6. iceGGO-5 (N₂O)

6.1. Round-robin cylinders (iceGGO-5)

The focus of the fifth experiment (iceGGO-5), which took place in 2016, was on a comparison of N₂O standard gas scales by circulating high-pressure gas cylinders. Table 14 provides details about the six sample cylinders used for this round-robin experiment. Five cylinders contained commercially available N₂O standard gases, which were filled by the JFP. The five gases were prepared using purified natural air as a matrix gas; their N_2O concentrations ranged from about 280 ppb to 340 ppb. The N₂O concentrations in the five cylinders had been previously calibrated twice by using the WMO X2006A scale (Hall et al., 2007) at NOAA in December 2006 and during September–October 2010. Their values have been published on the NOAA website (http://www.esrl.noaa.gov/gmd/ccl/refgas.html). Another cylinder (CPB31357) with a N_2O concentration of about 334 ppb was prepared from pure N₂O and purified natural air by the NMIJ gravimetric method. A four-step dilution was used to make the mixtures. The N_2O concentrations at each step were 19,000 ppm, 443 ppm, 14 ppm, and 330 ppb. Pure N_2 gas was used as the dilution gas in the first and second steps, and purified natural air was used as the dilution gas in the third and fourth steps. Three mixtures were prepared at each step. Table 15 lists the concentrations of the gases (N₂, O₂, Ar, and CO₂) in the mixtures. The expanded uncertainty of the gravimetric value (k = 2), ~0.18 ppb, was mainly associated with the determination of the N₂O concentration in the purified natural air.

Cylinder	N ₂ O Concentration	Matrix gas	Manufacturer	Filling	Date of filling
Identification	(ppb)	Matrix gas	Wandaetarei	method	Date of himing
CQC00239	$280.62 \pm 0.64*$	Purified natural air	JFP	Volmetric	July, 27, 2006
CQC00238	295.69 ±0.18*	Purified natural air	JFP	Volmetric	July, 27, 2006
CQC00237	$310.62 \pm 0.04*$	Purified natural air	JFP	Volmetric	July, 27, 2006
CQC00236	$325.88 \pm 0.25*$	Purified natural air	JFP	Volmetric	July, 27, 2006
CQC00235	$340.60 \pm 0.70^{*}$	Purified natural air	JFP	Volmetric	July, 27, 2006
CPB31357	333.88 ±0.18**	Purified natural air ^{\$}	NMIJ	Gravimetric	March 4, 2016

Table 14. The six cylinders used for the iceGGO-5.

*Averaged value measured in 2006 and 2010 by NOAA

**Gravimetric value from NMIJ with the expanded uncertainty (k = 2) after the ± symbols

^{\$}Detailed composition in Table 15

Table 15. Concentrations of gases in the iceGGO-5 cylinder prepared by the NMIJ gravimetric method. The numbers after the \pm symbols indicate the expanded uncertainty (k = 2).

Cylinder	N_2O	CO_2	N_2	O_2	Ar
Identification	ppb	ppm	ppm	ppm	ppm
CPB31357	333.88	398.38	780890	209389	9321.7
	± 0.18	± 0.08	±47.7	±41.7	±23.2

6.2. Measurement methods (iceGGO-5)

Five laboratories (JMA, AIST, MRI, NIES, and TU) participated in the iceGGO-5 round-robin measurements from March to October 2016. Table 16 provides details of the N₂O analytical methods used by the five laboratories. Three laboratories (JMA, NIES, and TU) used a gas chromatograph with an electron capture detector (GC/ECD) to measure N₂O concentrations, whereas three laboratories (JMA, AIST, and MRI) used a laser-based analyzer of Off-Axis Integrated Cavity Output Spectroscopy (OA-ICOS, LGR Inc.). The JMA measurements were based on the WMO X2006A scale (Hall et al., 2007), which has

been propagated from the NOAA. The other four laboratories carried out their measurements using different standard gas scales (AIST, MRI2014, NIES96, and TU2006) that were developed independently. The calibration gases for the AIST, NIES, and TU covered a relatively wide range of N₂O concentrations, whereas the range of concentrations in the calibration gases used by the JMA and MRI was not wide enough to include the lowest concentration in one of the round-robin cylinders. To evaluate the stability of N₂O concentrations during the experimental period, the AIST assayed the NMIJ cylinder at the beginning and end of the experiment.

