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Fig. 1 Monthly deposition is expressed in mBg/m? on a logarithmic scale. Sr-90 and **'Cs analyses
from deposition samples taken 6 and 8 months before the accident, respectively, are ongoing to avoid
possible sample contamination at the MRI because of the accident. Thus, these data are missing not
only in Figure 1. The measurement uncertainty (1c) is shown only for the data obtained after the
Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident, and is reasonably small compared to
the analytical data. For comparison, uncertainty for the monthly data in 2010 is also given. The
effects of atmospheric nuclear bomb tests have been recorded since 1957. Until the Partial Test Ban
Treaty (PTBT) became effective in 1963, the USA, Soviet Union, and UK conducted atmospheric
tests. France and China continued atmospheric testing until 1974 and 1980, respectively. Since 1981,
all the nuclear bomb tests have shifted underground, so additional radioSr and Cs contamination
should be negligible. However, the Chernobyl accident in 1986 also affected the time series. The
simple summation of the deposition from 1957 to the time before the FDNPP accident (mid-2010)
and decay-corrected summations for Sr and *'Cs can be compared to the FDNPP-derived
deposition. From lgarashi et al. (2015)
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Fig. 2 Act|V|ty concentration is expressed in Bg/m® on a logarithmic_scale. The measurement
uncertainty (16) is shown. The maximum concentration of 38 Bg/m® of *'Cs was observed during
March 20-21, 2011. After that, the radioCs concentrations rapldly decreased until fall 2011, when
the decrease slowed The levels before (approximately 1 uBq/m®) and three years after the FDNPP
accident (12 qu/m from March to August 2014) are also compared. A difference of at least one
order of magnitude is observed between the concentration level from March to August 2014 and the
level before the FDNPP accident. From lgarashi et al. (2015)
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Fig. 3 Atmospheric activity concentrations of radionuclides from the FDNPP accident in March
2011 a) Observed data from filter samples collected at the MRI, Tsukuba, Japan; b) comparison of
observed (black) and simulated results (red) for **’Cs The abscissa is expressed in dates in March 2011
and is labeled at the start of the day in a) and the middle of the day in b). Contamination of the filter
samples cannot be totally ruled out for the period before March 14 in a), which is depicted by the
left-right pointing double arrow. From lgarashi et al. (2015)
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2. KRR ORI EYEOWEL - L2

1) XTI

KA TR SN D E L, VAR (=7 1Y) & LTRAETITEN, 9N
THL ESOWKIEICRE 9 %, £ O RKIEHSCBEIRBIE, F 72348 A I =X %23 51213,
WPEE DN EO XD e b PR 2O Fl- o s Ty u vz ke LTnd
MERAT D VEND D, AETIH, —Blé L THAARAREL TRE LIZEEE /%
TBATE T L » THEELH S 7 S E Y E O WL R E O BRfR & B 5 U 7= WF 2R &
WET 5,

2011 4 3 AITHA LTl K o Th A e U TEV - SRR - RIS S 7203, ik
HENTZ B ITEE E L CUIFERITHMETH D O T, BERERIE LN O34T F1ETER
BBt DR T2 Z LI CH o7, L LN S, W E oREEEREIL. T H
ROMETZT TR ED DO TR L EOEORT L 7g DRI DAL FMER, A A 2 IRRE RIEE,
FAREE &\ o T2 R I KB S N D 720 BIK A & 5D 7o BRI SoA L 285 1 D 45
ITEETHD, MEILFEWE OEN T FEE LT, B BMEECHUE YL 0T 72 & Ol
FEIAL T 3D D0 RBFFEICB N TIE, 2D OFiEE VT 2011 47 3 A 14-15 HIZD
IEH TR ST 7 4 v & —3 B O S MR- O RFE 217> 7= (Adachi et al., 2013)
F TN O ORI OFARK, ALTIREE, FEdIRIEEZ ~ A 7 1 B — ARG X o THOMT L (Abe
etal., 2014) . & O\ HGHERL 7 O Wi & Z5im A w7 BAIEEIC L 0 FEHEZAEHT L 72 (Yamaguchi
etal., 2016) , 723, Adachietal. (2013) & Abe et al., (2014)i3#5t & L CHAZEDR LI E &
W= (J&ir,2015) .

2) ERMFFERR

—HEDOHFFED T, e HIDOWFZE (Adachi et al., 2013) Tik., &M E 7 5H8E (SEM-EDS)
ZFAVNT 2011 4F 3 A 14—15 A2/ CTRABICHER U7 i PR 2 04T L. o o A 8k,
0% < OIREIH R E B X DN D IR E R KITETIZS W2 <A 7 1 A— LT
DERIRA T AKERL - THDHZ L Lz, £ LT, 20 OFEMZR B EIL, F5FICR
2R OPEEEET NV OREER LICEE CTHDH Z L amE LTz,

FEWNTIT o 72898 (Abe et al.,, 2014) TlE, KAHUR YEMEE% SPring8 1238\ T, EE DR
W R TCR 0T 21TV, SEM-EDS 704 TS b iz ocsk (8K, #igh, B o L) 1Tz,
NEDT A VNa=gh BEVTTU AR TUTFEY, T, N T ARETOIK
PRI EN D Z L AR LTz, AT, ~vHy, 7an, /R 7T, ko
JTEHED LS LIE 2 BORi b &z, £/, LFRESRE IR IEZE X BRI S
VTS 5T (XANES) <0 X #R[EHE (XRD) ZWVTHOMr L, K& Pt Sy il
PRI F- NI EDOH T ZIRTHDH Z LR Lz, 25 OIFFEAEIL, N TOR 384 A
T =R LD ~ERNT 5 Z E NS D,

X 512, Yamaguchi et al. (2016) (X, FHIZ X > ThHeH STk % IR A 4
v— a2 EE A CGERE L, FRAE B (TEM) I2 X200t Lz, = DOfER,
K DHT TN LR T-NE O, 7720 b U APRIFREICEEL TNDH &
R Lz, 70, SB0T W72 EOF RS EURTERL FIZNE L TWA Z E L oI L
7oo TIVHOFFIL, HEHERLT- O BHBBRBEEIHE D TISORL Ak A 7 = X L ORIz Es
WCHEEZMATH S,
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3) i

DX DI KRBT TIT > ToPFRIC L 0 | BEH IR 3BT S BVTlit &
TS T E O KRR T OYBALFRHED —E A B L 2o T2, 26 OWIJEIR T — A R
BT 4 TS, Ak x I3 O S0 D BURTEWE DI AR A T1 = X L ORI
BREEREO TRI~OEBB IR SN D,
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3. KRR DOBEHMEWE DET M2 K i

1) B E R RIEBIL A T T

ARFFE 2D HI2H 7= . Kajino et al. (2012) |2k » TR SN -HEKRKEET )V
(Regional Air Quality Model 2; RAQM2) % it EMERBIRIARTE T V& L THATE 5 &
HthZE L7= (Adachi et al., 2013) , ZDOFF /L (RAQM2) (X7 1 Y )L DRIFES i % % 5K
EH A BEECCIRE U, BRAERL - BEAG - BEEE - BMEILAS - 77V v R A — L DZEEE /K
EETEMAL & Wolmm T u Y L FERRE N Y TS — A v METRET AMA O T 1o
VIVEY 2a— NV EFEL WD, £, =7 a Y it b sk < Eyaimie (&
W COREKREIRR) EEER T CORKBREBRRICET 2 TRARNRTXTET LV
(RAQM2) N TRt TV 5,

RAQM2 |ZA 7 74 VBTNV TH Y, K18 (KRS E O SENTE) 127885 5-
b5, UL I 2 L—a VAR TIE, KRETEHRI1FRLETT /L (IMA-NHM;
Saito et al., 2007) % /KR4 3km (B H AN A 215%259 7' U v RIZoyEl) THEITTHZ &1
Lo TRE L EEMR L., RUMEEL FA AT RAQM2 OFHRE H1T- 72, Z DEE.
IMA-NHM DOENE AR EE 50 J& (B )& 1 50hPa= 5 20km F2 %) 2 RAQM2 Tl 20 J& (i
FEIXEE 10km) (28 H L 72, IMA-NHM O X O RE (A7 Mty o)
[ZITRBRIT A Y BN OK A4 Skm ; BRRAEGE 3 BERE) 2 W=, £/, B b
RESOFEE L LT, IMANNHM & R 7 v TV ER v~ 7 ¢ V% (LETKF) 5
—Z ALY AT DI IIA T, [EBENE (T A XA, FU04Y 07, W ERE) 25 —4
b3 2 Z LT Lo THMBICHK - RBITE A /ER T 2 2 & b7z (Sekiyama et al., 2015) .

