第6章 降雪雲の航空機観測*

平成4年度には、雪雲の内部構造の時空間的変化 を調べるために、米国ワイオミング大学の大気観測用 航空機 Super King Air をチャーターし、個々の雪雲の 内部構造を直接観測した.6.1で使用した航空機と搭 載測定器の性能について記述し、6.2では航空機観測 から得られた背の低い降雪雲の内部構造の平均像につ いて記述する.

6.1 大気観測用航空機と搭載測器

6.1.1 大気観測用航空機の飛行性能と航法用機器

使用したワイオミング大学大気科学教室所有のビ ーチクラフト Super King Air 200T (B200T)は、両翼 端のパイロンやノーズ部分のカストプローブ等を取り 付けた、大気観測用に改修された機体である。2つの ターボプロップエンジンを搭載しており、機内は与圧 システムを採用している.最高飛行高度は 10,500 m で、最長飛行時間は約5時間である.

GPS, 慣性航法装置(IRS), LORAN-C, VOR/DME等の航法システムを搭載し,リアルタイム で航空機の正確な位置情報の取得をはかるとともに, 万一,1つのシステムが故障した場合でも,他のシス テムで代用できるよう2重3重の安全対策をとってい る.

航空機の高度情報についても、2つの気圧高度計 の他に、2つのレーダ高度計を装備している.これら のシステムと、カラー表示機能付きの気象レーダや地 形マッピング機能を組み合わせて使用することにより、 山地周辺や激しい気象擾乱の近傍においても、高い安 全性を確保して航空機観測を実施することが可能であ る.

6.1.2 大気計測システム

航空機に搭載した機器による主要な測定項目は以 下の通りである.

- 一般気象要素(気温・露点温度・静圧・動
 圧).
- ② IRS から得られる航空機の位置・姿勢・速度・ 加速度情報と、ガストプローブから得られる航 空機に相対的な気流の速度と方向から求まる風
- * 村上正隆:物理気象研究部

の3成分.

- ③ 雲粒にレーザー光を照射して、その前方散乱 光の強度から個々の雲粒の粒径を求める FSSP と、 雲粒子・降水粒子がレーザー光を横切るときに 作る影の時間変化から粒子の大きさや形を求め る 1D-C、2D-C、2D-P プローブ.これらは総称し て PMS プローブと呼ばれる.
- ④ 熱線に付着した雲粒を蒸発させるのに必要な 電力から雲水量を求める hot-wire probe と、ピエ ゾ素子を利用して付着凍結した雲粒の質量によ る振動数変化から過冷却雲水量を求める icing probe.
- ⑤ ③④で述べた通常 B200T に搭載する雲物理測 定装置の他に、気象研究所で開発した雲粒子映 像を収録する AVIOM-III(第6.1.1図)をコック ピット上方に取り付けた。
- ⑥ 前節で述べた航空機の位置情報・高度情報を 取得する装置.
- ⑦ コックピットから前向きに取り付けたビデオ カメラからの映像と機内の交信を収録する VTR.

第6.1.1図 AVIOM III の外観.

