TECHNICAL REPORTS OF THE METEOROLOGICAL RESEARCH INSTITUTE No. 38

Vertically 2-dimensional Nonlinear Problem

BY

Hirotada Kanehisa

気象研究所技術報告

第 38 号

鉛直 2 次元非線形問題

金久 博忠

気象研究所

METEOROLOGICAL RESEARCH INSTITUTE, JAPAN

MARCH 1999

Meteorological Research Institute

Established in 1946

Director-General : Mr. Ryuji Hasegawa

Forecast Research Department Director : Dr. Sad		
Climate Research Department	Director : Mr. Hiroki Kondou	
Typhoon Research Department	Director : Mr. Shouin Yagi	
Physical Meteorology Research Department	Director : Mr. Kouichi Shirasaki	
Atmospheric Environment and		
Applied Meteorology Research Department	Director : Dr. Tatsuo Hanafusa	
Meteorological Satellite and		
Observation System Research Department	Director : Mr. Toyoaki Tanaka	
Seismology and Volcanology Research Department	Director : Mr. Eishi Mochizuki	
Oceanographical Research Department	Director : Dr. Takeshi Uji	
Geochemical Research Department	Director : Dr. Katsuhiko Fushimi	

1-1 Nagamine, Tsukuba, Ibaraki, 305-0052 Japan

Technical Reports of the Meteorological Research Institute

Editor-in-chief : Hiroki Kondou

Editors	s : Masakatsu Kato	Nobuo Yamazaki	Akihiko Murata
	Masashi Fukabori	Yukitomo Tsutsumi	Osamu Suzuki
	Osamu Kamigaichi	Goro Yamanaka	Hidekazu Matsueda
Managi	ng Editors : Hiroshi Sato	h, Takafumi Okada	•

The <u>Technical Reports of the Meteorological Research Institute</u> has been issued at irregular intervals by the Meteorological Research Institute since 1978 as a medium for the publication of technical reports, data reports and comprehensive reports on meteorology, oceanography, seismology and related earth sciences (hereafter referred to as reports) contributed by the members of the MRI and the collaborating researchers.

The Editing Committee reserves the right of decision on acceptability of manuscripts and is responsible for the final editing.

©1999 by the Meteorological Research Institute.

The copyright of reports in this journal belongs to the Meteorological Research Institute (MRI). Permission is granted to use figures, tables and short quotes from reports in this journal, provided that the source is acknowledged. Republication, reproduction, translation, and other uses of any extent of reports in this journal require written permission from the MRI.

In exception of this requiament, personal uses for research, study or educational purposes do not require permision from the MRI, provided that the source is acknowledged.

Vertically 2-dimensional Nonlinear Problem

BY

Hirotada Kanehisa

鉛直2次元非線形問題

金久 博忠

Abstract

This technical report is based on several papers written by the author in a research period of 5 years from April 1993 to March 1998. The research in this period was planned to investigate meso- and small-scale meteorological phenomena, and was carried out in the Forecast Research Department of Meteorological Research Institute.

Of the papers already published, those on "Vertically 2-dimensional Nonlinear Problem" are partially reviewed. "Partially" means that not all are included in this report. Papers not reviewed also appear in References.

Firstly in Part 1, general fundamentals are presented. Most part of these fundamentals are already well-known, and some are newly added by the author.

After the presentation of general fundamentals, secondly in Part 2, applications to particular examples are presented.

The first half of Part 2 deals with "Density Current". Density currents deeply participate in the formation and maintenance of Meso-scale Convective Systems. The second half of Part 2 deals with "Flow over a Mountain". Elucidation of flows over a mountain is indispensable to the understanding of meso-scale phenomena on the lee side of a mountain.

Compared to the detailed description of general fundamentals in Part 1, the particular examples in Part 2 are treated only briefly. See the references for their details.

0.概律	親	• 1
第1部	部 一般的基礎	3
1. 5	大規模現象と中小規模現象	4
2. 🗄	鉛直 2 次元問題	7
3. 🗦	非線形問題	9
4. 5	定常・非回転・静水圧近似の場合	10
5. 🤅	定常・非回転・静水圧近似の方程式	12
6. ž	温位・エネルギ・渦位の保存則	15
7. ž	過位エネルギ関係式	18
8. 🕯	送つかの一般的性質 	19
9. 3	非静水圧の効果	24
10. ±	地球回転の効果 - 風上条件	26
11. ±	地球回転の効果 - 保存則	27
12. ±	地球回転の効果 - 近似系	30
13.	非定常の効果 - 渦位エネルギ関係式	31
第2音	部 具体的応用	33
, ,		
14.	重力流 - 暖気内の速度シアの効果 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	34
15.	重力流 — 暖気内の成層の効果	38
16.	<u> </u>	40
17.	下ろし風 - 安定度の勾配の効果	44
18 -	- ここれ - 実断執加執の効果	47
10.		50
1 7 .		52
20.	ЩЩ <i>Щ</i> / <u></u> ///	55
01	分 	57
× 1		

目

次

0 概 観

気象研究所の予報研究部はこの数十年,中小規模現象の解明に取り組んでいる。この技術報告は,著者が予報研究部 の一員として1993年4月1日から1998年3月31日迄の5年間に行った研究の解説である。既に発表ずみの物の内「鉛直 2次元非線形問題」に関する物の解説である。但し「鉛直2次元非線形問題」に関する物の全てを解説してはいない。 解説に洩れた物も文末の参考文献に挙げた。

先ず始めに第1部に於て,一般的な基礎を詳しく解説した。この一般的基礎はその大部分が既に良く知られている事 柄である。しかし勿論,著者が新しく付け加えたものもある。

次に第2部に於て、一般的な基礎を基に、これを個別的具体的な問題に応用した場合を解説した。第2部の前半は「重 力流」に関する物である。「重力流」とは重い寒気塊が軽い暖気の中を進行する現象である。「重力流」は組織化された 中規模対流系の維持・発達に深く係わっている。第2部の後半は「山を越える流れ」に関する物である。「山を越える流れ」 の解明は、山の風下での中小規模擾乱の理解に不可欠である。

ー般的な基礎の解説に多くの紙面を割いた。その為に一つ一つの具体的応用は概略を示すに留めた。具体的応用に興味を持った読者は,文末にある参考文献を読んでもらいたい。

-1 -

第1部 一般的基礎

1 大規模現象と中小規模現象

大規模現象では鉛直方向には「鉛直上向きの気圧傾度力」と「鉛直下向きの重力」がほぼ釣り合っている。気圧傾度 力とは、気圧の高い所から低い所に向かって働く力である。上よりも下の方が気圧が高いので鉛直上向きに成る。重力 は地球が物を引っぱる力である。引っぱる力であるから鉛直下向きとなる。この釣り合いは静水圧平衡と呼ばれている。 図1-1参照。

静水圧平衡: 気圧傾度力 + 重力 = 0

(1-1)

更に水平方向には「水平方向の気圧傾度力」と「転向力」がほぼ釣り合っている。転向力とは、回転する地球上の観 測者から大気の運動を見る為に、大気に働く様に見える力である。転向力は風速度から右に90度の方向を向いている。 気圧傾度力は等圧線に直交している。従って流線は等圧線に沿っている事に成る。この釣り合いは地衡風平衡と呼ばれ ている。図1-2参照。

地衡風平衡: 気圧傾度力 + 転向力 = 0.

(1-2)

この釣り合いの結果,大規模現象の風は第1次近似で(大まかに見れば)地衡風に等しい。地衡風とは「水平方向の 気圧傾度力と釣り合う風」と言う意味である。この2つの釣り合いの故に,大規模現象は静水圧平衡・地衡風平衡を基 に構成された準地衡風方程式系(以下QG系)で記述される。

QG系 = 静水圧平衡・地衡風平衡 + 補正.