BEE R NIRENER LD RKIER Y 32— a Vv BETAHEDOT A M r—
Z L U TCEMT BT R /I3 EFH» S i St B'Cs & & LT Katata et al. (2011)
DRERFNA oy N —%FIH L=, ¥Cs 13BN HBT= T a0/ Lt HlREZT YL
DR GRIFIZEEN TS EUE L. # D ¥'Cs &R 1 35T %] S45) D w7 IR B 5%
% 0.5um. HEYEFFEA 1.6, ki FBEE %A 1.83 glem®, WOEMEZ 0.4 & L CTEFAND HFERR
EEE L7m, BCs SR T OB B T Katata et al. (2011) OHEES T U S b CE
J£ 20m 2> 5 150m O[] THRE 2L S 7z,

2) =7 a Y LOYE - ALFERHEIZBE T 5 T T VR E R

Kajino (2015) Ti&. 1) #iTfL L= E7 /L& HWT, 2011 4 3 A2 5 g h
ko BCs oS, ik, EBROFRIEREIT-7-, £ LT, 2 = OMH LUt
VU LEGTe T v VO LSRR OB, HE ORI D RBETT VO EER A
JHUNT Bl - iR A M L7 B S U AR ER T T u VT 2 fEEE LT 1)
BT AT RIEIED 7 < 7 3 R T, 38 K002 F T/ Adachi et al. (2013) THILE
NI IEREE DRI CTH 5,

FUZ7 o R BT Y 2 — LB HWEHETH > TH HNERARET L OEND
Ik BCs Db B RIT IMEREL(L LTz, FT v Y UEEOEWIC L A ihEEOZE L
T, KRBETMICEBENL D ITNSWVR, ERT2LEREOELE LD Lz, Lan
ST, KBETINVOEN (TbHENFEaTOWEAF— LADE) L7 v Y Vs BT
PEOBENS - 7 AOBEET Y 7l > TEHERRTA—=ZTHDHZ LN
IR L 7=,
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4. R FHATNICER S LT — 2 RS2 > 72
LD I« HIERERAIZ DN T

1) XTI

@%%—ﬁ%%&ﬁmﬁﬁénkﬁﬂf\%&%ﬁ%ﬁ%m@@®ﬁi o - BHT
AZHT OIFZERT O EBR-CHEEREE N L < JHY SN2 72012, Z DIEYLZ M 18E T | IR
ﬁ3%E§W%%%E@ﬁmﬁﬁ®kai%%%ﬁ%a77/Z&U%Tb/7xckm
THEE Lz, TOT—XDoNFERE Z Z TldlET 5,

2) ERWFICAE
2.1) ¥'cs oF—#

Table 1 |26@ 55— R AT ITEHBL LB S - ¥'Cs o H B F 4257,
Bics o FTREiIL. @EE R EKIC L > T 3Cs 2MFIF 111 ORI Tl Sz & v
5 Z Lz Ex RBHIE ENS PCs BURBRIZ S v — LT — T R LRSS O
FNSHERT DM, B%siﬁ%%&ﬂ%@h&%btk%z ELRE A SR T=, Z D
FESHRE A M ET A2 LT, Fa— L7 53— 7 % hlHKO P¥Cs e R 55,
LU, ZOHESEEDMEIZIZE A EOBRBHIBWTIEN R BIETH Y | RiEERT —F L7}
ST Z e ND (BHBFELLT) SHBre S5 25827z, —88. 20 B REE A
Ll iro - REINH D (B4 1010, [F 1011, [F 1012) . L2sL7Z228 6. k4410 1010 @
ﬁmlmmﬂﬂ%ﬁzfﬁw\%&um®*ﬁ%ﬁKTWéoﬁﬂ®%£ Bis, D% D
BAECITMLOEELZ - T, BMEICIEREBIZED - OO, {5 %521 T 5 afReltt b
@Ef%ﬁmo%%Mmu\ﬁmu_omfi Mot e R A Nl e £ || ¥ g I

2.1) YsroF—%

SEHTO S D AW FEICHOWTIE, Table2 128175 L0 TH D, PSr diBYK
HETHEHPE Cs I AT B /NS WNZ E D ML OEE Z - T2/ YVE BRI K> TR
FOFBELRTHZ LN TEIZ, LL, EERD6, 20114 1 HOBETEIZIND L7225
TERETE TRV, Sl EREELHERWVD, FRELZIT> TV,

3) L

V. KRHFFEETO A [T BRI T — Z RN EAE LT Z L2 WET 5
AR RITALEE - (B 52504 « I BEITE LS 0 0 O T 72T R BROR 2 (BR) BREEG
%HT%V&X&%%%%ﬁémﬁﬁé

LLED X5 ic, KEFRE TS D8, @RH—REEIC & 5 - MERET O YIC &
o/\
=
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Table 1 Monthly *'Cs deposition at the MRI, Tsukuba and Mt. Haruna

st EE(2011/3/11 I EHMIE)

ENIETEE
(190s-1%Gs)

ENTRETHE
(13705_13405) (H—é

g | 7TE R g n o) REIHEME)
1340s (Ei%/ ¥1cs (Eﬁ;%/ 810 (ii%/ o (ii%/_
(mBg/m) ) (mBg/m) ) (mBg/m) ) (mBg/m) )
MRI ”r’;fg Ho- MRI | 2010%9R | 422 3.6 415 26 -0.7 44 ND -
MR;;T 0 1 MRI | 20104E10H | 1452 | 730 | 1492 | 748 41 105 ND -
MRL;?‘ 1 - MRI | 2010118 | 362 33 373 23 11 40 ND -
MR:;?‘ 2 2 MRI | 20105128 | 446 3.6 57.8 32 13.2 48 ND -
MR‘I“LJO‘ 3 MRI | 2011415 04 20 5.1 11 46 23 ND -
MRLLZOZ 4 | MR | 2011528 | 510 | 39 | 484 | 28 | -25 | 48 ND -
/// 144 117 ND -
*&%f# 0081 4 ¥4 | 201048A8 326 6.9 60.3 3.9 21.1 7.9
1521 813 | 1637 83 117 116
*%f# 009\ ¢ |mauw| 201098 57.4 8.4 85.2 4.9 27.8 9.7 ND -
/// 1387 172 1398 173
&%Fﬁmm 7 |#&%&L| 20104108 | 260 15.4 1310 67.0 1283 69
2139 110 2242 113 103 158
*%f#m "8 |maw| 2010118 | 119 28 54.9 32 430 42 433 42
ﬁ%mm 2| 9 |#&W| 20105128 | 717 6.6 104.0 5.6 32.3 8.7 324 8.7
*%f# 1001 40 |s&w| 2011418 5.7 36 14.1 15 8.4 3.9 ND -
*&gf# 1020 4y l#g&w| 2011428 | 333 | 55 | 388 | 26 | 55 | 61 ND -

* MCsMIBEAE -0, BEICARO TEAREFEALE
*¥ENMEBEIT DV T, CsAATAF R (HEHIERE) Lo TWVBLDLH AN EDEERTLT-
*FERERDEDRAREISONTIL, REDIMEEBRALEVEDICDONTIENDEL THRETREEE B LT
1 RERHR. OUTFITMLE-HEOAEEREIIELAIEL-E

F2 RiEEPHMOAEREIELRELE
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Table 2 Monthly deposition of ®°Sr and **'Cs at the MRI, Tsukuba during the years of 2010 and 2011
Regarding some of the samples, we could not obtain the correct data due to the heavy contaminations of
the sample itself, experimental environment, measurement environment as well as detectors themselves.

H A 0gy Bics Bics/Psr  BRkE REEE

mBg/m? mBg/m? i RE b mm g/m?