VARIABLE	INSTRUMENT	RANGE ⁽¹⁾	ACCURACY ⁽²⁾	RESOLUTION ⁽¹⁾
Air temperature Dewpoint temperature	Reverse flow (Minco element) Cambridge Model 137C3	-50 to +50°C -50 to +50°C	0.5°C 1.0°C if >0°C	0.006°C 0.006°C
Magnetic heading Static pressure	King KPI 553/Sperry C14–43 Rosemount 1501	0–360° 0–1080 hPa	2.0 C ll <0 C 1° 0.5 hPa	0.02° 0.003 hPa
Geometric alt.	Stewart Warner APN159 radar altimeter	18288 m	1%	0.073 m
Total pressure Latitude/Longitude	Rosemount 831CPX Tremble 2000 GPS	0–85 hPa +/–90° lat. +/–180° long.	0.2 hPa 100 m ⁽³⁾	0.005 hPa 0.000172°
Latitude/Longitude	Honeywell Laseref SM Inertial Reference System (IRS)	+/-90° lat. +/-180° long.	0.8 nm/h (50% CEP) 1.66 nm/h (95% CEP)	0.000172°
Ground velocity	Honeywell Laseref SM	0–2211 km/hr	4.1 m/s ⁽⁴⁾	0.002 m/s
Vertical velocity	Honeywell Laseref SM	+/-9988 m/min	0.15 m/s ⁽⁴⁾	0.0095 m/s
Pitch/roll angle	Honeywell Laseref SM	+/-90° pitch +/-180° roll	0.05° ⁽⁴⁾	0.000172°
True heading	Honeywell Laseref SM	+/ -180°	0.2° (4)	0.000172°
Flow angle	Rosemount 858AJ/831CPX	+/-15°	0.2°	0.00375°
Liquid water content	In-house CSIRO hot wire	3 g/m^3	0.2 g/m^3	0.0003 g/m ³
Icing rate	Rosemount 871FA	0.5 cm/trip		0.0004 cm
Cloud droplet spectra	Particle Measuring Systems, Forward Scattering Spectrometer Probe (FSSP)	0.5–45 μm ^{⁽⁵⁾}	<u> </u>	0.5–3 μm ⁽⁵⁾
Cloud particle spectra	Particle Measuring Systems 1-Dimensional Cloud Particle Optical Array Probe (1D-C)	12.5–185.5 μm		12.5 µm
Cloud particle spectra	Particle Measuring Systems, 2-Dimensional Cloud Particle Optical Array Probe (2D-C)		-	25 μm
Precipitation particle spectra	Particle Measuring System, 2-Dimensional Precipitation Particle Optical Array Probe (2D-P)			200 µm

第6.1.1表 測定機器の詳細.

Notes: ⁽¹⁾ In units native to the instrument.

(2) In units of customary usage.

⁽³⁾ Limited by reception.

⁽⁴⁾ 6-hour accuracy.

⁽⁵⁾ Selectable.

これらの測定機器の詳細は第6.1.1表に,その取り 付け位置は第6.1.2図に示す.

6.1.3 データ収録及び表示装置

6.1.2 で述べた, AVIOM-IIIと前方ビデオカメラの 映像データを除く全ての測定装置で取得されたアナロ グ・ディジタル・イメージデータは, Airborne Data Acquisition and Control System (ADACS) と PMS Image Probe Interface を通して 8 mm データテープ上に収録さ れる. 同時に, リアルタイムで物理量に変換・演算さ れて気象要素・雲物理要素・位置情報として液晶モニ ター上に表示される.この情報に基づいて,搭乗して いる研究者は観測モードを決定することができる.

ADACS には、測定した風の水平成分を用いて、一 般風で流される空気塊と航空機の相対的な位置関係を リアルタイムで演算表示するシステム(ポインターシ ステム)が組み込まれており、雲内の同一部分や対流 セルの同一鉛直断面の追跡観測を実施することが可能 である.

6.2 背の低い降雪雲のアンサンブル平均*

6.2.1 はじめに

冬季日本海上に発生する雪雲は、冬季モンスーン のもとに東アジア地域に出現する代表的な雲である. これらの雪雲は、日本海全体、東シナ海、時には太平 洋上にまで広がり、10⁶ km²のオーダの広大な領域をカ バーし、気候変動の観点から雲の放射効果を調べる上 でも大変重要である.また、日本海から補給される熱 と水蒸気によって形成される雪雲は、日本海沿岸地域 に、冬期間だけでも数百ミリの降水をもたらし、広域 の水循環(水収支)を研究する上でも重要な雲システ ムである.

それにも拘らず, 雲物理学的, 力学的立場からの 雪雲の研究は少なく, 十分に理解されるまでにはいた っていない. 観測では, 古くは Isono *et al.* (1966) や Magono and Lee (1973) による氷晶核や降雪粒子の分 布に関する断片的な測定結果がある. Sakakibara (1988) は一台のドップラーレーダを用いて T モード の SNOW BAND の気流系に関して事例解析を行った. 最近, Murakami *et al.* (1994a), Yamada *et al.* (1994), Matsuo *et al.* (1994) らが, 雲粒子ゾンデ (Murakami and Matsuo 1990)・雲粒子ドロップゾンデ・複数のド ップラーレーダを用いて, かなりの数の雪雲について 雲の微物理構造・気流構造について調べた.