(1-3)

QG系は元の流体方程式系(以下P系)に比べて簡単な形をしている。それ故に見通しが良い。且つ「温位保存則」と「エネルギ保存則」と「渦位保存則」の3つの基本的保存則が簡潔な形で成立している。温位とエネルギと渦位に就いては後に説明する。

QG系で記述される大規模現象では、静水圧平衡は何時でも殆ど厳密に成り立っている。しか地衡風平衡は平衡として

安泰に在り続ける訳ではない。地衡風自身が地衡風平衡を破壊する様に吹く。即ち地衡風は, 流線を等圧線からずらせる様に(或は等圧線を流線からずらせる様に)吹く。

地衡風 → 地衡風平衡の破壊. (1-4)

この「地衡風自身による地衡風平衡の破壊」の傾向性は「Qヴェクトル」と呼ばれる物理量によって記述される。 地衡風平衡の破壊 → Qヴェクトル. (1-5)

このQヴェクトルは「非地衡風の循環」を引き起こす。非地衡風とは本当の風と地衡風との差である。

Qヴェクトル → 非地衡風循環.

この非地衡風の循環は「地衡風平衡を回復」する様に吹く。即ち非地衡風循環は,流線を等圧線に沿わせる様に(或は 等圧線を流線に沿わせる様に)吹く。

(1-6)

(1-7)

(1-8)

非地衡風循環 → 地衡風平衡の回復.

地衡風は水平流だが、非地衡風は鉛直流を伴っている。この鉛直流により雲ができて雨の降ることがある。

非地衡風循環 → 鉛直流 → 雲·雨.

地衡風による不断の地衡風平衡の破壊と,非地衡風による不断の地衡風平衡の回復を通じて,第1近似として地衡風平衡の状態を維持している。図1-3参照。

Qヴェクトルは非地衡風の鉛直2次元断面内の2次元循環を引き起こす。このQヴェクトルを3次元へと一般化した物は「C ヴェクトル」と呼ばれている。Cヴェクトルは非地衡風の3次元循環(鉛直2次元循環+水平循環)を引き起こす。Qヴェ クトルやCヴェクトルに就いて詳しく知りたい人はKanehisa (1993b)を参照。

中小規模現象を記述する方程式系の一つに半地衡風方程式系(以下SG系)が在る。SG系ではQG系と同様に第1次近

- 5 -

似の風は地衡風である。QG系との違いは非地衡風(本当の風と地衡風の差)による移流(流体粒子を運ぶ事)を取り入れた事にある。即ちQG系では地衡風で移流するが,SG系では,本当の風(地衡風+非地衡風)で移流する。

SG系 = QG系 + 非地衡風による移流.

(1 - 10)

SG系ではQG系と同様に「温位保存則」と「エネルギ保存則」と「渦位保存則」の3つの基本的保存則が成立する。更に SG系では、上の大規模現象のQG系の所で述べたのと同様に、比較的簡潔な現象像を描く事ができる。しかし中小規模 現象一般を記述する為にはSG系はQG系に近すぎる。

SG系以外にも中小規模現象を記述する方程式が在る。セミバランス系(以下SB系)やバランス方程式系(以下BE系) 等である。これらは鉛直方向には(QG系やSG系と同様に)静水圧平衡を仮定している。しかし水平方向には(QG系や SG系と異なり)第1次近似の風は「水圧の気圧傾度力」と「転向力」と「水圧移流による慣性力」が釣り合う風(中規 模平衡風)である。水平移流の慣性力とは、或点の上流から運ばれて来る運動の勢いが其点に及ぼす力である。図1-4参 照。

中規模平衡: 気圧傾度力 + 転向力 + 水平移流の慣性力 = 0.

大規模現象ではその規模の大きさの故に慣性力は小さい。その結果,中規模平衡(1-11)の慣性力は無視されて地衡 風平衡(1-2)に簡単化される。台風の様な軸対称流の傾度風平衡は,中規模平衡の一つの特殊な場合である。言い換え ると,中規模平衡は傾度風平衡の一般化である。

中規模平衡 ⊃ 傾度風平衡.

(1-12)

(1-11)

傾度風平衡は「気圧傾度力」と「転向力」と「遠心力」の釣り合いである。図1-5参照。

- 6 -

傾度風平衡: 気圧傾度力 + 転向力 + 遠心力 = 0.

一見した所では、中規模平衡(1-11)と傾度風平衡(1-13)は似ていない。試みに中規模平衡を自然座標で表現して 見る。自然座標とは流線に沿った方向(接線方向)と垂直な方向(法線方向)を座標軸の方向に選ぶ事を意味する。す ると法線方向には傾度風平衡と同じ様に「法線方向の気圧傾度力」と「転向力」と「遠心力」の釣り合いと成る。接線 方向には「接線方向の気圧傾度力」と「接線方向の慣性力」の釣り合いと成る。図1-6参照。

法線方向: 法線方向の気圧傾度力 + 転向力 + 遠心力 = 0. (1-14a) 接線方向: 接線方向の気圧傾度力 +・接線方向の慣性力 = 0. (1-14b)

軸対称流の傾度風平衡では、流線と等圧線がたまたま一致している。即ち接線方向の気圧傾度力は零である。しかし一般の中規模平衡では、流線と等圧線が一致する事は希である。

SB系は静水圧平衡・中規模平衡を基に構成されている。

SB系 = 静水圧平衡 · 中規模平衡 + 補正.

大規模現象を記述するQG系では、慣性力は第1次近似で無視された(即ち地衡風平衡(1-2))。SB系やBE系では、第1 次近似で慣性力を考慮している(即ち中規模平衡(1-11))。従ってSB系やBE系は、かなり広い範囲の中小規模現象を記 述できる様に見える。しかしこれらはP系に比べて非常に複雑な形をしている。それ故に見通しが悪い。そして簡潔な 現象像を想い描く事ができない。更に悪い事にSB系やBE系では「エネルギ保存則」或は「渦位保存則」が成立しない。

著者の知る限り現在迄のところ「大規模現象に対するQG系」の様な(即ちP系よりも見通しが良くて3つの基本的保 存則の成立する)「中小規模現象に対する方程式系」は存在しない(正確に言うと、存在しないのではなくて発見されて いない)。故に中小規模現象を記述するにはP系を使う事に成る。

2 鉛直 2 次元問題

3次元問題,即ち縦・横・高さの全ての方向に物理量(例えば速度や温度など)が変化する一般の問題,が解ければ 良いが難しい。故に鉛直2次元問題を考える。鉛直2次元とは水平の或る方向(以下y方向)に速度分布が一様である事 を意味する。即ち速度が水平の他の方向(以下x方向)と鉛直方向(以下z方向)にのみ変化する事を意味する。

 $\partial u/\partial y = 0$, $\partial v/\partial y = 0$, $\partial w/\partial y = 0$, u = u(x,z), v = v(x,z), w = w(x,z).

(2-1)

(1-15)

(1-13)

-7 -

但し (u,v,w) は速度の (x,y,z) 成分である。y 方向の速度成分 v は一般に零ではない。特に地球回転の効果が入って いる場合には一般に零ではあり得ない。何故ならx方向の速度成分uにはy方向の転向力が伴う。これに釣り合う気圧 傾度力(或は他の力)が無い限り,y方向の速度成分vが惹起されるからである。図2-1参照。

現実には厳密な鉛直2次元現象は存在しない。しかし近似的な鉛直2次元現象は幾つか在る。例えば山脈を越える流れ には、山脈の方向に近似的に一様と見なせるものが在る。中規模対流系には近似的に鉛直2次元的な構造をしているも のが在る。寒冷前線付近の流れの様子には、寒冷前線に沿った方向に近似的に一様なものが在る。図2-2参照。

問題を簡単にする為に密度を一定とする。密度とは単位体積当りの質量である。この場合には質量の保存則は体積の 保存則と成る。鉛直2次元問題では、体積の保存則は、鉛直2次元断面(即ち(x,z)面内)の面積の保存則に成る。こ の数式表現は2次元速度 [u,w] の非発散式である。

$$\partial \mathbf{u}/\partial \mathbf{x} + \partial \mathbf{w}/\partial \mathbf{z} = 0$$
. (2-2)

式 (2-2) より流線関数 $\Psi = \Psi(x,z)$ が存在して、2次元速度 [u,w] は次の様に書ける。

$$\mathbf{u} = \partial \Psi / \partial \mathbf{z}, \quad \mathbf{w} = -\partial \Psi / \partial \mathbf{x}$$

