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C. Model equations
C-1. Governing equations
C-1-1 Basic equations in Cartesian coordinates
For dry air, the étmospheric state is described by six fundamental variables; pressure p, density p,
temperature 7', and three wind components #, v and w. These six variables are governed by the following six

equations.

a) Momentum equations

du, 1 39p_ . 1o
ai p ox W (C1-1-1)
v 1 pp_ | -
dt " ay” W (C1-1-2)
aw 19p ., . 1
di ooz TET AW (C1-1-3)

b) Continuity equation

9p | Opu , 9pv , pw _ 1
o Tox Tay oz 0 (C1-1-4)

¢) Thermodynamic equation

a9_ Q , 1
gl Cpn | 4Y-0. (C1-1-5)

d) State equation

p=pRT. (C1-1-6)
Here, dif. ¢ stands for the diffusion term for field variable ¢. @ is the diabatic heating rate, C, the specific heat
of dry air at constant pressure, and R the gas constant for dry air.

@ is the potential temperature, and = the Exner function defined as

=" (C1-1-7)
o |
s
o=L (C1-1-8)

For moist air, taking account of the partial pressure of water vapor, the state equation is replaced by

b =pRT, (C1-1-9)
where p, is the density of air, which is the sum of the density of dry air and water vapor, and 7, is the virtual
temperature defined as

T,=(1+0.61¢,) T. (C1-1-10)
Here, g, is the mixing ratio of water vapor. Virtual potential temperature is defined in the same manner as in

(C1-1-8) by

P _T,_(+061g)T
Y T

= (1+0.61q,) 6. (C1-1-11)
Using (C1-1-7) and (C1-1-8), the state equation (C1-1-9) is rewritten in the following formula.

Co/ Gy
pa= ). (C1-1-12)
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C-1-2 Mass-virtual potential temperature
a) Definition of the density and the state equation
When water substances exist, we define the density as the sum of the masses of moist air and the water
substances per unit volume as
P=pat potpetprtpi+ ps T pe
=patpetprtpitpstps (C1-2-1)
where subscripts ¢, 7, 4, s, g stand for the cloud water, rain, cloud ice, snow, and graupel. p, is the density of dry
air and p,, that of water vapor. In terms of the mixing ratio g, we can express the above formula as
p=pa(l+qtgetartatastar)
=p.(1+ g+ g+ atas+ae). (C1-2-2)
In the second expression, ¢ is not the mixing ratio but the specific value, which is defined by the ratio of the mass
of water substance to moist air. In this technical report, we neglect the difference between the two technical
terms, following a custom in mresoscale numerical modeling (this is a matter of terminology rather than
approximation).
As q is sufficiently small compared with unity (on the order of 107%), we can approximate (C1-2-2) with
sufficient accuracy as
pa=p(1+tgetg+agtgstag)™
=p(1=gc—a—q:—gs—de)- (C1-2-3)
Considering that the state equation is an equation for substances in gas phase, we obtain the following equation

by substituting (C1-2-3) into the left-hand side of (C1-1-12),

:_&LCV/C,,____.__ .
P Rﬁv(po) (1 Qe—qr—q:— ds— qg)

_ R%;; (ﬁ) s (C1-2-4)

Here, 6, is the mass-virtual potential temperature defined by
0n=0,(1—qe—qr— q:— ds— )
=0(1+061¢,) 01—~ ¢—q—ds—do)- (C1-2-5)
This quantity was introduced in Ikawa and Saito (1991) to expand the fundamental equations, but was not used
in the actual programming. In this model, we use (C1-2-4) and compute buoyancy directly and exactly by the

perturbation of density.

b) Continuity equation
When we define the density by (C1-2-4), we must consider the fall-out of water substances. We regard the
rain, snow and graupel as the precipitable water substances and neglect the fall-out of the cloud water and cloud

ice. Using mass-weighted bulk terminal velocity V, the time tendency of the density can be expressed as
9p_ _ (Opu_ Opu_ O
ai= ox T oy ozt Petpetpdw)

Thus, the continuity equation is replaced by
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Q. dpu_ Bpv_ dpw_ 3
ol " ox "oy oz oz (or Vetps Vot s Vo)

=2 (0 Vi paVeds + pa Vi) - (C1-2-7)

In the model, the reference value of the density is used for the air-density in the right-hand side of (C1-2-7) for

simplicity.