2010 14 2.55 + 0.89 6.76 + 1.27 2.7 9.5 1.26
2H 3.36 + 072 17.1 + 3.05 5.1 96.5 2.84

3H 5.98 + 0.80 22.5 + 3.40 3.8 101.0 2.92

4A 3.56 + 0.67 12.3 + 2.14 3.4 169.0 2.48

5H 3.67 + 035 8.69 + 1.69 2.4 132.0 1.72

6 H 0.97 + 019 1.87 + 0.35 1.9 95.0 0.94

7H 1.19 + 073 4.23 + 0.62 3.6 69.5 1.39

8H 0.60 + 0.05 ND i - 5.0 0.81

9H 1.44 + 0.62 ND + - 379.5 1.34

10H 1.09 + 0.49 ND + - 1575 0.70

11H 0.97 + 014 ND + - 815 0.30

12H 4,31 + 0.77 ND + - 102.0 1.11

aF 29.7 73.4 2.5 1398.0 17.81
2011 1A ND + ND + - 0.0 0.74
2H 1.84 + 0.86 ND + - 104.5 1.03

3H 5160 + 46.6 23100000 + 924000 4480 74.0 4.65

4A 4660 + 407 1780000 + 1300 382 74.5 5.97

5H 376 + 149 330000 + 273 878 210.0 3.90

6 H 152 + 109 104000 + 142 683 138.5 2.09

7H 46.0 + 7.13 82000 + 125 1780 184.0 2.53

8H 76.8 + 6.18 32000 + 99.1 417 1425 1.17

9H 25.7 + 6.65 45900 + 88.8 1780 186.0 2.76

10H 31.3 + 498 25800 + 103 824 160.5 1.29

11H 15.2 + 1.38 5850 + 47.4 385 79.0 0.73

12H 31.0 + 484 20300 + 83.8 654 41.0 1.79

&t 10580 25530000 2410 1394.5 28.65

Activity unit: mBg/m*/month
ND: We could not obtain the significant data.
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Fig.3a Radiochemical separation (carbonate) Fig.3b Radiochemical separation (oxalate)

Fig.3c Radiochemical separation (calcium removal) Fig.4 A 21 gas-flow detector

Fig.5 The ratio between the standard deviation Fig.6 The ratio between the standard
deviation and the 137Cs analysis value and the 9Sr analysis value



Table-1 Comparison of 9Sr and 137Cs between analysis value and reference value (Bg/g)

Past analysis value | QC analysis value | Reference value
307+9 315+10
137
Cs (n=699) (n=135) 312+16
208+8 206+10
90
Sr (n=95) (n=15) 211433
Table-2 t-test for 137Cs data
C analysis value | Reference value | QC analysis value {Past analysis value[Past analysis value| Reference value
Average 315 312 315 307 307 312
Variance 109 246 109 88 88 246
Observation number 135 9 135 699 699 9
Degrees of freedom 142 832 706
t 0.92 9.22 -1.53
P(T<=t) one-sided test 0.18 1.2E-19 0.06
P(T<=t) two-sided test 0 36 2 4E—19 0 13
Table-3 t-test for 20Sr data
QC analysis value | Reference value | QC analysis value {Past analysis value[Past analysis value| Reference value
Average 206 211 206 208 208 211
Variance 109 1081 109 63 63 1081
Observation number 15 3 15 95 95 3
Degrees of freedom 16 108 96
t -0. 46 -0. 91 -0.43
P(T<=t) one-sided test 0.33 0.18 0.33
P(T<=t) two-sided test 0 65 0 37 0 67

4. 7 — X fiEHT

CNETIZT by 7 AnFEhu LT AEERE O SRR 2 QC H#riE (187Cs 2o\ Tidk, 9 &
EixGe 5 B/HAEDOENT 135 REF, 908y (Z5W T 5 slBHAE, 2012~2014 40D 15 iBt D454
i) & U, BHEICE O DIERERZEZ R | HEHERZE & OZE% 1o ML U2 i b
S AT AEERL, BRSO E B L (Fig.5 3 X0 Fig.6) .

Fo. WMEOGHTE (FEALIRNZ T3S 2558 > TV Tt OFEESURL S #TE, 137Cs 12D

UWNTIE 1996~2007 4, 908y (2N TlE 1992~2007 4D 553 HHiE)
¥ % e (Table-1) U, SEMEOEDK RIS HENEHEND H T2,
W ED t T 21T - 7-(Table-2 3 X O Table-3).

5. iR LB

- QC o #rfE - a2l o
HKHE 5% T

90Sr 35 LU 187Cs DMt RITMER RAF 21X H D & OHIPAN TIH o 723, 908y IZDWTIESy

el D 22 W T2 O TEBIME O RERRITMESE TIE 720,

L, FHEIISRE S &< —8L

T, Fl2, t BERRND 8Cs [IZHOW TR EDSHTE & QC /T E O] T EITHEE

HIz

B THoTbDOD, TOVEMEDEIT 2.5%Th ¥ | BREHSTRE D HTIZ I W TIRFFAHIH

NTHDEHWTE D, ZDMLD 908y S3HHE= 137Cs AT D t FEREHRIL. P (MR E)
>0.056 THD Z EMHIEBEDFEITAEAITR OGN, o> T, SO EE P IEIZST
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Yoshinari Abe,*" Yushin lizawa,” Yasuko Terada,* Kouji Adachi,® Yasuhito Igarashi,§ and Izumi Nakai*"

"Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601,
Japan

*Japan Synchrotron Radiation Research Institute (JASRI), SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
§Meteorological Research Institute, 1-1 Nagamine, Tsukuba, Ibaraki 305-0052, Japan

© Supporting Information

ABSTRACT: Synchrotron radiation (SR) X-ray microbeam analyses
revealed the detailed chemical nature of radioactive aerosol microparticles
emitted during the Fukushima Daiichi Nuclear Power Plant (FDNPP)
accident, resulting in better understanding of what occurred in the plant
during the early stages of the accident. Three spherical microparticles (~2

U-L; edge

Intensity

um, diameter) containing radioactive Cs were found in aerosol samples £

collected on March 14th and 15th, 2011, in Tsukuba, 172 km southwest §

of the FDNPP. SR-u-X-ray fluorescence analysis detected the following = 17130 13150 13240
10 heavy elements in all three particles: Fe, Zn, Rb, Zr, Mo, Sn, Sb, Te, Low Bgq SEM Energy /eV

Cs, and Ba. In addition, U was found for the first time in two of the p-XRF imaging p-XANES analysis
particles, further confirmed by U L—edge X-ray absorption near-edge

structure (XANES) spectra, implying that U fuel and its fission products were contained in these particles along with radioactive
Cs. These results strongly suggest that the FDNPP was damaged sufficiently to emit U fuel and fission products outside the
containment vessel as aerosol particles. SR-u-XANES spectra of Fe, Zn, Mo, and Sn K—edges for the individual particles revealed
that they were present at high oxidation states, i.e, Fe**, Zn?*, Mo®, and Sn*" in the glass matrix, confirmed by SR-u-X-ray
diffraction analysis. These radioactive materials in a glassy state may remain in the environment longer than those emitted as
water-soluble radioactive Cs aerosol particles.

he Fukushima Daiichi Nuclear Power Plant (FDNPP) In this study, we conducted a more detailed study of the
accident is the largest nuclear incident since the 1986 nature of the Cs-bearing radioactive aerosol microparticles by
Chernobyl disaster and has been rated at the maximum level of means of advanced analytical techniques using a synchrotron
7 on the International Nuclear Event Scale.! Large amounts of radiation (SR)-X-ray microbeam. In the previous study,’ a
radioactive materials were released into the environment during scanning electron microscope (SEM) with an energy dispersive
the accident.”~* Although more than 3 years have passed since X-ray spectrometer (EDS) was used for chemical character-
the accident, the radioactive materials emitted from the FDNPP ization of the particles. In this study, X-ray fluorescence (XRF)
have been detectable in the environment. However, little is analysis using a high-energy SR-X-ray microbeam, which is
known about the physical and chemical natures of radioactive much more sensitive to heavy elements than SEM-EDS
materials released during the early stages of the accident.”™” analysis, was introduced to carry out nondestructive identi-
Adachi et al® found spherical microparticles containing fication and qualitative detection of trace amounts of heavy
radioactive Cs in aerosol samples collected on March 14th and elements in individual microparticles. Although chemical

15th, 2011, in Tsukuba, 172 km southwest of the FDNPP and analyses such as a laser ablation-inductively coupled plasma
about 60 km northeast of central Tokyo. They revealed that mass spectrometry (LA-ICPMS) may have a better sensitivity

these microparticles consisted of Fe, Zn, and Cs and were than SR-XREF, it is difficult to analyze single microparticle
insoluble in water. Additionally, they calculated deposition area sample. Moreover, chemical state and crystal structure
of these particles based on the size and hygroscopicity of the information could not be obtained with LA-ICPMS.

particles and concluded that these particles mainly fell to the To evaluate the conditions under which these particles were
ground through dry deposition. Such knowledge of the formed, chemical state analysis of the transition elements in the
radioactive materials from the accident is important to

understand potential environmental and human health impacts, Received: May 17, 2014

an assessment of the accident sequence, and methods for Accepted: August 1, 2014

decontamination of the radioactive pollution. Published: August 1, 2014
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particles was carried out by applying X-ray absorption near-
edge structure (XANES) analysis. X-ray diffraction (XRD)
analysis was also conducted to reveal the crystal structures of
the particles. Brilliant X-rays from an advanced SR light source
at SPring-8 enabled us to use a combination of these three
analytical techniques. The SR-X-ray microbeam was particularly
suitable to obtain detailed information from individual
microparticles.*” This study aims to apply these analytical
techniques to the Cs-bearing microparticles from the FDNPP
accident and to reveal their nature to further understand the
accident as well as their effects on the environment and human

health.