式(2-3)を直接代入して,式(2-2)の成立を確かめる事ができる。逆に少しの計算の後に,式(2-2)から式(2-3) を導く事ができる。式(2-3)は速度 [u,w]が、流線関数Ψの勾配ヴェクトル [∂Ψ/∂x、 ∂Ψ/∂z] に直交する事を 意味する。**Ψ**の勾配ヴェクトルは、**Ψ**の等値線に直交する。従って速度 [u,w] は、**Ψ**の等値線に接する。故に**Ψ**の等 値線,即ち {Ψ(x,z)=一定}の曲線が2次元鉛直断面内の(x,z)流線と成る。図2-3参照。

(2-3)

気象研究所技術報告 第38号 1999

鉛直 2 次元の仮定 (2-1) が成立する為には、地面の起伏 h あるいは摩擦Fや加熱H等の強制は y に依存してはならない。 何故なら、これらの y 依存性は速度の y 方向の変化を惹起するからである。即ちh=h(x) とF=F(x,z) とH=H(x,z) で ある。地面の起伏や強制は強制領域(-L<x<+L, Lは或る定数)にのみ存在すると仮定する。

$$dh(x)/dx \neq 0$$
, $F(x,z) \neq 0$, $H(x,z) \neq 0$ only for $-L < x < +L$. (2-4)

但し不等号は「必ず零でない」と言う意味ではなくて「零でない可能性が在る」と言う意味である。風上領域(x<-L) では流れは水平で鉛直方向にのみ変化すると仮定する。

$$u = u_{in}(z) > 0, \quad v = v_{in}(z), \quad w = 0 \quad \text{for } x < -L.$$
 (2-5)

但し下添字 in で風上領域を表した。風上領域とは地面の起伏や強制の影響の及ばない領域と言う意味である。また下添字 out で風下領域(+L<x)を表す。風下領域には地面の起伏や強制は存在しない。しかし強制領域の強制の影響は風 下領域にも及び得る。一般性を失う事なく h_{in} =0と仮定できる。また h_{out} は h_{in} に等しくない事もある。図2-4参照。

3 非線形問題

鉛直 2 次元で解けている問題の内に「重力流」と「下ろし風」が在る。これらは定常(流れの様子が時間的に変化し ない)で非回転(地球の回転の効果を無視)の場合の解である。厳密に解ける数少ない問題の内の二つである。 重力流は,重い寒気塊が軽い暖気の中を進行する現象である。問題を解くと2つの解が得られる。一つ目の解では,

- 9 -

遙か風下での寒気の厚み h_{out} が暖気の厚みZの半分に成る (h_{out}=Z/2)。二つ目の解では, 寒気の厚み h (x) が零に成る (h (x) = 0)。図3-1参照。

但し図3-1は寒気と共に働く(即ち寒気が止まって見える)座標系で描いてある。この場合には寒気の進行速度は暖気の進入速度に成る。

下ろし風は、山の風下で強い風が吹き降りて来る現象である。問題を解くと2つの解が得られる。一つ目の解では、 山の風下での空気の厚みFが風上での空気の厚みZより小さくなる(F<Z)、即ち風が吹き降りる。二つ目の解では、山 の風下での空気の厚みFが風上での空気の厚みZに等しくなる(F=Z)、即ち風は吹き降りない。図3-2参照。

試みに線形近似で同じ問題を解いて見る。線形近似とは図3-1や図3-2で言うと、h(x)が小さいとして、h(x)の高次の 相乗積を無視する近似である。この場合には重力流ではh(x) = 0に対応する解しか得られない。下ろし風ではF=Zに対 応する解しか得られない。重力流が存在する解($h_{out} = Z/2$)や、下ろし風が起こっている解(F<Z)は出て来ない。

これと同様に線形近似では中小規模現象の姿を捉え損なう事に成りかねない。故に線形近似無しに、非線形問題を解かねばならない。

4 定常・非回転・静水圧近似の場合

この報告では中小規模現象として水平距離の規模Lが

 $10^4 m < L < 10^5 m$, (4-1)

の現象を考える。水平速度の規模はV=10m/sである。この時,式(4-1)より移流の時間規模T=L/Vは

-10-

 $10^3 s < T < 10^4 s$,

と成る。これは数時間以下である。水平距離の規模(4-1)の現象では,寿命では通常は数時間よりも長い(或は長いものを考える)。即ちT<である。従って流体粒子が現象の領域を通過する間に,現象が一生を終えてしまう事はない。 図4-1参照。

故に第1次近似で定常(流れの様子が時間的に変化しない)として扱う事ができる。これは時刻をtとして次式で表 現される。

 $\partial/\partial t = 0$.

(4-3)

(4-2)

細かく言うと中小規模擾乱の一生は、生成期と準定常期と消滅期に分けられる。「生成期」は擾乱が大規模な流れ中か ら生まれて来る時期、「準定常期」は成長した擾乱が比較的安定に存在し続ける時期、「消滅期」は擾乱が大規模な流れ の中へと消えて行く時期である。第1次近似で定常と見なせるのは「準定常期」のみである。

地球は1日1回転する。水平距離の規模(4-1)の現象では、寿命τは通常は1日よりも短い(或は短いものを考える)。 即ち現象が一生を終える間に地球は1回転もしない。言い換えると現象は地球の回転を感じる前に一生を終える。図4-2 参照。

故に第1次近似で非回転(地球の回転の効果が無い)として扱う事ができる。これはコリオリ因子をfとして次式で表現 される。コリオリ因子とは地球回転の大きさを表す尺度である。

f = 0.

(4-4)

水平距離の規模(4-1)の現象では、鉛直速度wの規模は高々1m/sである。鉛直速度wの規模が10m/sに成るのは希で

ある。従って鉛直加速度 dw/dtの規模は式(4-2)の移流時間 Tを使って dw/dt~w/T<10⁻³m/s²と評価される。鉛直下 向きの重力加速度は g~10m/s²である。即ち鉛直加速度 dw/dt は重力加速度 g に比べて遙かに小さい。図4-3参照。

故に第1次近似で鉛直加速度dw/dtは無視できる。言い換えると鉛直上向きの気圧傾度力が鉛直下向きの重力と釣り 合っている。即ち静水圧平衡の状態(1-1)に在る。これは圧力をP,密度を P として次式で表現される。

 $(1/\rho) \partial P/\partial z + g = 0.$

(4-5)

式(4-5)の左辺の第1項が鉛直方向の気圧傾度力(の負符号)である。第2項が重力(の負符号)である。先ず初めに此の一番簡単な,定常・非回転・静水圧近似の場合を考える。

5 定常・非回転・静水圧近似の方程式

第5節では次の定常・非回転・静水圧近似の方程式を導く。 静水圧方程式

$\partial \Phi / \partial z = g \theta / \theta_0 = \Theta$	(5-1)

水平 x 方向の運動方程式

$\partial (\Psi, \mathbf{u}) / \partial (\mathbf{z}, \mathbf{x}) + \partial \Phi / \partial \mathbf{x} = \mathbf{F}, \mathbf{u} = \partial \Psi / \partial \mathbf{z},$ (6)	(5-2)
--	-------

熱方程式

 $\partial (\Psi, \Theta) / \partial (z, x) = H,$ (5-3)

の3つである。静水圧方程式 (5-1) の Φ はジオポテンシャルである。ジオポテンシャル Φ の定義は後に (5-7) で与える。 g は重力加速度である。 θ は温位である。

温位は温度に関連した概念である。温度は熱エネルギの大きさの尺度である。熱強制(加熱や冷却)が無くても,回 りに仕事をして膨らめば,熱エネルギを失い温度は下がる。回りから仕事をされて縮めば,熱エネルギを得て温度は上 がる。観測される温度(現実的温度)は変化しても,この変化分は,膨らみや縮みに配分される。この膨らみや縮みに 配分された温度を可能的温度と呼ぼう。「可能的温度」とは「現実的温度」に転化し得る温度と言う意味である。現実的 温度が変化しても(熱強制が無ければ)現実的温度と可能的温度の和は一定に保たれる。この和を温位と言い記号 θ で 表す。

温位 = 現実的温度 + 可能的温度.

