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D. Finite discretization form and pressure equation solver
D-1. Grid structure

The model grid structure is the Arakawa-C type in the horizontal direction and the Lorenz-type in the
vertical direction, which is the same as in Ikawa and Saito (1991). This chapter briefly describes the structure

of the staggered grid, supplementing Ikawa and Saito (1991)

D-1-1 Structure of the staggered grid

All variables, other than velocity components, advection terms and metric tensors, are defined at the “scalar” ’
grid point indexed by integer (7, j, £). Velocity components U, V and W (as well as W *) are located at the grid
points indexed by the half integer (1 +1/ 2, 7 B, G 7+1/2, k), (i, 7, k+1/2). Advection terms ADVU, ADVV and
ADVW are computed at the same points as U, V and W, respectively. Metric tensor le’z is defined at the grid
point (¢, 7) independently of k, while GY2G'® and G"2G?® are computed at (:+1/2, j, k+1/2), (z, 7+1/2, k+1/2),
respectively (Fig. D1-1-1).

Figures D1-1-2 and D1-1-3 present horizontal and vertical cross sections of the grid mesh of the model. The
physical boundaries are located at x=1+1/2 and x= nxfl /2 in the x-direction, where the x-component of velocity
is U(2,,) and U(INX,,). It is also the case in the y-direction, and the y-component of velocity is V' (,2,) and V(,NY,)
at y=14+1/2 and y=mny-1/2. However, in the vertical direction, the physical upper and lower boundaries are

located at z=1+1/2 and z=#nz-1/2, where the z-components of velocity are W(,1) and W(,NZ-1).
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Fig. D1-1-1 Staggered grid. Reproduced from Ikawa and Saito (1991).
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Fig. D1-1-2 Horizontal cross section of the grid mesh and the domain
boundary. Reproduced from Ikawa and Saito (1991).
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Fig. D1-1-3 Vertical cross section of the grid mesh and the domain boundary.
Reproduced from Ikawa and Saito (1991).

D-1-2 Variable vertical grid

Figure D1-2-1 shows the variable grid structure in the z-direction. Two kinds of grid intervals are defined.
Az, represents the grid intervals between the two grid points (4, j, £-1/2) and (4, j, 2+1/2). In the program, this
grid interval is denoted by VDZ(K), which corresponds to the interval between the levels of W(,,K) and W (,K +
1). Az, represents the grid intervals between the two grid points (7, j, 2) and (4, j, £+1). In the program, this
grid interval is denoted by VDZ2(K), which corresponds to the interval between the levels of P(,,K) and P(,,K +

1). As shown in Fig. D1-2-1, the half level is located at the center of the full level, and Az, and Az,..,, are related
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Fig. D1-2-1 Variable grid structure in the z-direction. Reproduced from Ikawa and
Saito (1991).

as follows:

Azk:AZk—llz-;Azk+llz, (D1—2‘1)
that is,
VDZ(K) =05+{ VDZ2(K —1) + VDZ2(K) }. (D1-2-2)

The heights of levels & and £+1/2 are denoted by ZRP(KZ) and ZRW(KZ),. The relations between the variables
are given by

Zap=ZRW (1) =0, (D1-2-3)
Zyirp= L1+ Dz

k

=ZRW (K)= >, VDZ(KZ), (D1-2-4)
KZ=2
and
Z=ZRP (1) = —%: —05+VDZ2(1), (D1-2-5)
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Zpy=Zp 1+ Azy_ 1
K-1

=ZRP (K) = —0.5+VDZ2(1) +KZIVDZZ (KZ). _ (D1-2-6)
Note that physical intervals between grid points (7, j, £) must be computed by multiplying G'2(%, j) for both Az,
and Az¥*'2 when the orography exists.
Program Guide (hereafter, abbreviated as P.G.)
The variable grid distahces are set in sub.VRGDIS where “sub” denotes subroutine. The arrays ZRP and ZRW
are defined in sub.SETZRP and sub.SETZRW. |

