都市ビル群上の乱流特性の研究

〇栗田 進(環境·応用気象研究部)

1. はじめに

当研究部の「ヒートアイランド現象の再現・予測に関する基 礎的研究」では、ヒートアイランド研究におけるLESの有用性 を調査している。このような、都市における環境問題を研究す る上では、都市の複雑な構造をどのように扱うかが、大きな 問題である。特に、都市の特徴である集団としてのビル群の 上では流れが複雑な乱流となる事が扱いを難しくしている。こ れまでの気象学的アプローチでは、このビル群を1層或いは 多層の都市キャノピーとしてパラメータ化して組み込んでいる。 一方、近年のコンピュータの性能向上により、建築学分野で 工学的立場から開発されてきた個々の建物の周りの気流を 精密に再現する数値流体力学モデル(CFD、例えばLESや RANS)を、より広い領域に拡大適用することが可能になりつ つあり、都市環境問題に使う試みも始まっている。しかしなが ら、このようなCFDモデルの特性を気象学的な立場から検証 する研究は十分になされているとは言えない。それは、それ ぞれの立場で扱う対象と目的が異なっていた為である。今後、 両者をつなぐ観点からの研究が必要であり、それには、ビル 群上の気流の複雑な構造の特性を、気象学的な観点から知 ることが重要である。

本研究は、以上の観点から都市ビル群を想定した風洞実 験を行いその乱流の基本的特性を知ると同時に、これをLES モデルで再現しその有用性を調べると共に、より高度に利用 するための、今後の研究の課題を抽出するものである。

2. 実験の内容と結果

2.1.ビル群上の大気境界層の構造

都市のビル群上の大気境界層の構造を模式的に第1図に 示す。大気境界層下部で個々のビルの影響を受けない層を イナーシャルサブレーヤ、影響を直接受けている層をラフネス サブレーヤ、このうちビル群の高さまでをキャノピー層、ビル より高い層をシアー層と言う。実際の都市ではこのようなビル

第1図:都市のビル群上の大気境界層の鉛直構造

群が多様な形で混じり合っている。

そこで本研究では、ビル群の構造が変化した際に、このシ アー層における乱流の構造がどのように応答するかを広域に わたり詳しく解析した。なぜなら、このシアー層は個々のビル の影響を受けていると同時に、そのすぐ上の気象学的によく 知られている大気境界層下部に繋がっているので、ここの気 流の詳細な特性を広域かつ詳細に知ることが、気象学的モ デルとCFDモデルを結びつける上で有効かつ必要な事であ るからである。

2.2. 風洞実験

第2図に風洞実験の模式図を示す。ビル群としては、正格 子と千鳥格子状に10cmの立方体を13x11列並べた。この ビル群の前後の領域は小さな粗度とした。即ち風が小さな粗 度領域からビル群域に進入した際の応答を見ることになる。

第2図:風洞実験(正格子)の模式図

今回は正格子上で、シアー層下部の一定高度(z=1.25 H、Hはブロックの高さ)での乱流の統計量を、流れに沿って 測定した結果を中心に報告する。測定は第3図に示すように、 3つの線上(通路中心線、ブロックのエッジ線、ブロック中心 線)で行った。得られた平均風速Uの変化を第4図に示す。

第3図:正格子ブロック群上での測定点

第4図:通路・エッジ・ブロック線上での平均風速Uの変化

全体的に見ると、(1)最初の急激な変化のあとに、(2)ゆ っくりとした変化が見られ、(3)第6ブロック目からほぼ一定の 状態に至り、(3)最後に後流域への移行が見られる。これら の現象は流れの他の統計量でも見られる。また、同時に行っ た千鳥格子の配置でも同様な変化が見られ、一般的な現象 と考えられる。このうち(3)の状態は準平衡状態にあると言え、 ビル群上での準平衡状態の存在が確認される。これは、気象 学的には当然のことのように思えるかもしれないが、都市キ ャノピー上では自明の事ではない。現に、CFD分野での近年 の大きな課題の一つはビルに対する流入風の乱流構造をど のように与えるかにある。これは流入風の乱流構造の違いが ビル周りの流れ場に大きな変化を及ぼす為であるが、集団と してのビル群上での準平衡状態の存在は流入風の乱流構造 の影響は間接的なものにすぎない事を示唆するものである。 (あくまでも気象学的な意味に於いてである。)このことは、今 後の都市気象研究を進める上で重要な結果である。

