第5章 検証

本章では、ATM による予測について検証する。例として、第 5.1 節で VAA の情報内容にある火山灰雲の予測に関 して、第 5.2 節で降灰予報の情報内容にある降下火砕物すなわち降灰・降礫の予測に関して検証する。

5.1 火山灰雲の予測に関する検証

ATM の業務利用の具体例の一つは VAA 業務における火山灰雲の予測計算である。VAA の発表を行っている東京 VAAC では、2020 年度末を目途に現行のモデルである GATM から、ATM に更新を予定している。そこで本節で は、モデル更新に伴う予測特性の変化を把握するためにモデル間の比較と検証を行う。ただし、VAA では大気中の 火山灰(浮遊火山灰)が航空機の運航に与える影響を主な対象としていることから、比較・検証は火山灰雲に対して して行う¹。

ATM と GATM で考慮している物理過程は同じであり、実装や定数も結果に大きく影響するような違いはなく、利 用する大気場も同じものを使用したため、ATM と GATM の予測には大きな違いはないことが期待される。実際に 大きな違いはみられなかったが、予報後半でわずかな違いが確認された(第 5.1.3, 5.1.4 項)。この違いは、ATM と GATM では大気場の内挿方法が異なることに起因すると考えられる。すなわち、ATM の場合、各トレーサーの位置 の大気場は気象モデルの格子点の値をトレーサーの位置に内挿した値が用いられる一方で、GATM では、モデルの 前処理で大気場を GATM 用の格子点に内挿²し、その内挿された格子点の値をトレーサーの位置にさらに内挿する。 つまり、大気場をトレーサーの位置に空間内挿する回数は、ATM は 1 回、GATM は 2 回、という違いがある。内挿 は平滑化の作用があり、つまり空間的な極値を丸める作用があるため、GATM に比べて内挿の回数が少ない ATM は、空間的な極大値や極小値が予測に取り込まれやすいという特徴がある。

本節で示すように、両モデルの予測は、大気場の取り扱いによると思われる若干の違いが予報後半にみられたものの、その違いは小さく、火山灰雲の予測図(Figures 5.1~5.8)では、ほとんど認識できない程度であった。このことから、GATM から ATM へのモデル更新に伴う予測特性の変化はほとんどないと判断した。以下では、検証の方法と結果について説明する。

5.1.1 対象とする事例

ATM と GATM の比較と検証にあたり、近年の噴火事例として以下の事例を抽出した(Table 5.1)。なお、検証 では、モデルの結果と3時間ごとの予報官による衛星解析(SA)³の比較することとした。ただし、Table 5.1 のとお り、予報期間のうち予報官解析があるのは一部(表の〇印)であるため、検証も予報官解析のある時刻に対してのみ 行った。

¹VAA 業務では、噴火の可能性が高い国内の火山について、単発的な噴火を想定した降灰の予測なども行っている。降灰予測の検証については次 節を参照。

²鉛直座標系はη座標で内挿される。

³東京 VAAC では、責任領域内の火山灰雲を監視しており、気象衛星画像などを用いて火山灰雲の領域や高度を解析して発表している。以下で

は、その解析結果を予報官解析と呼ぶ。

気象研究所技術報告 第84号 2021

Table 5.1	List	of case	for th	e verification
TODIO 011	1100		TOT OIL	

Case No.	Volcano	Advisory No.	Initial time of forecasting [UTC]	SA $(FT=03)$	SA (FT=06)	SA (FT=09)	SA $(FT=12)$	SA (FT=15)	SA (FT=18)
1	Karymsky	2020/042	17:20 on 02 June 2020		0				
2	Sheveluch	2019/672	23:20 on 11 November 2019	0	0				
3	Sakurajima	2019/437	11:20 on 08 November 2019		0				
4	Sheveluch	2019/654	08:20 on 03 November 2019	0	0	0	0	0	
5	Sheveluch	2019/656	14:20 on 03 November 2019	0	0	0			
6	Sheveluch	2019/658	20:20 on 03 November 2019	0					
7	Sakurajima	2019/347	11:20 on 29 October 2019	0	0				
8	Sakurajima	2019/348	14:20 on 29 October 2019	0					

5.1.2 計算の設定

初期値の精度はモデルの予測精度に大きく影響する。したがって、複数のモデル間の予測を比較するためには、で きる限り同じ初期値(初期の火山灰粒子の分布)を使うことが望ましい。モデルの比較の際に、異なる初期値を利用 すると、モデルの違いなのか初期値の違いなのか判断が難しい。そこで、ATM と GATM で用いる初期値は、とも に東京 VAAC が現業で利用しているシステムで作成されたものを用いることとした⁴。一方、モデルの設定について は、GATM に合わせて ATM の各種スイッチなどを設定した。GATM に合わせるための設定のうち、主な変数やス イッチなどを Table 5.2 に示す。