(5-4)

この定義より温位 θ は温度(現実的温度)と膨らみ・縮みに依存する。即ち温度と圧力(或は密度)の関数と成る。こ れの数式表現は次式で与えられる。

 $\theta = \operatorname{lag} \cdot (P/P_0)^{-R/C}, \tag{5-5}$

但しPは圧力でありPoは圧力の標準の値である。Rは大気の気体定数でありCは定圧比熱である。

静水圧方程式(5-1)の θ_0 は温位 θ の標準の値である。g θ/θ_0 を Θ と書いた。以下この Θ を単に「温位」と呼ぶ事に する。運動方程式(5-2)の右辺のFは水平x方向の摩擦力である。左辺の第1項の

$$\partial (A,B) / \partial (z,x) = (\partial A / \partial z) (\partial B / \partial x) - (\partial B / \partial z) (\partial A / \partial x)$$
(5-6)

は(A,B)の(z,x)に関するヤコビアンである。熱方程式(5-3)の右辺のHは加熱である。静水圧方程式(5-1)と運動方程式(5-2)と熱方程式(5-3)の3式が(強制FとHは別にして)3つの未知変数(Ψ,Φ,Θ)に対する支配方程 式と成る。

以下に上の3式を導く。静水圧近似は式(4-5)で表現される。大気の状態方程式($P = \rho R \cdot 温度$)より,温度= $P/\rho R$ である。これと温位の式(5-5)を使い,密度 ρ を温位 θ と圧力Pで表現すると式(4-5)は次の形に成る。

$$\partial \Phi / \partial P = -R \theta P^{R/C-1} P_0^{-R/C} = -\Theta (R \theta_0/g) P^{R/C-1} P_0^{-R/C}.$$
(5-7)

但し $\Phi = gz$ はジオポテンシャルである。ここで次の式を満足する圧力Pの関数 ε (P)を考える。

 $d \xi / dP = - (R \theta_0 / g) P^{R/C-1} P_0^{R/C}.$

式 (5-8) を式 (5-7) に代入して次式を得る。

$$\partial \Phi / \partial \xi = \Theta. \tag{5-9}$$

条件 ε (P₀) = 0 を満たす式(5-8)の解は次式で与えられる。

 $\xi = (C \theta_0/g) \{1 - (P/P_0)^{R/C}\}.$

(5-10)

この ξは(少なくとも下部対流圏では)真高度 z に良く似た振る舞いをする。以下この ξを擬高度と呼び,改めて z と 書いて鉛直座標とする。式(5-9)の ξ を z と書き直して静水圧方程式(5-1)と成る。第4節迄に述べた鉛直座標 z は 式(5-10)の擬高度であると解釈する。

定常なので流れの様子は時間的に変化しない。即ち各々の点(x,y,z)で力が釣り合っている。水平方向には「移流による慣性力」と「気圧傾度力」と「摩擦力」が釣り合っている。図5-1参照。

(5-8)

水平方向の力の釣合: 慣性力 + 気圧傾度力 + 摩擦力 = 0.

慣性力は,或点の上流から運ばれて来る運動の勢いが,其点に及ぼす力である。これは速度方向への速度勾配から生まれる。速度方向への速度勾配がなければ,或点の上流から運ばれてくる運動の勢いは,其点のものと同じである。従って其点は力を受けない。或点が力を感じるのは,其点が其点とは違う運動の勢いを受け取るからである。慣性力の数式表現は次式で与えられる。

(5-11)

(5-12)

(5-13)

(5-14)

(5-15)

慣性力 = -速度・速度勾配.

気圧傾度力は気圧勾配から生まれる。これはジオポテンシャルΦで表現すればシオポテンシャルΦの勾配(の負符号) と成る。気圧傾度力の数式表現は次式で与えられる。

気圧傾度力 = ージオポテンシャル勾配.

水平x方向の力の釣り合いの数式表現が、水平x方向の運動方程式である。鉛直2次元の定義式(2-1)に注意して、式(5-11) と式(5-12)と式(5-13)より、これは次の様に成る。

 $u \partial u / \partial x + w \partial u / \partial z + \partial \Phi / \partial x = F.$

左辺の第1項と第2項が移流項(一慣性力)である。第3項が圧力項(一気圧傾度力)である。右辺は強制項(摩擦力) である。流線関数**Ψ**の式(2-3)を使い,式(5-14)の移流項を流線関数**Ψ**で表現して水平 x 方向の運動方程式(5-2) と成る。同様に水平 y 方向の力の釣り合いの数式表現が,水平 y 方向の運動方程式である。これは次の様に書ける。

 $\partial (\Psi, v) / \partial (z, x) + \partial \Phi / \partial y = G.$

但しG=G(x,z)はy方向の摩擦力である。風上条件式(2-5)とy方向の運動方程式(5-15)より風上領域でy方向の気 圧傾度力は零と成る。

$$\partial \Phi_{\rm in} / \partial y = 0.$$
 (5-16)

x 方向の運動方程式(5-2)をy で微分し、 $\Psi = \Psi(x,z) \ge F = F(x,z)$ がy に依存しない事に注意して $\partial^2 \Phi / \partial_y \partial_x$ は零に成る。これより $\partial \Phi / \partial_y$ は風上領域での値に等しく成る。

$$\partial \Phi / \partial y = \partial \Phi_{\rm in} / \partial y.$$
 (5-17)

-14-

式(5-16)と式(5-17)より ∂ Φ / ∂ y は零に成るが,静水圧方程式(5-1)より ∂ Θ / ∂ y も零に成る。

$$\partial \Phi / \partial y = \partial \Theta / \partial y = 0$$
.

(5-18)

(5-19)

(5-20)

(5-21)

(5-22)

定常なので流れは熱的に釣り合っている(温度は時間的に変化しない)。即ち或る点(x,z)の「熱移流」(流れが運んで くる熱と,流れが運び去る熱との差)と,此の点(x,y)での「加熱」(熱強制)が釣り合っている。図5-2参照。

熱の釣り合い: 熱移流 + 加熱 = 0.

熱移流は速度方向への温位勾配から生まれる。速度方向への温位勾配が無ければ,或点に上流から運ばれて来る温位 は其点の物と同じである。従って其点は暖かさも冷たさも感じない。或点が熱(或は冷)を感じるのは,其点が其点と は違う温位を受け取るからである。熱移流の数式表現は次式で与えられる。

熱移流 = 一速度·温位勾配.

式 (5-20) を代入して式 (5-19) の数式表現は次の熱方程式に成る。

 $u \partial \Theta / \partial x + v \partial \Theta / \partial y + w \partial \Theta / \partial z = H.$

左辺は熱移流(の負符号)を表す。右辺は加熱である。式(5-18)を使い,更に流線関数**Ψ**の式(2-3)を使って熱移流 項を流線関数**Ψ**で表現し,熱方程式(5-21)は式(5-3)の形に成る。

風上条件式(2-5)より風上領域では(Ψ, Θ, Φ)は鉛直座標 z にのみ依存する。

 $\Psi_{in} = \Psi_{in}(z), \qquad \Theta_{in} = \Theta_{in}(z), \qquad \Phi_{in} = \Phi_{in}(z).$

これらの条件(及び上部と下部の境界条件)の下に3式(5-1,2,3)を解いて(Ψ , Θ , Φ)を求める事ができる。も う一つの未知変数である y 方向の速度 v は(Ψ , Θ , Φ)が解けた後で,y 方向の運動方程式(5-15)より求められる。

6 温位・エネルギ・渦位の保存則

第6節では第2部の具体的応用で度々引用される3つの基本保存式を導く。 温位のの保存式

$$\Theta = \Theta[\Psi, x] = \Theta_{in}[\Psi] + \int_{-\infty}^{x} dx H/u.$$

エネルギBの保存式

(6-1)

$B = B[\boldsymbol{\Psi}, x] = B_{in}[\boldsymbol{\Psi}] + \int_{-\infty}^{x} dx (F - zH/u),$	-	÷		11 A.
$\mathbf{B} = (\partial \Psi / \partial z)^2 / 2 + \Phi - z \Theta,$				(6-2)