The variable grid structure in the x- and y-directions is shown in Fig. D1-2-2. The structure is similar to
that in the z-direction, but the array indexes for U and V are different from that for W in the z-direction
corresponding to the locations of the lateral boundaries. For example, in the x-direction, the relations between

the variables are given by

_Ax 1t DXy
sz‘_ 7—1/2 i+1/2

2 b
=VDX (I)=05+{ VDX2(I)+ VDX2(I +1)}, ' (D1-2-7)
Xs2=0, v (D1-2-8)
Xirip=Xi1pt+Ax;
I
=XRU(I+1)= 3, VDX (IX), (D1-2-9)
IX=2
X,=—05*VDX2(2), (D1-2-10)
X=X+ A%y,
I
=XRP(I)=—05+VDX2(2) + >, VDX2(IX). (D1-2-11)
IX=2

The arrays XRP and XRU are defined in relevant utilities such as initial file setting and plot, but are not

currently set in the model computation. The relations in the y-direction are the same as in the x-direction.
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Fig. D1-2-2 Variable grid structure in x-direction. Reproduced
from Ikawa and Saito (1991).
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D-2. Finite discretization form
D-2-1 Finite discretization form for basic equations
Following Ikawa and Saito (1991), the averaging operator in the x-direction is defined for any variable F

defined at the scalar point by
F?ﬂ/z:Fi +2Fi+1» | | : (b2-1-1)

and another averaging operator for any variable U defined at the grid point of a half integer by

T ,: AxipUinap+ 8% 1 Ussp

v Ax; 12+ DX
_Axi+l/2‘Ui—1/2+sz'—1/2 Ui+1/2 A R
= 9Ax, . (D2-1-2)
Averaging operators in the y- and z-directions are defined in the same way.
Finite differencing operators are defined by
_Fi_Fi—l i
OlFi12= Ao’ (D2-1-3)
_E+1_Fi—1 -1-
aszi“ 2sz ) (D2 1 4)
— (Ji+1/2_ []i—IIZ _1-
o, U;= A%, . (D2-1-5)

Using these operators, the governing equations in chapter C2 are expressed in the finite discretization form. For

(C2-1-3) and (C2-1-4):

*
G%G13i+l/2,j,k+1/2 = (%* 1 OxBsii1ia i (D2-1-6)
GEG® = CEE 1) 826,501 (D2-1-7)

For (C2-1-9) - (C2-1-11):

X

(pG?2) " (D2-1-8)

Ustrjpjrn="=x"1,
m

e
Vz',j+1/z.k:_(%GLyZ)0, (D2-1-9)

g

—(%lw. (D2-1-10)

I/Vi.j,k+1/2 =

For (C2-1-12) and (C2-1-13):

DIVT (U, V,W) ,;,=m*(3,U+ 9, V) +mo, W*, (D2-1-11)

W™ i =é{ W+m(GEGRT* +GHGP 7)), (D2-1-12)
¥

For (C2-1-15) - (C2-1-17):

(%(f]) i+1/2,j,k+ axP + az{ G%GIS (]_D-Z/G% ) }: _ADVl]i+1/2,j.k+R(]i+l/2,j,k, (D2—1_13)
—
(-aai;) srvzet P+ 3. G2G?2(P?/G? )} =—ADVVievmnt RVisrrim (D2-1-14)
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@Y nnt—L0.P=LBUOY — ADVWijpirs+ RWisnerss (D2-1-15)
Here,
ADVUirppsn=m {0:mU ") +8,(mV u”) } + 8. (mW* ") —%”xPRc“, (D2-1-16)
ADVVijipn=m {0x(mU v ) +0,(mV 0" )} + 8, (mW* o) —_yPRC (D2-1-17)
ADVW,snirp=m{0:(mU w ) +8,(mV w”) }+ o, (mW* w’) —%PRC, (D2-1-18)
N UW
Rl]l+l/2.}k—j;3 ‘ —fz W+ x{V (Uazym -v? Ox (D2-1-19)
(0G?)
e VW
RViwin=h W —£ U — LT (U aym— Vo,um’) +——}+DIF.V, (D2-1-20)
(pr)
— 2 g2
RWysps=£U — V" + u ZV ) DIF.W. (D2-1-21)
(pGZ)
and
u'= U1 » v Vl 5 W= WI - (D2-1-22)
(pG?) (pG?) (pG?)
PFT in (C2-1-25) is computed directly from the virtual potential temperature.
For (C2-1-26), the advection term of potential temperature is discretized as
ADV.6,,0={m (8 (UF") + 3, (VE)) + 8, (W) 2 PPV UV W) (D2-1-23)