C-1-3 Fundamental equations in conformal map projection

In Ikawa and Saito (1991), terms relating to mapping projection were neglected in the basic equations. In
the new model, the map factor relating to arbitrary conformal map projections (see in J-1-3) is taken into
account in the basic equations. For example, in Polar stereographic projection, the horizontal coordinates in the

model (x, ¥) corresponding to the Earth’s surface of the latitude and longitude (¢, 1) are given by

X

(C1-3-1)

[xp-i- macos@sinAd }

y Yp— MACOSPCOSA L

where (xp, ¥,) is the position of the north pole, A1 the deflection of longitude from the standard longitude A,, and
@ the radius of the Earth (Fig. J1-3-1). m is the map factor’ and becomes unity at the standard latitude g,

m :——ﬂllissl;g; (C-1-3-2)

Distance on the polar projection map (dx, dy) can be derived by differentiating (C1-3-1):

dx — (1+sing) "cospdpcospsinA L —sinpdpsinA L +cospcosAddA ]
dy (1+sing) “'cospdpcos@cosAl +sinpdpcosAd +cosgsinAddA
— dpsinAA +cos@cosAddA —sinAl  cosAA do .
=ma =ma ' . (C1-3-3)
dpcosAA +cospsinAddA COSAA  sinAld-){cospdA
Considering the real distance on the Earth’s surface, (dxs, dys) is
d¥s acos@dd )
= . (C1-3-4)
dys ade
The relationship between the differentials is given by the following rotational t’ranéformation:
dx cosAL  —sinAR )( dxs
=m| . (C1-3-5)
dy SinAA  cosAL Jidys v
Since the velocity is written in the (x, y) coordinate system as
1
u=s (C1-3-6)
1d
v:ﬁjjt}’ , (C1-3-7)

the relationship between the winds {#s=dxs /dt, vs=dys/dt} in the spherical coordinate system and {#«, v} is

given by

1Strictly speaking, the map factor depends on the height % as

I3

__ 1 : _a_oy
m =T Ta™ (C1-3-2)

In this model, we neglect %/a to 1 and substitute m for m’.
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{uJ [cosA)L —sinAL

Us
) (C1-3-8)
v sinAdl  cosAL Jlus
Taking the third coordinate z in the upward vertical direction and defining w as w = dz/dt, the momentum

equations in (x, y, z) are written as follows :

B Cor, +Crv —~mL+ DI, | (C1-3-9)
—i—% = Co,+ Crv, —%m%ﬁ + Dif,, (C1-3-10)
%} =Cor+Cru, —%—m%‘g +Difs, (C1-3-11)

where Dif stands for the diffusion terms, and the subscripts 1, 2 and 3 correspond to components x, y and z. Cor

and Crv are the following Coriolis and curvature terms? (e.g., Kikuchi. 1975).

Cor,=2Qsingpv —2Qcos@cosiw, (C1-3-12)

Cor, = —2Qcos@sinAlw —2Qsingu, (C1-3-13)

Cor; =2QcospcosAiu+2QcospsinAdy, (C1-3-14)
el Ly O (1yy uw o

Cro=m*v{v-(") ”ay(m)} 2 (C1-3-15)
gl 2Ly, 0 Ay _ww o

Criy=m u{uay(m) v G} Py (C1-3-16)

2 2
cm;s:ﬂ%. (C1-3-17)
With no precipitation, the continuity equation becomes
Ldp, .00 uy, O vy, Ow 2w_ _a_
o dt ™ {ax(m)+ay(m)}+ oz g =0 | (C1-3-18)

For Lambert conformal projection and Mercator projection, map factors‘ are given by (J1-3-7) and (J1-3-13),
respectively. For these projections, the form of Eqé. (C1-3-5) - (C1-3-18) is not altered, except that AX becomes

cAA, where ¢ is given by (J1-3-8) for Lambert projection and zero for Mercator projection.

C-1-4 Fundamental equations in flux form

From (C1-3-6) and (C1-3-7), the total derivative in conformal map projection is given by

d_o ,dx 3 ,dy o  dzo_ o 9, 9 9 L
+m(uax+vay)+w | (C1-4-1)

di ot "diox dioy di oz ot

oz"

Substituting (C1-4-1), the continuity equation (C1-3-18) becomes

op op . 9P op 20O Uy, O (U ow
ar Tmugtog,) T, tom {ax(m)+ay(m)}+p oz
—9p 200 Py O PUyy O — 4
_at+m{ax(m)+ay(m)}+az(pW) 0. (C142)

Here, we neglected fhe last term of (C1-3-18), assuming the vertical scale of the motion is considerably smaller

2The last terms in (C1-3-15), (C1-3-16) and (C1-3-17) are proportional to —n%ﬁaa—nZ’

- However, these terms should be retained so that the set of basic equations approaches that in the spherical coordinates
in the limit of 4/a—0 (see L-3).

and are absent in the limit of a—o.