渦位Qの保存式

 $Q = Q_{in}[\Psi]$

$Q = Q[\Psi, x] = Q_{in}[\Psi] + (\partial/\partial \Psi) \int_{-\infty}^{x} dx (F - zH/u),$	
$Q = \partial^2 \Psi / \partial z^2 - z \partial \Theta / \partial \Psi$	(6-3)

の3つである。上の保存式(6-1,2,3)の積分は,流線 { Ψ =一定}に沿って行う。積分は流線関数 Ψ と水平座標xに 依存する。風上領域では加熱や摩擦の強制は無い(F=H=0)。従って温位 Θ もエネルギBも渦位Qも流線関数 Ψ だけに 依存する。即ち流線 { Ψ =一定}に沿って保存される。

$\Theta = \Theta_{\rm in}[\Psi]$	for $x < -L$.	(6-4a)

$$B = B_{in}[\Psi] \quad \text{for } x < -L. \quad (6-4b)$$

(6-4c)

強制領域では,温位⊙もエネルギBも渦位Qも,強制の為に流線に沿って値が変わる。即ち温位⊙もエネルギBも渦位Qも, 流線関数Ψだけでなく水平座標xにも依存する。

これを $\Theta = \Theta [\Psi, x]$ etcと書いた。風下領域では再び強制は無い(F=H=0)。従って温位 Θ もエネルギBも渦位Qも再び 流線関数 Ψ だけに依存する。即ち流線 { $\Psi = -c$ } に沿って保存される。

$\Theta = \Theta_{out}[\Psi] = \Theta_{in}[\Psi] + \int_{-L}^{+L} dx H/u$		for	+L < x.	(6-5a)
$B = B_{out}[\Psi] = B_{in}[\Psi] + \int_{-L}^{+L} dx (F - zH/u)$		for	+L < x.	(6-5b)
$Q = Q_{out}[\Psi] = Q_{in}[\Psi] + (d/d\Psi) \int_{-L}^{+L} dx (F - zH/u)$		for	+L < x.	(6-5c)

式(6-5)の積分は勿論流線関数Ψにのみ依存する。図6-1参照。

for x < -L.

式(6-1)の温位 (掛ける θ_0/g)は現実的温度(観測される温度)と可能的温度(膨らみ・縮みに配分される温度)

の和であった。「可能的温度」とは「現実的温度」に転化し得ると言う意味であった。強制が無い場合でも、現実的温度 は変化し得た。しかしこの変化分は可能的温度に配分された。そして現実的温度と可能的温度の和である温位 Θ (掛け る θ_0/g)は流線 $|\Psi=--$ 定]に沿って保存される。

式(6-2)のエネルギ「B=($\partial \Psi / \partial z$)²/2+ $\Phi - z\Theta$ 」の第1項「($\partial \Psi / \partial z$)²/2」は現実的エネルギ(運動エネルギ) である。第2項と第3項の和「 $\Phi - z\Theta$ 」は可能的エネルギである。「可能的エネルギ」とは「現実的エネルギ」に転化 し得ると言う意味である。強制が無い場合でも,現実的エネルギは変化し得る。しかしこの変化分は可能的エネルギに 配分される。そして現実的エネルギと可能的エネルギの和であるエネルギBは流線 { $\Psi = -c$ } に沿って保存される。

式 (6-3) の渦位 $\left[\mathbf{Q} = \partial^2 \Psi / \partial z^2 - z \partial \Theta / \partial \Psi \right]$ の第1項 $\left[\partial^2 \Psi / \partial z^2 \right]$ は現実的渦度(本当の渦度) である。第2項 $\left[-z \partial \Theta / \partial \Psi \right]$ は可能的渦度である。「可能的渦度」とは「現実的渦度」に転化し得ると言う意味である。強制が無い 場合でも,現実的渦度は変化し得る。しかしこの変化分は可能的渦度に配分される。そして現実的渦度と可能的渦度の 和である渦位Qは流線 $\left| \Psi = - \pi \right|$ に沿って保存される。

.

以下に保存式(6-1, 2, 3)を導く。ヤコビアンの次の性質

 $\{\partial (\mathbf{A}, \mathbf{B}) / \partial (\mathbf{C}, \mathbf{D})\} \{\partial (\mathbf{C}, \mathbf{D}) / \partial (\mathbf{E}, \mathbf{F})\} = \partial (\mathbf{A}, \mathbf{B}) / \partial (\mathbf{E}, \mathbf{F})$ (6-6)

を使い熱方程式(5-3)は次の形に変形できる。

 $\partial (\Psi, \Theta) / \partial (\Psi, \mathbf{x}) = \mathbf{H} \partial (\mathbf{z}, \mathbf{x}) / \partial (\Psi, \mathbf{x}).$ (6-7)

式(6-7)の左辺は温位 Θ を Ψ とxの関数と見て,xで偏微分する事を意味する。流線関数 Ψ の式(2-3)に注意して右辺はH/uに成る。即ち式(6-7)は次の様に書き直せる。

$$\partial \Theta [\Psi, \mathbf{x}] / \partial \mathbf{x} = \mathbf{H} / \mathbf{u}.$$
 (6-8)

但し温位 $\Theta(x,z)$ を Ψ とxの関数と見直して $\Theta[\Psi,x]$ と書いた。式(6-8)が意味を持つ為にはx方向の速度成分 $u=\partial$ $\Psi/\partial z = \partial(\Psi,x)/\partial(z,x)$ が至る所で正でなければならない。以下これを仮定する。式(6-8)を流線 { $\Psi = -c$ } に沿っ $\tau - \infty$ からx 迄積分すると温位保存式(6-1)が得られる。風上領域での温位 Θ は鉛直座標zのみに依存する。流線関数 Ψ も鉛直座標zのみに依存する。その結果,温位 Θ は流線関数 Ψ の関数に成る。即ち流線に沿って保存される。これを $\Theta_{in} = \Theta_{in}[\Psi]$ と書いた。

$$\Theta_{in}(z) = \Theta_{in}(\Psi_{in}^{-1}(\Psi_{in}(z))) = (\Theta_{in} \cdot \Psi_{in}^{-1})[\Psi] = \Theta_{in}[\Psi].$$
(6-9)

次に運動方程式(5-2)に水平速度 $u = \partial \Psi / \partial z$ を掛け,静水圧方程式(5-1)と熱方程式(5-3)を使い次のエネルギ(正確にはエネルギ流束密度,ベルヌウイ関数)Bの式が得られる。

 $\partial (\Psi, B) / \partial (z, x) = uF - zH, \quad B = (\partial \Psi / \partial z)^2 / 2 + \Phi - z\Theta.$ (6-10)

熱方程式 (5-3) から温位保存式 (6-1) を導いたのと同様にして,エネルギの式 (6-10) を流線 $\{\Psi = -\hat{z}\}$ に沿っ て $-\infty$ から x 迄積分してエネルギ保存式 (6-2) が得られる。式 (6-9) の風上領域の温位 $\Theta_{in}(z)$ と同様に, $B_{in}(z)$ を $\Psi_{in}(z)$ の関数と見て $B_{in}[\Psi]$ と書いた。

$$B_{in}(z) = B_{in}(\Psi_{in}^{-1}(\Psi_{in}(z))) = (B_{in} \cdot \Psi_{in}^{-1})[\Psi] = B_{in}[\Psi].$$
(6-11)

-17-

最後に運動方程式(5-2)を鉛直座標zで微分して次の渦位Qの式が得られる。

$$\partial (\Psi, Q) / \partial (z, x) = u (\partial / \partial \Psi) (F - z \partial \Theta / \partial x), \quad Q = \partial^2 \Psi / \partial z^2 - z \partial \Theta / \partial \Psi, \tag{6-12}$$

但し Ψ での微分は水平座標xを固定して行う。熱方程式(5-3)から温位保存式(6-1)を導いたのと同じ様にして,渦位の式(6-12)を流線 { Ψ =一定}に沿って $-\infty$ からx迄積分して渦位保存式(6-3)が得られる。式(6-9)の風上領域の温位 $\Theta_{in}(z)$ と同様に, $Q_{in}(z)$ を $\Psi_{in}(z)$ の関数と見て $Q_{in}[\Psi]$ と書いた。

