dose rate in the early morning of the 15th of March, and a
moderate peak in the early morning of the 16th (see Fig. 1), although
NDP models have larger differences in the geographical distributions at
a forecast time of 30 h than at a forecast time of 6 h. Fig. 5 shows the
vertical east-west cross section of the radioactive substance density
along a line of the latitude of Iwaki (37.05° N). The vertical extension of
radioactive substances is somewhat different among the models, which
may reflect the magnitude of the vertical diffusion. Nevertheless, the
density forecasts all show a maximum in the lowermost layer.

Time series of the NDP forecasts consistently indicate the maximum
contamination occurred at the Iwaki station in the early morning of the
15th, as illustrated in Fig. 6a. Strictly speaking, the forecast time of the
radioactive substances was about 2 h later than the observed time. One
of the reasons for this may be that the initialization time of the



T. Iwasaki, et al.

39N
38N
I

36N
1

30N
38N
3

36N
1

39N

38N

36N
1

39N
38N
I

36N
1

30N
38N
3

36N

1

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3N
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Initial 00 JST March 15 (Near Surface) [10-'3xBg/m3]

Atmospheric Environment 214 (2019) 116830

by 1T Ll T

" [iRsN Fﬁ

38N

s

3N
=

36N

[FT=6 ]

S

[ FT=6 |

I

PN
ﬂy

e
N

o ;\/\.,)H

9E 1

3 139 140 141E 1426 1436

‘

142

H

138E 139 140€ 141E 142 143

“lIAEA /é

38N

IRSN/é

=

X
N
RUAN

38N ﬂ' +
e

i
14

Y ) a4 38N A L
b pd 7 300
/gﬁ L ’/T}‘ 4/2\ 100
130
o N7 : N > N7 ;0
% h
. [FT=121"| 07N [FT=12[) | el [FT=12] |~ C [FT=12]|
NIES “/ﬁ fﬂ‘f JAEA }Aﬂ"f MRI é fﬂ"f }Aj
g’ ) N 38N ﬁ' N 38N g’ ) N 38N ﬂ' | N
& 3N & > ﬁ
= w’éjic 4 = b~ 5
| 1
[ [FT=18]"" |~ € [FT=18]) ™|t [FT=18] "/ [FT=18]

A%r>

NIE j};ﬂf Jy/f\E MRI)éJZj
B oy

“irRsN ij
o 1300

3N

36N

g

)
¢
g [FT=24]

i
a

[FT=24]

3N

~N

PN

36N

— [FT=24 . [FT=24]

3 138E 140€ T41E 142¢ 143€ 1

‘

142

143

1E 142€ 143€ 138E 139E 1406 141E 142 143

39N

-

“TirRsN é

38N

NS
m

=

i
14

38N

e
N

JH
SN

3N

Y

DN [FT=30] S

4

~ [FT=30]

36N

3N

N

PG

o

6N

0 E”'|FT=30| s - [FT=30]

3 139 140E 141E 1426 143E 138E 1

3 141E

142

143

1

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I s
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1

3 4IE 142E THE 138E 139E 140E 41E 42E T43E

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
i
I
R
i.}?N r?\
|
| e
i
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Fig. 4. Geographical distributions of the surface air contamination forecasts (concentration of radioactive substances in the lowermost layer; 10> x Bq/m®) from
the model initialization time of 0000 JST on 15th of March at forecast times of 6, 12, 18, 24 and 30 h, by the NDP models of the NIES, JAEA, MRI and IRSN. A
constant emission rate of 1 Bq/h at FDNPP is assumed in the forecasts. The triangle, diamond, and pentagon indicate the locations of Fukushima City, Iwaki, and
Kashiwa, respectively.

emissions in NDP models of 0000 JST was later than the actual emission
time of the substances which arrived at the Iwaki station. In this case,
the forecast times of 3-6 h are too short for us to take preventive action.
An additional experiment was conducted to increase the lead time up to
24h using the MRI model (Fig. 6b). Although the forecasts contained
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more uncertainty, depending on the initial time they predicted the air
contamination within an error of 2 h over Iwaki on the morning of the
15th of March. As shown in Fig. 6a, the maximum surface air con-
tamination differed between models, and the forecast spread
(=1.5 x 10" ''Bq/m>®) was more than 50 percent of the ensemble
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Fig. 5. East-west and vertical cross sections of the 6-h forecasts of the air contamination along a line of the latitude of Iwaki (37.05° N) from the initialization time of
0000 JST on 15th March by the four models (unit; 10 ™' x Bq/m?). A constant emission rate of 1 Bq/h at FDNPP is assumed in the forecasts. Open triangles indicate
the longitude of Iwaki (140.9° E).
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Fig. 6. Time series of the surface air contamination forecasts (units; Bq/m?)
together with the observations of air dose rate (unit; uSv/h) at the Iwaki station.
The upper panel (a) shows forecasts from the initialization time of 0000 JST on
15th March by the NDP models at NIES, JAEA, MRI and IRSN, and the lower
panel (b) shows the lagged forecasts by the MRI model. The lines for each
forecast and observation are indicated in the legend. A constant emission rate of
1 Bq/h at FDNPP is assumed in the forecasts.

mean value (=2.5 X 10~ 'Bg/m®), suggesting a fair amount of un-
certainty in the forecasts. In the time series of the surface air con-
tamination, relatively greater values indicate the periods when there is
a high risk of inhalation of dangerous levels of radiation with a valuable
lead time.

The radioactive plume shown in Figs. 5 and 6 flowed southward and
arrived at Kashiwa about 7 h later (Fig. 7). The forecast time of the
radioactive substances in Kashiwa was about 2h earlier than the ob-
served time as shown in Fig. 7a. This case involves a longer forecast
lead time and a farther distance from the emission source than the case
of Iwaki. Therefore, the time-lagged ensemble (Fig. 7b) indicates larger
errors of the plume arrival time when the forecast initial time is earlier
than 0000 JST on 15th March. Generally speaking, the uncertainty in
plume advection simulations is accumulated along the pathway of the
plume; i.e., small differences in the wind velocity along the pathway
may cause large differences in the plume location (Sekiyama et al.,
2017). Therefore, especially when the forecast initial time is earlier and
the lead time is longer, we ought to prepare for the slightly longer time
window and broader area of air contamination than the model fore-
casts.

For these events, NDP models indicate the possibility that the sur-
face air would be contaminated with radioactive substances at Iwaki
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and Kashiwa on the mornings of the 15th and 16th, as a worst-case
scenario. If people were informed of the possible risk of the surface air
contamination on the mornings of the 15th and 16th, they could remain
indoors until the contaminated surface air had passed. In other words,
the models indicated that the health risk from surface air contamination
would be smaller in other time periods, because the models assumed a
continuous rate of emission after initialization without any emission
breaks.

3.2. NDP model forecasts for wet deposition at Fukushima City

Next, NDP model forecasts are validated with the observations at
the Fukushima monitoring station. As mentioned above, precipitation
caused a large amount of wet deposition at about 1700 JST on the 15th
of March, and thereafter radionuclides deposited on the ground con-
tinued to emit radiation.

In the worst-case scenario for wet deposition, the precipitation de-
posits all of the column-integrated radioactive substances on the
ground. Here, we examine whether NDP model forecasts of the column-
integrated contamination correctly predicted the possibility of wet de-
position on the ground. Fig. 8 shows NDP model forecasts of the
column-integrated amount of radioactive substances initialized at 0000
JST on March 15. Note that these are the same forecasts as shown
previously. The spatial pattern of the vertically integrated amount
shown in Fig. 8 is significantly different from that of the surface air
contamination shown in Fig. 4, reflecting the vertical wind shear. At
1800 JST (FT = 18), the area of the contaminated column shown in
Fig. 8 is much greater than the area of contaminated surface air shown
in Fig. 4. According to a detailed tracer flux analysis (Sekiyama and
Iwasaki, 2018), radioactive substances emitted from FDNPP passed
over Fukushima City around 1800 JST through two routes. The first
route was that of the substances emitted early in the morning, which
went southward, turned clockwise and then moved northeastward.
These substances gradually rose while moving northeastward, and
reached a height of about 3000 m. They were dispersed horizontally
under the strong wind shear. The second route was that of the sub-
stances emitted in the afternoon, which went northwestward directly to
Fukushima City. Large differences in the distribution of potential
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Fig. 7. Same as Fig. 6, but at the Kashiwa station; the observation is ground
surface Cs-137 concentration (Oura et al., 2015), not air dose rate.
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Fig. 8. Same as Fig. 4 but for the column-integrated contamination forecasts (10~* x Bq/m?).

contamination among the four NDP models were not found in Fig. 8 as
far as the short-range (30-h) forecasts are concerned. Stacked bar charts
in Fig. 9b shows the similarity degree of the potential contamination
area among the four NDP models depicted in Fig. 8. If the stacked bar
charts are exclusively colored with “1-Model Only” then the potential
contamination areas are completely non-overlapped among the four
NDP models. In contrast, stacked bar charts with a 100% proportion of
“4-Model Ovlp” indicates the perfect match of the four NDP models.
Fig. 9b illustrates a large similarity (but a moderate difference) among
the four NDP models with a small portion of “1-Model Only” areas. The
forecast similarity in Fig. 9b (related to Fig. 8) is higher than that in
Fig. 9a (related to Fig. 4) because the distribution of contamination in
Fig. 8 is column-integrated, which is apt to mask the difference in
vertical diffusion between models, while that in Fig. 4 illustrates only
the surface layer.

Fig. 10 is the vertical cross section of the substance density along a
line of the latitude of Fukushima City (37.76° N). The contaminated air
extended up to an altitude of about 3000 m. The upper portions of the
contaminated air were emitted in the early morning, and widely dis-
persed by the wind shear. The lower portions of relatively dense
radioactive substances were mainly emitted in the afternoon. The NDP

models forecasted the low-level air contamination to be lower at Fu-
kushima City than that at Iwaki, under the assumption of a constant
emission rate. The risk of internal exposure by inhalation at Fukushima
City might be much less than that at Iwaki 12 h earlier. On the other
hand, the large column-integrated amount indicated the risk of wet
deposition around Fukushima City in the evening. Indeed, as shown in
Fig. 1, the precipitation caused the wet deposition and the ground
contamination at the Fukushima station. Fig. 11 shows that the pre-
cipitation started around 1400 JST (FT = 14) and the surface con-
tamination mainly occurred at about 1700 JST (FT = 17). The NDP
models forecasted that the radioactive plume would be widely spread
over Fukushima City at about 1800 JST (FT = 18). Note that previous
studies have indicated that the reproducibility of the northwestward
wind from the nuclear power plant to Fukushima City is not good in the
afternoon 15th of March (e.g., Morino et al., 2013; Sekiyama et al.,
2015; Nakajima et al., 2017), attributable to the orographic model re-
solution or boundary conditions. This type of meteorological un-
certainty cannot be completely removed by the ensemble forecast or
proper use of NDP models. Nonetheless, in Fig. 11, one ensemble
member (JAEA model) was able to predict the contamination arrival
time more accurately than other members. This indicates the benefit of
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Fig. 9. Overlapped and distinct plume areas (km?) between the four NDP
models at forecast times (FT) of 6, 12, 18, 24, and 30 h within the latitude 35.5°
N -39.0° N and longitude 138.0° E — 142.0° E. In the legend, 4-Model Ovlp, 3-
Model Ovlp, 2-Model Ovlp, and 1-Model Only indicate the area where all the
four NDP model plumes are overlapped, the total area where three out of the
four NDP model plumes are overlapped, the total area where two out of the four
NDP model plumes are overlapped, and the total area where only one plume
exists (= non-overlapped with any others), respectively. (a) Statistics related to
Fig. 4 with the plume edge definition of 10~ '® x Bq/m?, (b) related to Fig. 8
with the plume edge definition of 10! x Bq/m?, and (c) related to Fig. 12
with the plume edge definition of 10~ x Bg/m?

the model ensemble forecast.

If the column-integrated contamination forecasts had been avail-
able, we could have prepared for contaminated precipitation in the
region of high column-integrated contamination. If it rains in the region
where a large column-integrated amount is forecasted, residents can be
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Fig. 11. Time series of the column-integrated contamination amount forecasts
(unit; Bq/m?) together with the observations of air dose rate (unit; uSv/h) at the
Fukushima station. A constant emission rate of 1 Bq/h at FDNPP is assumed in
the forecasts.

warned not to use rainwater to avoid internal exposure, and check the
contamination of the rainwater. If it does not rain, we can withdraw the
wet deposition warning.