しかし、雪雲は種々の気象条件のもとに形成され、 その形態も多様である.更に雪雲内部の微物理構造・ 気流構造は、雪雲のライフステージに強く依存するの で、雪雲の一般的特徴を論ずるには、さらに多くの観 測データが必要である.

航空機観測は、ゾンデ観測等と較べると、機動力 があり、短時間に多数の雪雲の内部構造を調べるのに 適している(鉛直方向の空間的観測密度は多少粗くな るが).日本海降雪雲については、Isono et al. (1966) による氷晶核測定はあったが、種々の観測機器を搭載 した航空機による本格的な観測はなされていない.

本節では、1993 年1月29日、寒気吹き出しが弱ま りつつある条件下で出現した、比較的背の低い雪雲に ついて、航空機観測によって示された雪雲の平均的な 内部構造とその形成機構について記述する.

6.2.2 観測手法

種々の測定装置を搭載した研究用航空機(ワイオ ミング大学, King Air 機)を用いて雲の微物理及び気 流構造を測定した.ワイオミング大学 King Air 機の 搭載している測器の詳細は 6.1 を参照のこと.

観測飛行は、1) 雪雲を形成しているメソスケール の場の変化が無視できる程度に短い時間内に、2) 平 均値を議論するのに十分なサンプル数を得ることを考 慮して行った. 第6.2.1 図に示すように、気象研究所 のレーダサイト(象潟)の西北西約 80 km の領域にお いて、5 高度で一辺が約 30 km の水平飛行を行った.

第6.2.1 図 観測用航空機の航跡図.縦軸,横軸は気象 研究所レーダサイト(象潟)からの距離.

第6.2.2 図 1993 年1月29日09時の地上天気図.四 角は観測領域.

* 村上正隆:物理気象研究部

第6.2.3 図 1993 年1月29日12時の静止気象衛星の 可視画像.

更に雲頂付近の微細構造を調べるため、上下方向にジ グザグ飛行を行った.飛行経路は、ほぼ混合層内の平 均風向に沿っている.

6.2.3 観測結果

6.2.3.1 総観場

背の低い雪雲(筋雲)の観測は 1993 年 1 月 29 日 13 時 40 分~14 時 25 分(以後,時刻は全て日本標準 時)に行った.この日の朝 9 時の天気図を第 6.2.2 図 に示す.970 hPa と台風並に発達した低気圧が北海道 東岸に位置しており,観測領域は北西-南東方向に混 んだ等圧線におおわれている.この低気圧は 27 日夜 半過ぎから北日本を発達しながらゆっくりと東北東進 した.

観測領域は、28 日午後には低気圧後面に位置し、 東西方向に伸びるバンド状の雪雲でおおわれていた. 28 日夜には典型的な T モードの雪雲(筋雲)に変化 し、29 日早朝には、活発な L モードの雪雲(筋雲) へと変化した.この寒気吹き出しに伴う雪雲も、観測 時間までには、その勢力もしだいに衰え、第6.2.3 図 に示す衛星写真可視画像からも分かるように、筋雲の 西端は大陸からかなり離れている.

6.2.3.2 雪雲の内部構造

観測した雪雲は,観測領域(沖合~80 km)では雲 頂高度 1.7~1.8 km,雲頂温度は-12~-14℃であった. 雲頂高度は海岸に近づくにつれて増加し,海岸付近で

第 6.2.4 図 相当温位(左上),鉛直速度(右上),風 速(左下)および風向(右下)の鉛直分布.

第6.2.5 図 相対湿度(左上), 雲水量(右上), 氷晶 数濃度(左下)および雪粒子数濃度(右下)の鉛直 分布.

は2.2km程度になっていた.

13 時 40 分~14 時 25 分に,5 高度の水平飛行から 得られた雲の力学・熱力学・微物理学量の鉛直分布を 第 6.2.4 図,第 6.2.5 図に示す.温位の分布から分か るように,大気の成層は下層 500 m で若干超断熱減率 を示し不安定になっている.相当温位は下層で1~2 ℃高くなっており,対流不安定となっている.水平風 に関しては,摩擦の影響で風速が小さい海面付近を除 くと、風向・風速ともよく混合され、ほぼ一様である. 鉛直流(1秒平均値)は、 7 m s^{-1} から -4 m s^{-1} の間に分 布しており、上昇流は雲底付近で最大値に達して、そ れより上では顕著な増加傾向は見られない.