B EXPERIMENTAL SECTION

Sample Collection. From March 14th at 21:10 to March
15th at 9:10 (JST), aerosol particles containing radioactive
materials were collected at the Meteorological Research
Institute (Tsukuba, Japan; 36.05° N, 140.13° E) using a high-
volume aerosol sampler (HV-1000F, 1000 m®/24 h; Sibata
Scientific Technology Ltd.) on a quartz fiber filter (QR100;
Advantec). The detailed sampling procedures were described
elsewhere.> An imaging plate (IP; GE Measurement and
Control, CRX25P computed radiography scanner) and micro-
manipulator (AP-xy-01; Micro Support Corp.) were used to
detect and separate the radioactive particles from the filter.
Approximately 100 small dots, each of which suggests the
presence of radioactive material, appeared on the IP image of
the filter (Figure la). In the previous study,’ the particle
number concentration was estimated to be around 10
radioactive particles/m?>. Three radioactive particles, designated
particles A, B, and C, were sampled from the filter and placed
on glass substrates. Particles A and C in this study are the same
as the particle nos. 3 and 2, respectively, in the previous study.
They were subjected to the SEM-EDS analysis and gamma-ray
spectrometry (see details of the measurements in the
Supporting Information). After these analyses, the radioactive
particles on the carbon tape fragment were removed and placed
on a flat Kapton tape with a plastic holder for the SR X-ray
analyses.

Synchrotron Radiation X-ray Analyses. The SR experi-
ments were carried out at the BL37XU,*° a hard X-ray
undulator beamline at SPring-8, at Japan Synchrotron Radiation
Research Institute (JASRI). We used two beamtimes: beamtime
A for measurements with a high-energy X-ray beam (17.1-37.5
keV) and beamtime B for those with a low-energy X-ray beam
(7.0—15.0 keV). The sample was placed on an automatic XY
stage. Monochromatic X-rays were obtained with a Si(111)
double crystal monochromator, and the X-ray microbeam was
produced by focusing Kirkpatrick—Baez mirrors. The area of
the X-ray microbeam in beamtime A was 1.0 gm (V) X 1.2 ym
(H), while that of beamtime B was 0.6 um (V) X 0.8 yum (H).
Using these X-ray microbeams, we applied three X-ray
analytical techniques, SR-u-XRF, SR-u-XANES, and SR-u-
XRD. The intensity of the incident X-ray (I, intensity) was
continuously monitored using an ionization chamber located
before the focusing mirror. The SR-u-XRF analysis, including
two-dimensional imaging analysis, was carried out using 37.5
keV X-rays and a Si (Li) detector in beamtime A. The SR-u-
XRF spectrum was measured for 1000 s in live time per
sample. The intensity of each spectrum was normalized to that
of the Thomson scattering peak. To visualize the distributions
of the elements in each particle, SR-4-XRF imaging analysis of
the particle was conducted with a step size of 0.5 um (V) X 0.5
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Figure 1. Characterization of radioactive aerosol particles prior to SR
experiments. (a) IP autoradiography of the aerosol filter collected in
Tsukuba after the FDNPP accident.” Black dots indicate the presence
of radioactive materials. (b—d) SEM images of (b) particle A (2.0 ym
diameter), (c) particle B (2.8 um diameter), and (d) particle C (1.4
um diameter). (e) Comparison of the EDS spectra of the three
particles. The intensity of each spectrum is displayed on a logarithmic
scale and shifted in a longitudinal direction. A rodlike extraneous
fouling over particle C (d) is a fragment of quartz fiber filter attached
to the carbon tape.

um (H) with an integration time of 4.0 s/point. The XRF
intensities for each measured point were normalized to the I,
intensity.

The SR-;-XANES spectra of the particles and the reference
samples were measured in fluorescence mode for the following
absorption edges: the Fe—K edge (7 111 eV), Zn—K edge (9
661 eV), U-L; edge (17171 eV), Mo—K edge (20000 eV),
and Sn—K edge (29200 eV). The absorption edge energies
used were based on experimental values in Deslattes et al."

In the SR-u-XRD analysis, the X-ray diffraction patterns of
the samples were measured with a Debye—Scherrer optical
system using a two-dimensional detector (CMOS flat panel)
placed 200 mm behind the sample in beamtime B. Si powder
(NIST SRM640c) was also measured as a reference material.
The energy of the incident X-ray was set to 15.0 keV with an
exposure time of 440 ms and an integration of 100 times/
sample. Details of the SR measurements are given in the
Supporting Information.

B RESULTS AND DISCUSSION

Scanning Electron Microscope and Gamma-Ray
Spectra Analyses of Radioactive Aerosol Microparticles.
Figure 1b—d shows SEM images of the three microparticles
analyzed in the SR experiments. They are spherical with
diameters of ~2 um. EDS spectra of the three particles are
shown in Figure le. There were no apparent differences among
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Figure 2. Results of SR-u-XRF analyses. (a) Comparison of the SR-u-XRF spectra obtained for particles A, B, and C and the carbon tape
background. The intensity of each spectrum was displayed on a logarithmic scale and shifted in a longitudinal direction. (b—d) Distributions of
representative elements extracted from the SR-u-XRF images of (b) particle A, (c) particle B, and (d) particle C with enlarged SEM image

corresponding to the imaging area (scale bar: 2 ym).

the three spectra, consistent with the previous results®
indicating that their major components were Fe, Zn, and Cs.
Some of the peaks for light elements (e.g, Si and Ca) may have
originated from both the glass substrate and the particle itself.
Gamma-ray spectra of the three particles detected both **Cs
and "’Cs in each particle with activity ratios of ~1 (decay
corrected as of March 2011). The decay-corrected activities for
134Cs and "¥"Cs were 1.20 (+0.05) Bq and 1.29 (+0.02) Bq for
particle A, 1.49 (+£0.06) Bq and 1.49 (+0.03) Bq for particle B,
and 1.07 (+0.05) Bq and 1.10 (+0.02) Bq for particle C,
respectively. In the previous study,” it is pointed out that the
activity ratios between '**Cs and 'Cs of the radioactive
materials released by the FDNPP accident were ~1. It is thus
confirmed that these three particles are radioactive ones derived
from the FDNPP accident.’

Detailed Chemical Composition Analysis. The SR-u-
XRF spectra of the three particles and the carbon tape
background are shown in Figure 2a. In addition to Fe, Zn, and
Cs, all of which were previously reported,® the following eight
heavy elements were detected in all three particles: Rb, Zr, Mo,
Sn, Sb, Te, Ba, and Pb. Several unique elements were also
detected from specific particles, i.e, Mn and Cr in particle A
and Ag in particle B.

In addition to these elements, U—-L lines in the SR-y-XRF
spectra appeared in particles A and B. To address potential
interferences from elemental contamination such as W, which
could be due to contamination from the micromanipulator
needles during the particle separation procedure, we used SR-p-
XRF imaging analysis and visualized the elemental distributions
within each particle. Figure 2b—d shows the distributions of
selected elements from the SR-y-XRF imaging of the three
particles with enlarged SEM images corresponding to the
imaging area (additional SR-y-XRF images are shown in Figure
S1 in Supporting Information). In particles A and B, the two-
dimensional distributions of characteristic elements, including
U corresponded well to the particle shapes in the SEM images
and the Cs distributions identified by the SEM-EDS analysis.
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In these images, we found homogeneous distributions of
most elements in the particles except that of Pb in particle C
(Figure 2d). Although strong peaks for Pb—L lines were
detected in the spectrum of particle C, the Pb distribution was
distinctly different from those of the other elements and the
SEM image of the particle, indicating that the Pb did not
originate from the particle components.