pG? pG?
At lateral boundaries, all the advection terms are computed by one-sided differences.

P.G. Advection terms for U, V and W are computed in sub.CADV4UV and sub.CADVCAW.

D-2-2 Higher order discretization for advection terms

For a function f(x), f(x =Ax) is expanded in the following Taylor series,

fxtAx)=Ff(x) if’ x)Ax+f” (x)—(AZL!')Z-_f-f(” (x)(—ASJ!C—)s+-~ (D2-2-2)
That is,
flx+Ax)—f(x—Ax) =F" (x)ZAx—i—f‘g)(x)Z(%!x) O (x )Z(Ax) . (D2-2-3)

Rearranging (D2-2-3) gives

£ (1) arm _fx+Ax)—f(x—Ax) — O () (Agf)z—f@(x) (A5g!c)4_

2A8x (D2-2-4)

The first term on the right-hand side is the second-order centered difference that contains errors of higher order

'In Tkawa and Saito’s (1991) quasi-compressible model, PFT was defined by (C2-2-12) and discretized by

ppy .1 8BUOY”
g ot

In addition to the linearization, this expression contained errors due to double averaging of potential temperature because
BUOQY" is defined at a half level.
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than (Ax)®. For the advection term, this error affects the phase speed of the quantity, which causes a dispersion.

Substituting 2Ax for Ax in (D2-2-4), we obtain

£ (0) = LEARRI S 200 iy 40" gy 168" (D2-2-5)
Computing f"(x) by {4X(D2-2-4)—(D2-2-5)} +3 gives

Fr0) =3 () mem it f () 20

_—f(x+2A%) +8f (x—|—Af2)A—xSf (x—Ax) +1(x—2Ax) +F® (x)4 (%136)4+_.. (D2-2-6)

The first term on the right-hand side is the fourth-order centered difference derived by the four-point method.

Higher order advection terms of scalar variables are computed in advective form as

ADV.6,;,={m (U 0,0+ V 0,0) + W* azza}—zi, (D2-2-7)
p 2

where, assuming uniform grid intervals, the fourth-order gfadient is defined by

_ 0i+21j,k +8 01‘—1,;‘ k + 0'—2,},k

Oxe0= ToAx (D2-2-8)
In the same manner, the third-order upstream gradient is defined by

= 201,56+ 3 ei,j,l%g?cei—l,j,k t Oz forﬁ" >0,

B = - '9i+2,j,k+695+1§£;36ij 20150 fOVUx<0, (D2-2-9)

For the wind component, the fourth-order gradient (D2-2-8) is directly applied to (D2—1—16_) - (D2-1-18), e.g.,
ADVUirpsn=m {0 (mU &) + 8, (mV u”) }+ 8, (mW* ") —Z%PRC", (D2-2-10)

At the lateral boundaries, all the advection terms are computed by one-sided differences, and just inside the
lateral boundaries, the advection terms are computed by the second order accuracy.

The fourth-order advection scheme described in this chapter was used for the GCSS CASE-1 model
intercomparison, where a TOGA-COARE observed squall line was simulated (Redelsperger et al., 1999).
Currently, this option works for off-line ideal simulation but is instable for simulations in real situations. Further

testing should be done to use a higher order scheme for real case simulation with nesting.