最大雲水量は雲の上部に見られ、 $0.6\sim0.7 \text{ gm}^3$ で ある.この値は断熱凝結量(持ち上げ凝結高度 800~ 1000 m と仮定したとき)とほぼ一致する.雲粒の数濃 度は、周囲の乾燥空気との混合(エントレインメン ト)や雪粒子の昇華凝結成長や雲粒補足成長に費やさ れることにより、場所により 20~30 個 cm⁻³ から 400 個 cm⁻³ と大きく変動している.雲の上部では、粒径 分布は第 6.2.6 図に示すように 10~15 µm のところに ピークがあり、20 µm 以上の雲粒も多数見られた.

2D-C で測定した雪結晶 (25 µm 以上の粒子) 数濃度 は最大で 10 個 L⁻¹で, 2D-P で測定した雪結晶 (0.2 nm 以上の粒子) 数濃度は最大で 0.6 個 L⁻¹であった.小 さな雪粒子は雲底下の比較的乾燥した(相対湿度 60 ~70%) 空気中で急速に昇華蒸発するため,高度の 減少とともに,濃度も減少している.雪粒子の結晶形 は第 6.2.7 図に示すように,雲頂付近では樹枝状或い は星状結晶で,高度の減少とともに雲粒付の度合いが 増加し,雲底付近或いはそれより下方では濃密雲粒付 結晶が卓越していた.また,雲頂付近では 100~200 µm の過冷却水滴(drizzle) も見出された.

次に航空機の航路に沿った水平分布を見てみる. 雲の上部,高度 1650 m における,水平飛行時の雲の 物理量の時間変化(水平分布)を第6.2.8 図に示す. 図中で,1分間は水平距離約5 km に相当する.図に示 されているように,雲水はほぼ連続的に分布しており, これからも観測した雲の外見は層積雲型であったこと が分かる.雲内の同一高度における気温の変動は±1 ℃以下と小さく,一様な分布を示した.また,上昇流 の強さと雲水量或いは雲粒数濃度の間の明瞭な関係は 認められなかった.

一方, 雲底直上(高度1000 m)では, 雲水は不連続 に分布し(第 6.2.9 図), その水平スケールは 2~3 km で波長は約 5 km のオーダであった. 雲頂高度を 1.8 km とすると, 対流の軸比は 1:2~1:3 程度とな る. このレベルでも気温の変動は±1℃程度と小さか った.

雲頂を横切るジグザグ飛行経路に沿った雲の物理量を第6.2.10 図に示す.ジグザグ飛行は高低差300 m

第 6.2.6 図 高度 1,650 m (実線), 1,300 m (破線), 1000 m (点線) における雲粒の平均粒径分布.

第 6.2.7 図 高度 1,650, 1,000, 150 m で得られた 2D-C, 2D-P イメージ.

で実施した(第 6.2.10 図下段). 雲水量と気温或い は相当温位の対応を見ると, 雲頂部の雲内気温は周囲 よりも~2℃低く負の浮力を持っており,対流が混合 層上部の逆転層内にオーバーシュートしていることが 分かる. 下層の運動量を輸送してきた対流セルの中心

第 6.2.8 図 高度 1,650 m を水平飛行中の相当温位・気 温(上段),降雪粒子・鉛直流(中段),雲粒数濃 度・雲水量(下段)の時間変化.

部と周囲の雲のない部分との間には、気温(或いは相 当温位)の他にも、風向・風速の急速な変化が見られ、 乱流指数も大きく、この層で熱・運動量の乱流混合が 活発に起こっていることが示唆される.

6.2.4 上昇流と下降流

この観測飛行は一辺が~30 kmと長く,5 高度の測定 に45分も要しており、また、平均流で移動する空気 塊を追跡するような観測飛行を行わなかったので、5 高度での水平飛行の測定結果を合成して、個々の対流 セルの時空間的分布を議論するのは困難である。その 代わり、以下に、風の3成分の値と、気象要素、雲物 理要素との相関を調べることにより、気流系の時空間 分布とその成因を推定する。

6.2.4.1 上昇流の分布

高度 500 m の水平飛行時に得られた上昇流と相当温 位の関係を第 6.2.11 図に示す.図から相当温位の大 きな空気塊が上昇流を形成していることが分かる.一 方,同高度における上昇流と雪粒子の数濃度は負の相 関を示した(第 6.2.12 図).つまり,上昇流域のほ とんどで雪粒子が存在しない.雲底下で観測された雪 粒子が主に濃密雲粒付雪結晶,或いは小粒のあられで あったので,これらの粒子が 2 m s⁻¹以上の比較的強い 上昇流域を落下してくることはない.しかし,雪雲の

第 6.2.9 図 第 6.2.8 図と同様. ただし, 高度 1,000 m を水平飛行中.