Verification of the Presence of Uranium. In order to
obtain additional evidence for the presence of U in the
microparticles, we conducted U—L; edge SR-u-XANES analysis
(Figure 3a). While no absorption edge for U was observed for
particle C, clear edge jumps were observed for both particles A
and B at the energy of the U—L; edge, confirming the presence
of U within the aerosol microparticles in the environment. This
result implies that elements other than radioactive Cs were
emitted along with Cs from the reactor into the atmosphere.

Chemical State and Crystal Structure. SR-u-XANES
spectra of the Fe, Mo, and Sn K—edges for these three particles
are shown in Figure 3b—d (see Figure S2 in Supporting
Information for Zn K—edge). Peak positions and the shapes of
the pre-edges between the particles and the reference materials
agreed well, indicating that these elements occurred as Fe*,
Mo®, Sn*, and Zn*". In addition, features of the SR-u-XANES
spectra of the three particles corresponded to those of the glass
references.

SR-u-XRD patterns of the three particles and Si powder as a
reference material (see Figure S3 in Supporting Information)
showed that the particles had no diffraction peak while the Si
powder showed clear Debye—Scherrer rings. This result
suggests that the particles are amorphous, glassy materials.
These observations together with their spherule shapes implied
that they experienced melting at a high temperature and rapid
cooling as aerosol under oxidative conditions.

Relevant Element Sources around the Reactors. We
explored the possible sources of the 14 elements (Cr, Mn, Fe,
Zn, Rb, Zr, Mo, Ag, Sn, Sb, Te, Cs, Ba, and U) found within the
microparticles by the SR-u-XRF analysis. The reactors of the
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Figure 3. Results of SR-u-XANES analyses. (a) Comparison of the
U-L; edge SR-u-XANES spectra of the three radioactive particles
demonstrating the presence of U in particles A and B. (b—d)
Comparisons of the (b) Fe—K edge, (c) Mo—K edge, and (d) Sn—K
edge SR-u-XANES spectra of the three particles and the reference
materials.

FDNPP (see Figure S4 in Supporting Information) were
boiling-water reactors (BWR),"" and the fission fuels composed
of U (only no. 3 reactor used mixed oxide fuel'"). As a result of
the nuclear fission reaction of U, the fission products (FPs)
could yield 9 elements (Rb, Zr, Mo, Ag, Sn, Sb, Te, Cs, and
Ba)''™"® found in the particles. Zr—Sn alloy was used for fuel
cladding within the reactors.'* Stainless steel, which commonly
consists of Fe, Cr, and Mn, was used in the structure of the
vessel. Zn had been added to the primary cooling water in the
FEDNPP"® for corrosion control to reduce *Co. On the other
hand, given the possibility of a molten core as a result of the
nuclear meltdown may react with a concrete base as suggested
by the presence of Si in the particles, it should be noted that a
percentage of some elements (e.g, Rb and Zn) may be
originated from components of the concrete. Because of the
lack of the access to the damaged reactors, we do not have
direct evidence to identify the source of these elements.
However, we conclude that U fuel, FPs, and components of the
reactors are very likely the sources of the elements identified
within the three radioactive microparticles, although further
investigation will be needed to confirm their sources. We
assume that, because these elements could have originated from
multiple sources, they were melted together during the accident
and eventually formed spherical microparticles.
Environmental Impacts of the Microparticles. If our
hypothesis that some heavy elements in the particles were
produced by nuclear fission reactions is correct, these particles
likely contained additional short-lived radionuclides when they
were released during the accident.'"'* Thus, the specific activity
of these particles at the time of release may have been several
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times higher than that presently associated with the radioactive
Cs. In addition to the previous report that these particles are
insoluble in water,” our study revealed that they are glassy
materials with highly oxidized states. These characteristics
suggest that they could have a relatively long-term impact on
the environment, i.e., continued release of soluble radioactive
Cs into the environment as these insoluble glassy particles
degrade. Similar radioactive particles have been detected in
soils, plants, and mushrooms collected from the area
surrounding the FDNPP as shown by IP autoradiography.”
Although there is no chemical and size information for the
particles reported in other studies, it is probable that some
radioactive particles found in these previous studies are the
same as the microparticles characterized in our study.

B CONCLUSIONS

The present study has provided better understanding the
accident based on chemical information recorded in individual
2-pm radioactive Cs-bearing particles emitted from the FDNPP
accident using an SR-X-ray microbeam. The SR-u-XRF analyses
directly identified U and heavy elements, that may originate
from the fuel, FPs and materials used in the FDNPP, contained
in the aerosol particles together with radioactive Cs, although
isotope ratios should be identified to conclude their exact
sources. The SR-y-XANES and XRD analyses showed that
these particles were highly oxidized glassy materials. Clarifying
the nature of these microparticles assists in understanding what
occurred in the reactors during the early stages of the accident.
Simulation of distribution and deposition of the radioactive
materials depends on physical and chemical natures of materials
of interest, and our results could improve models simulating
how radioactive materials were formed and were distributed
from the reactors into the environment during the accident.
Further quantitative investigations of the chemical nature of the
radioactive particles including quantification and chemical state
analysis of U and FPs in the particles will be important to
understand further mechanisms of particle formation and
emissions, as well as their potential human health and
environmental impacts.
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Emission of spherical cesium-bearing
particles from an early stage of the
Fukushima nuclear accident

Kouji Adachi, Mizuo Kajino, Yuji Zaizen & Yasuhito Igarashi
Meteorological Research Institute, 1-1 Nagamine, Tsukuba, Ibaraki, Japan 305-0052.

The Fukushima nuclear accident released radioactive materials into the environment over the entire
Northern Hemisphere in March 2011, and the Japanese government is spending large amounts of money to
clean up the contaminated residential areas and agricultural fields. However, we still do not know the exact
physical and chemical properties of the radioactive materials. This study directly observed spherical
Cs-bearing particles emitted during a relatively early stage (March 14-15) of the accident. In contrast to the
Cs-bearing radioactive materials that are currently assumed, these particles are larger, contain Fe, Zn, and
Cs, and are water insoluble. Our simulation indicates that the spherical Cs-bearing particles mainly fell onto
the ground by dry deposition. The finding of the spherical Cs particles will be a key to understand the
processes of the accident and to accurately evaluate the health impacts and the residence time in the
environment.

n earthquake with a magnitude of 9.0 occurred in Japan on March 11, 2011. In addition to the earthquake

itself, a tsunami struck along the east coast of Honshu and damaged the Fukushima Daiichi nuclear power

plant (FNPP). The FNPP eventually lost its ability to cool the nuclear fuel, which caused hydrogen
explosions and released radioactive materials into the environment'*. Because of the local contamination, many
people still cannot return home. Currently, the Japanese government is spending considerable amounts of money
to clean up the contaminated residential environment and agricultural fields.

The radioactive materials released to the atmosphere traveled over the entire Northern Hemisphere®”. In
Europe, for example, Masson et al.’> measured increases in radioactive cesium and iodine in the air from March 19,
2011 and showed that the maximum levels occurred between March 28 and 30. Although the accident has global
impacts, we still do not know exactly what happened in the reactors during the accident, and the estimates of the
radioactive Cs releases vary largely from 9 to 36 PBq**"°.

The chemical and physical properties (i.e., chemical forms, particle sizes, shape, phases (gas or aerosol), water
solubility, and residence time) of the radioactive materials released into the environment are not well known'".
Such knowledge is necessary to improve the numerical models to estimate the geographical distributions and
evaluate the human exposures during and after the accident. Because the mass of released radioactive material was
small, i.e., the release of *’Cs from the accident was <20 kg, and the material spread globally, it is extremely
difficult to chemically detect it other than by radioactivity detectors. In this study, we chemically detected Cs
within single particles for the first time by using electron microscopy and report the shape, composition, water
solubility, and sizes of the particles to evaluate the implications of their formation process, occurrences in the
environment, and potential health effects. This knowledge is still important for preventing further accidents,
finding effective ways to remove the radioactive materials from the environment, and preventing further resus-
pention of the materials.

Results

Two plume events. The major radioactive material release events occurred during March 12 and 23, 2011 at the
ENPP°. We collected aerosol samples on quartz fiber filters (25 cm X 20 cm) at the Meteorological Research
Institute, Tsukuba, Japan, which is located 170 km southwest of FNPP (see the Method section). In these samples,
we found two significant peaks in the radioactivity concentrations between March 14 and 15 (Plume 1) and
between March 20 and 22 (Plume 2) (Fig. 1). These significant plumes in the air were also reported in eastern
Japan and polluted the water and soil>'*"**>. Meteorological conditions, such as rain and the wind direction, and
the releases of radioactive materials were the main causes of the high surface deposition events'. We used the
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Figure 1 | The radioactivity of the aerosol particles after the Fukushima Daiichi nuclear power plant accident in Tsukuba, Japan. Red dots indicate the

midpoints of each sampling period.

filters that had the maximum radioactivity levels from each plume
(from March 14, 21:10 (local time) to March 15, 09:10 and from
March 20, 21:30 to March 21, 09:13) and analyzed portions of
these filters (~10 cm”® per filter) using an imaging plate (IP) and a
scanning electron microscope (SEM) to directly observe the
radioactive materials. In addition, we measured the aerosol particle
size distributions within the plumes (Figs. S1 and S2).