Table 5.2 Settings of the JMA-ATM experiments

	Value or description	Remarks (variable, switch etc.)
Number of tracers	40,000	$n_tracer=40000$
Time integral method	Euler scheme	$n_switch_integral_method=1$
Time step	600 s	dt_atm=600.d0
Horizontal diffusion	No diffusion	n_switch_diffusion_horizontal=0
Vertical diffusion	No diffusion	n_switch_diffusion_vertical=0
Meteorological field (GPV)	GSM (Early forecast (Ef))	Resolution: $0.5^{\circ} \times 0.5^{\circ}$

5.1.3 予測結果の比較

ATM と GATM の予測を Figures 5.1~5.8 に示す。参考として予報官解析(SA)も図に含めている。

各図から明らかなように、いずれの事例においても2つのモデル間で目立った違いはみられず、この図からは特性 の変化はほとんど確認できない。ただし、細かく見るとわずかな違いがみられる。例えば、Case1 においては、北へ の輸送の傾向が ATM の方がわずかに強く 18 時間後の予測(FT=18)では、ごくわずかではあるが GATM に比べ ると ATM の予測する火山灰雲はより広域である。このような ATM の予測する火山灰雲の方が GATM に比べて広 範囲である傾向は、この事例に限らず他の事例でもみられたが、それは図ではほとんど確認できない程度である。

⁴東京 VAAC では予報官解析に含まれる雲頂高度と領域から初期値を作成している。

Figure 5.1 Forecast and SA (Case 1)

Figure 5.2 $\,$ Forecast and SA (Case 2) $\,$

Figure 5.3 Forecast and SA (Case 3)

Figure 5.4 Forecast and SA (Case 4)

Figure 5.5 Forecast and SA (Case 5)

Figure 5.6 Forecast and SA (Case 6)

Figure 5.7 Forecast and SA (Case 7)

Figure 5.8 Forecast and SA (Case 8)

5.1.4 予報官解析に対する検証

ATM と GATM の両モデルが予測する火山灰雲について予報官解析に対する検証を行い、モデルの特性の違いを 調べる。VAA では現在、火山灰雲の予測は領域の予測のみであり火山灰の濃度の予測は行っていない。そこで、本 項では火山灰雲に対して「位置」と「形」に注目して検証を行う。具体的には、予測精度を定量化するための指標と して「火山灰雲の中心位置(重心)」と「火山灰雲の面積」について検証を行うこととした。

(1) 火山灰雲の中心位置の検証

予測に用いる火山灰雲の初期値については、火山灰雲の濃度に関する観測などがないため、各トレーサーについて は同じ質量を与えており、予測においても各トレーサーは同じ質量をもっている。そこで、火山灰雲の中心位置を評 価するにあたり、予測結果の中心位置は全トレーサーが同じ質量をもっていると仮定して計算した重心を「予測の中 心」とした。予報官解析は領域内の質量分布の情報はもっていないので、領域内で均等に質量が分布するとして重心 を求めた。任意の多角形の質量重心を求める方法にはいくつかあるが、ここでは、モンテカルロ法を用いて計算した。 すなわち、予報官解析の火山灰雲の領域付近に無数の点(計算では 100 万点)を不規則に生成し、各点に対して内外 判定を行い、領域内部の点と判断された点に対して質量重心を求め、それを火山灰雲の中心と定義した。

上述した方法で求めたモデルの予測と予報官解析の火山灰雲について中心位置の軌跡を Figure 5.9 に示す。事例に よっては、ATM と GATM で若干の違いがみられるが、おおむね同様の軌跡となっており、顕著な特性の違いはみ られない。しかし、上述したように、大気場の内挿方法の違いがあるため、予報期間が後半になるにつれてわずかな 違いがみられる。この違いはわずかであり、Figure 5.9 からは ATM と GATM のどちらがよい予測であるかの判断 が困難である。そこで、予報官解析の火山灰雲の中心位置とモデルの予測の火山灰雲の中心位置の距離を予報期間ご とにプロットした(Figure 5.10)。この図を見ると、いずれの事例においても、予報期間前半(FT=09 程度まで)は ATM と GATM でほとんど違いはみられない一方で、Case 4 では、予報期間後半(FT=12, 15)で ATM が GATM よりもよい予測であることがわかる。予報期間後半の検証事例は1 事例(Case 4)であり、より適切な検証結果を得 るためには、さらに多くの事例で検証を行う必要があるだろう。