Technical Reports the MRI, No.42 2001

than the radius of the Earth. With the fall-out of precipitating substances, the above continuity equation

becomes
op m2{-< pU pPY _ e
o Tm {ax(m)+ay(m)}+ (pw) = Prc, (C1-4-3)

where Prc is the right-hand side of (C1-2-7).

For arbitrary variable ¢, the total derivative can be written from (C1-4-1) as

p db_p 04 pudé  pvos  pw 3¢ o
midl miot mox may mior (C1-4-4)

From (C1-4-3), we obtain

3p ¢ 2 P A
'%aﬁ‘“ax(%” EO)}+-25 = (ow) — 2, Pre=0. (C1-4-5)

Consequently, the total derivative can be written as

d
B (o) + 2 )+ 2P0 12 2 (puog) — i, (C1-4-6)

or, assuming (C1-3-2), as

P dp_ 9 pd PV PV &_ k-3 A
o dt =t T {ax(m)+ay(m)}+ E2) =L Pre. (C1-4-7)

Using (C1-4-7)%, equations (C1-3-9) to (C1-3-11) become

( “y 1+ Ady. U+——— Crvo. U+ Cor.U+Dif U, (C1-4-8)
(&”) +Ad.V+L af’ =Cr.V +Cor. V+Dif.V, (C1-4-9)
5(%) + Ady. W+—( 2+ &) =Cro.W+Cor. W +Dif.W. (C1-4-10)

Here, Adv. corresponds to the second to last terms on the right-hand side of (C1-4-7), e.g., it is expressed for u

as

Adp. U= m{—(ﬂ—)+~(3~)}+az(ﬂm—) ﬁPrc. (C1-4-11)

Cor.U, Cor.V and Cor.W are Coriolis terms (C1-3-12) to (C1-3-14) multiplied by p/m. The curvature terms Crv.
U, Crv.V and Crv. W are expressed by

Cro.U= p_v( %%_ a_m) %ﬂ% (C1-4-12)
Cro. v =P2 (4 %—’y”—u%“ —vw (C1-4-13)
Cr. W_—{ (/’“) +<&) ). (C1-4-14)

*Tkawa and Saito’s (1991) nonhydrostatic model used the following relation.
—Jé 292 dpus | pvd | Ppwd i
Pat e &y 2z €Cl47)
The above relationshlp is correct only for anelastic equations but yields errors for quasi-compressible elastic equations.
Ikawa (1988) suggested that the errors caused practically no trouble if the sound wave mode was sufficiently damped.
However, they may cause computational instability in some cases when a longer time step is used (Saito, 1994b).
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The thermodynamic equation is

d9_26 Q Ly
&t~ o TA@0=¢ +Difo. (C1-4-15)

where the advection term in flux form is given as

Ado.9=[m(Z, O + SN ) 4+ 5O — D (Pre—20)172, (C1-4-16)

The underlined term is the divergence (sum of the second to fourth terms on the left-hand side of (C1-4-3)).

C-2. Fundamental equations in terrain-following coordinates
C-2-1 Egquations in terrain-following coordinates
Following Gal-Chen and Somerville (1975) and Clark (1977), we introduce the terrain-following vertical

coordinate

o H(z—2z) _
=T, (C2-1-1)

and components of the metric tensor for the coordinate transformations :

L. Zs _1-
GT=1-%, (C2-1-2)
T (2011 9%s 1
GIGY=(F—D32 (C2-1-3)

azs 1
GTG2= (H DS (C2-1-4)

Here, zs is the surface height and H is the model top height. Applying the chain rule for the coordinate

transformation from (x, v, z) to (x, y, z*), the following relations are obtained for any arbitrary variable ¢ :

GH2-2.(Grg) + 25 (GG g), (C2-1-5)
128 =2 (Gte) + & (GT67e), (C2-1-6)
Gfgf a_;é (C2-1-7)

The cotinuity equation (C1-4-3) is reWritten as follows:
G¥L+ DIVT (U, V, W) =PRC, (C2-1-8)
where U, V, and W are wind components multiplied by pG*2/m. These are taken as the prognostic variables :
%
U:&mz, (C2-1-9)

