水の相変化を考慮した大気境界層の構造の研究

結露条件下の風洞実験と野外観測

〇木下 宣幸、〇萩野谷 成徳 (物理気象研究部)

1. はじめに

地表面における潜熱輸送は様々な気象現象を引き起こす 水循環の源である。このため地表面での潜熱輸送の解明は 気象・気候を理解する上で重要な物理過程である。ここでは 観測も実験もこれまで十分なされていない、結露条件下での 風洞実験および野外観測を行い、地表面での熱収支につい て検討した。風洞実験で水蒸気フラックスを渦相関法で直接 測定するため、応答が速く測定部が小さい光ファイバーを用 いた2波長式赤外線湿度計を開発した。それを用いた風洞で の水蒸気フラックスの測定結果を紹介する。一方、野外観測 では結露量の測定方法を検討し、簡易に実測する装置を作 った。また、結露量の実測結果と地表面熱収支式で推定され る結露量との比較結果を通じて、夜間結露時における輸送特 性を論じる。

2. 結露条件下の風洞実験

風洞の床面を気流の露点温度以下に冷却すると床面に結 露が発生し、安定成層した境界層の中で水蒸気の下向き輸 送が起きる。このときの水蒸気乱流フラックスを渦相関法で 測定し、輸送係数を調べることを目的とする実験を行った。

渦相関法でフラックスを測定するためには、応答速度が 速く、気流に影響を与えないよう小さな水蒸気センサが必 要であるが、そのような製品が無いため、光ファイバー利 用の2波長式赤外線湿度計を開発した。第1図にその構成

第2図 z=5.5cm での乱流スペクトル(u, v, w:風速の x, y, z 成 分、t:冷線温度計による気温、q:赤外線湿度計による比湿)

を示した。長さ2mの光ファイバーを用いて光源や光セン サ部分と投受光部を離して置くことでプローブの外径を 1.5cmに抑えた。また、光センサにInGaAsフォトダイオー ドを使い従来のPbSフォトダイオードでは不可欠だった チョッピング機構を排除し高速サンプリングを可能とし ている。測定光と参照光にはそれぞれ1.94 µ mと1.6 µ mの2 波長を用いている。参照光と測定光の信号電流はオペアン プにより電圧に変換増幅され出力される。両出力電圧の比 の対数は比湿qと比例関係にあるので比湿の絶対値が測定 できる。この湿度計を3cmスパン超音波風速計及び冷線温 度計と組合わせ風洞実験で用いる。

風洞実験は粗度要素とし測定胴上流端から12m風下まで の床面上に丸鋼を10cm間隔で並べた。風速1.0m/s、温度 25℃、相対湿度67%の気流に対し、粗度要素を並べた床面を 15℃に冷却し結露させた。測定胴上流端から9.45m風下の高 さz=4.5、5.5、7、9、11、15、20、30、50cmの各点で50Hzサンプ リングでの1分間測定を5回行った。第2図はz=5.5cmでのスペ クトルである。qのスペクトルは-5/3乗則に従った減少を示し ており、他の要素と似た形をしている。これは本湿度計で乱 流変動が測定できた証拠である。第3図は平均量とフラックス の鉛直分布を示している。比湿は風速Uや気温T同様に境界 層特有のlog分布を示している。水蒸気フラックスwq は他のフ ラックス同様、低い高さではほぼ一様な値となっている。この 分布に基づいて求めた拡散係数を比べると運動量拡散係数

※本研究は、経常研究「水の相変化を考慮した大気境界層の構造の研究(H12-16)」の一環として行われた。主任研究者:井上豊志郎(H15-16)、栗原和夫(H14)、山内豊太郎(H12-13)、研究担当者:萩野谷成徳、木下宣幸、毛利英明。

 K_m に比べ温度拡散係数 K_h や水蒸気拡散係数 K_e はその半分 程度と小さいが K_h と K_e はほぼ等しかった。

第3図 平均風速、気温、比湿、乱流フラックスの鉛直分布

3. 結露量の野外観測

夜間の結露量の測定は従来から多くの研究者により行わ れているが、実用的な測定装置はいまのところない。本研究 では簡便に結露量の自動測定ができる装置を作成し、夜間 安定成層が形成されている結露条件下で、結露量の実測を 行なった。また地表面熱収支式により結露量の定量的見積も りを行い、実測値との比較を通して安定成層時のエネルギー 輸送についての知見を得る。

結露量の測定装置には直径 1.2mの Class-A-Pan 蒸発計 に厚さ5cmの発泡スチロール板を浮かべた装置を用いた。発 泡スチロール板に結露が生ずると蒸発計の水位が変化する。 水位変化は高精度水位計(Lee type 浮力式水位計 CBYL-EV250、クリマテック)を用いた。本水位計は浮力測定 の原理より、温度変化による水の体膨張に伴う水位変動の 影響はない。しかし水位計内部に装着されているロードセル の温度依存性は問題となる。浮力を測るための錘は体膨張 を小さくするためにガラスを採用した。

結露量は地表面状態が完全に湿った条件下で、地表面温 度(Ts)を未知数とした熱収支式を解くことで求めることができ る(近藤純正, 2000)。計算では、下向き長波放射量($L \downarrow$)、地 中伝導熱(G)、気温(T)、湿度(q)、風速(U)の気象要素が必要 となる。またパラメータとして粗度(z_0)と乱流輸送係数(C_h)およ び射出率 ε が必要である。

第4図はロードセルの温度依存性を補正した1晩の結露量 と熱収支式から求めたそれとを示す。地中伝導熱 G は、G=0、 G=-λdT/dz および G=0.5*Rn の場合を示す。ここでλは発泡ス チロールの熱伝導率、dT/dz は上下の温度勾配、Rn は正味 放射量である。発泡スチロールの熱伝導率を考慮した計算値 が良く合っている。計算値と実測値の差異は、装置自身に起 因する誤差と熱収支式のパラメータの与え方に起因する誤差 が考えられる。熱収支式各項目が結露に及ぼす敏感度を調 べたところ、結露量推定には、下向き長波放射量と地中伝導 熱の高精度の推定が重要であることが明らかとなった。

4. 結論

本研究で開発した赤外線湿度計により、風洞実験で水蒸気 の乱流変動の測定が可能となり渦相関法でのフラックス測定 が行えるようになった。結露条件下では K_m>K_h~K_e という関 係がある。従来、風の弱い安定成層時のエネルギー輸送は 乱流フラックス自体が小さいので測定が困難であった。しかし 結露条件下においては、結露量測定装置により可能となった 結露量の測定を通じて、エネルギー輸送の構造についての 知見を深めることができた。今後は装置の感度を上げるため に錘の水平断面積を大きくする、ロードセルの温度依存性を 抑える、結露面を実際の地表面状態にする、などの改良が必 要である。

参考文献

近藤純正,2000:地表面に近い大気の科学,東大出版会。

第4図 水位変化から求めた結露量と熱収支計算から求めた1晩の結露量。mm で表示。