3.3. NDP model forecasts for wet deposition at Kashiwa

Although Kashiwa is located about 200 km SSW of FDNPP, sig-
nificant contamination on the ground was recorded due to the wet
deposition around 0800 JST on the 21st of March as shown in Fig. 2. All
of the NDP model forecasts indicated that the tongue of the radiative
plume passed over Kashiwa at this time as shown in Fig. 12. The
forecasted arrival times of the plume by the NIES and JAEA models
were a little earlier than those by the MRI and IRSN models. This is
probably because these NDP forecasts are coupled with different me-
soscale numerical weather prediction (NWP) models. The former two
models implemented the WRF model, whereas the MRI implemented
the JMA non-hydrostatic weather forecast model (JMANHM). The IRSN
model was an off-line transport model, and was driven by the same
meteorological parameters from the JMANHM. Nonetheless, there are
no large differences in the distribution of contamination among models
as shown in Fig. 9c which indicates a higher similarity than in Fig. 9b.

Similar to Fukushima City, if the above forecasts had been available,
people in Kashiwa would have been able to prepare for the con-
taminated precipitation. We should survey the ground contamination
due to wet deposition only when precipitation occurs in the forecasted
regions of high column-integrated contamination. It is not necessary to
survey the ground contamination in the non-precipitation area. Thus,
we can quickly determine which areas are at risk of ground con-
tamination by considering only the areas both experiencing precipita-
tion and predicting column-integrated contamination.

18 JST March 15 (Cross Section at 37.76°N)
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Fig. 10. Same as Fig. 5 but for the 18-h forecast along a line of the latitude of Fukushima City (37.76° N). Open triangles indicate the longitude of Fukushima City

(140.5° E).
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4. Conclusions

Fig. 12. Same as Fig. 8 but for the initialization time of 0600 JST on 20th March.

4.1. How to utilize NDP models for environmental emergencies

All four NDP models succeeded in forecasting the three-dimensional
distribution on short time scales for the three locations considered here.
The NDP models have the potential to provide useful information to the
public on the surface air contamination and column-integrated con-
tamination even if the emission inventory information is not available.
The surface air contamination forecasts can be utilized for mitigating
the inhalation of radioactive substances, and the column-integrated
contamination forecasts for mitigating the radiation exposure asso-
ciated with the wet deposition. Note that the column-integrated con-
tamination is the worst-case scenario for wet-deposition. As with all
natural hazard forecasts, the greatest benefit of using forecasts is the
increased lead time at which warnings can be provided, giving more
time to prepare.

Accurate observational data are also valuable for preparing pre-
ventive measures against nuclear disasters. Emergency systems based
only on observations, however, may not be able to provide timely in-
formation. Also, the use of observations only incurs the risk of

unobserved contamination because of coarse spatial distributions when
there are insufficient stations available. For example, precipitation can
significantly contaminate the ground surface even far away from the
emission source, where it is difficult to deploy observatories enough to
depict the whole contaminated area. Emergency systems should be
established to effectively survey the contamination due to wet deposi-
tion on the ground over wide areas. The utilization of the NDP models
helps us to reduce the radiation exposure by considering the match of
the predicted plume with the observed precipitation. For determining
preventive actions, we should use information from both the observa-
tions and forecasts (World Meteorological Organization, 2006).

4.2. Recommendation

The reason why the NRA discontinued the use of NDP model fore-
casts for environmental emergencies was that both the time-dependent
emission scenarios and weather forecasts contain considerable un-
certainties. According to them, model forecasts can hardly be used
quantitatively, for example, compared with the threshold density va-
lues, to issue evacuation orders. Thus, we recommend using model
forecasts for qualitative indications of the worst-case scenario, which
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can help us choose a safer time and place of evacuation and greatly
reduce exposure to radiation. The assumption of emission rate con-
stancy provides the worst-case scenario when limited source informa-
tion is available. Under the constant emission scenario, it does not
matter what absolute values of emission are used in NDP models be-
cause the hazardous plumes can be discriminated with a huge gap of
concentration in the model simulations.

On the other hand, NDP model forecasts also have uncertainties
arising from the forecasts of dynamic and thermodynamic fields. If
these meteorological fields are inaccurate, then the location of safe
areas may not be safe even though the NDP model forecasts suggest it
is. The differences in the vertical diffusion schemes between models
result in differences in the vertical distributions of the contamination
and subsequently the horizontal distributions. The intercomparison
experiment, however, did not find large differences in the distribution
of contamination among models, as far as the short-range (30-h) fore-
casts are concerned. The consistency among different model forecasts
indicated that short-range forecasts were reliable enough to detect
qualitatively hazardous areas. However, as mentioned above, we ought
to consider the risk of contamination to be slightly broader and longer
than forecasted, considering the uncertainty in the meteorological
fields.

Finally, we recommend the use of various ensemble techniques to
improve the reliability of the NDP forecasts, for example, the time-
lagged ensemble method (cf. Figs. 6b and 7b), in which outputs from
different initialization times provide us with reliable forecasts and the
approximate magnitude of forecast errors. The multi-model ensemble
also should be utilized to illustrate the forecast uncertainties and pro-
vide the extended hazardous time and areas as shown in this study.
Nowadays, many operational NWP centers provide ensemble weather
forecasts using perturbed initial conditions, whose products can also be
used for the initial and lateral boundary conditions of NDP models (cf.,
Kajino et al., 2018). The NDP model intercomparison experiment
strongly indicated the effectiveness of multi-model ensemble techni-
ques in this study. We hope that the multi-model ensemble techniques
will be used not only for the reanalysis of the nuclear accident (e.g.,
Draxler et al., 2015; Kristiansen et al., 2016; Kitayama et al., 2018; Sato
et al., 2018) but also for a forecast (or hindcast) purpose. The un-
certainty of numerical weather forecasts still remains especially for
ground surface wind because the wind in the planetary boundary layer
(PBL) strongly depends on the orographic reproducibility in the model.
Therefore, we sincerely expect the model resolution of operational
weather forecasts to be heightened to reduce the uncertainties of the
PBL wind and NPD forecasts.
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Abstract To assess the uncertainty of meteorological simulations in the transport and deposition of
radio-Cs release associated with the Fukushima Daiichi Nuclear Power Station accident in Japan, a
multiple meteorological model and module ensemble analysis with a single chemical transport model
(CTM) was conducted. Although several multimodel ensemble studies have previously been performed, the
current type (i.e., one CTM with several meteorological fields) was applied for the first time and represents
a useful way to evaluate the uncertainty of each component of CTM. The current analysis concluded that
the underestimation of the deposition efficiency of CTM was the reason for the underestimation of
simulated radio-Cs deposition, whereas the simulated dispersion and precipitation and estimated source
term were all reasonable: all of the simulations underestimated the deposition amount, whereas some
underestimated but others overestimated the simulated precipitation and radio-Cs concentrations. The
CTM simulation performed using the meteorological ensemble mean field was successful in reducing
variance, and they gave reasonable results. The simulated deposition using the meteorological ensemble
was better than others because the ensemble mean enlarged the light precipitation areas and because the
land contamination was mainly caused by light precipitation. The current ensemble study indicated that
in-cloud scavenging was the most dominant mechanism of radio-Cs deposition, followed by dry deposition
and fog deposition over the entire land area. In some deposition regions, fog deposition was dominant,
exceeding 80%, depending on the simulations. The simulated concentrations and depositions varied by
more than twofold, depending on the selection of the meteorological field.

1. Introduction

The Fukushima Daiichi Nuclear Power Station (FDNPS) accident released fission products to the
environment in March 2011 and contaminated land ecosystems through the air. The aircraft-measured
deposition of *’Cs over the land was approximately 3 PBq (NRA [Nuclear Regulation Authority], 2012;
Torii et al., 2012), excluding the area within 3 km of FDNPS because no measurements were available from
this area (no-fly zone). Due to the huge amount of land deposition, together with the longer half lives of
137¢s (30.1 years) and 134cs (2.07 years), there still remain habitation-restricted zones in Fukushima
prefecture. In addition, once deposited to the land, radio-Cs only circulates within local land ecosystems,
and its migration out of the local ecosystem has been found to be not very rapid: The resuspension rate from
the land to the atmosphere was lower than 0.1% per year during the year 2013 (Kajino et al., 2016), and the
discharge rate from the land to the river was 0.73-3.7% per year from August 2012 to September 2013
(Iwagami et al., 2016). Therefore, a better understanding of the dispersion and deposition mechanisms of
primary-emitted radio-Cs is critically needed.

Thanks to the substantial efforts to reveal the atmospheric behavior and budget of radio-Cs by using field
observations and numerical models, knowledge has been accumulated (Kajino, Sekiyama, et al., 2018;
Mathieu et al., 2018). The major isotopes of radio-Cs emitted to the air were 134cs and 7Cs, with almost
equal activity. The total primary deposition (3 PBq) amounted to 20% of the estimated released amount,
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15 PBq (Katata et al., 2015); thus, most of the **’Cs was transported and deposited outside Japanese territory.
Transport events of 137Cs toward land in J apan occurred several times in March 2011 (Nakajima et al., 2017;
Tsuruta et al., 2014), which were associated with some proportions of immediate resuspension from the
ground (Igarashi et al., 2015). Wet deposition processes played key roles in ground surface contamination
in Japan (e.g., Morino et al., 2013; Quérel et al., 2015). This occurred because the sizes of the major propor-
tions of Cs-bearing particles were as small as 1 um or less in aerodynamic diameter (Doi et al., 2013;
Kaneyasu et al., 2012; Masson et al., 2013); thus, the dry deposition velocity of radio-Cs was not very large.

Nevertheless, there is a relatively large uncertainty in the source term estimation of *’Cs (10-50 PBg;
Mathieu et al., 2018). The atmospheric behavior of radio-Cs is much simpler compared to that of radio-I:
Radio-Cs exists only in the aerosol phase in the air, whereas radio-I exists in the aerosol phase, as inorganic
gas, and as organic gas. However, the contributions of deposition processes have varied between models (e.g.,
SCJ [Science Coucil of Japan], 2014). To quantify the uncertainty in the atmospheric budget estimation and to
identify the source of the uncertainty, several multimodel intercomparison studies (Draxler et al., 2015;
Kitayama et al., 2018; Kristiansen et al., 2016; SCJ, 2014) and sensitivity analyses of model parameters (some-
times referred to as intracomparisons; Girard et al., 2014, 2016; Grogll et al., 2014; Leadbetter et al., 2015;
Morino et al., 2013; Quérel et al., 2015) have been conducted. Each method has its pros and cons. The inter-
comparison of different source terms, meteorological fields, and transport models (Kitayama et al., 2018; SCJ,
2014) can quantify the overall uncertainty in the system but cannot quantify the uncertainty of each compo-
nent. In contrast, the intercomparison of different transport models with a common configuration (such as
the common source term, Draxler et al., 2015; Kristiansen et al., 2016) can quantify the uncertainty of each
component but cannot quantify the overall uncertainty. A model intercomparison study can quantify the
magnitude of the uncertainty but cannot adequately identify the reason for the uncertainty. On the other
hand, an intracomparison study can identify the reason for an uncertainty but only for a single model case,
even though the results could vary substantially depending on models. Consequently, the accumulation of
knowledge using several combinations of model intercomparison and intracomparison studies is important.

Thus far, one kind of combination of model comparison (or sensitivity analysis) studies has been missing: a
single transport model applied to multiple meteorological fields. Sekiyama et al. (2015) performed an ensem-
ble dispersion simulation using a square root Kalman filter to assess the uncertainties in meteorological
simulations. Their method can quantify the uncertainty in the initial and boundary conditions of meteoro-
logical fields, but it cannot quantify the uncertainty in the simulation of each meteorological process, such as
cloud microphysics, solar and terrestrial radiation, boundary layer turbulence, and surface fluxes. The pur-
pose of the present study is to quantify the differences in the simulated concentration and deposition of **’Cs
due to the selection of meteorological simulations and to identify the reason for the discrepancies between
simulations and observations. Also investigated are the contributions of each process to '*’Cs deposition,
such as dry deposition, in-cloud scavenging, below-cloud scavenging, and fog deposition over different
regions and between different meteorological simulations.

