1.1.3 周辺の大気圧や海水荷重が及ぼす影響の評価

本節では,伊豆大島などのような火山島における地殻変動の計算において,周辺海域に存在する海水の水圧荷 重や,あるいはこれと比べれば微小であるが大気圧による影響がどの程度あるかを,有限要素法の計算によって 評価した。

ある圧力源から圧力を受けた弾性体の地表面上の任意の点に生じる変位 u は,

 $u = u_1 + u_2 + u_3$

(4)

(5)

で表され、ここで、 u1は重力の効果、 u2は気圧水圧の効果、 u3は圧力源の効果である。

また、弾性体の満たす方程式は、

 $(\lambda + 2\mu) \cdot grad \cdot div \cdot u - \mu \cdot rot \cdot rot \cdot u = -\rho \cdot g$ (2) である。境界条件は地表面での気圧水圧 P_2 (shear stress free)が存在し、圧力源の圧力を P_3 とする。これを、3 つの成因 u_1, u_2, u_3 によって分解すると、

 $(\lambda + 2\mu) \cdot grad \cdot div \cdot u_2 - \mu \cdot rot \cdot rot \cdot u_2 = 0$

境界条件:地表面気圧水圧:P₂ (shear stress free), 圧力源なし

 $(\lambda + 2\mu) \cdot grad \cdot div \cdot u_3 - \mu \cdot rot \cdot rot \cdot u_3 = 0$

境界条件:地表面気圧水圧なし (stress free), 圧力源:P₃

である。これらは線形であり, $u_1+u_2+u_3$ はuの方程式と境界条件を満たす。よって,地表に加わる気圧水圧の 効果は,0となるはずである。

これを有限要素法による計算によって確認する。ここでは伊豆大島の地形を簡略化したモデルを用いた。 Fig. 1. 1. 3. 1に示すとおり,高さ1kmの山頂から水平距離10kmの海面まで,及び水平距離40kmの海面下3km まで等しい勾配で傾斜面をもち,水平距離60kmまで等深の地形を考える。ソリッドモデルの深さも60kmとす る。圧力源は海面下3kmにおいた球で,圧力 P_3 は10°Pa,半径Rは1000mとした。大気圧は高さに対して-10 Pa/mで,海水圧は深さに対して-10000 Pa/mで与えた。海水面大気圧は100000 Paとした。要素分割の規模 は、圧力源100m、それを取り囲む半径2kmの包囲球内は250m、地表面で500m、それ以外は5000mとした。

Fig. 1.1.3.1 Solid model used for FEM calculation. a: Sectional view of the solid model. b: Pressure distribution of atmospheric pressure and water pressure.

Fig. 1. 1. 3. 2に計算結果を示す。*a* は気圧・水圧なしで 球殻に圧力を与えて計算した地形変化であり,形状変化 (500倍に強調),及び原型のエッジを示した。一方,bは 球殻に圧力を与えない場合の,気圧・水圧の効果による地 形変化を示す。*c* は気圧・水圧を与え,球殻に圧力を与え て計算した地形変化である。つまり,bの状態を初期値と した時,*c* の地形変化との差が,a での変位量と一致する かを確認する。

Fig. 1. 1. 3. 3a は、水圧・気圧を考慮した場合と考慮し ない場合の, Ux, Uz 分布を x=10km (陸域) まで示して 比較したものである。「水圧・気圧なし」とは, Fig. 1. 1. 3. 2 a の変位分布を示し、「水圧・気圧あり」とは、Fig. 1. 1. 3. 2 cとFig.1.1.3.2bの差を意味する。図から変位分布はx 成分もy成分もほとんど一致していることがわかる。よ って水圧・気圧を考慮してシミュレーション計算する必要 はないことを示した。「水圧・気圧あり」の変位分布を「水 圧・気圧なし」の変位量で割った比で示したものが, Fig. 1.1.3.3b である。水平変位(Ux)はほぼ1.0で一致し ていることがわかるが、上下変位(Uz)は圧力源から水平 方向に離れるに従って、徐々に小さくなる傾向があり、x =10kmでは、0.978となった。この理由は、本来は水圧 気圧を受けている状態の地形(Fig. 1. 1. 3. 2b)で球状圧 力源を与えた時の自由表面の地形の変化を比較しなければ ならないところを、水圧・気圧による変形前の地形での球 状圧力源による地形変化で比較したため、わずかな標高変 化の違いに起因するものと思われる。

しかしながら,現実の地殻変動を有限要素法でシミュ レーションする上では,この影響は無視できるほど小さい。 よって,地表面に加わる大気圧や海水の荷重を改めて考慮 して計算する必要はない。

Fig. 1.1.3.2 Surface changes simulated according to three patterns of combination stresses. a: Spherical pressure source. b: Atmospheric pressure and water pressure. c: Spherical pressure source with atmospheric pressure and water pressure.

Fig. 1.1.3.3 Comparison between surface displacements with and without surrounding pressure effects. a: Displacement distribution of x and z components. b: Rate of displacement with surrounding pressures to one without surrounding pressures.

(高木朗充)