第 6.2.10 図 第 6.2.8 図と同様. ただし, 雲頂付近を 上下方向にジグザグ飛行中.

雲頂高度が2km未満と浅いことと,混合層内でのシ アが弱いことを考慮すると,上昇流が持続する場合 には,上昇流コアの近傍(上昇流の弱いところ)に は高濃度の雪粒子が落下しており,それら粒子が再 び上昇流コアに入ることにより,上昇流域でも比較 的高濃度の雪粒子が観測されるはずである(実際に, 長続きするバンド状降雪雲では上昇流域に高濃度の 雪雲が見出されることが多い).上昇流域のほとん どで雪粒子が存在しないという観測事実は,上昇流 は一過性のもので,降雪粒子が雲底からでてくる頃 には雲底下の上昇流は衰退していることを示唆してい る.上昇流の鉛直分布は,海面から雲底まで上昇流が 増加し,雲内ではほぼ一定の値を示している.このよ うな分布を形成する理想的な大気成層を第 6.2.15 図 に模式的に示す.雲底下で超断熱減率であり,空気塊 はここで加速する.雲内は湿潤断熱減率で,この中を 上昇する飽和空気塊は等速運動をする.混合層上部の 逆転層内で減速する.しかし,実際の気温分布は第 6.2.15 図の模式図に類似しているが,雲内では湿潤 断熱減率より若干大きく,上昇流は加速するセンスに ある.雲水等の負荷やエントレインメントがこの浮力 を打ち消してバランスしているものと考えられる.

6.2.4.2 下降流の分布

雲底下,特に海面近く(高度 150 m)では空気が乾 燥しており、雪粒子の蒸発が激しいため、2D-Cや2D-P プローブで測定される雪粒子と水平風速の間, 或い は、雪粒子と気温・相当温位の間の明瞭な関係は見ら れない.しかし、雪粒子の蒸発によって形成される冷 気と水平風速の間には良い相関が見られる(第 6.2.13 図) . 冷たい(低温位)空気塊は大きな水平 風速を有している.水平風速の鉛直分布(第6.2.4 図)を考慮すると、これらの大きな水平風速は上空か ら下向きの運動量輸送、つまり下降流によってもたら されたものと分かる. 一方, 第 6.2.14 図に示すよう に温位分布は上空ほど高くなっており(海面付近の超 断熱減率を除くと),単に上空の空気が雪粒子のロー ディングで引き下ろされただけでは、冷気を形成しな いことも明らかである.従って、雪粒子の蒸発が冷た い下降流形成には重要であると結論される. このよう に形成された、大きな水平風速をもつ空気塊が、その 前方に収束域を作り、次の対流のトリガーになってい ると考えられる.

6.2.5 雲の氷化過程

約 45 分間の水平飛行或いはジグザグ飛行の間に観 測した雪雲は,雲頂温度が-12~-14 ℃と比較的暖か いにもかかわらず,全て氷晶を含んでいた.一般に, 雲頂温度が-15 ℃より暖かい雲の氷化能力は低いこと が知られており,発達初期には ice-free の雲が存在す る可能性が高い. にもかかわらず, ice-free の雲が観 測されなかった理由として, natural-seeding が考えら

第 6.2.11 図 高度 500 m における鉛直流と相当温位の 関係.

第6.2.12 図 第6.2.11 図と同様.ただし,鉛直流と降 雪粒子数濃度の関係.