D-2-3 Modified centered difference scheme for advection

A new advection scheme has been developed to remove the numerical errors that the centered-difference
advection scheme produces on the upstream side. These errors increase rapidly as the grid size decreases, which
causes significant problems, especially in a high-resolution model with a horizontal grid size of less than 5 km.
For positive prediction values, Smolarkiewicz (1983) and Hsu and Arakawa (1990) developed a more accurate
advection scheme. Regardless of the sign of predicted values, the present scheme is designed so that values
calculated by the centered-difference advection scheme lie between the maximum and minimum of those in the
upstream neighboring grid boxes. '

This new scheme is outlined for a two-dimensional case. The second-order centered-difference advection
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scheme for a predicted value F is given as

m m —
Ui+;~,jFi+%—,j Uz—f] i—5i -+t i3

Fm™1 V“+_F§’§+_f Vmr_LF™
Ax t Ax ’

Frit=Fr'—2At

(D2-3-1)

where the superscript m denotes the m-th time level, U and V are the momentum fluxes, Ax and Ay are the grid
intervals in the x- and y-directions, and At is the time step. First, the rates of advection from the upstream side

are calculated as

2AtUT L
UP=Max(Min(f‘—A—2 1.0), 0.0),
2AtU’”_1_-
UM = Max (Min(——_——,1.0), 0.0),
20V ™ L (D-27572)
VP = Max (Min(~— 27 103,00,
20tV L _
VM = Max (Min(— &y 22 1.0),0.0),

and

Vmax=Max(UP,UM,VP,VM).
Here, these rates are zero for the advection from the downstream side, and Vmax is the rate in the direction
where the maximum advection is determined. The value in the neighboring grid box in this direction at the time

level m-1 is denoted as F'0. Next, the acceptable maximum Fx and the minimum F# of the value considered by

advection are determined as

Fx, ;= Max (F7, FO+ (Fo,—F0)

—, FO+(F25,— F0)

V Vmax
F0+ (75— F0) VU , FO+(FE —FO) Vmax
i | (D2-3-3)
Fngy=Min(FI, FO+ (15— FO) g, FO+ (FI5 — FO) A —,
FO+ (15— FO 5o, FO+ (Fi— FO L,

When the value calculated by (D2-3-1) does not fall between Fx and Fu (i.e., ' — Fx, ;>0 or FI'— Fn, ;<
0), it is replaced by either Fx or Fn. The difference produced by this replacement is distributed among the
- neighbor grid boxes as follows. The difference between the value calculated by (D2-3-1) and Fx (F n) is denoted

as

Fl,,;=—F'+Fx, ;,(=F7"'—~Fn,;). (D2-3-4)
The total acceptable amount of the neighboring grid boxes FS is calculated as _

FS; ;= Max (Fli,; 0.0) + Max (F1,_,,, 0.0) + Max (F1; 41, 0.0) + Max (F1,;-1,0.0). ‘ (D2-3-5)

Therefore, the values of the neighboring grid boxes in which the value calculated by (D2-3-1) is between Fx and

Fn are adjusted as
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R = Max (FS,+F1,,,0.0)
1., !

F14,,=RXFli; for Flu,;>0,
and ‘ (D2-3-6)
Flzﬁ_rl =RXF1l;;., for F1,;::>0,

where F1*;; is the ‘adjusted value of F1,; By substituting F1*,; into the left-hand side of (D2-3-4), we can
calculate the adjusted value of F™*',; For FS,;+F1,;<0, the total amount of predicted values cannot be

exactly preserved, but the validation test of this scheme indicates that this error is very small (see Fig. 11.12 in

Saito and Kato, 1999).