2. Materials and Methods
2.1. Transport Model

The regional-scale Eulerian transport model NHM-Chem (Kajino, Deushi, et al., 2018; Kajino et al., 2019)
has been used for simulations of the transport and deposition of radionuclides. NHM-Chem is a chemical
transport model (CTM) coupled with a meteorological model, that is, the Japan Meteorological Agency's
(JMA) Nonhydrostatic Model (NHM; Saito et al., 2007). The CTM part of NHM-Chem solves for tropospheric
photochemical reactions and aerosol dynamics processes, but a simplified version was built and applied for
this study. A previous version of the CTM part was called the Regional Air Quality Model 2 (RAQM2; Kajino
et al., 2012), and its simplified version (Adachi et al., 2013) was also applied to previous studies of the atmo-
spheric simulations of the radionuclides released in association with the FDNPS accident (Adachi et al.,
2013; Sekiyama et al., 2015, 2017).

Since the model applied to this study was modified for the transport of radionuclides, it is briefly described
here, with a focus on its differences from the models of Kajino, Deushi, et al. (2018) and Adachi et al. (2013).
This model considers nine tracers, that is, gas-phase 131 aerosol-phase 1311 1321g 1370g 1340 and '33Xe,
and the three moments (number, surface area, and volume concentrations) of aerosols, which carry the
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radionuclides released from FDNPS. Thus, all nuclides are assumed to be carried by the same type of aero-
sols, and the carrier aerosols are assumed to have no interaction with other environmental aerosols or con-
densable gases. Here note that an aerosol “type” is the same as an aerosol category of Kajino, Deushi, et al.
(2018), which has some size distribution but has a uniform chemical composition, density, and shape.
(Diesel exhaust, brake wearing, sea-salt, mineral dust, or pollen is an example of a “type,” defined). As
the chemical compositions are not explicitly treated in the current model, a prescribed hygroscopicity was
applied to the type of carrier aerosols to calculate its hygroscopic growth and cloud condensation nuclei
(CCN) activation. A log-normal size distribution was assumed for the population of carrier aerosols.
Because three log-normal parameters are used to identify the size distribution, that is, the number, geo-
metric mean diameter, and geometric standard deviation, the three log-normal parameters can be fixed by
the simulated three moments. The algorithms of advection, turbulent diffusion, dry deposition, fog deposi-
tion, gravitational settling, in-cloud and below-cloud scavenging processes were the same as those used by
Kajino, Deushi, et al. (2018). Photochemical reactions and thus aerosol microphysical processes, such as
new particle formation, condensation/evaporation, and coagulation, were not considered in the simulation,
but changes in the size distributions during transport due to deposition processes were considered in the
simulation. (Changes in the size distributions during transport were not considered in Adachi et al,,
2013.) The ice nuclei activation was not considered in this study, as it is not the major process in terms of
the removal of aerosol mass, and the CCN activation was substantially simplified. The CCN activation frac-
tion was prescribed as unity, as indicated by Kaneyasu et al. (2012): Sulfate is a carrier of radio-Cs. The unit
activation fraction was assumed for all cloud types, including fog and stratiform and convective clouds.
Although there existed other types of Cs-bearing particles, found and named as Cs-ball by Adachi et al.
(2013), which are totally different in size and hygroscopicity (super micron and nonhygroscopic) than sulfate
particles (submicron and hygroscopic), the Cs-ball was not considered in the current simulation, following
almost all previous simulation studies, except those of Adachi et al. (2013) and Kajino, Sekiyama, et al.
(2018). The impact of Cs-ball on dispersion and deposition will be presented and quantitatively discussed
in our next paper. Two options are available for the below-cloud scavenging processes in NHM-Chem,
namely, the conventional method and size-resolved method (Kajino, Deushi, et al., 2018). The latter was
used for the current simulation, as it is time consuming but considers other processes, such as thermophor-
esis, diffusiophoresis, and electrostatic forces, which the conventional method does not take into account.

The offline-coupled NHM-Chem was used for this study. An offline model comprises an interface connect-
ing the meteorology model part and the CTM part, which is converting the meteorological model output into
the CTM input. An advantage of offline coupling is that various meteorological simulation results can be
used for the input of CTM, only by preparing the interfaces between them. On the other hand, hard coding
is needed to embed the CTM program into the meteorological model for online coupling.

2.2. Meteorological Simulations and Ensembles

As listed in Table 1, transport simulations using combinations of several meteorological models and simula-
tion settings were compared in this study. Figure 1 shows the purpose of the comparison of meteorological
simulations and the method used to produce the ensemble mean of the meteorological field (#9). This figure
also shows the method used to produce the ensemble mean of the chemical field (#8).

We used two meteorological models, NHM (ver. 3.5) and the Weather Research and Forecasting (WRF)
model (Skamarock et al., 2008; ver. 3.5.1) for the meteorological simulations. Both simulations #1 and #2 in
Table 1 used NHM, but for #1, NHM was driven using the JMA's Meso-Regional Objective Analysis
(MANAL) as the initial and boundary conditions, while for #2, the data assimilation system of NHM, using
the local ensemble transform Kalman filter (LETKF), which was developed by Kunii (2013) and named
NHM-LETKF, was used. For #1, the spectral nudging method (Nakano et al., 2012) was used to constrain
the model forecast by the MANAL analysis. Spectral nudging was applied above a height of 7 km for the
large-scale wave component (wavelength > 1,000 km) of horizontal momentums and potential temperature,
with a weighting factor of 0.06. For #2, the simulation of NHM-LETKF itself is the reanalysis.

NHM was developed for the purpose of operational weather forecasting, and only a few combinations of
physics modules (i.e., cloud microphysics, radiation, turbulence, and land surface processes) are available.
Although the combination of modules was limited, each module has been extensively developed to achieve
the best performance of weather prediction in Japan. On the other hand, the Advanced Research WRF was

KAJINO ET AL.

1825



Journal of Geophysical Research: Atmospheres 10.1029/2018JD028998

Table 1
Meteorological Models and Physical Modules Compared in the Study
Planetary
Name Analysis Data assimilation Cloud microphysics boundary layer
1 NHM? MANAL® Spectral nudging®  Six-category double moment® MYNN30¢
2 NHM-LETKF —° LETKF' Six-category double moment®  MYNN30
3 WRFE-WSM6-MYJ MANAL  Grid nudging WSM6" myJ'
4 WRF-WDM6-MYJ MANAL Grid nudging WDM6' MYJ
5 ‘WRF-MORR-MYJ MANAL Grid nudging MORRk MYJ
6 WRF-MORR-MYNN25 MANAL Grid nudging MORR MYNN251
7 WRF-MORR-MYNN30 MANAL Grid nudging MORR MYNN30
9 Met_EnsMeanm - - - -

#NHM: IMA's Nonhydrostatic Model (Saito et al., 2007; JMA [Japanese Meteorological Agency], 2008). °MANAL:
JMA Meso-Regional Objective Analysis. °Nakano et al. (2012). IMYNN30: Mellor-Yamada-Nakanishi-Niino level
3.0 scheme (Nakanishi & Niino, 2006). °This is a meteorological analysis. 'LETKF: Local ensemble transform
Kalman filter (Kunii, 2013; Sekiyama et al., 2017). EWRF: Weather Research and Forecast model (Skamarock et al.,
2008). bywsme: six-category single moment cloud microphysics scheme (Lin et al., 1983). 'MYJ: Mellor-Yamada-
Janjic scheme (Janjic, 2002). WDMS: six-category double moment cloud microphysics scheme (Lim & Hong,
2010). XMORR: Morrison's double moment cloud microphysics scheme (Morrison et al., 2009). IMYNN25: Mello-
Yamada-Nakanishi-Niino level 2.5 scheme (Nakanishi & Niino, 2006). ™Met_EnsMean: Meteorological model
ensemble mean ([1] + [2] + ([3] + [4] + ([5] + [6] + [71)/3)/3)/3.

developed for research purposes; thus, a number of physics modules have been implemented and can
be compared.

From #3 to #7, in order to evaluate the sensitivity of the physics modules, we conducted multimodule simu-
lations of WRF using three different cloud microphysics modules (Lin et al., 1983; Lim & Hong, 2010;
Morrison et al., 2009, denoted as WSM6, WDM6, and MORR, respectively) and three different planetary
boundary layer (PBL) physics modules (Janjic, 2002, and level 2.5 and level 3 of Nakanishi & Niino, 2006,
denoted as MYJ, MYNN25, and MYNN?30, respectively). Instead of comparing all nine combinations, five
were selected for comparison, using MORR-MYJ as a control run: the combination of WSM6-MY]J,
WDM6-MYJ, and MORR-MYJ was selected for the comparison of cloud microphysics modules, and the
combination of MORR-MYJ, MORR-MYNN25, and MORR-MYNN30 was selected for the comparison of

(a) Meteorological models and physical modules ensembles

® NHM ® Met_EnsMean
See difference in meteorological

@ NHM-LETKF =——————— simulations
WRF . See difference in cloud

I Microphysics schemes
@® WRF-WDM6-MYJ ‘
® WRF-MORR-MYJ =
©® WRF-MORR-MYNN25 ; WRF-MORR_EnsMean J-» WRF_EnsMean
@ WRF-MORR-MYNN30 I See difference in PBL

turbulence scheme
(b) Chemical transport simulations offline-coupled with meteorological ensembles

® NHM/Chem

® NHM-LETKF/Chem
/Chem

@ WRF-WDM6-MYJ/Chem

® WRF-MORR-MYJ/Chem ——

® WRF-MORR-MYNN25/Chem

@ WRF-MORR-MYNN30/Chem — ©® Met_EnsMean/Chem

Figure 1. Meteorological models, meteorological model ensembles, and chemical transport simulations together with its
ensemble, used and compared in the study. NHM = Nonhydrostatic Model; LETKF = local ensemble transform Kalman
filter; WRF = Weather Research and Forecasting; CTM = chemical transport model; PBL = planetary boundary layer.
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Figure 2. (a) Model domain and topographic height. (b) Deposition area defined in the study.

PBL modules, as shown in Figure 1a. MANAL was also used as the initial and boundary conditions, as well
as for the grid nudging. Grid nudging was applied for horizontal wind speed, temperature, and water vapor,
with a nudging factor of 0.0003, only above the PBL.

Instead of equally averaging the seven meteorological simulations, the following averaging was performed to
produce the meteorological ensemble mean (#9, Met_EnsMean): Met_EnsMean is an average of NHM,
NHM-LETKF, and WRF_EnsMean; WRF_EnsMean is an average of WRF-WSM6-MYJ, WRF-WDM6-
MYJ, and WRF-MORR_EnsMean; and WRF-MORR_EnsMean is an average of WRF-MORR-MYJ,
WRF_MORR-MYNN25, and WRF_MORR-MYNN?30. The ensemble mean of the seven transport simula-
tions, #8 CTM_EnsMean, was obtained in the same manner, as is shown in Figure 1b. The unweighted aver-
age is significantly biased toward the meteorological fields produced by the WRF simulations because all of
the WRF simulations were predicted by a common dynamic core and constrained to MANAL. Even though
the NHM simulation was also constrained to MANAL, the simulations of NHM were significantly different
from those performed by WRFs, because the dynamic cores of the models and their methods of constraint
were different (i.e., grid nudging vs. spectral nudging). Although the dynamic cores of NHM and NHM-
LETKF were similar, the two simulations were significantly different due to the differences in their initial
and boundary conditions. This feature is obviously found in the surface concentrations, as shown later in
Figure 4 (see the differences in mean bias [MB] and the shapes of scatter diagrams between NHM, NHM-
LETKF and WRFs).

Overall, we used eight meteorological model variations and nine chemical model variations for the current
comparison study.

2.3. Simulation Settings

As shown in Figure 2a, the simulation domain and grid resolution are the same as those used in our previous
studies (Adachi et al., 2013; Sekiyama et al., 2015, 2017). There are 213 X 257 horizontal grid cells with a 3-
km grid resolution on the Lambert conformal coordinate. There are 48 vertical layers reaching up to approxi-
mately 22 km above sea level (ASL) for NHM and 27 layers reaching up to 100 hPa for WRF, which are
reduced to 19 layers reaching up to 10 km ASL for the CTM on the terrain-following coordinate with verti-
cally stretched grids (with more grids at lower levels to resolve the dynamics within the PBL). The latest ver-
sion of the Japan Atomic Energy Agency's (JAEA) emission scenario, as established by Katata et al. (2015),
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was selected for all simulations. The meteorological simulation was conducted from 00 UTC on March 11 to
00 UTC on 1 April, with a spin-up period of 20 hr: Katata et al.'s (2015) emission was initiated at 20 UTC on
11 March.