(2) 火山灰雲の面積の検証

次に、火山灰雲の面積の検証を行う。火山灰雲の面積を評価するにあたり、トレーサー情報を面積の情報に変換す る必要がある。そこで、モデルで予測された火山灰雲の東西・南北の端を求め、東西・南北をそれぞれ 100 等分した 格子(合計 10,000 格子)を考え、その格子内にトレーサーがあった場合には、その格子内の面積をモデルが予測した と解釈した。一方、予報官解析の火山灰雲の面積は、前述の中心位置と同様にモンテカルロ法を用いて計算した⁵。

上述した方法で求めた両モデルの予測と予報官解析の火山灰雲の面積を3時間ごとにプロットしたものを Figure 5.11 に示す。事例によって程度は異なるものの、予報後半において GATM に比べて ATM の方が広い範囲に火山灰 雲を予測する傾向がみられる。両モデルの面積比(GATM に対する ATM の増減率)(Figure 5.12)から予報後半で は 5~7 % 程度、GATM に比べて ATM の方が火山灰雲の面積を広範囲に予測する傾向がある。

実際に発表されている VAA は予報期間が進むにつれて、実況に比べて広範囲に火山灰雲を予測する傾向があり、 その傾向は ATM でも同様である。したがって、ATM は火山灰雲の広がりについては、過大傾向がより強まったと いう点で若干の改悪の傾向がみられたこととなる。ただし、火山灰雲の面積の過大傾向の問題は主に初期値の精度に 起因しているため、その判断は、初期値の精度とともに議論すべきあり、むしろ実際の予測図(Figures 5.1~5.8)か ら、大きな変化ではないと考えている。

⁵低次元空間における閉じた領域の体積を求める常套手段である。

Figure 5.9 Trajectory of forecast (ATM: red dot, GATM: green dot, every hour) and SA (blue star)

Figure 5.10 Distance from center of SA (ATM: red, GATM: green)

Figure 5.11 Area of ash cloud (ATM: red, GATM: green and SA: blue)

Figure 5.12 Rate of area of ash cloud (ATM/GATM)

5.2 降下火砕物の予測に関する検証

気象庁における移流拡散モデルの業務利用のもう一つに、第1.1節で述べた降灰予報における降下火砕物、すなわ ち降下火山灰(降灰)と風の影響を受け流されて降る小さな噴石⁶(降礫)の予測がある。本節では、ATM 計算によ る積算降灰量と最大長径分布の予測について、初期値、入力値および ATM 計算の設定の違いによる検証を行う。

ATM は、第 2.2 節で述べたように、GATM とともに RATM で考慮していた物理過程も実装している。これまで GATM で実行してきた火山灰雲の予測に関して、新旧モデルの予測特性に大きな違いがないことは前節で検証した。 RATM で実行してきた降灰・降礫の予測に関しては、第 5.2.1 項に挙げる一事例について、第 5.2.3 項で比較検証 する。

5.2.1 対象とする事例

降灰・降礫予測の検証は、2015年の新しい降灰予報の運用開始後、最も広域に降灰が観測された2016年10月8 日阿蘇山爆発的噴火の事例(宮縁・他,2017; Ishii *et al.*,2018; Sato *et al.*,2018)を対象とする。検証に用いた降 灰・降礫の観測は、気象庁の地上気象観測、機動調査班(JMA-MOT)による現地調査および聞取調査の結果(降灰 あり:73地点(内、降灰量の観測:20地点、降礫の観測:9地点)、降灰なし:52地点)を使用した。

5.2.2 計算の設定

以下の項では、初期値の ESP の違いによる RATM との比較、入力値の数値予報 GPV および ATM の計算粒子 数の違いについて検証する。検証にあたり行った数値計算の設定について、Suzuki (1983) に基づく初期値の設定を Table 5.3 に、ATM 計算の共通設定を Table 5.4 (p. 72) にまとめる。

第5.2.3 項 (2) を除く検証において初期値に用いる Table 5.3 の噴煙高度は、気象レーダー(Sato *et al.*, 2018) および気象衛星(Ishii *et al.*, 2018)による解析値を参考に、噴煙高度を変化させた RATM 予測の降灰観測のあり/なしに対する予備検証から最もよいスコア(第6.2.2 項 (1))を取った高度を設定した。噴火継続時間は、観測された震動継続時間を参考に、(3.3)式で推定する総噴出量が現地調査(宮縁・他, 2017)による解析値と整合するように設定

 $^{^6}$ 降灰予報(速報)には、最大長径 a_1 ではなく、最大粒径 $D \geqslant 10~{
m mm}$ の降下火山礫の分布が図示されている(気象庁, 2014)。