D-3. Pressure equation solver _
The basic concept of the pressure equation solver on a variable grid was reviewed in B-6 of Ikawa and Saito
(1991), but the expression was simplified assuming G'2=1. In this technical report, we describe the details of the

pressure solver of HI-VI again following the programming code including the map factor.

D-3-1 Unified expression of the pressure equation
As shown in chapter C-3, the pressure equations take the following form for the E-HI-VI scheme

NP | QAP | BUAP | B

am(aaxz 2y° )+ 22t | az(hHIAZP)—i-eHzAZP:FP.HI, ' ‘ : (D3—1f1)
where
—
aH = ———, : (D3-1-2)
m 1 : .
GT mG?
_ 1 g D3-1-3)
har == mC ( )
mG%
em=——i 1 , (D3-1-4)
m 1 CL(1+a)*(An?
G2 mG2
FPHI =—— L ADVE' ©rveapvr ADVV', ADVW")}, (D3-1-5)
G% mG%
For the AE scheme,
:p 2P, 9?P . B
aar (%? + aayz ) +2L +2-(hasP) =FP.AE.INV + FPAE.VAR, (D3-1-6)
where
2ar=(GH?, , (D3-1-7)
_ g1 gGt (D3-1-8)
hAEI~C=é 2 cz
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FPAEINV =— (E) :DIVT (ADVU—RU, ADVV —RV,ADVW —RW —BUOY")

ch?

BTy

DIVT (U=, V==L, W=, (D3-1-9)

P 9P PP
881 ?—g)

FPAE VAR=— (GZ)ZDIVR(

ox’ ay G
— 1 1 —
I 3GIGH¥P 3G?G®P 1 9 , g 1 @ & , e

For the E-HE-VI scheme, the pressure equations are given by (C3-2-11) to (C3-2-13).

Here, (D3-1-1) is the three-dimensional Helmholtz equaﬁon for A%2P, (D3-1-6) is the three-dimensional
Poisson equation for P, and (C3-2-11) is the one-dimensional Helmholtz equation for P?. Following Ikawa and
Saito (1991), the 3-D elliptic equations can be reduced to a one-dimensional elliptic equation by the Dimension

Reduction Method, which is described in D-3-3.

D-3-2 Finite discretization form for the pressure equation

In the finite discretization of second-order accuracy, the centered differences may be written as

S ®)= (8,75 1 (8) 4= (8,81, (D3-2-1)

2 )= (B3 (8,1

WL{ (¢)j+1_(¢)j_ (95) (¢')J—1}
Axjil Ax; L

. (‘qS)jH (¢)J 1 N 1 (¢)j—1

TAxAX L Ax Ax L ij_%) CAxAx L (D3-2-2)
Thus, (D3-1-1) and (D3-1-6) may be discretized for a grid point (¢, j, k) as

{ Pz]k Pi,j,k 1 | 1 ) Pi~1,]',k

AxAx;icl  Ax Axi%j Ax;1 " AxAx; L
+ Pi.j+l,k __Pilz',k 1 | 1 ) + Pi,j—l,k

AyAy;el Ay Ayl Ay LT T AyAy; L
(L (p, i) =iz (Prsa)

AZk AZZ+ LA k+l T z,],k AZ 4,d,k—1

1 Pij Pij Pz +-Pz

VAL T
+ebn=Fin (D3-2-3)

Here, % is given at a half level. In the above expression, A?2P in (D3-1-1) is replaced with P and subscripts are

omitted for a unified description.