First plume (March 14-15). We measured the radioactive materials
that were collected in the filter at ground level on March 14-15 using
the IP (Fig. 2). The radioactive materials were distributed spotty,
suggesting that the number of radioactive particles was relatively
small but that their activity levels were relatively strong. Within
this filter sample, we counted approximately 100 spots caused by
radioactive materials, suggesting a concentration of approximately
10 radioactive particles per m®. For reference, the average particle
number concentration was 4.1 X 107 per m® for particles larger than
0.5 pm from March 15 (Fig. S1). The spotty distribution in the IP

3/14 21:10- 3/15 09:10

3/1521:11-3/16 09:00

3/1509:19-3/1515:22

3/20 21:30- 3/21 09:13

image was also observed in the rooftop filter sample from March 15
(Fig. S3).

To detect radioactive particles using SEM, it is necessary to reduce
the number of non-radioactive particles on the filter. Therefore, we
cut the filter into many small parts to include the radioactive spots
features (Fig. S4). We then measured the radioactivity of each seg-
ment using IP and/or a Ge detector to chase the radioactive particle.
After reducing the particle numbers in the segments from the three
radioactive spots, we used the SEM and found three radioactive Cs-
bearing particles.

In Figure 3, we show a particle containing Cs (Cs Particle 1).
The particle is spherical with a diameter of 2.6 pm. The energy
dispersive X-ray spectrometer (EDS) spectrum shows Cs peaks.
The Cs distribution in the elemental mapping image indicates that
the spherical particles consist of Cs along with substantial
amounts of Fe and Zn and minor amounts of Cl, Mn, and O.
The decay-corrected activity (as of March 2011) of Cs Particle 1 is
3.27 = 0.04 and 3.31 = 0.06 Bq for '*’Cs and '*Cs, respectively

3/1515:30- 3/15 21:02

3/2109:18- 3/21 21:20

Figure 2 | The distribution of radioactive materials on the filter ssmples measured with the IP. Black dots indicate the presence of radioactive materials.
The outer rims (dotted line) of the filters were added artificially. This study focused on the filter samples from March 14, 21:10 to March 15, 09:10 (upper

left), and from March 20, 21:30 to March 21, 09:13 (bottom center).
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Figure 3 | SEM and EDS mapping images of a radioactive Cs-bearing particle from the sample collected during March 14, 21:10 and March 15, 09:10.
(a) A Cs-bearing particle partially embedded within a carbon paste. (b) The same Cs-bearing particle as a) but measured the next day. The particle shows a
spherical shape. (c) An elemental mapping (Cs) of the particle (a). (d) The EDS spectrum of the particle a) (black line). The red line shows the

spectrum from the glass substrate. The Cs in the particle shows multiple peaks. (e) An elemental mapping of the other elements within the area. O, Si, Cl,

Mn, Fe, and Zn are possibly coexistent with Cs within the particle.

(Fig. S5). Assuming a particle density of 2.0 g/cm’, the Cs mass
percentage within the particle is estimated from its activity (Bq) to
be 5.5. Another Cs-bearing particles (Cs particles 2 and 3) from
the same filter but different spots are similar to Cs Particle 1,
although they have weaker activity (Fig. $6). The particles consist
of Fe, Zn, and Cs and are approximately 2.0 um in diameter. The
radioactivity for Cs particle 2 is 0.66 = 0.02 and 0.78 * 0.04 Bq
for ’Cs and '**Cs, respectively. The Cs mass percentage within
Particle 2 is estimated from its activity to be 2.5. Assuming that
the entire the radioactivity in the Plume 1 was from the Cs-bear-
ing spherical particles gives an average of 1.4 Bq per particle,
which is comparable to that of Particle 2.

We analyzed the water solubility of Cs Particle 1 by comparing the
particle’s shape before and after exposure to water (Fig. S7). The
results show that there was no change in shape, suggesting that

the particle was insoluble to water at least during atmospheric trans-
portation.

Second plume (March 20-21). The IP image of the filter collected on
March 20-21 indicates that the radioactive materials are evenly
distributed within the filter with approximately 10 diffused spots
(Fig. 2). We cut the filter including a diffused spot, formed several
layers, and captured the IP image (Fig. S8). The radioactivity is
distributed along the filter segments, a result which differs from
that of Plume 1. We interpret that small amounts of the
radioactive Cs attach to other dominant aerosol particles and that
the occurrence is consistent with the results of Kaneyasu et al.'® about
the role of sulfate aerosols as carriers of **’Cs. An SEM analysis with
EDS elemental mapping shows numerous sulfate and mineral dust,
as is commonly found in aerosol samples (Fig. S8). The aerosol filter
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Figure 4 | The model simulation of the total deposition of the '¥Cs
released from the FNPP in Plume 1 (between March 14, 17:00 and March
15, 02:00 (JST)). We assumed that all Cs consists of relatively large, water-
insoluble particles. The Regional Air Quality Model 2 (RAQM2'7) was used
for the model calculation. We used the Generic Mapping Tools (GMT)
developed at University of Hawaii to draw the figure. The model elevation
in the figures was generated based on a 1 km resolution Global 30 Arc-
Second Elevation (GTOPO30) of U.S. Geological Survey (USGS).

sample from the rooftop site also indicates a similar distribution of
radioactive materials (Fig. S3).

Model. We simulated the depositions of the radioactive particles from
Plumes 1 and 2 using a tagged chemical transport model. Unlike other
simulation models (e.g.***'?), we considered the aerosol dynamical
processes explicitly and used the measured values and assumptions
of the particle physical and chemical properties from our observations,
i.e, on March 14-15, radioactive Cs consisted of 2.3 um hydrophobic
particles, whereas on March 20-21, the Cs was carried by hydrophilic
submicron particles (e.g., sulfate).

The tagged simulation result indicates that the aerosol particles on
the filter sample from Plume 1 were mainly emitted during March 14,
17:00 to March 15, 02:00 (JST) from the FNPP. On the other hand,
the aerosol particles on the filter sample from Plume 2 were mainly
emitted during March 19, 20:00 and March 20, 07:00.

In Figure 4, we show simulation of the total (dry + wet) *"Cs
deposition. Within Plume 1, 17% and 5.1 X 107°% of the '*’Cs
released from the FNPP fell onto the ground by dry and wet depos-
ition processes, respectively, and the rest (83%) was deposited into
the ocean or was transported out of the model domain. In contrast,
the deposition ratios onto the ground for the particles within Plume 2
were 1.9% and 3.8% by dry and wet deposition, respectively.

Discussion

This study reports for the first time the presence of spherical radio-
active Cs-bearing particles emitted from the FNPP during a relatively
early stage (March 14-15) of the accident. The particles coexist with
Fe, Zn, and possibly other elements, and their diameters are approxi-
mately 2 pm. Because these elements were evenly distributed within
the particle, we conclude that they are internally mixed and form an
alloy. This result differs from that reported by Kaneyasu et al.'®, who
showed that the Cs measured on samples collected during April and
May 2011 was carried by sulfate aerosol particles approximately
0.5 um in size. Due to its spherical shape and composition, the
particle is likely solid and is largely insoluble in water. Spherical
aerosol particles, such as fly ash, commonly form from liquidized

materials or during the condensation of vaporized materials depend-
ing on their sizes".

The spherical Cs-bearing particles were larger and less water sol-
uble than sulfate particles, resulting in more dry deposition and less
deposition in the region northwest of the FNPP (Figs. 4 and S9). If we
assume that all of the Cs had been carried by the sulfate aerosol
particles in Plume 1, 5.6% and 9.3% of the released *’Cs should have
been deposited through dry and wet deposition processes, respect-
ively. Accordingly, the geographical distribution of Cs deposition
differs depending on the physical and chemical properties (Fig.
S9), although the quantitative radioactivity levels for the total depos-
ition in the model depend on assumptions such as cloud microphy-
sics and the total amount of emissions from the FNPP, which is still
under debate. Our model results suggest that because the dry and wet
deposition processes are sensitive to the chemical form and sizes of
the Cs carriers, multiple numerical simulation models based on the
accurate chemical and physical properties of Cs-bearing particles will
be needed to reevaluate how the Cs from the early stages of the
accident was deposited.