した。

降灰・降礫予測をする場合の ATM のタイムステップ Δt は、ルンゲ・クッタ法で降灰予報(運用開始当初⁷はオイ ラー法の 60 秒(降礫) ないし 180 秒(降灰)) より長くかつベースタイム起算で最短 10 分ごとの出力を考える場合 (Figure B.2)、選択肢として、 $\Delta t = 200,300,600$ 秒が挙げられるが、降礫も想定した理想実験(Figure 2.10 (c)) か らルンゲ・クッタ法の $\Delta t = 300$ 秒以上はオイラー法の 60 秒より精度が低下することから、 $\Delta t = 200$ 秒に設定した。 積算降灰量および最大長径分布の検証対象時刻は、初期時刻:7 日 16 UTC (8 日 01 時)の LFM の 9 時間予報

積算降灰量および最大長径分布の検証対象時刻は、初期時刻:7日16UTC(8日01時)のLFMの9時間予報 値⁸を用いた RATMの計算に基づき、当日03時15分に発表された降灰予報(詳細)の予報終了時刻と同じ8日08 時までとした。

	Value or description	Remarks
Volcano	Asosan (the Nakadake first crater)	
Position	32°53′05″N, 131°05′06″E	
Summit elevation	1300 m asl	
Eruption time	$01{:}46~\mathrm{JST}$ on $08~\mathrm{October}~2016$	
Eruption duration	168 s	
Plume height	13100 m asl	
Total mass	$6.3 imes10^8~{ m kg}$	Equation (3.3)
Grain-size distribution	Log-normal with $D_{\rm m} = 0.25$ mm, $\sigma_{\rm D} = 1.0$	Equation (3.7)
Cutoff size	$D_{\rm max} = 96$ mm, $D_{\rm min} = 0.65 \ \mu {\rm m}$	
Particle density	$\rho_{\rm max} = 1000 \ {\rm kg/m^3}, \ \rho_{\rm min} = 2400 \ {\rm kg/m^3}$	Equation (3.12)
Release constant	$\beta = 0.017$	Equation (3.17)

Table 5.3 Settings of the eruption source parameter based on Suzuki (1983)

5.2.3 予測結果の検証:初期値の比較

初期値として、第 3.1 節で述べた Suzuki (1983) の ESP と、降灰の観測値を逆解析した Ishii (2018) の解析値を用 いた場合について、RATM と ATM の予測結果を比較・検証する。

(1) Suzuki (1983) の初期値

積算降灰量

初期値に Suzuki (1983) の ESP を用いた場合の ATM と RATM による積算降灰量の予測およびその差分を Figure 5.13 に示す。図中に示した降灰のあり(•)/なし(o)の観測点に対して、ATM の定性的な予報特性は RATM と おおむね同じ((6.5) 式の見逃し率は同じ、適中率・空振り率・バイアススコア・スレットスコア(第 6.2.2 項 (1) 参照)はわずかに改善)であることは、Figure 5.14 (a) に示した POD-SR ダイアグラム(Roebber, 2009)からも確認 できる。定量的には、平均誤差・RMSE ともに改悪しているが(Figure 5.14 (b))、これは ATM 本体ではなく初期 値の不確実性に起因することを (2) で確認する。なお、Figure 5.13 (c) にみられる分布主軸に顕著な差異の成因につ いては、次の最大長径分布の検証で述べる。

⁷2020 年 10 月現在、定時、速報、詳細の RATM はいずれもオイラー法の 180 秒で運用されている。

⁸本検証の LFM は、当時の気象庁スーパーコンピュータシステム(NAPS9)の数値予報ルーチンで出力された asuca のモデル面 GPV を使用 した。現在は NAPS10 において、鉛直高解像度 GPV の 10 時間予報値が出力されている(Table 4.1)。

(b) JMA-RATM (Euler 180 s)

(a) POD–SR diagram (ash-fall)

(b) Accumulated ash-fall values

Figure 5.14 Verification diagrams of Figure 5.13

最大長径分布

同計算における最大長径分布⁹の予測およびその差分を Figure 5.15 に示す。RATM, ATM とも観測された降礫に ついては完全に捕捉しており見逃しはないが、積算降灰量の予測(Figure 5.13)と同様に、分布主軸には差異がみら れる。これは第 5.1 節で述べた大気場の内挿回数の違いに加え、タイムステップごとの計算方法を、RATM では各過 程ごとに時間積分していたが¹⁰、ATM では全過程の時間変化率を求めてから時間積分(Figure 2.1)に改良したこと とともに地表面へ降下したときは引戻し(Figure 2.11)するようにしたことにより、特にトレーサーがモデル地表面 以下に達したときの水平変位が補正されるため、地表面付近の計算結果に効いていると考えられる。

降灰時刻

本噴火時に各気象台では、大分(火口の北東約 63 km)で 8 日 02 時 30 分前~04 時に少量、松山(火口の北東約 190 km)で 05 時~06 時 20 分にうっすら、高松(火口の東北東約 318 km)で 08 時前~18 時 30 分の間、降灰現象 が観測された。これに対して予測は Figure 5.16 に示すように、大分は 03 時まで、松山は 06 時まで、高松は 07 時までに降灰開始を予想しており、RATM と ATM の降灰時刻の予想に大きな違いはない。