1
Ve QC;;U , (C2-1-10)

o~

W= BGm w (C2-1-11)

and DIVT is the total divergence in z* coordinate calculated by

aU aV) +maW*

DIVT (U V,W)= ( Py For (C2-1-12)
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W * is the vertical momentum in z* coordinate defined by

- *
we=LE L Lty 4 (GEGR U+ GEGE Y)Y, (C2-1-13).
and PRC is the divergence of the fall-out of water substances written in z* coordinate :

PRC= é% (/-)a VrQr+pa Vs‘]s+pa ngg) . (C2-1-14)

Momentum equations (C1-4-8) to (C1-4-10) are rewritten as follows:

1 1 .
8U, 2P 9GP G _ 4 pyy+RU, | (C2-1-15)
ot ox GZoz*

X 13
oV, oP  8G GEP . Apyyyy Ry, (C2-1-16)
ot oy Gzoz*
oW, 1 8P _1pyoy—ADVW +RW, (C2-1-17)

ot ot ort m
where P denotes (p-p)G¥2. BUQY is the buoyancy term, which is defined by the deviation of the density as
BUOY =— (p—p) gG¥. (C2-1-18)
Here, overbars indicate the variables of the reference atmosphere in which we assume hydrostatic balance.

ADVU, ADVV and ADVW are the advection terms for U, V and W. For example, ADVU is given as

_ . oUu oVu, , oW*u u .
ADVU=m{ 5 T e b+ 22" mPRC. (C2-1-19)

RU, RV and RW represent the residual terms including the curbature, Coriolis and diffusion terms :

T — om__ om w 1o
RU=£V J§W+V(uay vax) Ua-I-DIF.U, (C2-1-20)
_ om om w : 1
RV=AW—-£U—-U (u—ay —v—ax)— V—a +DIF.V, (C2-1-21)

RW=£U—fV+"2

(U2+v*
pG? “

+DIF. W. (C2-1-22)
The pressure prognostic equation is obtained from (C1-2-4) and (C2-1-8) as
— +C,2(—PFT+DIVT —PRC) =dif.P, (C2-1-23)

where dif.P is an additional term that comes from Rayleigh damping in pressure, and C, is

2= Copp (DyR/G 1-
Cu?=CoRO () (C2-1-24)

If there are no precipitable water substances, C,, is reduced to the speed of sound waves given by (C2-2-8).

PFET represents the thermal expansion of air!, which is expressed as

1
_ pr O . 1
PFT_——Hm T (C2-1-25)

'Some nonhydrostatic models (e.g., Klemp and Wilhemson, 1978 ; Pielke et al., 1992 ; Dudhia, 1993) omit this term from the
pressure equations to save computation time and to avoid numerical problems. However, this term represents a
substantial part of the state equation and is important to evaluate density perturbation (=buoyancy in our model)
accurately. As Doms and Schaettler (1997) mentioned, omitting this term may cause significant problems in numerical
weather prediction and the associated data assimilation cycle.
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There is no change in the thermodynamic equation.

d6 _ o6 Q

at ot TAPV-I= (C2-1-26)
except the following modification of the advection term ;
ADV.BZ{ aUﬂ 8V0>+8W % 0(PRC G%—QB)}ﬂl
={m*@% 42 Va) +m20 8 pIvT (U, W) /pGE, (C2-1-27)

C-2-2 Quasi-compressible approximation

A quasi-compressible approximated version is historically developed as an elastic version of Ikawa and
Saito (1991)’s nonhydrostatic model. The field variables ¢(x, ¥, z ¢) are divided into a horizontally uniform
reference basic state ¢(z) and residual perturbation ¢’(x, ¥, 2, ¢) as follows:

é (x,2,1) =¢ (2) +¢' (x3,2,1). (C2-2-1)
Note that ¢(z) depends on not only z* but also on x and y, in the terrain-following coordinate system ; ¢(z)=
é(x, v, z*). The set of quasi-compressible equations is obtained by setting m =1, PRC =0, and p(x, ¥, 2, )=p(z)
in (C2-1-9) to (C2-1-27) except for BUOY in (C2-1-17):