It is probable that the emission processes had changed between the
emissions of Plumes 1 and 2 as the accident and water injection
progressed; however, further studies will be needed to reveal the
emission process during the accident.

This study aims to show the presence of spherical radioactive Cs-
bearing particles to stimulate and facilitate further studies across
multidisciplinary fields that will enable the proper understanding
and evaluation of particle effects. We believe the finding of the Cs-
bearing particles will have implications to the following studies.

1) The composition and the spherical shape of the Cs-bearing
particles emitted by the FNPP accident will be a key to under-
stand what happened in the nuclear reactors during the
accident.

2) The spherical Cs-bearing particles likely have longer retention
times on the land surface than those of the water-soluble Cs
particles. The retention time of the particles in the soil or other
environments needs to be reconsidered.

3) The health effects of the particles should be evaluated based on
the particle sizes and insolubility in water.

Methods

Sampling. The samples were collected at the Meteorological Research Institute
(Tsukuba, 36.05N, 140.13E) using both a high-volume aerosol sampler (Sibata
Scientific Technology Itd., HV-1000F; 1000 m*/24 h) placed on the ground and a
PM2.5 aerosol sampler (24 m*/24 h) placed on the roof of the 6-floor building
(approximately 25 m from ground level). Quartz fiber filters were used in both
samplers. The sampling times were 6, 12, or 24 h for the high volume air sampler and
24 h for the PM2.5 aerosol sampler. The particle size distributions were monitored
using an aerosol particle sizer (APS; TSI-3321) and a scanning mobility particle sizer
(SMPS; TSI-3080 and TSI-3775) on the rooftop site for particle sizes >0.5 pm and
between 7 and 289 nm in diameter, respectively, with a 2.5 pm cutoff size.

Analyses. An imaging plate (IP; GE CRx25P) was used to detect the radioactivity on
the filters with a pixel spatial resolution of 50 pm. An intrinsic Ge detector (SEIKO
EG&G) coupled with a multi-channel analyzer was used to obtain the gamma spectra
of each Cs-bearing particle and filters. A scanning electron microscope (SEM; Hitachi
high-Technologies SU 3500) and an energy dispersive X-ray spectrometer (EDS;
Horiba Itd. X-max 50 mm) were used to observe and analyze the shapes and
compositions of the particles. The particles attached to the filter fibers were mounted
within a carbon tape (Fig. S4). A manipulator (Micro Support Corp., AP-xy-01) was
used to cut the carbon tape into as small segments as possible (<0.1 mm).

Model. We used the Regional Air Quality Model 2 (RAQM2'®), which implements a
triple-moment modal aerosol dynamics module assuming a log-normal size
distribution of the aerosol populations. This model describes the nature of the aerosol
dynamical processes, such as nucleation, condensation, coagulation, dry deposition,
grid-scale cloud condensation and ice nuclei activation, and the subsequent cloud
microphysical processes (rainout) and the washout processes. A non-hydrostatic
meteorological model (NHM)" was used to produce the meteorological field. There
were 215 X 259 grids with a 3 km horizontal grid resolution in both the NHM and
RAQM2. There were 50 vertical layers to 50 hPa in the NHM, and 20 layers to 10 km
in the RAQM2. The Japan Meteorological Agency (JMA) Meso-Regional Objective
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Analysis data sets (3 h, 5 km X 5 km) were used for the initial and boundary
conditions for the NHM and for the spectral nudging method. The '*Cs released from
the FNPP was tagged with a temporal resolution of 1 hour. We assumed 0.43 PBq
(Plume 1) and 0.39 PBq (Plume 2) for the total amounts of *’Cs activity released from
the FNPP by using the inventory of Katata et al.”’. We used a number equivalent
geometric mean dry diameter Dy, 4, = 2.3 pm (an averaged value of the Cs-bearing
particles 1 and 2), geometric standard deviation 6, = 1.3, particle density p, = 2.0 g/
cm’, and hygroscopicity x = 0 for Plume 1. For Plume 2, we used Dy, 4, = 102 nm
(measured by SMPS), 6, = 1.6, p, = 1.83 g/cm’, and k = 0.4. The calculated dry
deposition velocities of the particles in Plume 1 are approximately 4-5 times greater
than those of the particles in Plume 2. For the particles in Plume 2, both the rainout
and washout processes were considered, whereas for particles in Plume 1, only
washout was considered because no cloud condensation nuclei activity is assumed
(ie, k = 0).
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G-3-5. Results and discussion

We compared observed and simulated cumulative precipitation from 11 March to 1 April among the
three meteorology models (Figs. G-3-1 and G-3-2). For observed data, we used JMA’s radar/rain
gauge-analyzed precipitation (RAP) data, which were interpolated to the 3 km resolution grid. We also
compared observed and simulated cumulative precipitation on the afternoon of 15 March (Fig. G-3-2,
lower panels), when substantial deposition occurred on land (e.g., Morino et al., 2013). All three
simulations overestimated precipitation over the ocean by a factor of more than 10 (data points above
the 10:1 simulation:observation line in Fig. G-3-2), and the two WRF simulations also underestimated
precipitation in the southwestern part of the domain by a factor of more than 10 (data points below the
1:10 simulation:observation line in Fig G-3-2). Our focus was on land regions where the ¥’Cs
deposition was large (>10 kBg/m?) (see Fig. G-3-3), and we did not expect the large discrepancies
between the simulated and observed precipitation over the ocean to substantially affect the modeling
of ¥¥Cs deposition in land areas.

The differences due to the different cloud microphysics modules were notable. The simulated
precipitation spatial distribution patterns of the two WRFs were similar and different from the NHM
pattern, whereas the precipitation amounts in WRF-MORR were fairly close to those in NHM, and
those in WRF-WDM6 were much larger than the amounts in the other two simulations (Fig. G-3-2).
WRF-WDM6 overestimated precipitation substantially over high-altitude regions (corresponding to
locations where the simulated precipitation was >600 mm; Fig. G-3-1d). In the afternoon of 15 March,
the overestimation of WRF-WDM®6 was substantial; the mean bias (MB) was 4.1 mm and the
observation average was 2.36 mm. Judging from the values of the correlation coefficient (R), the
performance of NHM was best among the three meteorological simulations (R = 0.86, MB = 0.35 mm).
The MB of WRF-MORR was smallest (MB = 0.24 mm), but owing to the square shape of the plotted
data, R was 0.67.

Comparison of cumulative **’Cs deposition amounts between aircraft observations (Torii et al.,
2012) and simulations by NHM, WRF-MORR, and WRF-WDM6 (Fig. G-3-3), performed under the
assumption that 100% of **Cs was carried by water soluble particles, showed that NHM simulated too
much deposition in northern areas (Yamagata, Miyagi, and Iwate prefectures). This deposition was
caused by rainout of ice phase precipitation (snow and graupel). For accurate simulation of rainout
of 1¥’Cs, the vertical distribution of the *¥'Cs and the hydrometeor mixing ratio must be accurately
predicted. However, because no observations of the vertical profiles of *¥'Cs are available for the time
period of this study, the reason for this overestimation is impossible to identify.

WRF-MORR also simulated too much deposition in Yamagata and Miyagi prefectures, but
WRF-WDMBG6 simulated less deposition in this area. The two WRF simulations reasonably reproduced
depositions in the highest deposition areas (>1000 kBg/m?), but depositions in those areas were
underestimated by NHM. The two WRF simulations also reasonably reproduced the higher
depositions in the mountainous regions of Tochigi and Gunma prefectures, but they overestimated
depositions in the southern area (Tokyo, Kanagawa, Shizuoka, and Chiba prefectures). The NHM
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Fig. G-3-3. Cumulative *Cs deposition amounts (kBg/m?) in (a) aircraft observations and (b) NHM, (c)
WRF-MORR, and (d) WRF-WDMB6 simulations. Simulated depositions are shown only for land areas to
facilitate visual comparison with the observed deposition.

simulation underestimated deposition in all of these areas (i.e., in Tochigi and Gunma prefectures as
well as in Tokyo, Kanagawa, Ibaraki, and Chiba prefectures). It is notable that, even though the
transport model was the same, the simulated depositions varied substantially among the different
meteorological simulations.