(2) Ishii (2018) の初期値

積算降灰量

第 5.1 節で述べたとおり、初期値の精度はモデルの予測精度に大きく影響する。そこで、RATM, ATM とは独立な オイラーモデルを用いて降灰量の観測値¹¹を 4 次元変分法によりデータ同化して逆解析した Ishii (2018) の ESP¹²を 初期値にして、積算降灰量を再予測した結果を Figure 5.17 に示す。より確からしい初期値で再検証した結果、ATM は RATM と比べて、検証スコアは全てで明らかに改善また平均誤差・RMSE も改善しており(Figure 5.18)、予測 精度が高いといえる。ただし、絶対的な予測精度は Suzuki (1983)(Figure 5.14)の方がよい部分があり、モデルの 不完全性も踏まえた改良は今後の課題である。

⁹長径と粒径の関係は後出の (6.2) 式を参照。

¹⁰RATM では、重力落下を時間積分してから水平輸送を時間積分しており、両過程の計算順序を換えると、特に終端速度の速いトレーサーの計 算結果が大きく変わる。

¹¹Ishii (2018) では、粒径の観測値はデータ同化されておらず、また逆解析している粒径の範囲は $-4 \le \phi \le 4$ (62.5 $\mu m \le D \le 16 mm$) に限 られている。

¹²噴煙高度は 16.5 km asl、噴火継続時間は 180 秒で逆解析されている。

Figure 5.15 Same calculations as in Figure 5.13, but comparison of maximum grain size (long axis) predictions. Triangle denotes the volcano and colored crosses indicate the lapilli fall observation values surveyed by JMA-MOT.

Total Deposition(g/m2)

(a) JMA-ATM (Runge-Kutta 200 s)

Total Deposition(g/m2)

(b) JMA-RATM (Euler 180 s)

Figure 5.16 Same calculations as in Figure 5.13, but depicted each forecast time from 03:00 to 08:00 JST on 08 October 2016. Triangle denotes the volcano, colored and filled circles from West to East denote the ash fall observation points at Oita (observation time: before 02:30 to 04:00 JST), Matsuyama (from 05:00 to 06:20 JST) and Takamatsu (before 08:00 to 18:30 JST) Meteorological Offices, respectively.

0.10.3 1 3 10 30 100 300 1k 3k 10k 30k 100k

(b) JMA-RATM (Euler 180 s)

LO/08 08:00

3 10 30 100 300 1k 3k 10k 30k 100k

(c) (a) JMA-ATM – (b) JMA-RATM

(a) POD–SR diagram (ash-fall)

(b) Accumulated ash-fall values

Figure 5.18 Verification diagrams of Figure 5.17

5.2.4 予測結果の検証:数値予報 GPV の比較

入力値として、LFM に換えて GSM と MSM の数値予報 GPV を用いた場合について、ATM による積算降灰量 の予測結果を Figure 5.19 に示す。同じ初期値で LFM を入力した Figure 5.13 (a) と比較して、GSM を入力した場 合は水平格子間隔が粗くなり、予報時間間隔が長くなるため、一般に ATM は直線的な予測傾向になる。降灰のあ り/なしの定性的予測については、見逃し率が高いことを除けば(Figure 5.20 (a))、GSM を入力した降灰予測も 可能であると考えられる。降灰量の定量的予測については、LFM の方が平均誤差・RMSE ともに小さいが(Figure 5.20 (b))、この検証結果は第 5.2.3 項 (2) のとおり初期値に依存することに留意が必要である。

Figure 5.19 Comparison of accumulated ash-fall predictions for the eruption at Aso volcano from eruption start time 01:46 JST to valid time 08:00 JST on 08 October 2016. Initial ESP is based on Suzuki (1983), input GPVs are (a) GSM with initial time 12 UTC on 07 (21 JST on 07) or (b) MSM with initial time 15 UTC on 07 (00 JST on 08) and number of tracer 250,000. The symbols are the same as in Figure 5.13.