In the current simulation, as mentioned earlier, all of the radio-Cs nuclides were carried by sulfate aerosols,
as inferred by Kaneyasu et al. (2012) and assumed by all simulations except for those of Adachi et al. (2013)
and Kajino, Sekiyama, et al. (2018). In terms of the physical parameters of Cs-carrying sulfate during the
emission (although sulfate is clearly “not” directly emitted from the reactor, it is assumed that the emitted
Cs was mixed with environmental sulfate aerosols immediately after its emission from the reactor), we used
a number-equivalent geometric mean dry diameter of 102 nm, a geometric standard deviation of 1.6, a par-
ticle density of 1.83 g/cm?, and a hygroscopicity x of 0.4 (see Adachi et al., 2013).

2.4. Observation Data

The JMA Radar/rain gauge-Analyzed Precipitation (RAP) data were used for the validation of the simulated
precipitation amount. Since the RAP data provide 1-hr precipitation data with 30-min resolutions starting
from 0 and 30 min, only data starting from 0 min were used in the study. The aircraft measurement data
of NRA (2012) were interpolated to the model domain and used for the validation of the simulated deposi-
tion amount of '*’Cs. The simulated surface concentrations of *’Cs were validated by the hourly observa-
tion data of 99 stations obtained by Tsuruta et al. (2014) and Oura et al. (2015).

2.5. Deposition Areas

The deposition areas used for the process analysis of this study are shown in Figure 2b. The deposition areas
were selected where the grid mean (3-km) deposition of the aircraft measurement (NRA, 2012) exceeded
10 kBq/m?, as shown later in Figure 5. These areas were divided into nine subareas based on the geography
(mainly mountains), prefectures, and possible deposition processes (or events), which are also summarized
in Morino et al. (2013) and Mathieu et al. (2018). The observed total deposition amount of **’Cs over the
entire land area of Japan (denoted as Area 0) was 2.59 PBq. Hamadori (Area 1) is a coastal area of
Fukushima prefecture where FDNPS is located and bordered by the Abukuma Highlands, which are mod-
erately high mountains (~1,000 m). The largest amount of deposition, 1.4 PBq, occurred in this area, which
amounted to 53.4% of the total land deposition (as shown later in Table 3). Nakadori (Area 2), which is
located next to Hamadori, is a valley between the Abukuma Highlands and the Ou Mountains, a high moun-
tain chain (1,000~2,000 m). The second-largest amount of deposition occurred in this area, 0.44 PBq, which
is 17.1% of the total land deposition. The major amounts of deposition in Hamadori and Nakadori were
caused by light precipitation, which was lower than the detection limit of rain-gauge measurement
(0.5 mm) or dry deposition (Mathieu et al., 2018). A total of 70% of deposition occurred in these two areas.
Aizu (Area 3), which is located next to Nakadori, is located west of the dividing Ou Mountains; thus, it
was less contaminated compared to the rest of Fukushima prefecture (0.076 PBq, 2.9%). South Miyagi
(Area 4; 0.047 PBq, 1.8%) and Iwate-Miyagi (Area 5; 0.038 PBq, 1.4%) are located in the northern region of
Fukushima prefecture. The Iwate-Miyagi area is isolated; thus, its contamination is presumed to have
occurred due to air-aloft processes, that is, in-cloud scavenging. In Tochigi (Area 6) and Gumma (Area 7)
prefectures, contamination occurred mainly over mountainous regions, and the importance of fog deposi-
tion (or cloud deposition) was inferred by Hososhima and Kaneyasu (2015), Katata et al. (2015), Sanada
et al. (2018), and this study. The deposition of *’Cs over both areas totaled 0.21 PBq, which represented
7.9% of the total land deposition. (Area 8) Iwaki-Ibaraki and (Area 9) Ibaraki-Chiba are located in the south-
ern region of Fukushima prefecture; their 37¢s depositions were 0.11 PBq (4.3%) and 0.044 (1.7%), respec-
tively. The deposition amount for the remaining land areas, that is, areas with <10 kBq/ m?, or Area 0 minus
the sum of Areas 1 to 9, was 0.24 PBq (9.4%).

3. Results

3.1. Comparison of Precipitation Fields

Throughout the paper, we only focus on **’Cs because the atmospheric behavior and radioactivity of ***Cs
should be almost the same as those of **’Cs for the current analysis. Certainly, the slight difference in the

activities of **Cs and '*’Cs was essentially important for the analysis of their origins, as conducted by
Satou et al. (2018). Thus, the simulation results of all radio-Cs can be obtained by doubling the results of 137¢s.
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Figure 3. (upper panel) Horizontal distributions of observed and simulated cumulative precipitation from 11 to 31 March. (middle and lower panel) Scattergrams
between observation and simulations for the whole period (middle) and for the afternoon (12-24 LT) of 15 March, when the most serious contamination occurred
over the land of Japan. The correlation coefficient R, observed areal average, and mean bias (MB) values are embedded in the panels. NHM = Nonhydrostatic
Model; LETKF = local ensemble transform Kalman filter; WRF = Weather Research and Forecasting.

Figure 3 shows the observed and simulated horizontal distributions of the cumulative precipitation from 11
to 31 March over the model domain in the upper panels. The middle and lower panels show the scattergram
between the observed and simulated precipitation for the whole period and that during the afternoon of 15
March, respectively. The RAP data below the detection limit (0.5 mm/hr) were not added to the cumulative
amount. The horizontal average of the RAP data (with a resolution of approximately 1 km) was made to
match the model grids (Ax = 3 km) in order to directly compare the simulated and observed values.
Due to the horizontal averaging, there are observed values below 0.5 mm in the scattergrams. Note that
10 grids from the lateral boundaries of the model domain were excluded from the comparison scatter-
grams. The observed areal average (obs. ave. = 55.0 mm), correlation coefficient R, and mean bias (MB)
are embedded in the panels. Note that R is the linear-linear correlation despite the log-log plot of the
scattergrams. Additionally, the RAP has a larger uncertainty for light precipitation due to the detection
limits of the small droplet size (such as drizzle) for the C-band radar and the precipitation amount of
the rain gauge (0.5 mm).

In terms of the cumulative precipitation from 11 to 31 March, WRF-WDM6 predicted the largest precipita-
tion (MB = 12.3 mm), especially over the mountainous regions located at the center of the Japan
Archipelago, where the cumulative precipitation exceeded 300 mm. WRF-WSM6 also overestimated preci-
pitation, but to a lower degree (MB = 3.4). Despite the common dynamic core used, WRF-MORR did not
show any overestimation over the mountainous regions and underestimated the values for the whole region
(MB = —7.6). These data indicate that the selection of cloud microphysics modules is essentially important
for the prediction of precipitation. They also indicate that the precipitation was well predicted by the WRF
ensembles because the observed values fell between the minimum and maximum estimates, that is, the
observed values were within the uncertainty of the cloud microphysics modules. Both NHM models
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Figure 4. Horizontal distributions of observed and simulated cumulative surface concentrations from 13 to 23 March and scattergrams between observations and
simulations. The correlation coefficient R, observed areal average, and mean bias (MB) values are embedded in the panels. The observation data in each model grid
were averaged and used for the comparison. NHM = Nonhydrostatic Model; LETKF = local ensemble transform Kalman filter; WRF = Weather Research and
Forecasting; CTM = chemical transport model.

underestimated the observations, but the underestimation of NHM-LETKF (MB = —18.2) was greater than
that of NHM (MB = —5.2) due to the different treatments of their lateral boundary conditions. The lateral
boundary of NHM contained hydrometeors, while that of NHM-LETKF did not (it only contains water
vapor). Although 10 grids from the lateral boundaries were excluded in this comparison, the lateral
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Figure 5. Horizontal distributions of observed and simulated cumulative deposition of 137¢Cs from 11 to 31 March and scattergrams between observations and
simulations. The gross deposition amounts, correlation coefficient R, observed areal average, and mean bias (MB) values are embedded in the panels.
NHM = Nonhydrostatic Model; LETKF = local ensemble transform Kalman filter; WRF = Weather Research and Forecasting; CTM = chemical transport model.

boundary conditions affected this analysis. Nevertheless, the artifact of the lateral boundary conditions is
minor because the major deposition areas (e.g., Figure 2b) are well centered in the model domain. It is
also noted here that the radioactive plumes were blocked by the high mountain chains; thus, the
overestimation of precipitation over mountainous areas predicted by WRF-WSM6 and WRF-WDM6
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should not deteriorate the model performances in the prediction of the wet deposition of **’Cs. The correla-
tion coefficients were not very different between the models, as they ranged from 0.43 (NHM) to 0.54 (WRF-
WDMB6). Although they are not shown here, the differences in the PBL turbulence schemes (WRF-MORR-
MYJ, WRF-MYNN25, and WRF-MYNN30) were not significant for the predictions of precipitation (R: 0.48-
0.48, MB: —9.8 to —7.6). Again, the precipitation was well predicted by the current meteorological model
ensembles because the observed values fell between the minimum (NHM-LETKF) and maximum
estimates (WRF-WDMS6).

The simulated precipitation of Met_ EnsMean was successful in reducing variance, yielding a higher R (0.50)
value than the lowest one of NHM (0.43) and a lower absolute value of MB (7.0) than those of NHM-LETKF
(18.2) and WRF-WDM6 (12.3).

In terms of the cumulative precipitation on the afternoon of 15 March, a similar conclusion was inferred as
in the case of the entire simulation period: overestimation by WRF-WDM6 (MB = 1.97) and WSM6
(MB = 1.94) and underestimation by NHM-LETKF (—0.92). The precipitation was well predicted by the cur-
rent meteorological model ensembles because the observed values fell within the minimum (NHM-LETKF)
and maximum estimates (WRF-WDM6). Here NHM, the operational forecast model of the IMA, performed
best in this case (yielding the highest R, lowest absolute value of MB, and narrowest aggregation of plots).
The Met_EnsMean was successful, yielding a high R (0.80) close to the highest values (0.82 of NHM and
WRF-WSM6) and showing the lowest absolute value of MB (0.40).

3.2. Comparison of *’Cs Surface Concentration Fields

Figure 4 shows the observed and simulated horizontal distributions of the cumulative concentration
(Bg:m™>-hr) from 13 to 23 March. The observation data were averaged to the model 3-km grids and then
compared with the simulated data. Still, however, the values in this comparison are biased toward the
data of areas, where the observation sites are densely situated, that is, Tokyo and the surrounding areas.
The observed areal average (obs. ave. = 379 Bq-rn_s-hr), correlation coefficient R, and mean bias (MB)
values are embedded in the panels. The WRF simulations overestimated the observed values
(MB = 158-178 Bq-m >-hr), the NHM simulations underestimated them (MB = —140.7), and the
NHM-LETKF yielded the best MB value (13.4). Same as in the precipitation prediction, the surface activ-
ity concentration was also well predicted by the current meteorological model ensembles because the
observed values fell within the minimum (NHM) and maximum (WRF-WDMS6) estimates.

Because all the models used a common horizontal diffusion scheme, the differences in model performance
were mainly due to vertical diffusion and horizontal advection. Since both the NHM and NHM-LETKF also
employ the same Mellor-Yamada-type PBL scheme (MYNN30) as the WRF simulations, the differences in
the simulated surface air concentrations due to differences in vertical diffusivities were not significant.
Within the PBL, all of the simulations were not assimilated to the meteorological analysis data, except for
NHM-LETKEF: the surface wind data of the JMA's Automated Meteorological Data Acquisition System at
more than 200 stations in the model domain were assimilated to the simulation (Sekiyama et al., 2017).
This partly explains why NHM-LETKF-Chem performed best in the quantitative simulation of the surface
activity concentrations of '*’Cs. The correlation coefficients obtained in all simulations were very similar
to each other (R = 0.70-0.81). The CTM_EnsMean was successful in reducing variance, yielding a higher
R (0.74) value than the lowest one of WRF-MORR (0.70) and showing the lowest absolute value of MB
(3.2) compared to any other simulations.

The CTM simulation performed by Met_EnsMean (denoted as Met_EnsMean) was shown to perform well in
the simulation of concentrations, showing the highest R (0.81) value and lower absolute value of MB (66.7)
compared to the largest one of WRF-WDM6 (178.4). It is not surprising that the performance of
CTM_EnsMean was good, but it is not necessary that the performance of Met_ EnsMean-Chem was good.
This is one of the major implications of the current study.