 $Q_{in}(z) = Q_{in}(\Psi_{in}^{-1}(\Psi_{in}(z))) = (Q_{in} \cdot \Psi_{in}^{-1})[\Psi] = Q_{in}[\Psi].$ (6-13)

7 渦位エネルギ関係式

第7節では渦位QとエネルギBの間に成り立つ次の関係式を導く。

$Q[\Psi, x] = \partial B[\Psi, x] / \partial \Psi.$	(7-1)
式(7-1)の微分は、エネルギBを流線関数Ψと水平座標 x の関数を見て、流線関数Ψで偏微分する事を意	意味する。強制領
域 $(-L < x < +L)$ の外では渦位QもエネルギBも流線関数 Ψ にのみ依存する。即ち流線 $ \Psi=-定 $ にのみ依存する。	こ沿っての保存量
と成る。この場合は関係式 (7-1) は次の形に簡単化される。	
$Q[\Psi] = dB[\Psi]/d\Psi.$	(7-2)
強制が無い(F=H=0)場合には全領域で関係式(7-2)が成り立つ。	
•••••••••••••••••••••••••••••••••••••••	
以下に関係式(7-1)を導く。式(6-2)のエネルギBを鉛直座標zで微分して次式と成る。	
$\partial B/\partial z = (\partial \Psi/\partial z) \partial^2 \Psi/\partial z^2 + \partial \Phi/\partial z - \Theta - z \partial \Theta/\partial z.$	(7-3)
一方, B=B[Ψ,x] を鉛直座標 z で微分して次式と成る。	
$\partial B[\Psi, x] / \partial z = (\partial \Psi / \partial z) \partial B[\Psi, x] / \partial \Psi.$	(7-4)
ここで∂0/∂z=(∂Ψ/∂z)∂0/∂Ψに注意し,更に静水圧方程式(5-1)を代入して,式(7-3)と式(7	-4)よりエネルギ
Bの Ψ 導関数は次の様に成る。	
$\partial B/\partial \Psi = \partial^2 \Psi/\partial z^2 - z \partial \Theta/\partial \Psi.$	(7-5)
この式(7-5)と渦位Qの式(6-3)より,関係式(7-1)が得られる。	
エネルギBは運動エネルギ(現実的エネルギ) $u^2/2 = (\partial \Psi / \partial z)^2/2$ とポテンシャルエネルギ(可能的コ	ニネルギ) Φ−zΘ
の和である。	•
$B = K + (\Phi - z \Theta), \qquad K = u^2/2.$	(7-6)

同様に渦位Qは渦度(現実的渦度) $\partial u/\partial z = \partial^2 \Psi / \partial z^2$ と可能的渦度 $-z \partial \Theta / \partial \Psi$ の和である。

$$Q = \zeta - z \partial \Theta / \partial \Psi, \qquad \zeta = \partial u / \partial z.$$

現実的エネルギKをΨとxの関数と見て流線関数Ψで微分する事により次の事が分かる。即ち現実的渦度ζは現実的エネルギKのΨ導関数である。

$$\partial \mathbf{K} / \partial \Psi = (\partial \mathbf{z} / \partial \Psi) (\partial \mathbf{K} / \partial \mathbf{z}) = (1/\mathbf{u}) \mathbf{u} \partial \mathbf{u} / \partial \mathbf{z} = \zeta \,. \tag{7-8}$$

運動エネルギKの,流線 {Ψ=一定} に垂直な方向の勾配は速度シアに関係する。従って,KのΨ導関数がζに関係する事は予想のつく事である。図7-1参照。

式(7-8)は現実的部分に対して成り立つ関係式である。渦位エネルギ関係式(7-1)は、これと同じ関係が可能的部分も 含めて成立する事を示している。

8 いくつかの一般的性質

温位保存式(6-1)とエネルギ保存式(6-2)と渦位保存式(6-3)より,温位ΘとエネルギBと渦位Qは強制領域(−L<x< +L)の外では流線 {Ψ=−定} に沿って保存される。即ち流線関数Ψのみの関数と成る。特に渦位方程式(6-3)は流線 関数Ψに対する微分方程式を与える。

$\partial^2 \Psi / \partial z^2 = Q[\Psi] + z d\Theta[\Psi] / d\Psi.$				(8-1)

水平座標 x は式 (8-1)に陽には含まれていない。従ってもしも外的条件が $x = x_1 \ge x = x_2$ で同じならば, 解 Ψ も $x = x_1 \ge x = x_2$ で同じに成る。例えば上空 z = Zに硬い蓋が在る場合 (z > Z で安定度が無限大の場合)を考える。この場合の境界条件 は $\Psi(x, Z) = \Psi_{in}(Z)$ および $\Psi(x, h) = \Psi_{in}(0)$ である。これらは水平座標 x に依存しない。故に強制領域の外では流線関数 Ψ は水平座標 x に依存せず, 流れは水平と成る。図8-1参照。

(7-7)

-19-

 $\Psi_{out} = \Psi_{out}(z)$ if upper rigid lid.

(8-2)

更に強制領域で摩擦Fも加熱Hもない(即ち地面の起伏hのみが在る)場合を考える。この場合には,温位保存式(6-1) と渦位保存式(6-3)より, Ψ の微分方程式(8-1)は風上領域(x < -L)と風下領域(+L < x)で同じ形に成る。その結果(h_{in} と h_{out} が等しい場合には)風下領域の流れは風上領域の流れと同じに成る。図8-2参照。

 $\Psi_{out} = \Psi_{in}(z)$ if upper rigid lid and F = H = 0. (8-3)

次に摩擦は在る (F<0)が、加熱が無い (H=0)場合を考える(上空の蓋は在っても無くても構わない)。加熱Hは無いの で温位保存式 (6-1)より風下領域の温位は風上領域の温位に等しい。即ち Θ_{out} [Ψ] = Θ_{in} [Ψ]。摩擦Fは地面の存在に基 づくとすればF<0は鉛直座標zの増加関数と仮定できる。水平速度 u = $\partial \Psi / \partial z$ は至る所で正と仮定されている。この 場合 $\partial F / \partial \Psi$ は正と成る。そして渦位保存式 (6-3)より風下領域での渦位は風上領域での渦位よりも大きく成る。図8-3 参照。

 $Q_{out}[\Psi] = Q_{in}[\Psi] + (d/d\Psi) \int_{-1}^{+L} dxF > Q_{in}[\Psi] \quad \text{if } F < O \text{ and } H = 0.$ (8-4)

特に風上領域が中立(Θ_{in} [Ψ]=一定)の場合には $d\Theta_{in}/d\Psi = d\Theta_{out}/d\Psi = 0$ と成る。この場合には Ψ の微分方程式 (8-1)より渦度 $\zeta = \partial u/\partial z = \partial^2 \Psi/\partial z^2$ が摩擦(F<0)によって増加する事に成る。図8-4参照。

次に加熱は在る (H>0) が摩擦は無い (F=0) 場合を考える (上空の蓋は在っても無くても構わない)。加熱が在るので 風下領域の温位は風上領域の温位よりも大きい。即ち $\Theta_{out}[\Psi] > \Theta_{in}[\Psi]$ 。地面からの加熱Hを考える。この加熱は鉛 直座標 z の急激な減少関数と仮定できる。水平速度 u は至る所で正で鉛直方向に大きな変動は無いと仮定する。この仮 定の下で zH/u は正で或る高さで最大値を取る。従って渦位保存式 (6-3) より風下領域の渦位は、下層で風上領域の渦位 よりも小さく、上層で風上領域の渦位よりも大きく成る。図8-5参照。

-21-

 $Q_{out}[\Psi] = Q_{in}[\Psi] - (d/d\Psi) \int_{-L}^{+L} dxzH/u < Q_{in}[\Psi] \quad \text{in the lower layer,}$

 $Q_{out}[\Psi] = Q_{in}[\Psi] - (d/d\Psi) \int_{-L}^{+L} dxz H/u > Q_{in}[\Psi] \quad \text{in the upper layer,} \quad \text{if } F = 0 \quad \text{and} \quad H > 0.$ (8-5)