Figure 5.20 Verification diagrams of Figure 5.19 (Lf is the same as ATM of Figure 5.14)

5.2.5 予測結果の検証:計算粒子数の比較

ラグランジュモデルである ATM において、予測可能性を決める要素(永田, 1994)の一つである分解能¹³はトレー サー数 N_t に依存する。ATM の設定のうち、 N_t を変えた場合の積算降灰量の予測結果を Figure 5.21 に示す。予測 対象が降灰量のように 2 次元物理量でその広がり(面積)が S の現象に対して、ATM の計算結果を水平格子間隔 Δx , Δy の水平格子で表現する場合、面積比から

$$\min N_{\rm t} \sim O\left(\frac{S}{\Delta x \Delta y}\right) \tag{5.1}$$

が必要最小限なトレーサー数のオーダーを与える。本検証では $\Delta x = \Delta y = 2$ km に取っているので (Table 5.4)、 Figure 5.21 の降灰分布の広がりから (5.1) 式は 10,000 程度になり、これ以下のトレーサーでは不十分である (Figures 5.21 (a), (b))。また総噴出量 *M* に対して、水平格子上で表現可能な単位面積あたりの質量 (面密度 χ_{\Box}) の最小値のオーダーは

$$\min \chi_{\Box} \sim O\left(\frac{M}{N_{\rm t}\Delta x \Delta y}\right) \tag{5.2}$$

で与えられる(新堀・他, 2010)¹⁴。本検証の Table 5.3 で設定した総噴出量に対して、0.1 g/m² の予想降灰量¹⁵を表 現するのに必要なトレーサーは (5.2) 式から 1,000,000 程度になる (Figures 5.21 (d)–(f))。以上の考察は、定性的 および定量的な検証結果 (Figure 5.22) がトレーサー数 100,000 程度を境に変化している (1,000,000 以上ではおお むね同じ結果になっているが、10,000 以下ではそれから外れている) ことにも表れている。

¹³オイラーモデルの場合は格子間隔に依存。

¹⁴濃度のように 3 次元物理量の場合は、予測現象の大きさ(体積)V、出力格子の厚さ Δz として、(5.1), (5.2) 式はそれぞれ $O(V/\Delta x \Delta y \Delta z)$, $O(M/N_t \Delta x \Delta y \Delta z)$ になる。

¹⁵0.1 g/m² は、現在の降灰予報の表示しきい値。

Figure 5.21 Comparison of accumulated ash-fall predictions for the eruption at Aso volcano from eruption start time 01:46 JST to valid time 08:00 JST on 08 October 2016. Initial ESP is based on Suzuki (1983), input GPV is LFM with initial time 16 UTC on 07 (01 JST on 08) and number of tracer from (a) one-thousand to (f) one-hundred million. The symbols are the same as in Figure 5.13.