Figure G-3-4 shows depositions of water-soluble and water-insoluble particles simulated by using
the three meteorological fields on both land and ocean areas. We compared the simulated depositions
with aircraft observation data (Fig. G-3-3a) interpolated to the 3 km resolution grids of the models in
Fig. G-3-5. Note that following Morino et al. (2013) and Katata et al. (2015), R and MB were
calculated only when the observed values were larger than 10 kBg/m?.
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Fig. G-3-5. Scattergrams of cumulative deposition between the (a, d) NHM, (b, &) WRF-MORR, and (c, f)
WRF-WDMS6 simulations and aircraft observations. The simulations were performed under the assumption
that 100% of Cs was carried by (a—c) water soluble or (d—f) water insoluble particles. Although the data are
plotted on a log-log scale, the statistics R and mean bias (MB) were calculated on a linear-linear basis.
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The simulated results were substantially different between Cs-bearing particles assumed to be 100%
water soluble or water insoluble, because rainout of the Cs-balls was not considered to occur (compare
upper and lower panels in Figs. G-3-4 and G-3-5), whereas the dry deposition velocity of Cs-balls was
approximately four times that of the water-soluble submicron aerosols. It is interesting that although
the simulation of precipitation by NHM/WRF-WDM®6 was good/poor, the simulation of deposition by
NHM/WRF-WDM6 was poor/good.

Adachi et al. (2013) detected Cs-balls only in samples collected during the early stage of the
accident (14-15 March), but they reported that radioactive Cs was carried by water-soluble aerosols
later (20-22 March). Kaneyasu et al. (2012), who analyzed samples collected from 28 April to May 12
and during 12-26 May (i.e., after the later sampling period of Adachi et al., 2013), also reported the
radioactive Cs to be carried by water-soluble aerosols. Therefore, the assumption of 100%
water-insoluble or water-soluble particles (Figs. G-3-4 and G-3-5) was not realistic; rather, reality
must lie somewhere in between. Therefore, under the assumption that Cs-balls, as indicated by Adachi
et al. (2013), were emitted only in the early stage of the accident, we used the following settings to test
the sensitivity to aerosol microphysical properties:

1. We set the proportion of Cs-ball emissions to values from 10% to 90% during the early stage.

2. We started the early stage on 11 March but varied its ending date between 12 and 20 March

2011 (i.e., before the later sampling of Adachi et al., 2013).

We next compared cumulative depositions simulated using the meteorological fields calculated by
NHM and the two WRF simulations between two extreme cases: 10% Cs-ball emission until 12 March
and 90% Cs-ball emission until March 20 (Fig. G-3-6). The statistics (MB, root mean square error
(RMSE) and R) of these comparisons are presented in Table G-3-1, together with the statistics for the
three meteorological simulations when emissions were assumed to consist of 100% water-soluble
submicron particles.

It is notable that even when the transport model settings and aerosol properties were the same, the
fractional bias (MB divided by the observation average) ranged from 0.25 to 0.74, differing by
approximately threefold, among the three different meteorological simulations. This difference is
marked, because it means, for example, that the emission amount estimated by an inverse model from
the deposition amount could vary threefold, depending on the meteorological model used. The ranges
of MB, RMSE and R in the sensitivity to aerosol properties test results were smaller than their ranges
in the sensitivity to meteorology test results (Table G-3-1), but the differences were similarly marked.
The fractional bias range differed by approximately twofold between WRF-MORR and WRF-WDM6
(0.35-0.74 and 0.38-0.66, respectively). Therefore, the sensitivity of *’Cs deposition to aerosol
microphysical properties was as important as its sensitivity to the meteorological simulation used.
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Fig. G-3-6. Simulated cumulative depositions (kBg/m?) using the meteorological fields calculated by (a, b)
NHM, (c, d) WRF-MORR, and (e, f) WRF-WDM6 between the two extreme aerosol microphysical
assumptions: (a, ¢, €) 10% Cs-ball emission from 11 to 12 March and (b, d, f) 90% Cs-ball emission from 11
to 20 March.

Table G-3-1. Ranges of the statistics between observed and simulated cumulative depositions between the two
extreme sensitivity tests (10% or 90% Cs-balls and 12 or 20 March as the ending date of the early stage) with
each meteorological simulation (first to third row). The bottom row shows the same statistics among the
meteorological simulations when no Cs-balls were assumed.

Sensitivity to mB' RMSE! R' Obs. Simulation settings
(min:max) (min:max) (min:max) Ave. . !
Meteorological . Ending date of
2 2 2 . . Cs—ball fraction
(kBg/m%) (kBg/m? (-) (kBg/m?) simulation early stage
Aerosol oo 5. 655 2743:2050  0.39 : 0.55 882  NHM 10-90% Mar.12 - 20
properties
Aerosol o5 . 228 2511:2725 053059 882  WRF-MORR 10-90% Mar.12 - 20
properties
Aerosol
: -546:-302 2259:2442  0.65:0.70 882  WRF-WDM6 10-90% Mar.12 - 20
properties
Meteorology g6 932 2330:2749 054 :066 gg2  NHM WRF-MORR 0% -

simulations WDM6
1. . ..
linear—linear statistics
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G-3-6. Summary

We simulated the emission, transport, and deposition of *3’Cs released due to the FDNPP accident.
The sensitivity of the simulated depositions of radioactive Cs to the size and hygroscopicity of the
carrier aerosols was assessed and compared with the sensitivity to the meteorological simulation.

Two types of Cs-bearing aerosols, water-insoluble supermicron particles (Cs-balls) and
water-soluble submicron particles were considered in the simulation. The simulated depositions of the
two aerosols were significantly different because rainout was not considered to occur with Cs-balls,
and the dry deposition velocities of Cs-balls were approximately four times those of the water-soluble
particles.

Even when the transport model was used with exactly the same settings, the simulated depositions
were very different among the different meteorological simulations: The fractional bias (MB divided
by observation average) ranged from 0.25 to 0.74, an approximately threefold difference. The
sensitivity of ¥’Cs deposition to particle size and hygroscopicity (determined by adjusting the
proportion of water-insoluble Cs emission between 10% and 90% and the ending date of the early
stage between 12 and 20 March 2011) was smaller but just as important as the sensitivity to the
meteorological simulation (in which 100% of Cs was assumed to be water soluble, as in previous
studies). To better understand the environmental behavior of radioactive Cs discharged from the
FDNPP, knowledge of the aerosol microphysical properties is as important as the accuracy of the
meteorological simulations and emission scenarios.

In future work, several new wet deposition modules and emission scenarios, together with new
meteorological simulations (for example, NHM-LETKF as in Sekiyama et al., 2015), will be added to
the current sensitivity analysis study to provide a more robust uncertainty estimation of the numerical
simulation techniques. It would also be interesting to estimate the sensitivity to the modeling approach
(Lagrangian or Eulerian), because the both approaches have been used in FDNPP accident simulation
studies.
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A caption of the cover art

Monthly depositions of *Sr and **’Cs before August 2015.

We have been monitoring the deposition amounts for the purpose of understanding the actual condition
of radioactive pollution after the accident of Fukushima Daiichi Nuclear Power Plant (FDNPP). The
monthly deposition amounts of both “°Sr and **’Cs, which were successfully fixed values after the
accident in March 2011, are shown in logarithmic axis with error widths. Since the deposition amounts of
134Cs were nearly equal to those of *¥'Cs, the total amounts of radioactive cesium were approximately two
times of the values in this figure. We would like to note that the half-lives of ®Sr and *'Cs are
approximately 30 years, however, ***Cs decays to half in about 2 years. The error widths are one sigma in
statistical error of measurements. Although the error widths of all measurement values were better to be
shown, error values used to be not shown on purpose to avoid busy figure in the former versions. In
addition, error data before several decades are not handed down.

For the analysis of samples collected before the accident of FDNPP and not measured then, significant
increase of background values were severe problem, because environments including laboratories and
instruments were polluted, and it was also problem that samples could have been polluted in the
operations of concentration or other preprocesses (contamination problem). We overcame the difficulty by
carrying the analysis out in western Japan (Kansai area) where the pollution level was low, however, the
data during the latter part of 2010 and the former part of 2011 were lacked in spite of our efforts as
described in the main text.

We are making efforts to recover clean working environment as before the accident, by cleaning of the
environments, exchanging instruments, etc. for the purpose of acquire the correct data. In addition, we
maintain the precision of the data, for example, by participating inter-comparison programs performed by
IAEA, so that, the credibility of the data are assured (please refer to the section: quality control of
radioactive analysis of atmospheric deposition samples ).
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