The simulated concentration of WRF-WDM6 was the largest, although the simulated precipitation of this
model was also the largest. This appears to be contradictory, as precipitation removes aerosols. However, this
result is still not surprising because below-cloud scavenging was not a controlling factor of the prediction of
surface concentration, as is discussed extensively in sections 4.1 and 4.2.
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Figure 6. (a) The correlation coefficient R and normalized mean bias (NB) values of the cumulative 137¢g deposition
between the observed and simulated values by the nine models over the entire land area of Japan (Area 0). (b, c) Same
as (a) but for (b) R and (c) NB over the nine deposition areas as defined in Figure 1.

3.3. Comparison of *’Cs Deposition Fields Over Deposition Regions

Figure 5 shows the observed and simulated horizontal distributions of the cumulative deposition (kBg/m?).
The total land deposition (PBq), observational areal average (obs. ave. = 838.2 kBq/mz), correlation coeffi-
cient R, and mean bias (MB) values are embedded in the panels. Note that R represents the linear-linear cor-
relation between the data above the observational detection limit (10 kBq/m?). The simulated Rs of the '*’Cs
depositions (R = 0.46-0.65) were not as large as those obtained in previous studies (R > 0.7-0.8; e.g., Draxler
et al., 2015; Morino et al., 2013), but they were similar to those of simulated precipitation for the whole per-
iod (R = 0.43-0.54) and significantly lower than those of the cumulative concentrations (R = 0.70-0.81). The
R and normalized bias values (NB; MB divided by the observational mean) over the entire land area (Area 0)
and the nine depositional areas of the nine simulations are shown in Figure 6. All of the values of R and NB
are listed in Tables 2 and 3, respectively.

In contrast to the precipitation and surface concentration simulations, all of the simulations underestimated
the observations. The reason for this is discussed later in section 4.2.1. As shown in Figure 5, NHM signifi-
cantly underestimated the **’Cs deposition (MB = —70.5), whereas the underestimations of the other simu-
lations were similar to each other: The largest deposition was simulated by NHM-LETKF (MB = —52.9), and
the smallest deposition after NHM was simulated by WRF-WDM6 (—60.4). In terms of R, the WRF simula-
tions showed better agreements with the observed '*’Cs deposition (R = 0.61-0.65), as they could success-
fully reproduce the general features of the deposition map: The most contaminated regions extended
toward the northwest direction from the FDNPS (Area 1, 53.4% of total land deposition), the second-most
contaminated regions were in the Nakadori valley (Area 2, 17.1%), and the third-most contaminated regions
occurred over the mountain regions of Tochigi and Gunma prefectures (Area 6 + Area 7, 7.9%), the regions
south of FDNPS and the Kanto plain (Area 8 + Area 9, 6.0%; see Figure 5). In fact, because R was obtained
from the linear-linear relationship, the R values over the entire land region were determined by the magni-
tudes of R over Areas 1 and 2 (Figures 6a and 6b). The R of NHM was lowest (0.46) because it did not repro-
duce the northwest direction of the highest contamination over Area 1 and the deposition amounts over
Nakadori (Area 2) and Tochigi and Gunma (Area 6 + Area 7) were significantly underestimated.
Although NHM-LETKF the showed best quantity over Area 1, it significantly underestimated the
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Table 2

Correlation Coefficients (R) Between Simulated and Observed Cumulative Depositions of Radio-Cesium for Each Deposition Area and Combination of Numerical

Models, as Shown in Figures 6a and 6b

Model/deposition 1 2 NHM- 3 WRF- 4 WRF- 5 WRF- 6 WRF-MORR- 7 WRF-MORR- 8 CTM_ 9 Met_  Average
area NHM LETKF WSM6-MYJ WDM6-MYJ MORR-MYJ MYNN25 MYNN30 EnsMean EnsMean of R*
0 = (entire land) 0.46 0.52 0.63 0.65 0.61 0.58 0.53 0.58 0.63 0.58
1 (Hamadori) 0.38 0.45 0.57 0.60 0.56 0.55 0.48 0.50 0.57 0.52
2 (Nakadori) 0.19 0.37 0.58 0.64 0.60 0.38 0.46 0.53 0.59 0.48
3 (Aizu) 0.21 0.24 0.24 0.24 0.21 0.28 0.28 0.25 0.27 0.25
4 (South Miyagi) 0.14 —0.07 0.16 0.41 0.06 0.15 0.15 0.16 0.28 0.16
5 (Iwate-Miyagi)  —0.09 —0.06 0.01 —0.02 0.02 —0.07 —0.05 —0.08 —0.17 —0.06
6 (Tochigi) —0.11 0.00 —0.13 —0.04 —0.14 —0.15 —0.15 —0.08 —0.06 —0.10
7 (Gunma) 0.07 0.26 0.03 0.03 0.09 0.17 0.20 0.14 0.36 0.15
8 (Iwaki-Ibaraki) 0.17 —0.04 0.02 0.10 0.05 —0.07 —0.06 —0.03 0.17 0.03
9 (Ibaraki-Chiba) —0.18 —0.39 —0.23 —0.18 —0.37 —0.36 —0.40 —0.34 —0.10 —0.28
Average of R® 0.12 0.13 0.19 0.24 0.17 0.15 0.15 0.16 0.25

3Statistically nonsensical but useful measure to compare the mean predictability over different deposition areas. bStatistically nonsensical but useful measure
to compare the mean predictability of different models.

deposition amounts over Nakadori (Area 2; Figure 6¢). In Tochigi and Gunma prefectures, simulated
depositions were found over the plain areas rather than in the mountain areas, in contrast to the
aircraft observation.

The CTM_EnsMean was successful: Its R (0.58) was higher than the lowest one (0.46) predicted by NHM,
and its absolute value of MB (60.2) was lower than the highest one (70.5) predicted by NHM. Because the
performance of NHM was the worst in both aspects (R and MB), the performances of single WRF simulations
were better than or as good as those of the CTM_EnsMean. NHM performed very well in terms of precipita-
tion and NHM-LETKF performed best in the simulations of concentrations, whereas WRF simulations were
better in terms of the simulations of **’Cs deposition. This appears to be contradictory; the reason for this
disparity is briefly discussed later in section 4.2.2.

It appears surprising that the Met_EnsMean-Chem performed significantly well in the simulation of '*’Cs
deposition: Its R (0.63) was as large as the largest R (0.65) predicted by WRF-WDMBS6, and its MB (—47.4)
was the best of all the simulations (—70.5 to —52.9). This is due simply to the enhancement of precipitation
areas by the ensemble mean. Because precipitation areas are spatially sporadic and not continuous, using the
ensemble mean of different precipitation fields should enlarge the precipitation area and decrease the spatial
peaks. Contamination was caused by light precipitation after the FDNPS accident; thus, the enhanced light
precipitation areas resulted in the enhancement of the simulated total **’Cs deposition.

4. Discussion

4.1. Dominant Deposition Processes

Figure 7 shows (upper panel) the observed and simulated deposition amounts and (lower panel) contribu-
tions of deposition processes simulated by the nine models of the entire land area (Area 0) and the nine
deposition areas. All of the models generally underestimated the observed deposition amounts, except in
Gunma (Area 7), where the observed value fell within the range of uncertainty in the simulations. The
underestimation was not very significant in the southern direction of FDNPS, that is, Area 8 and Area 9.
The simulated values of NHM-LETKF and WRF-WDM6 were sufficiently close to the observed values for
Area 8 and Area 9, respectively (also see Table 3). The underestimation of the simulation over the entire land
was approximately 1.5 PBq, except in NHM, where it was approximately 2.0 PBq. Except for NHM, out of the
1.5 PBq of underestimation, 1 PBq was found in Hamadori (Area 1), and the other 0.5 PBq originated from
Nakadori (Area 2).

The current ensemble study indicated that in-cloud scavenging (both solid and liquid precipitations) was the
most dominant mechanism of the **’Cs deposition; the next most dominant mechanisms were dry deposi-
tion and fog deposition, depending on the simulations and deposition regions. From southern to northern
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Figure 7. (upper panels) The observed (dashed line) and nine-model simulated (circles) gross deposition of

LETKF WSM6 WDM6 MOR MOR25 MOR30 CTM-EnsMet-Ens.
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® Dry deposition

137

Cs (PBq) for the entire land area of Japan (denoted as

Area 0) and the nine deposition areas as defined in Figure 1. (lower panels) The simulated contributions of each deposition process to the total deposition: (red)
dry deposition, (green) fog deposition, (sky blue/solid) in-cloud scavenging by liquid precipitation, (sky blue/hatched) in-cloud scavenging by solid precipitation,
(navy/solid) below-cloud scavenging by liquid precipitation, and (navy/hatched) below-cloud scavenging by solid precipitation. NHM = Nonhydrostatic

Model; LETKF = local ensemble transform Kalman filter.

and lower- to higher-altitude areas, the snow (or solid precipitation) contribution increased (from Areas 1 to
4). As indicated by previous studies, fog deposition was the major process in Tochigi (Area 6) and Gunma
(Area 7) prefectures. Because the major part of the Japan Archipelago was covered by mountainous forests,
the contribution of fog (or cloud reaching to ground surface of mountains) was ubiquitous, except in Area 9,
which is located over the Kanto plain. Different models gave different answers for Area 5: Some said they
were dry, while others said they were wet. Additionally, some said they were liquid, while others said they
were solid. This deposition area was isolated and located further north of the FDNPS. By assuming isentropic
transport, the radioactive plumes that caused deposition over Area 5 could have been aloft; thus, in-cloud
scavenging could have been a major process. Among the deposition processes, in-cloud scavenging can be
the most difficult to simulate because a number of elemental processes are involved, and each process has
its own uncertainty. The offline coupling itself has an inherent limitation in the in-cloud scavenging model-
ing, as discussed in Kajino, Deushi, et al. (2018); thus, the deposition modeling over Area 5 was also difficult
to simulate using the current offline coupling framework.
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respectively.

The current simulations indicated the importance of fog deposition, which was not considered in previous
modeling studies, except for that of Katata et al. (2015). However, there are significant differences in the con-
tributions of fog between the models. Generally, NHM produced less fog deposition. The fog contribution of
NHM over Areas 0 and 1 and that of NHM-LETKF over Area 2 were negligibly small. The WRF simulations
tended to produce more fog deposition, except for WRF-WDM6, which produced as little fog deposition as
NHM and NHM-LETKF. Differences in the selection of the PBL turbulence schemes (MORR-MYJ and
MORR-MYNNSs) caused significant differences in the fog contribution, especially over Area 1. Figure 8
shows the comparisons of the time series of fog water content at the two mountainous sites at Nikko
(Tochigi, Area 6) and Karuizawa in Nagao (next to Gunma, Area 7). Both of these sites belong to the
JMA’'s Automated Meteorological Data Acquisition System, where visibility data were available. The
observed visibility data were converted to fog water content by using the formula of Stoelinga and Warner
(1999) and compared with the simulations. The black and gray dots at the tops of the panels indicate that
the '*’Cs concentrations simulated by Met_EnsMean exceeded 1 and 0.1 Bq/m?, respectively. From 15
and 16 March and 20-23 March, the fog occurrence coincided with the transport of the radioactive plumes,
which were well predicted by the simulations. However, the amount of fog water content varied significantly
between the simulations. Although NHM and NHM-LETKF could not predict the fog deposition over Areas
6 and 7 (Figure 5), they actually produced fog but did not coincide with the transport of radioactive plumes
(Figures 8a and 8b). On the other hand, the lower fog contribution of WRF-WDMS6 (Figure 7) was probably
due to the significant underestimation of the fog water content (Figures 8a-8d). Since the difference between
the MORR-MYNN25 and MORR-MYNN30 was small, only MORR-MYNN?30 is shown in Figures 8c and 8d.
These data show that the selection of the PBL schemes sometimes caused significant differences in the pre-
diction of fog water content.