れる. 第 6.2.12 図に示すように, 雲底下では強い上 昇流域には雪粒子が存在しないことから, 雪粒子の雲 底からの再侵入 (recirculation) は起きていない. 隣接 する雲や, すでにその場所に存在している雲の中で生 成された雪粒子が, 雲頂或いは側面から取り込まれる ことにより, 発達初期でもすでに有意な濃度の雪粒子 を含んでいるものと考えられる. 日本海上の降雪雲に おいて, このような natural-seeding が働いていること は 9.1 の 2 次元数値実験においても確認されている

	JAPAN SEA	LAKE MICHIGAN	
Cloud Top Height	1.8 km	1.5 km	
Cloud Top Temperature	-12 °C	-28 °C	
Cloud Base Height	1.0 km	0.7 km	
Cloud Base Temperature	-8 °C	-22 °C	
∆Θe	1~2K	2~3K	
Wmax	7 m s ⁻¹	$7 \mathrm{m s^{-1}}$	
Max. Nc	400 cm ⁻³	$1400{\rm cm}^{-3}$	
Max. CWC	0.7 gm ⁻³	0.24 gm ⁻³	
Max. 2D-C Conc.	$\sim 10 L^{-1}$	~10L ⁻¹	
Max. 2D-P Conc.	$\sim 0.5 \text{L}^{-1}$	~3L ⁻¹	

第 6.2.1 表 日本海および五大湖(ミシガン湖)上で観測 された雪雲の比較.

(雲頂温度は-20℃と今回の例よりやや低いが).

6.2.6 五大湖の雪雲との比較

日本海上の降雪雲は、その成因が類似していることから、北米大陸五大湖の雪雲と良く比較される。両者の間の大きな違いは、日本海の海面水温が+10℃

(日本付近)程度であるのに対して,五大湖の場合+ 1~2℃(ミシガン湖)と冷たいことと,寒気が水面 上を吹走する距離が日本海の場合~600kmに比べて五 大湖の場合~100kmと短いことであろう.このような 違いが,対流混合層の発達や,その中に形成される雪 雲の気流構造,微物理構造にどのような影響を与える かは興味深い問題である.

本節で取り扱った背の低い雪雲を,Braham (1990), Chang and Braham (1991) によって記述されているミ シガン湖の雪雲と比較する.ここで注意したいのは, 本節で取り扱った雪雲は寒気吹き出しの末期に出現し た雲で,この地方の基準からすると弱い寒気吹き出し に伴う雪雲であるのに対して,Braham (1990) や Chang and Braham (1991) で取り扱われているのは, ミシガン湖の基準では強い寒気吹き出しに伴う雪雲で ある.

対流混合層は、吹走距離を反映して、日本海の方 が厚くなっている.並或いは強い寒気吹き出しの場合 は、この値は、約3kmとなる.雲内の鉛直流の強さ は、ほぼ同程度で、上昇流が雲底付近で最大となり、 それより上ではほぼ同じ値になっているという鉛直分 布も類似している.雲の微物理構造については、海面

第6.2.13図 高度150mにおける風速と温位の関係.

第6.2.14 図 温位の鉛直分布.

温度或いはそれが反映した雲底温度の違いから雲水量 は日本海降雪雲の方が大きな値を示している. 雲の微 物理構造における両者の違いを特徴付けるのは, 雲粒 の数濃度と大きさである. 五大湖の雪雲内の雲粒は, 小粒で高濃度になっている. 第6.2.1 表の比較では, 氷晶(2D-C)・雪粒子(2D-P)は大差はないが, 並或 いは強い寒気吹き出しに伴う日本海降雪雲では, 100 個 L⁻¹を超える氷晶濃度が観測されることも珍しくな い (Murakami *et al.*, 1994a). 両ケースとも, 主な氷晶 発生機構は雲粒凍結と考えられており (Murakami *et al.*, 1994 a, 1994 b, Braham 1990), 雲粒の大きさが氷晶

第6.2.15 図 対流混合層の鉛直構造と背の低い雪雲の形成過程の概念図.

数濃度に関係している可能性が高い.

ー言で日本海と五大湖上に出現する寒気吹き出し に伴う雪雲の相違を述べると、日本海降雪雲の方が背 が高く、より湿潤な雲といえよう.

6.2.7 結論

1993 年 1 月 29 日, 寒気吹き出し末期に日本海上に 出現した背の低い対流性降雪雲の平均的特徴をワイオ ミング大学の King Air 機で観測した. 観測した雪雲 の雲頂高度は~1.8 kmで温度は-13 ℃であった.

