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Preface

Since the industrial revolution, the release of carbon dioxide (CO,) from the activities of
humankind, such as fossil-fuel combustion and land-use change, has dramatically increased
atmospheric CO, concentrations leading to significant recent global warming. The ocean has absorbed
about half of the anthropogenic carbon emissions over the industrial era. This absorption has benefited
humankind by reducing the growth of CO, levels in the atmosphere and consequently decelerating
global warming. Recent reports have indicated a decline in the efficiency of the ocean as a carbon sink
for anthropogenic emissions under increasing atmospheric CO, levels in recent years. To precisely
predict future global warming, it is essential to understand the ocean carbon sink.

Recent extensive observations of oceanic CO, and international synthesis of global data have
resulted in the production of a map of the monthly climatological partial pressure of CO, (pCO,) in
surface waters and the estimation of the global ocean CO, uptake. These studies provided a
climatological mean field of the ocean carbon sink, but the variability of this sink at various
time-scales remains poorly understood. Estimates of global and regional ocean carbon sinks by using
ocean models are generally controversial, depending on the model and method. Therefore,
observational data are required for realistic evaluation of ocean carbon sinks. Empirical methods have
been developed in several regions of the ocean to evaluate the regional CO, flux by using the
characteristics of oceanic pCO, fluctuations. However to date the regions where such empirical
methods can be applied are limited.

In this technical report, we describe a newly developed method for evaluating monthly fields
of oceanic pCO, and the subsequent temporal variations of the sea-air CO, flux over extensive regions
of the North and South Pacific by using synthesized observational data. The application of this method
is expected to contribute to understanding of future changes in the ocean carbon sink and the ocean's

role in controlling the rate of atmospheric CO, increase.

Takashi Midorikawa, PhD.
Director of Geochemical Research Department

Meteorological Research Institute
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Abstract

We developed an empirical method for estimating monthly fields of the carbon dioxide
(CO,) partial pressure in surface seawater (pCO,s) and the sea-air CO, flux in the Pacific Ocean by
using the relationships between pCO,s and other parameters. The method uses not only sea surface
temperature (SST) but also sea surface salinity (SSS) and chlorophyll-a concentration (Chl-a) derived
by remote sensing and data assimilation. The introduction of Chl-a data significantly reduces the
estimation bias especially for the high latitudes where net biological uptake of inorganic carbon is very
high during the bloom season. The bias in pCOss estimates throughout the Pacific is between —10 and
+10 patm.

We used our empirical method to estimate the monthly CO, flux with a resolution of 1° x 1°
from 1985 through 2009. The uptake of CO, by the ocean is high in the mid-latitudes in winter. In
contrast, CO, is released to the atmosphere throughout the year in the equatorial region. The CO,
outflux in the equatorial region varies with El Nifio/Southern Oscillation (ENSO). The emission of
CO, decreases during El Nifio (ENSO warm phase) and increases during La Nifa (ENSO cold phase).
The mean annual CO, flux in the Pacific north of 50°S was estimated at —0.59 + 0.14 PgC yr ' (a
negative value indicates uptake by the ocean). This value is greater than the climatological value
(—0.46 PgC yr ') determined by Takahashi et al. (2009b) mainly due to the difference in gas transfer
coefficients used in the studies.

The estimate of CO,flux largely depends on the gas transfer coefficient and wind speed at
10 m above sea level (Uyo) used in the calculations. Therefore we also evaluated the differences in CO,
flux estimates based on three gas transfer coefficient formulas and three data sets for Uj;,. The CO,
fluxes calculated with different equations of gas transfer coefficients differed by 15-20%. The CO,
flux calculated using data from National Centers for Environmental Prediction-National Center for
Atmospheric Research (NCEP/NCAR) Reanalysis I is significantly lower in the equatorial region than
that calculated with Japanese 25-year Reanalysis/JMA Climate Data Assimilation System
(JRA25/JCDAS) data; the mean difference is about —0.12 PgC yr ', or about 20%.
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