There is an argument for the importance of the threshold of the fog water content. In the deposition module
of Katata et al. (2015) used in this study, as follows:

Var = RpucAcUno, ®

where Vyis the fog deposition velocity and Ry is the ratio of V4 for each land use category (LUC) to that
for coniferous forest and set 1, 0.2, and 0.1 for forest, short vegetation, and smooth surfaces, respectively. A.
is the function of leaf area index (LAI) or LAI and the canopy height h (see Equation A12 of Katata et al.,
2015) and Uy is the 10-m wind speed. Because h data were not available for the whole model domain, we
used the function of LAI as follows:
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Figure 9. (a) Rank histograms of simulations with the seven meteorological models (NHM, NHM-LETKF, and the five WRFs) for (black) cumulative precipitation
for the afternoon (12-24 LT) of 15 March (data used only observed values above 0.1 mm), (white) cumulative 137¢s concentration from 13 to 23 March, and (gray)
cumulative 1*7Cs deposition from 11 to 31 March. (b) Same as (a) but for simulations with the three meteorological models (NHM, NHM-LETKF, and

WRF_EnsMean).
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Tav (2017) and Tav et al. (2018) indicated that fog deposition can only be detected with fog water mixing
ratios of larger than 10~* kg/kg under calm wind conditions. Nevertheless, it is not accurate to set the thresh-
old value as 10~* kg/kg for the simulation because no fog deposition will occur when the simulated fog mix-
ing ratio is slightly lower than the threshold, such as 0.99 x 10™* kg/kg. Therefore, the threshold was set as
107° kg/kg in the current study, thus reflecting the possibility of the underestimation of simulated fog by a
factor of 10. In addition, in the presence of stronger surface wind, fog deposition could be enhanced, even in
the case of thinner fog. To evaluate the sensitivity of the data to the threshold values, we conducted the simu-
lation by Met_EnsMean with the threshold of 10~ kg/kg to provide a minimum estimate of the fog deposi-
tion. The result is shown in Appendix A. Also, the fog deposition velocity should be proportional to fog
mixing ratio, because the size (and the inertia) of fog droplets is generally larger as the mixing ratio is higher.
This effect was not considered in the simulation.

4.2. Implications From the Multimeteorological Model Ensembles

4.2.1. Underestimation of Deposition Efficiencies

The simulated precipitations and cumulative concentrations of *’Cs obtained by the meteorological model
ensembles either overestimated or underestimated the observed values. Their simulated spatial distributions
agreed well with the observations. These indicated that the simulations of wind fields and precipitations and
the source term used in this study (Katata et al., 2015) were probably realistic. On the other hand, all of the
simulated depositions of *’Cs were underestimated. This feature is readily observed in Figure 9, which
shows the rank histograms of (black) the cumulative precipitation for the afternoon of 15 March, when
the most serious contamination occurred over the land of Japan (corresponding to the lower panel of
Figure 3), (white) the cumulative concentration of 37cs (corresponding to Figure 4), and (gray) the cumu-
lative deposition of *’Cs (corresponding to Figure 5). The relative frequencies of the precipitation and con-
centration data in Figure 9 are enough close to each other, whereas the ensemble showed significant
underestimation for the deposition. Because the behaviors of the five WRF simulations were relatively simi-
lar, compared to those of NHM and NHM-LETKEF in Figure 9a, data in Figure 9a were biased toward the five
WREF simulations. As the result, the relative frequencies of the precipitation and concentration data in
Figure 9b (an ensemble of NHM, NHM-LETKF, and WRF_EnsMean) were more close to each other than
those of Figure 9a. Therefore, Figure 9b also shows the validity of the current way of ensemble mean
(CTM_EnsMean and Met_EnsMean): This three-member ensemble had the average spread in terms of
the precipitation and the concentration data.

Combining these facts, it is safe to presume that the depositional efficiencies of CTM were underestimated:
without the current multimeteorological model analysis, the reason for this could not be identified.
Certainly, wrong patterns of simulated precipitation and/or wind fields could also lead to such a situation.
Therefore, this conclusion is supported not only by the fact that the ensembles showed the average spread
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but also by the fact that they showed good spatial agreements with the observations as presented in sections
3.1 and 3.2.

NHM-Chem considers four types of deposition mechanisms, that is, dry deposition, in-cloud scavenging,
below-cloud scavenging, and fog deposition. Each process contains large uncertainties. The dry deposition
efficiency is determined by the '*’Cs-carrying aerosol size distribution and the ground surface conditions.
The below-cloud scavenging efficiency is determined by the size distribution of aerosols and hydrometeors.
The state of hydrometeors is also important because most solid hydrometeors are very nonspherical, and
their gravitational velocities and collection efficiencies are different than those of spheres. In-cloud scaven-
ging and fog deposition consist of two processes, that is, “CCN activation” and “microphysical deposition.”
CCN activation is determined by the size and hygroscopicity of the carrier aerosols and the supersaturation
of the air, both for in-cloud scavenging and fog deposition (the supersaturation of cloud formation, ~0.1-1%,
is one to 2 orders of magnitude larger than that of fog formation, ~0.01-0.1%). For the microphysical deposi-
tion part of in-cloud scavenging, a number of elemental processes, that is, so-called cloud microphysical pro-
cesses, are involved in the evolution of cloud droplets that form liquid or solid hydrometeors and settle to the
ground. During the deposition process of fog deposition, the mechanism is the same as that of dry deposition:
The deposition efficiency is determined by the **”Cs-carrying fog size distribution and the ground surface
conditions. Uncertainties in all of these parameters can contribute to the underestimation of deposition effi-
ciencies; thus, it is difficult to identify the reason for this underestimation.

Nevertheless, several issues need to be investigated to identify the cause of this underestimation and improve
the deposition modeling of radio-Cs by the current CTM:

1. In terms of the underestimation of dry deposition, Cs-ball should be considered. The sizes of Cs-ball
range from one to several hundred micrometers in diameter, such that the dry deposition velocities of
Cs-ball should be significantly larger than those of submicron carrier aerosols, as assumed in the simula-
tion. The consideration of Cs-ball will certainly improve the underestimation of **’Cs deposition. It is
noted here that an aircraft survey could underestimate the **’Cs deposition of Cs-ball, depending on
the areal density: Doses from sporadic sources on the ground could be lower than those from homoge-
neously contaminated surfaces.

2. It has been well accepted and thus studied that the theoretical efficiencies of below-cloud scavenging are
sometimes 1 to 2 orders of magnitude smaller than the experimental efficiencies for approximately 1-um
size ranges (e.g., Wang et al., 2010; Zhang et al., 2013). In addition, radioactive aerosols could be highly
charged, such that their efficiencies could be enhanced due to electrostatic forces. Applying empirical
efficiencies and/or considering the electric charges due to radioactive decay will certainly improve the
underestimation of **’Cs deposition.

3. There could be another solution to improve deposition modeling: a statistical approach. As performed by
Toyoda et al. (2013), optimizing the four types of deposition efficiencies using a Greens' function
approach toward the observed *’Cs deposition with the current sets of the meteorological ensembles
can help identify the cause of underestimation in the deposition modeling of **”Cs.

4. Discrepancy in the deposition schemes can be assessed by using the Cs/Xe ratio. Xe is a noble gas so the
Cs/Xe ratio in atmospheric concentrations only changes due to dry and wet removal of Cs during the
transport, except radioactive decay. The discrepancy in the deposition schemes caused larger impacts
on concentrations over further downwind regions. Therefore, the current and improved deposition pro-
cesses should be evaluated by the Cs/Xe ratios analysis over further downwind regions such as North
America and Europe.

4.2.2. Contradictory Performances in Meteorological and Deposition Modeling

As mentioned in section 3.3, NHM performed very well in terms of precipitation and NHM-LETKF per-

formed best in terms of simulated concentrations, whereas WRF simulations were generally better in terms

of the simulation of '*’Cs deposition. These results appear to be contradictory. One reason for this appears to
be the inconsistency in in-cloud scavenging modeling. In-cloud scavenging is one of the major processes of
137Cs deposition. In-cloud scavenging involves the vertical motion of air, cloud formation and evolution, and
precipitation, but the simulated vertical profiles of *’Cs and hydrometeors were not evaluated. If the simu-
lated vertical profiles of *’Cs and hydrometeors by the NHM and NHM-LETKF meteorological fields were
farther from reality than those simulated by the WRF fields, it would be natural that the performances of the
deposition modeling of the WRF simulations would be better than those of NHM and NHM-LETKF. The
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observed vertical profiles of **’Cs are limited. Fukushima University initiated radioactivity sonde observa-
tions from April 2011 (the data are available at http://www.sss.fukushima-u.ac.jp/sonde_data/, last access:
7 April 2018). Although most land surface contamination observations were made in March, the model per-
formance of the simulated vertical distribution of *’Cs can be evaluated using the radioactivity sonde data.
The better performance in the simulation of precipitation does not necessarily ensure a better performance
in the simulation of hydrometeors. The simulated spatial distributions of hydrometeors should be evaluated
by radar observations for the further analysis of in-cloud scavenging modeling.

There is another difficulty in evaluating the in-cloud scavenging modeling of '*”Cs. The majority of land sur-
face contamination was caused by light precipitation (or fog) events (<0.5 mm). Meteorological models and
observations have been designed to study heavy precipitation. The radars used for the operational weather
monitoring networks (C-band or S-band) cannot detect such small sizes of droplets (cloud, fog, and drizzle),
and rain gauges cannot detect precipitation until it accumulates to 0.5 mm. The meteorological models used
for the operational weather forecast, which employ “bulk” cloud microphysics modules, were not designed
to predict light precipitation events, and their simulated light precipitation cannot be evaluated by the mea-
surements. The current case study should be revisited in the future to evaluate a number of similar future
light precipitation events in the region under similar pressure patterns as that in March 2011, using different
models and observations that are designed to study light precipitation.

5. Conclusions

Meteorological model and module ensemble analysis with a single CTM (NHM-Chem) was conducted for
the simulation of the transport and deposition of radio-Cs released in association with the FDNPS accident
in March 2011 with a horizontal grid resolution of 3 km over the eastern and northern part of the main island
of the Japan Archipelago. A total of eight meteorological fields were compared: seven from NHM, NHM-
LETKF, five combinations of modules with WRF (different cloud microphysics and PBL modules), and
the meteorological ensemble mean. Then, we obtained a total of nine CTM simulation results: seven by
using the seven meteorological simulations, the ensemble mean of the seven simulations, and a simulation
using the meteorological ensemble mean. Strictly speaking, the variables of the meteorological ensemble
mean violate the physical consistency, but the current study proved that it was practically applicable. The
three-member ensemble (NHM, NHM-LETKF, and WRF_EnsMean) was shown to have average spread
in terms of the precipitation and the surface concentration data.

Whereas several multimodel ensemble studies were performed in previous studies, the current ensemble type
(one CTM with several meteorological fields) was applied here for the first time. The current approach was
found to be a useful way to evaluate the uncertainty in each component of CTM. The current analysis could
successfully deduce that the underestimation of the deposition efficiencies of CTM was the reason for the
underestimation of simulated radio-Cs deposition, whereas the simulated precipitation and estimated source
term were all reasonable: All of the simulations underestimated the deposition amount, whereas some under-
estimated but others overestimated the simulated precipitation and radio-Cs air concentrations and the simu-
lated spatial distributions of precipitation and concentrations were well correlated with the observations. The
simulated total deposition amounts of **’Cs ranged from 0.46-1.23 PBq, while the observed amount was
2.59 PBq (except in areas 3 km from the FNDPS). The MB values of simulated cumulative precipitation from
11 to 31 March ranged from —18.2 to 12.3 mm, and the observed average value was 55.0 mm. The MB values
of the cumulative *3”Cs surface concentrations from 13 to 23 March ranged from —137.7 to 174.2 Bq-m™>-hr,
and the observed average value was 376.12 Bq-m™>-hr. It was also found that the CTM simulation using the
meteorological ensemble was successful in reducing variance and they gave reasonable results. The simu-
lated deposition using the meteorological ensemble yielded the largest quantity (1.23 PBq). This occurred
because the light precipitation areas were enlarged by the ensemble mean of meteorological fields and
because the contamination was caused by light precipitation after the FDNPS accident.

Another target of this study was to reveal the dominant processes of the deposition of radio-Cs over each
deposition region of the simulation land area and to show how they vary depending on meteorological fields.
The simulated area was divided into nine areas, namely, Hamadori, Nakadori, Aizu, South Miyagi, Iwate-
Miyagi, Tochigi, Gunma, Iwaki-Ibaraki, and Ibaraki-Chiba. The magnitudes of their contributions varied
depending on the simulations, but the current ensemble study showed that in-cloud scavenging was the
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Figure A1. Same as Figure 5 but simulated by Met_EnsMean with different thresholds of fog water mixing ratio applied to
the fog deposition scheme of 10> and 107* (kg/kg), respectively.

most dominant mechanism (40-65%) for the entire land region, followed by dry deposition (15-35%) or fog
deposition (5-35%). The contribution of below-cloud scavenging was the least significant (<5%) for all
simulations. These contributions also varied in the deposition areas. In Fukushima and Miyagi
prefectures, from the coastal to mountain areas and from the southern to northern areas, the
contributions of solid precipitation increased: More than 90% of contributions were liquid over Hamadori,
but 70-90% were solid over South Miyagi. Because most Japanese land is covered with mountain forests,
the contribution of fog deposition was ubiquitous everywhere except in Ibaraki-Chiba, which is located in
the Kanto plain and includes no mountain areas. As suggested by Hososhima and Kaneyasu (2015) and
Sanada et al. (2018), fog deposition was the major process in Tochigi, as well as in Gunma (30-85%). It
was quite hard for the models to simulate deposition over Iwate-Miyagi, as the most dominant processes
over the area were totally different between the models.