At the boundaries, we assume the following Neumann-type boundary conditions.

oP _
oL~ B, | (D3-2-4)
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(D3-2-5)

(D3-2-6)

(D3-2-7)

(D3-2-8)

(D3-2-9)

oP

ay - B.’)’;

oP \ wp=B,

Pz
The detailed formulation of B is discussed in F-1. In the finite discretization form, the above equations are
written as

Ax (Pz; & Pl,j,k) :Bl,j,ky

Axm_ (anjk nx—ljk) _anJ 3}

Ay (Pz 2k i,l,k) :Bi,l,k7

Ay,,x (Pz ny,k Pi,ny—l,k) =Bi,ny,k;

A21+1/2 (Pz 52 z',j,l iie T Pi,j,l) = Bz',j,ly

1 Pijna- z
(Pi,j,ﬂZ_Pi,J',nZ—l) + (PanZ+Panz—1) Zan~
Azpzap2

Here, (nx, ny, nz) is the model dimension, and the boundary values B, ; 5, Bux;x Bie Biny Biis Bisnz are given

at the locations x=1+1/2, nx-1/2, y=1+1/2, ny-1/2, z=1+1/2, nz-1/2, respectively.

Incorporating the boundary condition (D3-2-7), the finite discretization in the x-direction of the first term on

the left-hand side of (D3-2-3) is expressed as
aYZlAH,j,k:fI)j,k,

for 7 running from 2 to #nx-1. Here,

1
Ax, 0
1
0 A, 0
YZIZ ces s
1
0 At 0
1
0 AXpp
__1 1
Axyyl Axyyl
1 ( 1 1 1
Axg__%_ Ax3+_ Axg__ AX3+_
A= .
1 1 + 1 1
Afpogrl DXy 24 A%y, -2-1 Axnx—2+%
1 1
Axnx—l—% Axm:—l—%

(D3-2-10)

(D3-2-11)

, (D3-2-12)
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PZ,j,k
PS,j,k
0= ) (D3-2-13)
an—z,j,h ’
an~1,j,k
FZ,.i,k
F3,j,k
D= , . (D3-2-14)
Fnz—-z,j,k :
Fn.é—l,j,k
and _
2ie=Fasnt aBl,j,k/Asz,
Firsrin=Foxorn— aan,j,k/Axnx—l~ (D3~2-15)
For a uniform grid, the product of (D3-2-11) and (D3-2-12) is simply rewritten as
' -1 1
. 1 =2 1
1A — (2L _9_
Y A=A= ()" : (D3-2-16)
1 -2 1 :
1 -1
If the boundary condition is cyclic, the matrix has the following form
—2 1 1
) 1 -2 1
—(-1)z _o_
A=) , (D3-2-17)
1 -2 1 .
1 1 -2

with By, and B, vanishing in (D3-2-15).

Under Dirichlet-type boundary conditions (not implemented in the model yet), (D3-2-10) becomes

_ Piir
—2 1 0 Pz,j,k Fz,j,k @ (Ax)z
1 1 -2 1 P, 3,5,k F; 3,4,k '
= )2 es aee s cee = e —9—
d(Ax) (D3-2-18)
B 1 _2 1 an—z,j,k FnX—Z,j,k
0 1 —2 an—l,j,k o anjk
an—l,JLk a (AX) 2

Hereafter, we use njx=nx—2, njy =ny —2 for expression. Since (D3-2-3) is separable in the x- and y-directions,
applying the same manner in the y-direction yields

Au H,Z.k - Injx [nj H,z,k q)z,k,
Au H,S,k 1 Inj —ZIm- Injx H,3,k q33,1«:
... — )2 . vee =
a +a( Ay)
Au H,ny—z,k Inj “‘2_[”] Injx H.ny—z,lz ®ny—2,k
Au H,ny—l,k Injx - [njx H,ny—l,k [I]ny—l,k/

(D3-2-19)
for each level discretization. Here, I,;, is a unit matrix whose dimensions are (njx, #jx). Introducing a tensor

product operator for (m, m) matrix M and (%, ») matrix N
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mulN  m N - mN
Ny N N

MRN=| " e e ’ (D3-2-20)
Mg N MmN

(D3-2-19) can be written in the fdllowing form
a(Lyy®Y ' A+ Y5'BRLI = . (D3-2-21)

Here, I,;y is a unit matrix of (nfy, njy), B is a matrix of (%jy, njy) that is similar to 4, and II,,, and ®,,,, are (zjx*
77y, 1) matrices consisting of P » and F;, (incorporating the boundary conditions).