(b) Accumulated ash-fall values

Figure 5.22 Verification diagrams of Figure 5.21

Global/Regional/Local z Suzuki (1983) StLWR1 StLMR1 StLMR1 StLMR1 StLMR1 StLMR1 StLMR1 Th Th StRM (Mf-MLVA) StLMR1 StLMR1 StLMR1 StLMR1 StLMR1 StLMM1 Th StLMM1 Th Th StLMM1 Th StLMM1 StLMM1 StLMM1 StLMM1 <th< th=""></th<>	
$ \begin{array}{ $	
Stanki (1983) Stanki (1983) Stanki (1983) LFM (Lf.MIVB) UTC 15 UTC 16 UTC 1h 8 h 7h UTC 15 UTC 16 UTC 1h 8 h 7h 250,000 1,000 10,000 10,000,000 Runge-Kutta 7h 250,000 1,000 10,000,000 100,000 Runge-Kutta 200 s 20,000 1,000,000 100,000 Runge-Kutta 200 s 200,000 1,000,000 100,000 100,000 Statially-average and terrain-following only surface 2 2 2 2 26ro-equation model (Louis et al., 1982) 2 2 2 2 Scoreequation model (Louis et al., 1982) 2 2 2 2 2 27 2 2 1/3 0/1 2 2 2 2 28 1/3 0/1 1 2 1 2 2 2 2	
$ \begin{array}{ $	
Runge-Kutta 200 s Perward difference with local coordinate Spatially-average and terrain-following only surface Langevin equation (Gifford, 1982, 1984) Spatially-average and terrain-following only surface Langevin equation (Gifford, 1982, 1984) Survey (1983) with Cunningham correction Reno-equation model (Louis et al., 1982) Survey (1983) with Cunningham correction Reno-equation model (Louis et al., 1982) Survey (1983) Survey (1983) with Cunningham correction Reno-equation (2.17) Diagnose from aerodynamic resistance Survey (1983) $e = A_g = 2.98 \times 10^{-5} (1/s), B_r = 0.75$ and $B_s = B_g = 0.30$ in Equation (2.25) Off Off And And Scavenging coefficients (Kitada, 1994) Scavenging coefficients (Kitada, 1994) Scavenging coefficients (Kitada, 1994) Off Off Age Scavenging coefficients (Kitada, 1994) Off Off Off Scavenging coefficients (Kitada, 1994) Off	
Forward difference with local coordinateSpatially-average and terrain-following only surfaceLangevin equation (Gifford, 1982, 1984)Zero-equation model (Louis <i>et al.</i> , 1982)Suzuki (1983) with Cunningham correction $F = 1/3$ of Equation (2.17)Diagnose from aerodynamic resistance $F = 1/3$ of Equation (2.17)Diagnose from aerodynamic resistance $F = 1/3$ of Equation (2.17)Diagnose from aerodynamic resistance $F = 1/3$ of Equation (2.17)Diagnose from aerodynamic resistance $F = 1/3$ of Equation (2.17)Diagnose from aerodynamic resistance $F = 1/3$ of Equation (2.17)Diagnose from aerodynamic resistanceOff $A_g = 2.98 \times 10^{-5} (1/s), B_r = 0.75$ and $B_s = B_g = 0.30$ in Equation (2.25)Off A_0 A_0 A_0 A_0 A_0 A_1 A_1 A_1 A_1 A_1 A_1 A_1 A_1 A_1 A_2 A_2 A_2 A_2 A_2 A_2 <td colspa="</td"></td>	
Forward difference with local coordinateSpatially-average and terrain-following only surfaceLangevin equation (Gifford, 1982, 1984)Zero-equation model (Louis <i>et al.</i> , 1982)Suzuki (1983) with Cunningham correction $F = 1/3$ of Equation (2.17)Diagnose from aerodynamic resistanceSuzuki (1983) with Cunningham correction $F = 1/3$ of Equation (2.17)Diagnose from aerodynamic resistanceSuzuki (1983) with Cunningham correction $F = 1/3$ of Equation (2.17)Diagnose from aerodynamic resistanceSuzuki (1983) with Cunningham correction $F = 1/3$ of Equation (2.17)Diagnose from aerodynamic resistanceOffOffScavenging coefficients (Kitada, 1994)OffOffOffOffAsScavenging coefficients (Kitada, 1994)OffOffOffSum BaBOffScavenging coefficients (Kitada, 1994)OffOffSalt PaOffOffSalt PaSalt PaSalt PaOffSa	
Spatially-average and terrain-following only surfaceLangevin equation (Gifford, 1982, 1984)Zero-equation model (Louis <i>et al.</i> , 1982)Suzuki (1983) with Cunningham correctionF = 1/3 of Equation (2.17)Diagnose from aerodynamic resistanceF = 1/3 of Equation (2.17)Diagnose from aerodynamic resistanceScavenging coefficients (Kitada, 1994)offAs = 2:98 × 10 ⁻⁵ (1/s), Br = 0.75 and Bs = Bg = 0.30 in Equation (2.25)OffAOffAOffAScavenging coefficients (Kitada, 1994)OffAScavenging coefficients (Kitada, 1994)OffAScavenging coefficients (Kitada, 1994)OffAScavenging coefficients (Kitada, 1994)OffScavenging coefficients (Kitada, 1994)OffOffScavenging coefficients (Kitada, 1994)<	