In inverse modeling, the simulated concentrations and/or depositions are used for the source term estima-
tion (Saunier et al., 2013, 2016; Winiarek et al., 2014; Yumimoto et al., 2016). In the study, we showed that
the simulated concentrations and depositions could vary by more than twofold, depending on the selection
of the meteorological field, which could contribute to the uncertainty in the source term estimation. In the
future, the source term estimation with a single CTM, a single inversion method, and the different meteor-
ological fields should be made to evaluate the meteorological uncertainty in the estimated source term.

It should be noted here that the radio-Cs was assumed to be carried by hygroscopic submicron aerosols, as
inferred by Kaneyasu et al. (2012). On the other hand, Adachi et al. (2013) found other types of the carrier
aerosols, named Cs-ball, which differ significantly in terms of their size and hygroscopicity, and thus atmo-
spheric behaviors. Adachi et al. (2013) also performed a sensitivity simulation of the size and hygroscopicity
of the carrier aerosols for a limited period using limited knowledge about the production and emission
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mechanisms of Cs-ball. Since then, the microphysical and chemical properties of Cs-ball have been exten-
sively studied by Abe et al. (2014), Yamaguchi et al. (2016), Satou et al. (2016), and Higaki et al. (2017),
and much knowledge has been accumulated. Recently, the Cs-balls found in the environment were success-
fully linked to the accidental sequences of FDNPS by Satou et al. (2018); thus, it is now necessary to resimu-
late the atmospheric behavior of Cs-ball and to show their differences compared to hygroscopic submicron
aerosols. The sensitivity of simulated dispersion and deposition with respect to the properties of Cs-ball will
be assessed in our next paper.

Appendix A: Sensitivity of Fog Deposition to the Threshold of Fog

Water Content

Figures Al and A2 show the differences in the simulated deposition and contributions of deposition pro-
cesses obtained by using the different thresholds of fog water content. For simplicity, only the CTM
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Figure A2. Same as Figure 7 but simulated by Met_EnsMean with different thresholds of fog water mixing ratio applied to the fog deposition scheme of 107> and
0% (kg/kg), respectively.
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simulation obtained with Met_EnsMean was compared and shown. The simulation performed with a
threshold fog water content of 10™* kg/kg resulted in significantly less deposition over the mountainous
regions over Nakadori, Tochigi, and Gunma. There were almost no contributions of fog, except in Tochigi
and Gunma prefectures. As discussed previously, the simulation with 10™* kg/kg could yield the lowest esti-
mate, but the selection of the threshold value was also shown to be an important factor for the prediction of
fog deposition. The accurate prediction of fog and its deposition was indispensable for the prediction of
FDNPS-derived radio-Cs deposition over the mountainous areas of Japan.
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DREHER D e H T, Pies/VCs T Ic X 5T 1 5
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VBB ENTWZZEZRTIDNDTH B,

Z 2 CAMRTIE, S5 1 ol kOB
TaYNVESPM T — T AR L HEEL, ZoiEM Y
B ALEREREMIILC, ShETICHESR TV
Type AL U Type BO CsMP & K52 L2 By & L 7=
Tsuruta 5 DJEATHFZE"™ TRERIE %I S iED LA %
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E0EY Pz 2 D ARy b oS HEES WL 7



TFUT AN R—= b N B i, R B, K, S, B R K B0 R - R DA EI I L) 1 5 S St B L 7 oy Vo - (LR 759

OV 3KTEATA FH T AT, KEEREART
SARSE (SEM: HinA 52 7 ay— XHEL SUS500) % v
T, BAESOWMLA DT IS 2772, 2L T
SEM (230 L 72 = & L F— 050 X Mrih 2 (EDS: Y835
BERTH Xomax) 12X D, NEEIE 15 kV TEDS AXZ b
WV OREEAT o7z,

51T, GePiEfftrilia: (CANBERRA # GC4018) %
A7 =AY PVIIEIZ L - T, HEEL 72381
BT, s & Cs OSTRRIE E T o 72, Ples 1
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Table 1 Decay-corrected activities (as of 14:46 JST,
11st March 2011) of 'Cs, "Cs, and
13Cs/¥7Cs ( * statistical error) of individual

particles
FH 12-a FH 12-b FH 13
™Cs (Bq) 3.67%0.09 4.62+0.11 8.92+0.22
Y¥Cs (Bq) 3.91%0.13 4.93%0.17 9.68+0.33
Cs/"Cs 0.94%+0.04 0.94%0.04 0.92+0.04

3 fEREELE

3-1 REMET 70OV ILORKEBER VTR

201143 HI12H 20~21 D ARy X hpHESh7
FH 12-a £ FH 12-b, M 13 H0~18RDO ARy b X 0 558
SNZFH 13120V, H U AT MIVIIIEIC X ) 1%
SN7z 1RT LNV T ™Mes O VCs o &g EE (2011
AE 3 0 SIHIRIEMIE) &, s/ Cs itk % Table 1
ZFEDz. WThoOR T 'Cs/'VCs ST IZH 0.9
L, MEBE—EIEO 2 58 (1.08) 3 7H (1.05) X
Db 13K (0.94) OHEMMVICEVRERE RS2 F72,
FiR L7z ARy b &ROFHN 2 BGRE & 1ZIZF U725
7o WS F A4 I v el s idtRelt L, 2
NSOl TRERE-EE1 FBERTHLEELZOR
5. 1 FHREROB/N R BETET 7 0 Vv & BB S
B4 2 2 LD L2BlIAREr O TTH L. Th
5 3 KT SEM 4% Fig. la~d IR 7. HIKD7/29, Fig.
le J2 UF Fig. 1 I CsMP-A J UF CsMP-B @ SEM £ % /R L T
H5.

FH 12-a (Fig. 1la) 3% 2 pm BEOR T TH Y, Kk
PERELIZLILRERELTVS., FHI2b X, TEFEo
2R CHRA S NZHE nm ~ K um OFT (Fig. 1b) @
HAs, ROKEVER2um 5D 15 (Fig. 1c) & L7
FH 13 (Fig. 1d) (£ 5~10 um OEREKZ LR T TH
D, Mo 2R FITHRSE EREWVD, EDST v ¥ X 7ITX
BEERBTIEICTHY, ZORIHEBTS L) ETHES
ELEE nm ORUME T2 BB E > TV LIRETH S
LEZEz2HN5H. ZZTSEME (Fig. 1f) %R L7z CsMP-B
DAY, HEX DRR SN 1 SHEoKERIHE L K
N5 Type BD CsMP 134 7% < &3 50 ym 2Bz 5 K& &
TH2HWY, LhALeds, AR TSRt
THRVE T FERERTHLICH20bLT, wInd i
pm F—F—E/NS L, T 2 FHEIERE SN D Type A
?» CsMP (Fig. le) L FIEETH 5.

Type A @ CsMP (& £ 5L pm 1l # O L 112 0.1~1 Bq
F—&— (2011 48 3 H 41) @ ™Mos BUVCs &S,
—77, 1 5O KFRIEHR L S b Type B D CGsMP 12D
WTiE, Bl L7z & 912 Type A @ CsMP & ) b AET K
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5 um

100 pum

Fig. 1 SEM images of radioactive aerosols emitted
by the FDNPP accident

(a) FH 12-a, (b, ¢) FH 12-b, and (c) FH 13 emitted
from the FDNPP Reactor 1, (e) CsMP-A® and (f)
CsMP-B'Y for the comparison.

BHEDMEN C LSRR SN TV 5. Z ORMAY 1 S HH
ROMFHEZT O VL SN D% 51E, Type A D
CsMP L AFEEORE S (EEH um) 0L X212, 20K
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%7255 Table 1 IR L72E B0, AP THA S -G
7o iE, BB um DTEWI /NS RIZH b
53 4~10Bq &) HEWEVBUEHEEEZ AL TEY, 275
FEHIR & 415 Type A D CsMP 2Ll T A TH 72,
ORI, TROSOBFET T T v Ivid P Cs/ T Cs g
2o 1 aERTH L LS NzdbOD, ThETIC
TR SR SN TV Type B @ CsMP 2572 72 ik
L7220 CTlidiel, WHMCRL 2P - bR e 4
LTWEIZEEFERLTVS.

3.2 {LEHER KXV TREOER

ARG CRRA SN 7 2V s RT (FH 12,
FH 12-b, FH 13) 122\ T, fREMW AR EDS A7 bV %
Fig. 2 2% L ®T/RL7. FH 12-a ® EDS A7 bVidhL
FORRMETELNZLDOTH Y, CsL BAHI S hz
1%, Cr, Mn, Fe LU Zn D Kb Ens. /2, =
DORFTIZCRMEDIET->E D LMESIN TS, FH 12-b
IZ2WTh, HFOHRIAHETHE S N/ZEDS AT ML
ZRLTWAS. FH 12-a & FFRIC Cs-L#, Fe LU Zn D K
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AR 8N 7213%, FH 12 13 ETlE AW H OO CLK
b Nz B, FH12b L L BITF L FS/-RET
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Bt SNz DARZ PV % Fig. 2 IRLTWA. 2O
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AL CLKMb M sz, &8, Fig 21TR L3 MO
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FEEINTULRIZHTE 2w,

BV, RfEECTEAINZBEHEZ 7 v YL 3 RT-O
SR-U-XRF A7 V% Fig. 3 (IR L7z, D292, %
FIFSEY Y T S 7z CsMP-A ]2 O CsMP-B D A2 | )b
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Fig. 2 Comparison of SEM-EDS spectra of the three
radioactive aerosols emitted from the FDNPP Reactor 1
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N7=WATHEOLNLDDTH L. CsMP-A KU CsMPB D A
X7 MVIRETFHE Y TRLZDDEA—Th 5. &b,
Fik L72E B Y FH 13, CsMP-A, CsMP-B D 3 & (551 /vy
F, Si (L) He#Rz i) &, FH 12-a XU FH 12b ® 2
M (&3 /vy F, SDD i) & T, WEREDHFERIE
%5l EIER I NIV, FEROE IS T, 33~35
keV OFPIZHRBENTWDE I Y7 b VY EELO = F L F—
DEDL > TWBITD, TAIVF—4EEIE SDD TRl L7z
bODOHMPENTHE., —J, HFEOH W SDD T, Si
(Li) MIEICHARTE I AIVEF—HIR0 X okt
2% %. TD72®, Fig. 312K L7 5 5D SRU-XRF AR

FIZOoWT, Ml S h7-E— 7 ED SHFHTETE
2 ERIICHERT A 2 L IZHETHS. Lo TART
1% SR-U-XRF OFERIZDOVT, BN RMEOFERDO AT
179.

37.5 keV (I#2 D SRU-XRF |2 & - T, RFFETHRA IR
gt 7 vy 3R 5, EDS TldBih Sk o
Tfkx e EREIRB SN, UTFO 14 0E 3 SR TT
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EN7z. FH 12-a & FH 12-b (Z&KH 7 A X2 N VIBIRAS
BBy, MIBEINATEDILBE LTSS, FH 12b ®
JiAHSBr, Rb, Cs OMPEEAH S22V, FH 1312215
QM TFEIIRRLNFRTHUESINIZDDTH SHH, N
OBV ZEEDEEZEZE LT, Mol TLIIeR
R 58NS EZRLTWS., &b, IhITiThbhs:
CsMP (2B 3 2 HF98C, Br OFE(E & #8405 L 726113 2.

SRA-XRF THI S Nzt E 09 B, sk Tl L Tl
W &3 72 Fe, Zn, Br, Rb, Mo, Sn, Cs, Ba ® 8 JLHIZ
HHLT, SRUXRF A A=V Y 712X o TIN S D Ko
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Fig. 3 Comparison of SR-U-XRF spectra (excited by 37.5 keV X-ray) of the three radioactive aerosols emited from
the FDNPP Reactor 1, CsMP-A (radioacrive particle believed to be emitted from the FDNPP Reactor 2)”, and CsMP-B
(radioactive particle believed to be emitted by the hydrogen explosion of the FDNPP Reactor 1)'¥
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Fig. 4 Distribution of eight representative elements in the three radioactive aerosols obtained by SR-u-XRF imaging

and SEM images corresponding to the imaging region
(a) FH 12-a, (b) FH 12-b, and (c) FH 13.