Finally, the finite discretization (D3-2-3) is written in the following form
a5 @Y i'A+ Y 5'BRL,x) .+ 7kn,,k—1 F (et e o+ BI1 4r = @,,k; (D3-2-22)

for Zéké nz—1. Here,

S B L
Az Az 207
RS S S LT
P Az Azpyl Dz} 2 ’
v Ryl ’
P Sy N (D3-2-23)

_Kz—k AZ]H.% 2

The upper and lower boundary conditions (D3-2-9) are rewritten as

1 g 1 s _

( Azl+%+ 3 )H”1+(Azl+%7’ 5 YI,=®,4,
1 hm“%’ 1 ﬁz—% :

Caz, gt et (g S M = e (D3-2-24)
ne—y nz—y

Here, ®,,, and ®, .. are (mjx*njy, 1) matrices consisting of B;;;, and B;,,.. These equations are rewritten as

HIL,+ 810,
Vel nz1 7+ Sn2ll ne =P,z ) ' ‘ (D3“2“25)

D-3-3 Dimension Reduction Method

The dimension reduction method described in Ikawa and Saito (1991) is used to solve (D3-2-22). This method
projects the pressure equation onto the horizontal eigen space, and leaves a one-dimensional vertical equation.
Here, we focus primarily on a uniform grid (D3-2-16) since the usual computation is done with a uniform grid.
A detailed description of the dimension reduction method for a variable grid is presented in Ikawa and Saito
(1991).

For a uniform grid, the eigen value matrix and eigen function for A, (D3-2-16) are given as

0 0
0 - 0
. k—1
— 2
Aa:ﬁ 4sin anx” , (D3-3-1)
0 0
petix—1

0 0 4sin i
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and
1 (k—1) (1—1/2) (nix—1) 1—1/2)
\/7 COS n]x T . COS n]x 7T
_vV2 |1 (1) (m—1/2) ) (njx—1) (m—1/2) D3-3-2
P= Vi | VT cos i 7 coS pr— z | (D3-3-2)
1 (k—1) (njx—1/2) (njx—1) (mjx—1/2)
ﬁ COS n]x T -+ COS n]x T
Under the cyclic boundary condition, as described in Ikawa (1981), they are
0
ssin® =L,
nx
_ peip2
Ag= ik Y B (D3-3-3)
(Ax)* —4sin2—2— ,
—Sinz——————2 (k*nj{c/Z—l)n
nix .
dsin? 1,
2njx
1
73 1 1 0 0
1 COS__Z” COS—~27[ . Sin—zi s _Zl(ﬂﬂ_l)
NG Vo nix wx 2 nix nix >~ 2
VL 1 27 27 njx . 27 i 27 (I
NG cosz Cosn—jx 5 m Smn]’x m smn].x 9 Dm
1 27 (1) e cos lTTIE (s 1Y in 2 (i — 2T My (e
73 cos;l;;(mx 1) cos, 9 (njx—1) sin 2 (njx—1) P 1) (mjx—1)
(D3-3-4)
respectively. For the Diriclet boundary condition, see Ogura (1969).
Using the following property of a tensor product
(URU,) (UG,RU,) = (UL U,) R (L U,). (D3-3-5)
and operating @*@P!, the coefficients of II,,, in (D3-2-22) become
QT'QP (L QA,+B.RI,;x) (QRP) Q7'QP!
=(Q Uy RYPTAL + Q' BRQAQP  [;P) Q7 'QP!
= (L;yQ@Ae+ AR 1,2 QQP, (D3-3-6)
where @ and A, are the eigen function and eigen value matrix of B,.
Thus, (D3-2-22) becomes
a(Ljy QA+ A& 1) _Q_1®P—1H{,k
+71Q QP I 5y + (St en) Qf‘@PHH,,k
+4HQT'RPM 4 = QT IQP D, D3-3-7)
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If we define