最後に加熱も摩擦も無い場合(F=H=0)を考える(蓋は在っても無くても構わない)。強制領域に或るのは地面の起伏h だけとする。この場合には、温位のとエネルギBと渦位Qは至る所で保存量と成る。即ちの= Θ_{in} [Ψ] とB=B_{in}[Ψ] とQ=Q_{in}[Ψ]。流線関数 Ψ の微分方程式(8-1)は至る所で同じ形で成立する。風上領域では成層は安定(d $\Theta_{in}/dz>0$)で 水平速度 $u = \partial \Psi/z$ が至る所で正と仮定する。この仮定の下でd $\Theta/d\Psi$ は至る所で正と成る。この場合には Ψ の微分方 程式(8-1)より、上方変位は渦度 $\zeta = \partial u/\partial z = \partial^2 \Psi/\partial z^2$ の増加を伴い、下方変位は渦度の減少を伴う。図8-6参照。

但しzinは点(x,z)を通る流線の風上領域での高度である。

非強制(加熱 H や摩擦 F が零)で上空に蓋が在る場合(z>Zで安定度が無限大の場合)には「波は山の上にしか存在しない」事を先((8-3))に示した。上空に蓋が在るのは「或る高度 z=Z で安定度が大きく変わっている場合」の一つの例である。逆に「安定度が鉛直方向にあまり大きくは変化しない場合」を考える。これの一つの例は、安定度が一定の場合である。風上領域の風速も一定とする。

$$d\Theta_{in}(z)/dz = N^2 = \text{const.}, \qquad u_{in}(z) = U = \text{const.}.$$
(8-7)

この場合にも「波は山の上以外には殆ど存在しない」事に成る。図8-7参照。

以下にこれの概略を示す。加熱 H や摩擦 F が零なので流線関数 **Ψ**の方程式 (8-1) は全領域で成立する。式 (8-7) より風 上領域の温位 Θ_{in} (z) も流線関数 **Ψ**_{in} (z) も鉛直座標 z の一次関数に成る。

勿論 ξ(x) は山 h (x) と Ψ に依存する。式 (8-11) と式 (8-12) より ξ(x) は山 h (x) と同じ局在性を持つ事が分かる。即ち

ξ(x) >0の範囲はh(x) >0の範囲と同じである。上部の放射境界条件と下端境界条件(8-12)の下での方程式(8-10)の解 は次式で与えられる。

 $\Psi(\mathbf{x},\mathbf{z}) = \mathbf{U}\mathbf{z} - \mathbf{U}\cos(\mathbf{N}\mathbf{z}/\mathbf{U}) \cdot \boldsymbol{\xi}(\mathbf{x}) + \mathbf{U}\sin(\mathbf{N}\mathbf{z}/\mathbf{U}) \cdot \mathbf{I}\boldsymbol{\xi}(\mathbf{x}).$

式(8-13)の演算子 I は次式で定義される。

 $I \xi(x) = -\int dk \{ e^{ikx} / (2\pi)^{1/2} \} (ik/|k|) \xi(k).$

但し $\epsilon(k)$ は $\epsilon(x)$ のフウリエ変換である。関数 $\epsilon(x)$ は山h(x)と同じ局在性を持つ。故に式(8-13)の右辺の第2項は山の 無い所では零である。関数 $\epsilon(x)$ の局在性の為に、フウリエ変換 $\epsilon(k)$ の全ての特異点は虚部を伴う。故に $\epsilon(k)$ の特異点 からの式(8-14)の積分への寄与は、風下領域で指数関数的に減少する。即ち式(8-13)の右辺の第3項は山の近傍にしか値 を持たない。

 $I \xi(x) \sim e^{-x} \rightarrow 0 \quad \text{as} \quad x \rightarrow +\infty.$ (8-15)

結論として次の事が言える。安定度が或る高度以上で無限大の場合にも、安定度が一様の場合にも「静水圧波動は(水平 方向には)山の近傍にしか存在しない」。

9 非静水圧の効果

非静水圧の効果を考える。この場合には静水圧方程式(5-1)は、移流項を無視しない鉛直方向の運動方程式に置き替わる。この鉛直速度wの移流項は、流線関数Wの式(2-3)を使って、Wとwのヤコビアンで表現される。

 $\partial (\Psi, w) / \partial (z, x) + \partial \Phi / \partial z - \Theta = 0, \quad w = -\partial \Psi / \partial x.$ (9-1)

この場合にも温位保存式(6-1)は形を変えない。しかし鉛直方向の運動方程式(9-1)に付け加わったwの移流項の為に, エネルギBと渦位Qには鉛直速度wに依る項が付け加わる。静水圧近似の運動エネルギ $u^2/2 = (\partial \Psi/\partial z)^2/2$ に鉛直方向 の運動エネルギ $w^2/2 = (\partial \Psi/\partial x)^2/2$ が付け加わり,エネルギ保存式(6-2)は次の様に変更される。

 $B[\Psi, x] = B_{in}[\Psi] + \int_{-\infty}^{x} dx (F-zH/u),$

 $\mathbf{B} = (\partial \Psi / \partial z)^2 / 2 + (\partial \Psi / \partial x)^2 / 2 + \Phi - z \Theta.$

同様に静水圧近似の渦度 $\partial^2 \Psi / \partial z^2$ に<u>鉛直速度に依る渦度 $\partial^2 \Psi / \partial x^2$ </u>が付け加わり,渦位保存式(6-3)は次の様に変更される。

 $Q[\Psi, x] = Q_{in}[\Psi] + (\partial / \partial \Psi) \int_{-\infty}^{x} dx (F - zH/u).$

 $Q = \partial^2 \Psi / \partial z^2 + \partial^2 \Psi / \partial x^2 - z \partial \Theta / \partial \Psi.$

静水圧近似の場合と同様に、渦位QはエネルギBの Ψ 導関数である。即ち渦位エネルギ関係式(7-1)は形を変えない。 静水圧近似の場合と同様に、強制領域の外ではエネルギBも渦位Qも流線 $|\Psi = - c|$ に沿って保存される。しかし式 (9-3)に付け加わった $\partial^2 \Psi / \partial x^2$ の為に、流線関数 Ψ の支配方程式(8-1)は次の様に変更される。

 $\partial^{2} \Psi / \partial z^{2} + \underbrace{\partial^{2} \Psi}_{\partial x^{2}} = Q[\Psi] + z d\Theta[\Psi] / d\Psi.$ (9-4)

-24-

(**0** 1)

(8-13)

(8-14)

(9-3)

(9-2)

静水圧近似の場合(8-1)と異なり式(9-4)は水平座標 x を陽に含んでいる。式(8-1)は水平座標 x をパラメタとする,流線 関数 Ψ の鉛直座標 z に関する「常微分方程式」であった。それ故に,或点 x に於ける Ψ は,其点 x での境界条件のみによっ て決まる。しかし式(9-4)は流線関数 Ψ の,鉛直座標 z と水平座標 x に関する「楕円型の偏微分方程式」である。それ故 に,或点 x に於ける Ψ には,全ての点 x の境界条件が関係する。図9-1参照。

静水圧近似の場合の性質(8-4)と(8-5)と(8-6)は境界条件には関係がない。従ってこれらは非静水圧の場合にも成立する。但し静水圧近似の渦度 $\partial^2 \Psi / \partial z^2$ が真の渦度 $\partial^2 \Psi / \partial z^2 + \partial^2 \Psi / \partial x^2$ に置き替わる。

第8節「いくつかの一般的性質」の最後に述べた様に,加熱Hも摩擦Fも零の時には「静水圧波動は(水平方向には) 山の近傍にしか存在しな」かった。非静水圧の場合でも「風上領域の安定度が鉛直方向に一定」の時には静水圧近似の 場合と同様に「波は山の近傍にしか存在しない」事に成る。これは静水圧近似の場合(即ち第8節の終わりの方で述べた 事)と同じ様にして示す事ができる。しかし「安定度が或る高度以上で無限大(即ち上空に硬い蓋が存在)」の時には, 山から遠く離れた風下領域に風下波の存在する可能性が在る。詳しく言うと,風上領域の(蓋よりも低い高度の)安定度 Nが式(9-5)を満たす程に十分に大きければ風下波が存在する。

N > U π/Z → 風下波.