対流混合層は、最下層の若干の超断熱減率と下層 500 m での~2℃の対流不安定,混合層トップの強い 気温逆転(~2℃),雲底下の乾燥空気(60~70%) で特徴付けられていた.

1 秒平均の鉛直流は、7~-4m s⁻¹の間に分布してお り、上昇流は海面から雲底付近まで増加し、それより 上方ではほぼ一定であった. 雲頂付近では、周囲より ~2℃低い部分が時々見られ、逆転層内に対流セルが オーバーシュートしていることを示した. そこでは、 風向・風速の急変も見られ、乱流指数も大きく、熱と 運動量の混合が活発に起こっているこが示唆された.

雲の微物理構造に関しては, 雲水量の最大値は雲 の上部に存在し, 観測された 0.7 gm⁻³ という値は断熱 凝結量とほぼ一致した. 雲粒数濃度は大部分が 300 cm⁻³以下で 15 μ m 付近にピークを持つ幅広い分布を示 した. 雲頂付近では drizzle も観測された. 25 μ m 以上 の雪粒子と 200 μ m 以上の雪粒子濃度の最大値はそれ ぞれ, 10 個 L⁻¹, 1 個 L⁻¹ であった. 海面付近は相対湿 度 60~70%と乾燥していたため、小さな雪粒子は雲 底下で急速に昇華蒸発していった.

測定された各種パラメータの相関解析から,第 6.2.15 図に示すような背の低い雪雲の形成過程の概 念図が提案された.海面付近の温位の高い気塊が上昇 して,雪雲を形成する.雲頂の上昇は強い逆転層で抑 えられ,降雪粒子が雲底下に現れる頃には下層の上昇 流は衰弱している(持続性の上昇流ではない).降雪 粒子の昇華蒸発によって形成された冷たい下降流が上 空の大きな水平運動量を輸送し,海面付近の下降流の 前方に収束域を形成し,次の対流のトリガーとなって いる.

参考文献

- Braham, R.R., Jr. 1990: Snow particle size spectra in lake effect snows. J. Appl. Meteor., **29**, 200-207.
- Chang, S.S. and R. R. Braham, Jr. 1991: Observational study of a convective internal boundary layer over Lake Michigan. J. Atmos. Sci., 48, 2265-2279.
- Isono, K., M. Komabayashi, T. Takahashi and T. Tanaka, 1966: A physical study of solid precipitation from convective clouds over the sea. Part II. - Relation between ice nucleus concentration and precipitation -. J. Meteor. Soc. Japan, 44, 218-226.
- Magono, C. and C.W. Lee, 1973: The vertical structure of snow clouds, as revealed by "snow crystal sondes", Part II. J. Meteor. Soc. Japan, 51, 176-190.

Matsuo, T., H. Mizuno, M. Murakami and Y. Yamada,

1994; Requisites for graupel formation in snow clouds over the Sea of Japan. *Atmos. Res.*, **32**, 55-74.

- Murakami, M. and T. Matsuo, 1990: Development of hydrometeor videosonde. J. Atmos. Oceanic Tech., 7, 613-620.
- -----, T. Matsuo, H. Mizuno and Y. Yamada, 1994a: Mesoscale and microscale structures of snow clouds over the Sea of Japan. Part I: Evolution of microphysical structures in short-lived convective snow clouds. *J. Meteor. Soc. Japan*, **72**, 671-694.
- -----, T. L. Clark and W. D. Hall, 1994b: Numerical simulations of convective snow clouds over the Sea of Japan; Two-dimensional simulations of mixed layer

development and convective snow cloud formation. J. Meteor. Soc. Japan, 72, 43-62.

- Sakakibara, H., M. Ishihara, and Z. Yanagisawa, 1988: Squall line like convective snowbands over the Sea of Japan. J. Meteor. Soc. Japan, 66, 937-953.
- Tanaka T., T. Matsuo, K. Okada, I. Ichimura, S. Ichikawa and A. Tokuda, 1989: An airborne video-microscope for measuring cloud particles. *Atmos. Res.*, 24, 71-80.
- Yamada, Y., T. Matsuo, M. Murakami and H. Mizuno, 1994: Mesoscale and microscale structure of snow clouds over the Sea of Japan. Part II: Time change in air flow structures in isolated snow clouds. J. Meteor. Soc. Japan, 72, 695-708.