G%%Bt L DIVT (U, V, W) =0, (C2-2-2)
=5Gtu,
—sGh, (C2-2-3)
=/5G%w,
1 13
aU, oP  8G*GUP_ /phyyr 4 RU, (C2-2-4)

ot " ox ' (hopr

14 +2 +aG?G P DVV+RU. (C2-2-5)
ot 3 (Groz*

Hire, ADVU, ADVV, and ADVW are defined as®

oUu | aVquaW:u' (C2-2-6)

ADVU= o 1 a_’,\) oz

A density perturbation in the vertical equation is divided into two components by the following approximations:

—p'8={p (%” ~de—dr—9s— s ) —g—sz}g, (€2-2-1)
where
C _CgRgv( ) R/C" (CZ—Z—B)

Using the above, the vertical momentum equation becomes

ow 1 8P P
"ot G C2

g=BUOY'—ADVW +RW, (C2-2-9)

where the buoyancy term is given by

2As mentioned in C-1-4, this form requires the anelastic relation (C2-3-1) and is not exact for (C2-2-2).
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6/
8

BUOY ' =5G* (% — g~ ¢~ gs— @5 4 & (C2-2-10)

The pressure equation is as follows

%—Ij +C2(—PFT +DIVT) = dif P, (C2-2-11)
where
pFT =L 2BUOY" (2212
g ot

C-2-3 Anelastic approximation

In the anelastic system, the first term of the continuity equation (C2-2-2) is neglected in order to remove the
sound waves following Ogura and Phillips (1962),

DIVT (U, V,W) =0, (C2-3-1)
where m=1 is set in (C2-1-12) and the three components of the momentum are defined by (C2-2-3) as in the
quasi-compressible model. The linearized momentum equations are the same as in (C2-2-4), (C2-2-5) and (C2-
2-9), and the flux form (C2-2-6) is exact for (C2-3-1). Pressure is diagnosed by the anelastic continuity equation

and momentum equations (see C-3).

C-2-4 Hydrostatic version of the anelastic model
The hydrostatic version of the anelastic model is obtained by degenerating the vertical momentum equation

(C2-2-9) into the hydrostatic approximation as

Vertical momentum W is determined by the continuity equation (C2-3-1). The method for calculating the

pressure is presented in subsection C-3-4.

C-3. Pressure equations

Since elastic nonhydrostatic models include sound waves in their solutions, the maximum time step is
restricted by the speed of sound waves if a simple leap-frog time integration scheme is used. To overcome this
problem, current nonhydrostatic models treat sound waves in two schemes: one that treats sound waves
implicitly in the vertical direction and explicitly in the horizontal (HE-VI scheme ; e.g., Klemp and Wilhelmson,
1978) and another that treats sound waves implicitly in both the horizontal and vertical directions (HI-VI
scheme ; e.g., Tapp and White, 1976). Generally, a time-splitting scheme whereby high-frequency terms are
evaluated at a shorter time step level is used in the HE-VI scheme. ’

The explicit treatment of sound waves in the horizontal directions presumes that the horizontal resolution
is much finer than the vertical resolution. Consequently, the HE-VI scheme may need a very short time step when
the horizontal grid interval becomes as small as the vertical grid interval. On the other hand, the time step in
the HI-VI scheme is not restricted by the sound wave speed, but it is necessary to solve a three-dimensional
Helmbholtz equation for pressure. This characteristic feature of the HI-VI scheme may become a disadvantage

in massive computation using a distributed memory parallel computer.
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From the above point of view, some recent nonhydrostatic models tend to prepare two options to treat sound
waves. For example, an HI-VI version of Lokal-modell (Doms and Schaettler, 1997) of the Deutscher
Wetterdienst was recently developed by Thomas et al. (1999), and an HI-VI option is being developed in the WRF
model project at NCEP. In JMA, a new HE-VI scheme was incorporated into the MRI nonhydrostatic model as
the first step to develop the MRI/NPD unified nonhydrostatic model. ’

Most operational hydrostatic models, as Well as some nonhydrostatic models (e;g., Tangﬁay et al., 1990 ;
Golding, 1992), treat gravity Wéves implicitly to maintain computationa‘I stability and efﬁéiency. Implicit
treatment of the gravity waves is one of our future subjects, though it may deform not only the high-frequency

gravity waves but also the low-frequency gravity waves.