次に、(2)のこの準平衡状態へのゆっくりとした移行過程を 詳細に見ていく。第1に、測定した3つの線上(ブロック、通路、 エッジ)Uの平均を第5図(a)に赤太線で示す。すると第1ブロ ック直後から第6ブロックにかけて直線上に変化していく結果 が得られた。これは、キャノピー構造の突然の変化から準平 衡状態へ移行する際の、平均風の流れ方向への緩和過程と いえる。一方千鳥格子配置での漸近線は、直線ではなく2~ 3次曲線が得られた。即ち、平均風の緩和過程は、その周辺 でのビル群の配置により、その形態が変化すると考えられる。 特に正格子の通路の領域の有無が大きく寄与すると思われ る。第2に、第4図で3つの線上(ブロック、通路、エッジ)の結 果をよく見ると、ブロックとエッジは比較的似ているのに対して、 通路は大きく異なる変化をしている事に気づく。これは、通路 とブロック・エッジの横方向風速シアーが大きいことを意味す る。そこで、この横方向風速シアーの準平衡状態への移行過 程を第5図(b)に赤太線で示す。この図から、この横方向風 速シアーは指数関数的に減少する事が分かり、乱流に伴う緩 和現象として説明できる事を示している。

以上、この風洞実験を通して、ビル群上でのシアー層にお ける流れの基本的特徴が明らかになったと言える。なお、今 回のビル群の配置は比較的密な配置に属するものである。

2.3. LESモデルと風洞実験の比較

次に、この風洞実験と同様な設定の都市ビル群を想定した LESモデル(東工大、神田)による数値実験を行い、両者を 比較した。格子間隔は5m、ビルは50mの立方体とした。比 較は、ビルの高さの2倍の範囲で流入風の差のRMSが最小 になるようにLESの結果を調整して行った(高さはビルの大き さで規格化)。このモデルは周期境界条件を使用しているた め流入風は自己生成されるが、結果的に得られた流入風速 の分布は良く一致している(第6図)。一方乱流は少ないが準 平衡状態ではその影響は小さい。なお、この風洞実験・LES のラフネスレイノルズ数は流れの様子がスケールに依存しな いと言われる領域に入っている。

この結果、良く一致する現象と、一致しない現象が得られ た。ビルの構造に対応する細かな周期的変動、3つの線上間 の相対的な関係、先に詳しく述べた準平衡状態への移行過 程(第5図青細線)などは、良く一致する結果が得られた。一 方、第5図(a)にも見られるように準平衡状態における風速U が大きく、また運動量フラックスは小さくなった。これは、ドラッ グ係数がLESでは小さい事を意味している。この原因として はいろいろ考えられるが、今後究明していく事が必要である。 特に、境界層の発達との関係、格子の分解能依存性等を調 べていく必要がある。

第6図:平均風速Uの調整、青太線:LES、細線:風洞 ビルの高さは100mmに対応

3. まとめ

今回の風洞実験とLES実験から、都市ビル群上のシアー 層における乱流の基本特性が明らかになった。特に準平衡 状態の存在を確認するとともに、準平衡状態への移行過程 が定量的に求められた。これらは、今後の都市気象研究を進 める上での重要な指針となるものであり、LESの有用性を示 すものである。同時に都市のビル群上での気流に関する問 題点を抽出した。今後都市気象に関する風洞実験・屋外観 測・モデル実験での研究を行う上での重要な課題を提供する ものである。今回の風洞実験とLESモデルの比較は、モデル の性能を敏感に反映するものである事をも示しており、今後、 他の多数のモデル相互の比較検証にも有効である。