A~

H,,kE.Q_1®P_1H,,k7

3,=Q'®P"'Q,, - (D3-3-8)
(D3-3-7) becomes

7’kﬁ,,k—1 F{a Ly @A+ AyQ1Lx) + 5t e }ﬁ,,k + tkﬁ,,kJrl =0 ;. (D3-3-9)

That is, for ®,,,

~ A

S 4 ;. D51
0 S + [ +a (lai‘l_ Abj) tg ﬁi,j,z é1',‘1',2
A _ A... . 3-3-10
7% Spt ek+a(la,~+ lb,) tn Hi,j,lz (I)i,j,k (D )
Ynz  Snz) ﬁz’,j,nz (’Isi,j,nz

where Aa; and Ad; are ¢-th and j-th components of A, and A,. This is a one-dimensional Helmholtz equation,

similar to (C3-2-11). When ﬁ,,k is given, II,,, can be obtained by inverse transform

,,=QRPI . (D3-3-11)

D-3-4 Pressure equation solver with the Gaussian elimination
(D3-3-10) can be solved by the Gaussian elimination if the (nz %z) coefficients matrix is not singular. For
simplicity, we omit suffixes 4,7 from the expression, and rewriting s,+e,+a(la;+1b;) as s, for 2 = k = nz—1

and express the coefficients of the tri-diagonal matrix as

S1 tl pl fi
e S b j2 f
_ . . D3-41)
Vk Sk tk pk f;%
7nz SﬂZ an fnz
Multiplying the first line of (D3-4-1) by @, =1/s,, and setting b, =-ha, g =fa yields
1 —b D1 &1
72 Sz b b2 JA
_ . 03-4-2)
Ve Sa t D Ja :
Ynz  Snz)\Dnz Jrz
Subtracting #, X (first line) from the second line and multiplying by @, =1/(s,+ 75.) gives
—b D &
0 1 —b, b2 )
' = | (D3-4-3)
Va3 Sk tk pk f;c A
Ynz  Snz pnz fnz

where b,=-ta, & =(f,-7:8))%. In the same manner, by setting @,=1/(ss+ 74bs-1), b=~ teas, o= fi= 72811, the

above formula becomes



1
0

- bnz—l

1
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D

D

pnz— 1
Dnz

&

&r

_ . (D3-4-4)

Bnz—1
8z

The solution is given by pn:=gnz ..., Dr=&r+ bibrs1, .. L1=& +bip.. The coefficients a, and b, can be prepared

in advance since they are independent Qf Dr OT fr.

As seen in (D3-3-1), Aa, =215, =0 for (5, /)=(1, 1), thus, for an anelastic model (¢,=0), from (D3-2-23) to (D3

~2-25), the following relation is satisfied :

1 Az

Az,

1

S1

72

L

S2

Ly

Y2 Sk

=0, (D3-4-5)
tk ’ ) :

Ynz  Snz

which means the (nz, #z) coefficient matrix becomes singular. As mentioned in Ikawa and Saito (1991), this

corresponds to the non-uniqueness of the horizontal averaged pressure field in the anelastic model. To avoid this

situation, the constraint

ﬁl,l,nz—l +ﬁ1.1,nz: 0,

(D3-4-6)

is imposed. In our case, we set 7,,=s,.=1 for (z, /)=(1, 1), which means that the horizontal averaged pressure

in the anelastic model takes the same value of the reference atmosphere at the upper boundary.

P.G. The boundary conditions for pressure equations are set in sub.CFPBDV, and the forcing terms are set in

sub.CPFORI and sub.CPFRV]. Eigen vector functions are set in sub.INIVGI for a variable grid and sub.INIVG2

for a uniform grid. The Helmholtz equation is solved in sub.VHELMH where the Gaussian elimination is done

in TRIDGH.