C-3-1 Pressure tendency equation in HI-VI scheme

In this model, we treat implicitly only the sound waves following the E-HI-VI scheme described in Ikawa
(1988) and Ikawa and Saito (1991) for their quasi-compressible model. Before presenting the formulation, we
redefine the buoyancy term BUQY in this section in order to unify the two expressions of buoyancy (C2-1-18)
and (C2-2-10). Introducing a switching parameter o, which takes zero for direct computation of the buoyancy
from density perturbation and unity for conventional computation by the temperature perturbation, the term can

be rewritten as

Gﬁ

BUOY =P g4 (1—6) (5—p) G2 (C3-1-1)

Usually, ¢ is zero for the fully compressible mode and unity for quasi-compressible approximation (in this case,
the first term on the right-hand side becomes (C2-2-10). Using o, vertical momentum equations can be expressed

as

oW, 1 8P, P
ot T F e TmC,?

g——BUOY ADVW +RW. (C3-1-2)

In the E-HI-VI scheme, momentum equations (C2-1-15), (C2-1-16) and (C3-1-2) are represented in finite difference

form as follows:

= 1
Uit+1_ Uit—l ) aPi . - aG'Z—GISP 4
TAT g T ADVU-RUHEZEE), (C3-1-9)
, . 1
ye_ve 1+£+ (ADVV —RV +2E 6P (C3-1-4)
] Groz*
Wit+1_. let—IAL 1 api g 5¢
2A¢ onGE 92" +mCm2P
=LBUOY — (ADVW —RW) + —5 1G 1t o B P. (C3-1-5)

Here, terms marked with a double overbar denote averaged quantity on a z* surface and superscripts ¢+1 and
it—1 represent the time levels in the leap-frog integration. Terms marked with a single overbar together with

superscript ¢ denote the weighted averaged values between it+1 and ##—1 time levels defined by

= _1ta

At==1¢% 5 Azt+1_|_1 aAzt—l—A A+Azt (C3-1-6)

where « is the weight parameter, which is currently set to 0.5. The last terms on the left-hand and right-hand
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sides of (C3-1-5) are pressure perturbation components in the buoyancy term, which must be treated implicitly
to maintain computational stability. Thermodynamic equation (C2-1-26) is represented in a simple difference
form since the gravity waves are not treated implicitly in our model.

Pressure prognostic equation (C2-1-23) is represented in finite difference form as

2L\ CpIvS (TS VLW

=C,2(PFT —DIVT (U V,W) +PRC) + C,2DIVS (U, V,W) + dif P, (C3-1-7)

where DIVS is the linearized separable part of the total divergence, which is defined by

aU , aV. , m oW

(C3-1-8)

DIVS(U,V,W) = m? (ax+8 )+G’% 9z*
Substituting the following relation
Ai“—l‘Ait_l__ AZA V| Ait_Az't~1 e
At 20+a) Al (1Fa)AL (C3-1-9)
into (C3-1-3) to (C3-1-5) and (C3-1-7), we obtain the following formulas :
AU AP , L
(l-l—a)At o 2ADVU, (C3-1-10)
AV AP _ , L
(l-I-a')At+ EN —2ADVV”, (C3-1-11)
AW ? oA’P | g o , L
+a)att, o1 o +mcm2A2P‘ 2ADVW’, (C3-1-12)
AP CEDIVS (AU, AV, A2 W) = — Cui2 ADVP? (C3-1-13)
(1+a)At " ’ ’ ” ’
where the right?hand sides are the modified advection terms:
1
. \ _ Uit—l a})z’ti 8G7G13Pit L
ADVU =ADVU—RU 4 (1+az)At + o T chaa (C3-1-14)
L .
, Vit_ I/z't—li aPit . aG‘Z‘GZSPit e
ADVV'=ADVV —RV + AF)Al "oy T Ghape (C3-1-15)
- _1 wE=—w#r 1,1 & ypi i
ADVW’'=ADVW —RW BUOY+ AT a) A7 +m(G% a2*4- o‘cmz)P ¢ (C3-1-16)
ADVP’—*{(I_F—];At C2(PFT—DIVT (U, V,W)+PRC) —dif- P}. (C3-1-17)

Substitution of (C3-1-10) to (C3-1-12) into (C3-1-13) to eliminate AU, A%V, and A*W, yields

AP aA :p aA P

1 aAP

= —"————DIVSQADVU + J2ADVV’+ 2ADVW'+ 2p
_ 2 , )
=TT ) ArAPVE (C3-1-18)

Arranging the above, we obtain the following Helmholtz-type pressure tendency equation :

S (@AP  O°NPy T 1 AP AZP)
ox? oy? Gt mG* az*z G az mC 2
_ A2P _o ADVP , , , 1.
—C_mz(l-l-ar)z(At)z 2{ EPY; DIVS(ADVU', ADVV’', ADVW") }. (C3-1-19)
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This equation is solved directly by the Dimension Reduction Method discussed in D-3. In Saito (1997), the model

assumed

iy M 1 1 g g (C3-1-20)

for simplicity on the understanding that the standard latitude ¢, in (C1-3-2) is taken at the center of the model

domain. However, the above approximation (premise) was removed in the latest version (Saito, 2000).