WTR SN SRUXRF f A =T U iR e, f A=V
7B HIS L7z SEM 8% Fig. 4a-c ISR L7z, JGERIC &
2 W IIE RV b OO, KN TEILEIAY—ILF
ELTWEZEDPHLNE 572 HlZ I3 Fig. 4alZ/R L7z
FH 12-a ® SR-U-XRF 4 A — 3 ¥ Z#ERIZB VT, Rb % Sn
LR TOEEPSBIBENTVEDIZK L, Mo 13k
TOETEWAIRELTWAZ e bH» 5. [ FH 13
DA X =T ¥ 7R (Fig. 4b) IZBWTH, Sn & Cs DI}
IS %N 5N 5. %8 Fig. 4b 1278 L7z FH 12b
DARXA=TV v THERDHIH, A7 MV (Fig. 3) LTH®
THESIHRI ST W 2 Br, Rb, Cs @ 3 TLHKICDWTIE,
MDTEFICHART /) A4 R X BB L. 2 SHkH kK
&EENB Type A D CsMP IZDWTIE, nm LXVDA ¥ 7
V=3 3 Y OFEED L O OREY TS T Y
550D, ZITHALNZL I % pm LRXIVOITTEDRIE
BHER STV, —F, 1 5OKEBRETER SN
72L BB Type B D CsMP™' 120 Cid, RfEEOA
EXIPZHZDREVEVDLDH D, KTFHIZ um LRLVT
DILHEDRIEDVB RO o> TVAE. 29 LR FHTOITH
D¥—tOEN L, KT OEREREEZE KL TS b
DEEZOLND. KWFIED SRUXRF [ A — ¥ ¥ 7 idEH
NOENXBEH TS 20, EETHOBEIME S
nTLEH. 72, SEGH LR FITHLTE—LH% 1
ADWRKRENZL DD, Fig. 4 [TR LA XA =T ¥ FfER
DHPHTIE, KTFNIZBITLEEOGMIRELIEL <
BT L IIHEETH 72 CsMP T 5\ 22 0ff
7O THEASRTWS XIS, BIESHTICE R > TLE
ABDOD, FHRA T Y E— L THRTHNEEZY Y H LT SEM
REME MRS X 2B EITH) 2 LT, Lz
FOAMRNHEESH SN R b WS NG,

EDS J% U SRU-XRF 12 & o T SNz mmHKITDon T,

Scale bars in SEM images show 1 um.

ATHFR Y 2 BE T LA s, ZOMKEEE L. FH
12-a L OV FH 12-b TR S 7z U I3HBEL, Br A5 Ba £
T?D 14 7t# (Br, Rb, Sr, Zr, Mo, Pd, Ag, Cd, In, Sn,
Sb, Te, Cs, Ba) 1&, ZOMGREEMIHETRETH 5.
72720 Zr & Sn o Tid, MEMEE O ZrSn A&ICH
KT DMEEMED H 5. P IIHEIZ 25 NI 0 U 65 i
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WKZOWTIEETFOMEMEHIHER T2 b0 LEZ LN
¥51Z Cr, Fe, NilZ—W R AT Y VAFOESTH Y,
Z U Mo %Il 2 72 SUS316 %> SUSS16L (il &P i h
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eI Sz Mo-Mn-Ni S HHsk3 2 REM L £ 2 5
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W a > 7 ) — MCHRT 2 WD H 528, Bl L
TEINCTHDASTA FHTADORGIPMBEINTWST
LD 2720, FEFHBETH -2, HKEVDDS, K
MR THRRSNZBEz 7oy vrs @l Tl s h
72ClEBrThsb. IHSIRETFHROREGHITIIEAS
N7WARICHRET 2R H D, FLEBET S, &
B, AL NvrygEZTH5H 12T, 0 Ko #t
(R, :28.61 keV) ASHEBMERETER SN TS Sn D
KB # (KB,:28.49 keV) L EHLTLFV, RGN FET
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Fig. 5 Results of SR-U-XANES analyses

Compasirion of (a) Mo-K edge and (b) Zn-K edge
SR-U-XANES spectra of the three radioactive aerosols
emitted from the FDNPP Reactor 1 and reference
materials.

IZoWT, ZBRERDO AR MV EIIZZENZN Fig. 5ab
\ZR L7z, SRAU-XANES A7 MV OHIEE T I SR-U-XRF
Ll—TH5.

%9 MoK Wi (Fig. 5a) 2B LT, Mo 23 &ALE +6
THET DA, RPICHEHR TR LA L 9 % pre-edge
E—r i &h s, &2 TR TR S Wz gt
TN ST OWTHTAS L, FH 12-a X U FH 12-b
Tl Mo’ " IR E E N5 pre-edge M S 7z, E 512,
IND 2 HIZDWTANRY MVOJERE SR & s
5L, ALY MoO, Db M A+ VEELTIADD
DITENZ EDbrsb. —7, FH 13 122V Tid pre-edge
=7 3MMENTEST, X)WL CHET 20
REPEAVRIR S N7z, Z T THRATIIREY 2 5 &, 2 Shkik
L &N 5 Type A D CsMP Tl, AHIFED FH 12-a X FH
12-b L AR, #T AP M A+ Y DI THAEL T
W5 Z LN, AT L F U SR-U-XANES 12 & - TH S HIC
LoTWb., —F, TE,SGHEIN 1 FHROKFET
Hsk & &N 5 Type B D CsMP I2BWTiE, —2 DR T
THIAFDO M A+ v E LTHIEL TV D5 E, X
DAV O RIE THEAET B DNRE L T, 72
2L, BITFHA T CAER LK T TH-ThH, RYRMBR
Bhicsssha 2 L THAMICHRILT 2 L 0fkHEd b
D2 ECERALIRAE AR I OB E PR A RIE T B0 Y
I IBEES TIRBIETE 2w,

BT ZnK WIUR (Fig. 5b) % W2 &, Btz 7w
VN SRTOWTIIIBWT D, Zn ZBRLE+2 ORET
FAELTWRZ Edbrolz FRIFH 181220V TiE, &
WRHELTHELLE AT V25T ADIDL
AT PVIBIRAS R M L Tz, L2 LAaD S, FH
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WICHARTEINO®RKRM (K74 FF4 ) 8% —FT
HbH. MO DO AR PVERKLHEE s
DR T Zn O —EHY ZnCl, D THEAET 5 L e S
N7z, BITRL7EDS A7 MV (Fig. 2) IZBWTH, &
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SRU-XANES” 12 & 5 T ZnCl, DFFAEDTR B 7= B1E 7 v
A5, A B WGEL R A A A R . T MR (HAADF-
STEM) %MW 728f48'12 X D, Type A @ CsMP DHNFRIC
InClyDF ) Ar—VDA Y7 Vv—3 3 UHBHFELTWD
LT LHENDB.
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DS ABINSEDEL SITEVDRIZANZ M VIEZIRD 5 H
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IANVF—IAE L7270, T REENMRBEL TV
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T/, AW CTHRAINARFEZ 7T 2V 3 RFITD
WT SRYXRD 24T 7275, WFhIiZBWTH Y —2
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VR b ERBICH T 29 RE T L DB L, SPM i
T—=TARE VYR 2 D ARy b XD HEES e
BT 7 o vV ST ICow T, HERIOBRILIY 7 IRRE
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LUFEEAVRE NIz, 2, —HOSREILEICOVTIEA
T A EIRA 4 O THAET 5HE & SRU-XANES
AT MV L TWz28, RIFZE TR R S 7zl
T7 O VAATREE Y T S N7z CsMP & A BRIC
ARG T AZEERE LTV A BT TR T
7wy, 7272 L SRU-XRD THIFE — 7 BRI SN e o 72
Zens, FEREDLZVIEHREORCIE 2 kL L
T, SRU-XANES TR O NI S v o Vv—Ya v o
IO BREHEESND. FAEOR A F THAEHEL
THRN SN TP OB A IN TV o /22 L2 FET
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HIERALIY 720 SR P AL T AL S 7z & v ) ARIFZE O 4341 %
&, FOABRYRE, FNICEBEIRAT S L) RS A
CTWizd, FRTHEEIEET L L) RFRPELTY
TC L BRBT L, —FHT, ARG TS L L7z SPM &l
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BHot INLORTEATTIRAEREE LTS
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Fig. 6 Backward trajectories calculated for air
parcels placed above the SPM monitoring site at (a)
20:00 JST 12th March 2011 and (b) 0:00 JST 13th
March 2011

The trajectories are color-coded to distinguish heights
(m) of the parcels at the monitoring station. Small
and large dots on the trajectories indicate intervals of
every hour and three hours since the calculation start
time, respectively.
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Three radioactive microparticles were separated from particles on filter tape samples
collected hourly at a suspended particulate matter (SPM) monitoring site located at ~25 km
north of the Fukushima Daiichi Nuclear Power Plant (FDNPP), after the hydrogen explosion of
reactor 1 on 12th March 2011. The "'Cs/'*Cs radioactivity ratios of the three radioactive
aerosol particles showed that they were derived from the FDNPP reactor 1, rather than reactors
2 or 3. The physical characteristics of these particles with < 10 um in diameter and non-
uniform shape are clearly different from those of radioactive particles generated by the
hydrogen explosion of the FDNPP reactor 1. A significant amount of Cl was detected by
energy dispaersive X-ray spectrometery. Synchrosron radiation microbeam (SR-U-) X-ray
fluoresence (XRF) analysis showed that these particles contain a series of heavy elements
related to the nuclear fules and their fission products with a non-homogeneous distribution
within the particles. In addition, the SR-U-XRF identified trace amounts of Br in these
particles; the element has firstly been found in radioactive particles derived by the FDNPP
accident. In contrast to the hydrogen explosion-generated radioactive particles containing Sr
and Ba, both of which are easily volatile under a reduction atmosphere, these elements were
not rich in the particles found in this study. By the SR-u-X-ray absorption near edge structure
analysis and SR-y-X-ray powder diffraction, it was found that these particles consist of an
amorphous (or low crystalline) matrix containing metal elements with chemical states in a
comparatively high state of oxidation or chloride. Based on these physical and chemical
characteristics and a trajectory analysis of air parcels that passed over the SPM monitoring site,
we concluded that these radioactive particles were generated and emitted into the atomosphere
at the time of seawater injection for cooling the reactor after the hydrogen explosion.

Keywords: Fukushima Daiichi Nuclear Power Plant Accident; aerosol particle; synchrotron
radiation X-ray analysis; radioactive material.
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6. History of the studies at the Meteorological Research Institute
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7. A caption of the cover art

Monthly depositions of *°Sr and '3’Cs before March 2018.

We have been monitoring the deposition amounts for the purpose of understanding the actual condition
of radioactive pollution after the accident of Fukushima Daiichi Nuclear Power Plant (FDNPP). The
monthly deposition amounts of both *°Sr and '3’Cs, which were successfully fixed values after the accident
in March 2011, are shown in logarithmic axis with error widths. Since the deposition amounts of '34Cs were
nearly equal to those of '37Cs, the total amounts of radioactive cesium were approximately two times of the
values in this figure. We would like to note that the half-lives of °°Sr and '*’Cs are approximately 30 years,
however, '3*Cs decays to half in about 2 years. The error widths are one sigma in statistical error of
measurements. Although the error widths of all measurement values were better to be shown, error values
used to be not shown on purpose to avoid busy figure in the former versions. In addition, error data before
several decades are not handed down.

For the analysis of samples collected before the accident of FDNPP and not measured then, significant
increase of background values were severe problem, because environments including laboratories and
instruments were polluted, and it was also problem that samples could have been polluted in the operations
of concentration or other preprocesses (contamination problem). We overcame the difficulty by carrying the
analysis out in western Japan (Kansai area) where the pollution level was low, however, the data during the
latter part of 2010 and the former part of 2011 were lacked in spite of our efforts.

We are making efforts to recover clean working environment as before the accident, by cleaning of the
environments, exchanging instruments, etc. for the purpose of acquire the correct data. In addition, we
maintain the precision of the data, for example, by participating inter-comparison programs performed by
IAEA, so that, the credibility of the data are assured (please refer to the section: quality control of radioactive

analysis of atmospheric deposition samples ).
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