Table 16. The five laboratories that participated in the iceGGO-5 and their analytical methods, instruments, andcalibration scales for N_2O .

Laboratory	Method	Instrument	Standard scale	Range of calibration gases	Number of calibration gases	Date of measurements
AIST(Laser)	ICOS	ICOS 907-0015, LGR	AIST Scale	270 ppb - 380 ppb	5	April 10-17, 2016
MRI(Laser)	ICOS	N2O/COAnalyzer, LGR	MRI 2014 Scale	300 ppb - 350 ppb	5	March 9, 2016
NIES(GC)	GC/ECD	Agilent 6890 (ECD), Agilent	NIES 96 Scale	250 ppb - 400 ppb	4	June 4-5, 2016
TU(GC)	GC/ECD	Agilent 6890 (ECD), Agilent	TU2006 Scale	120 ppb - 370 ppb	3	June 17 - July 20, 2016
JMA (GC)	GC/ECD	GC-2014 (ECD), Shimadzu	WMO X2006A Scale	300 ppb - 360 ppb	5	August 9 & October 13-14, 2016
JMA(Laser)	ICOS	DLT-100 Fast, LGR	WMO X2006A Scale	300 ppb - 360 ppb	5	August 19-20, 2016

6.3. Results of iceGGO-5

Table 17 lists the N_2O concentrations measured in the six round-robin cylinders by the five laboratories that used the GC/ECD and laser-based analyzers together with NMIJ's gravimetric value. No corrections for drift have been applied to the concentrations reported by any of the laboratories. The analytical precision of most of the measurements by four of the laboratories was less than 0.5 ppb; the precision of the JMA measurements made by the GC/ECD method was larger. In general, the precision of the laser-based analyzer, ICOS, was better than that of the GC/ECD. The JMA concentrations differed between the two analytical methods, although the same calibration standard gases were used for both of the methods.

Cylinder Identifications Laboratory CPB31357 CQC00239 CQC00238 CQC00237 CQC00236 CQC00235 AIST (ICOS) 333.54 (0.03) 280.43 (0.06) 295.17 (0.05) 310.12 (0.05) 325.30 (0.05) 339.94 (0.05) MRI (ICOS) 295.87 (0.53) 310.55 (0.03) 325.99 (0.34) 339.97 (0.04) 280.58 (0.25) NIES (GC/ECD) 332.97 (0.13) 279.72 (0.20) 294.25 (0.16) 309.17 (0.18) 324.26 (0.18) 338.87 (0.01) TU (GC/ECD) 334.37 (0.27) 280.79 (0.53) 295.54 (0.48) 310.05 (0.23) 325.55 (0.36) 339.79 (0.23) JMA (GC/ECD) 335.15 (0.53) 280.92 (0.67) 295.61 (0.56) 310.65 (0.42) 325.95 (0.28) 340.56 (0.39) JMA (ICOS) 333.84 (0.08) 280.59 (0.21) 295.41 (0.14) 310.52 (0.10) 325.84 (0.11) 340.54 (0.19) NMIJ 333.88 (0.18)*

Table 17. N₂O concentrations (ppb) during the iceGGO-5. The reported analytical precisions are shown in parentheses.

*Gravimetric value (Expanded uncertainty of gravimetric method (k = 2))

Figure 6 shows the differences in the N₂O concentrations measured by each laboratory (Laboratory X) and the NMIJ or NOAA for the six cylinders. The differences (Laboratory X minus NMIJ/NOAA) among the laboratories ranged from -1.7 ppb to +1.5 ppb. The differences from the NOAA values clearly depended on the N₂O concentrations for the measurements made by the AIST, NIES, and TU. In contrast, the values measured with ICOS analyzers by the MRI and JMA were similar to the NOAA values. These results

reflect mainly differences in the N₂O calibration standard gas scales among the laboratories. The NMIJ gravimetric value was within ± 1 ppb of the region of most of the N₂O measurements, except for the JMA measurement made with the GC/ECD.

Figure 6. Differences (Laboratory X minus NOAA/NMIJ) of N₂O concentrations for each round-robin cylinder assayed during the iceGGO-5. The error bars represent the \pm measurement uncertainty reported by each laboratory, although the error bar of the NMIJ indicates the \pm expanded uncertainty of the gravimetric method (k = 2). The dashed lines around the zero line identify the WMO recommended criterion (± 0.1 ppb) for N₂O measurement compatibility.