C-3-2 Formulation of HE-VI scheme

Referring to the E-HE-VI scheme described in Ikawa and Saito (1991), the time—splitting, horizontally
explicit version of the MRI mesoscale nonhydrostatic model is presented in the following. The Numerical
Prediction Division of JMA incorporated this new scheme into MRI-NHM as a joint program with MRI to
" develop the MRI/NPD unified mesoscale model (Muroi et al., 1999) (see L-2).

In the E-HE-VI scheme, the time integration procedure is divided into two parts to avoid severe restriction
of time interval for integration. Terms related to the sound mode are treated explicitly in the horizontal
direction and implicitly in the vertical direction. These terms are integrated with a short time step (Az). The
other terms that include the advection term, friction term and physical processes are integrated with long time
step (Af). In the short time step integration, the horizontal velocity is integrated first with a forward scheme.
The vertical velocity and pressure field are then solved with a backward scheme. In the long time step

integration, a three-time level scheme with a time filter is applied.

At

AT

Forward time integration of (C2-1-15) and (C2-1-16) and backward integration of (C3-1-2) and (C2-1-23) are

represented in finite difference form as

U1+At_ U1+6Pr | aG%GlSPr_

Az o Choae =—(ADVU+RU), (C3-2-1)
L1

Vo Ve 0P 06T GTPT . (ADVV RV, (C3-2-2)
Az oy GZaz*

Wetar— Wr 1 oP#s g _L . _ o g o
Az +mG% az*—i—mCmZPﬁ—mBUOY (ADVW —RW)+ (1—0) mC,,,zP’ (C3-2-3)

pPrtot— pr alUr aV~»

A, T C,,,Z(—PFT+m2(——ax +—ay )

+m é{ Wo+m(GEGW U+ GEG® V) }] — PRC) = dif P, (C3-2-4)

2

where
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Uy:l%z U1+A1+1_;_Z U-, (C3-2-5)
VM%Z V,+M+1_;z Ve (C3-2-6)

Wﬁ:l—gl WT+AT+1_E"@ Wr

Ar(l-l-/o’) (W”AT— W+
A7

)4 W= A1(12+ﬁ)

SW+ W, I (C3-2-7)

Here, the left-hand sides are calculated in the short time step integration, and the right-hand sides are evaluated
in the long time step integration. P# is similar to (C3-2-7). =1, £=0.5 and y=0 are used in the current version
of the model.

Substituting the above equations into (C3-2-4), we obtain

2 T 2((— 2
Arap EP- PO+ G (—PFT +m*DIVH (U7, V)

2. AT sy 4 yy)— PRC)) = dif P, (3-2-8)

where DIVH stands for horizontal divergence

8U aV

DIVH(U V)= ay a ey

(GEU+G=V). (C3-2-9)

The under-lined part of (C3-2-8) becomes

— Lo 1 )2A1(1+p’) o*Pf 1 Az(1+8) o

G 2 oz* ot 2 oz* (C 7
+ZZ A—’“T*ﬁ 2 (s (C3-2-3) ). (C3-2-10)

Finally, we obtain the following one-dimensional Helmholtz-type pressure equation

o2pP# 19,8 s 2
32*2+G282*(Cm2Pﬂ) (GT)Z{———-—CmAf(Hﬁ) }

*Pf=FP.HE.INV + FP.HE. VAR, (C3-2-11)

where FP.HE.INV is the invariable term during short time step integration in the forcing terms

1
2(G?)*
PP.HEINV =——=——<(PFT +PRC +“%5 dzf P

Ar(TA) 7)

+Gt2

£ _py. ] (03—2—1é)

and FP.HE. VAR is the variable term during short time step integration in the forcing terms

m oWr 2G*
“DIVH (U V) + 5 S - ke G )

2(Gh)? _2Gne o

FPHE. VAR= Az(11f)

}2P=. (C3-2-13)