Langevin equation (Gifford, 1982, 1984)Zero-equation model (Louis et al., 1982)Suzuki (1983) with Cunningham correction $F = 1/3$ of Equation (2.17)Suzuki (1983) with Cunningham correction $F = 1/3$ of Equation (2.17)Suzuki (1983) with Cunningham correction $F = 1/3$ of Equation (2.17)Liagnose from aerodynamic resistanceScavenging coefficients (Kitada, 1994) $i = A_g = 2.98 \times 10^{-5} (1/s), B_r = 0.75$ and $B_s = B_g = 0.30$ in Equation (2.25)OffOff0ff0ff0 (a)5.19 (b)5.21 (b)5.21 (c)5.21 (c) </td	
Zero-equation model (Louis et al., 1982)Suzuki (1983) with Cunningham correction $F = 1/3$ of Equation (2.17)Diagnose from aerodynamic resistanceScavenging coefficients (Kitada, 1994)Scavenging coefficients (Kitada, 1994) $= A_g = 2.98 \times 10^{-5} (1/s), B_r = 0.75$ and $B_s = B_g = 0.30$ in Equation (2.25)Off $A_g = 2.98 \times 10^{-5} (1/s), B_r = 0.75$ and $B_s = B_g = 0.30$ in Equation (2.25)Off $A_g = 2.98 \times 10^{-5} (1/s), B_r = 0.75$ and $B_s = B_g = 0.30$ in Equation (2.25)Off $A_g = 2.98 \times 10^{-5} (1/s), B_r = 0.75$ and $B_s = B_g = 0.30$ in Equation (2.25) $A_g = 2.98 \times 10^{-5} (1/s), B_r = 0.75$ and $B_s = B_g = 0.30$ in Equation (2.25) $A_g = 2.98 \times 10^{-5} (1/s), B_r = 0.75$ $A_g = 2.98 \times 10^{-5} (1/s), B_r = 0.75$ $A_g = 2.98 \times 10^{-5} (1/s), B_r = 0.75$ $A_g = 2.98 \times 10^{-5} (1/s), B_r = 0.75$ $A_g = 2.98 \times 10^{-5} (1/s), B_r = 0.75$ $A_g = 2.98 \times 10^{-5} (1/s), B_r = 0.75$ $A_g = A_g = 2.98 \times 10^{-5} (1/s), B_r = 0.75$ $A_g = 2.98 \times 10^{-5} (1/s), B_r = 0.75$ $A_g = A_g = 2.98 \times 10^{-5} (1/s), B_r = 0.75$ $A_g = A_g = 2.98 \times 10^{-5} (1/s), B_r = 0.75$	
Suzuki (1983) with Cunningham correction $F = 1/3$ of Equation (2.17)Diagnose from aerodynamic resistanceScavenging coefficients (Kitada, 1994)Scavenging coefficients (Kitada, 1994)Scavenging coefficients (Kitada, 1994)Off $A_{\rm B} = 2.98 \times 10^{-5} (1/s), B_{\rm r} = 0.75$ and $B_{\rm s} = B_{\rm g} = 0.30$ in Equation (2.25)Off $A_{\rm B} = 2.98 \times 10^{-5} (1/s), B_{\rm r} = 0.75$ and $B_{\rm s} = B_{\rm g} = 0.30$ in Equation (2.25)Off $A_{\rm B} = 2.98 \times 10^{-5} (1/s), B_{\rm r} = 0.75$ and $B_{\rm s} = B_{\rm g} = 0.30$ in Equation (2.25)Off $A_{\rm B} = 2.98 \times 10^{-5} (1/s), B_{\rm r} = 0.75$ and $B_{\rm s} = B_{\rm g} = 0.30$ in Equation (2.25) $A_{\rm B} = 2.98 \times 10^{-5} (1/s), B_{\rm r} = 0.75$ and $B_{\rm s} = B_{\rm g} = 0.30$ in Equation (2.25) $A_{\rm B} = 2.98 \times 10^{-5} (1/s), B_{\rm r} = 0.75$ and $B_{\rm s} = B_{\rm g} = 0.30$ in Equation (2.25) $A_{\rm D}$	
$F = 1/3$ of Equation (2.17)Diagnose from aerodynamic resistanceScavenging coefficients (Kitada, 1994)Scavenging coefficients (Kitada, 1994) $A_{\rm g} = 2.98 \times 10^{-5} (1/s), B_{\rm r} = 0.75$ and $B_{\rm s} = B_{\rm g} = 0.30$ in Equation (2.25)Off $A_{\rm g} = 2.98 \times 10^{-5} (1/s), B_{\rm r} = 0.75$ and $B_{\rm s} = B_{\rm g} = 0.30$ in Equation (2.25)Off $A_{\rm g}$ <th cols<="" td=""></th>	
Diagnose from aerodynamic resistanceAs a colspan="2">Scavenging coefficients (Kitada, 1994)Scavenging coefficients (Kitada, 1994)OffAs $= 2.98 \times 10^{-5} (1/s)$, $B_r = 0.75$ and $B_s = B_g = 0.30$ in Equation (2.25)OffAA10Scavenging coefficients (Kitada, 1994)OffAOffAScavenging coefficients (Kitada, 1994)OffAScavenging coefficients (Kitada, 1994)Scavenging coefficients (Kitada, 1994)AAScavenging coefficients (Kitada, 1994)Scavenging coefficients (Kitada, 1994)AAScavenging coefficients (Kitada, 1994)Scavenging coefficients (Kitada, 1994)<	
$A_g = 2.98 \times 10^{-5} (1/s), B_r = 0.75$ and $B_s = B_g = 0.30$ in Equation (2.25) Off A 0ff A Off A 01 A Off A Off A B<	
Scavenging coefficients (Kitada, 1994) Scavenging coefficients (Kitada, 1994) Off Off $A_g = 2.98 \times 10^{-5} (1/s), B_r = 0.75$ and $B_s = B_g = 0.30$ in Equation (2.25) Off A_g <td colsp<="" td=""></td>	
Scavenging coefficients (Kitada, 1994) $A_{\rm g} = 2.98 \times 10^{-5} (1/s), B_{\rm r} = 0.75$ and $B_{\rm s} = B_{\rm g} = 0.30$ in Equation (2.25) Off $A_{\rm g}$ <t< td=""></t<>	
$A_g = 2.98 \times 10^{-5} (1/s), B_r = 0.75$ and $B_s = B_g = 0.30$ in Equation (2.25) Off 40 2 km 5.19 (b) 5.21 (b) 5.21 (c) 5.21 (c	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
(a) 5.19 (b) 5.21 (a) 5.21 (b) 5.21 (c) 5.21 (c) 5.21 (d) 5.21 (d) 5.21 (e) 5.21 (f)	

Table 5.4 Settings of the JMA-RATM and ATM experiments