The upper boundary condition may be obtained from ¢W =0 as

1 9
mG% oz*

CZ)P‘*‘ (ADVW —RW) +— {BUOY—!—(l o‘) P} (C3-2-14)

The lower boundary condition is the same as in (C3-2-14), while in free-slip case, the right-hand side requires the

following extra term

Ur+At_ U't+ G%'G23VT+At_VT)

— W =m (GTGRsU+ GEGHSV) = m (GFGH e o
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=AW et m (GEGBUrart GEGB Y e+, (C3-2-15)

in order to satisfy the kinematic condition
SW*=6W +m (GEGoU + GEGH V) =0,
WHr=We+m (GIGR U+ GEG= V) =0 (C3-2-16)

C-3-3 Pressure diagnostic equation in anelastic version

Pressure in the anelastic system is described in Ikawa and Saito (1991). Here, we present it for discussion
in later chapters. Substituting (C2-2-4), (C2-2-5) and (C2-2-9) into (C2-3-1) to eliminate time tendencies of U,
V and W, we obtain

~BDIVI\UV.W) _ pyyy @E 4 3GYG P iy ry,
ot Gzaz
Q}_) aG%-stp 1 oP P
o " Cha Gtaz* oot G g+ ADVW —RW —BUOY"), s

where we assume m =1 for the anelastic model. Introducing a residual part of the total divergence to the
separable part »

DIVR(U,V,W)=DIVT (U V,W)—-DIVS(U'V,W)

_ 2 aW
- az* + { W+ Gz Gz
_ 1 -
az*’ (C3-3-2)
we obtain the following Poisson-type pressure diagnostic equation :
oP P ?aP oP P T aP g
DIVS(ax v o P)-f—DIVR(8 'Sy oF P)
1 1 —_— —
oGzGBP 8G7G23P 1l 92 g 1 2 g
+DIVTY G%az* ’ G%az* ’ G% az*+ G G% oz" CSZ)P}
+DIVT (ADVU—RU, ADVV —RV, ADVW —RW — BUOY")
2AtDI'VT(Uf Uyl W), : (C3-3-3)

The right-hand side of the above equation represents the residual divergence computed at the former time level,
which is theoretically zero in the anelastic system but non-zero numerically due to computation errors. This
term is important for satisfying the continuity equation at the next time level and stabilizing the computation

(Clark, 1977; Tkawa and Saito, 1991).

C-3-4 Pressure equation in anelastic hydrostatic version

The hydrostatic model is a degenerate version of the non-hydrostatic model developed by Ikawa and Saito
(1991). Clark and Hall (1991) also made a hydrostatic version of their non-hydrostatic model by using almost the
same method as used in this subsection. Since the vertical momentum flux W is a diagnostic variable, W is
determined by the anelastic continuity equation. The pressure is calculated as follows.

Combining (C2-2-4), (C2-2-5), and (C2-4-1) leads to a diagnostic equation for p” as
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oy? oyoz* ox 2At oz (C3-4-1)

2%’ | 22 (G¥p’) | 2%’ | 23 (G®p') _  9Fx 8Fy+ 1 a(Wmi— W’”‘l)
v T
ox ox0z
where At is the time step interval, and the superscript '»’ denotes the value at the time step 'm’. From (C2-4
-1), p’» at the k-th vertical level can be expressed with the pressure at the upper boundary p’,. as
D' o= Cubrzt bu, ) (C3-4-2)

where

(C3-4-3)

and

nz AZk+%BOUY/k+%

b,=— - . - (C3-4-4)
E G%+Azk+%€g—2 . A

Summing (C3-4-1) in the vertical column results in the following diagnostic column pressure equation :

axZZAzkp 2 (G G EAzkp o (G GEp')

_ _ZA [an aFy]k g {(Wm+1— Wm—l)nZZA_t(WmH_ Wm—l)l}i’ (C3-4-5)

where Az, is the k-th vertical grid interval and the subscripts 1 and #z denote the values at the lower and upper
boundaries, respectively. The second term on the right-hand side of (C3-4-5) should theoretically be zero because
of the lower and upper boundary conditions. However, since W % calculated from (C2-3-1) becomes non-zero
due to round-off errors in numerical simulations, this term remains in (C3-4-5) to guarantee W 7'=0.
Substitution of (C3-4-2) into (C3-4-5) results in the horizontal elliptic equation for p’,,, which can be solved by

the same method as in the non-hydrostatic model (see subsection D-3-3).