(9-5)

但しUは風上領域の風速である。Zは蓋の高度である。図9-2参照。

-25-

以下にこれの概略を述べる。第8節の静水圧近似の場合と同様に、風上領域の速度Uと安定度Nの一様性より、温位 の[Ψ] と渦位Q[Ψ] の関数形は次の様に決まる。

$$\Theta = \Theta [\Psi] = \Theta_{in}(0) + (N^2/U)\Psi, \qquad Q = Q[\Psi] = -(N/U)^2\Psi.$$
(9-6)

式(9-6)を代入して、流線関数Ψの方程式(9-4)は次の線形微分方程式に成る。

$$\partial^2 \Psi / \partial z^2 + \partial^2 \Psi / \partial x^2 + (N/U)^2 \Psi = z N^2 / U.$$
(9-7)

上空(z=Z)に蓋が在る場合には境界条件は次の様に成る。

$$\Psi(\mathbf{x}, Z) = \Psi_{in}(Z) = UZ, \quad \Psi(\mathbf{x}, \mathbf{h}(\mathbf{x})) = \Psi_{in}(0) = 0.$$
 (9-8a,b)
ここで山の高さh(x)の代わりに,次式を満たす関数 $\varepsilon(\mathbf{x})$ を導入する。

$$\Psi(\mathbf{x},0) = -\mathbf{U}\,\boldsymbol{\xi}\left(\mathbf{x}\right)\,. \tag{9-9}$$

勿論 $\epsilon(x)$ はh(x)と Ψ に依存する。式(9-8b)と式(9-9)よh(x) > 0の領域と $\epsilon(x) > 0$ の領域は一致する。即ち $\epsilon(x)$ は h(x)と同じ局在性を持つ。境界条件(9-8a)と(9-9)の下での方程式(9-7)の解は次式で与えられる。

$$\Psi = Uz - U \int dk \left| e^{ikx} / (2\pi)^{1/2} \right| \xi(k) \left| \cos \omega_k z - (\cot \omega_k Z) \sin \omega_k z \right|.$$
(9-10)

但し $\omega_k^2 = (N/U)^2 - k^2$ であり、 $\xi(k)$ は $\xi(x)$ のフウリエ変換である。 $\xi(x)$ の局在性より $\xi(k)$ の全ての特異点は虚部を伴う。従って $\xi(k)$ の特異点の、式(9-10)の積分への寄与は、風下領域で指数関数的に減少してしまう。他の特異点はsin $\omega_k Z$ の零点である。この特異点が実数のkと成る為には

 $NZ/U > \pi .$

でなければならない。実数の特異点からの,式(9-10)の積分への寄与は,風下領域で生き残る波を生み出す。

風下波 ~ exp[ik_nx], $k_n^2 = (N/U)^2 - (n\pi/Z)^2$, $n = 1, 2, 3, \cdot \cdot \cdot$. (9-12)

即ち風上領域の安定度が式(9-11)を満たす程に大きい時には風下波が存在する。

10 地球回転の効果 - 風上条件

地球回転の効果を考える。この場合にはx方向の運動方程式(5-2)とy方向の運動方程式(5-15)に回転項(転向力)が付け加える。

$$\partial (\Psi, \mathbf{u}) / \partial (\mathbf{z}, \mathbf{x}) + \partial \Phi / \partial \mathbf{x} - \mathbf{f} \mathbf{y} = \mathbf{F},$$
 (10-1)

 $\partial (\Psi, \mathbf{v}) / \partial (\mathbf{z}, \mathbf{x}) + \partial \Phi / \partial \mathbf{y} + \mathbf{fu} = \mathbf{G}.$ (10-2)

左辺の最後の項が転向力(の負符合)である。x 方向の運転方程式(10-1)をy で微分し,速度 u や v や流線関数 Ψ や摩擦 F が y に依存しない事に注意して $\partial^2 \Phi / \partial x \partial y = 0$ と成る。これより非回転系の場合と同様に式(5-17)が成立する。即ち $\partial \Phi / \partial y$ は風上領域の $\partial \Phi_{in} / \partial y$ に等しい。静水圧方程式(5-1)より $\partial \Theta / \partial y$ も風上領域の $\partial \Theta_{in} / \partial y$ に等しい。風上 条件式(2-5)と y 方向の運動方程式(10-2)よりこれらは各々 – fuinと – fduin/dz に等しく成る。

-26-

$$\partial \Phi / \partial y = \partial \Phi_{in} / \partial y = -fu_{in}(z),$$
 (10-3)

$$\partial \Phi / \partial y = \partial \Phi_{in} / \partial y = -fdu_{in}(z)/dz.$$
 (10-4)

非回転系ではジオポテンシャル Φ と温位 Θ のy方向の勾配は零であった((5-18))。回転系では風上領域のx速度 $u_{in}(z)$ と地衡風平衡する為に、零ではなくて式(10-3)と式(10-4)と成る。風上領域でのx方向の運動方程式(10-1)を鉛直座標 zで微分し、更に静水圧方程式(5-1)を使い、 $\partial \Theta_{in}/\partial x = fdv_{in}/dz$ と成る。これと式(10-4)を風上領域での熱方程式(5-21)に代入して次式と成る。

$$u_{in}dv_{in}/dz - v_{in}du_{in}/dz = 0.$$

これを積分して、vin は uin に比例する事が分かる。

 $v_{in}(z) = \alpha u_{in}(z), \qquad \alpha = \text{const.}$ (10-6)

(10-5)

(11-1)

熱方程式(5-21)をyで微分して式(10-4)を代入するとd²u_{in}/dz²=0と成る。即ち

 $u_{in}(z) = U + \Lambda z$, $U, \Lambda = const.$ (10-7)

式(10-6)と式(10-7)は非定常系 and/or 非静水圧系でも成立する。即ち鉛直2次元の回転系では、風上領域での速度の鉛 直勾配は一様でなければならない。一様でなければ2次元の仮定(2-1)が成り立たない。図10-1参照。

11 地球回転の効果 - 保存則

流線関数Ψの式(2-3)を使い,式(10-4)と式(10-7)を代入して,熱方程式(5-21)は次の様に書ける。

$$\partial (\Psi, \Theta) / \partial (z, x) - f \Lambda v = H.$$

ここで3次元流線のy方向の変位7を導入する。

$$\partial (\Psi, \eta) / \partial (z, \mathbf{x}) = \mathbf{v}$$
 or $\eta = \int_{-1}^{\infty} d\mathbf{x} \mathbf{v} / \mathbf{u}$. (11-2)

但し積分は流線 $|\Psi = - c|$ に沿って行う。 $\eta_{in}(x = -L)$ を零とした。図11-1参照。

式(11-2)を代入すると熱方程式(11-1)は次の形に成る。

 $\partial (\Psi, \Theta^{f}) / \partial (z, x) = H, \quad \Theta^{f} = \Theta - f \Lambda \eta.$

(11-3)

これを流線 {Ψ=一定} に沿って-∞から x 迄積分して次の温位保存式が得られる。

$\Theta^{f}[\Psi, x] = \Theta^{f}_{in}[\Psi] + \int_{-\infty}^{x} dx H/u.$,	(11-4)

加熱 H が零の場合には $\Theta^{f} = \Theta^{f}_{in} [\Psi]$ であり、 Θ^{f} は至る所で流線関数 Ψ にのみ依存する。即ち流線 { $\Psi = -c$ } に沿っ て保存される。回転系でも非回転系でも温位 Θ は3次元流線に沿って保存されている。非回転系では(鉛直2次元断面へと 射影された) 2次元流線 { $\Psi = -c$ } に沿っても温位 Θ は保存される。即ち非回転系での温位保存式(6-1)が成立する。回 転系では温位 Θ は y 方向の勾配 $\partial \Theta / \partial y = -f\Lambda$ を持つ。これは風上領域での速度 $u_{in}(z) = U + \Lambda z$ と地衡風平衡する為で ある。この為に3次元流線の y 方向の変位 7 は、2次元流線 { $\Psi = -c$ } に沿って温位 Θ の増減を伴う。これを相殺する 項-f\Lambda 7 を付け加える事によって、2次元流線 { $\Psi = -c$ } に沿っての保存量 Θ^{f} が得られる。図11-2参照。

次に運動方程式(10-1)と(10-2)に各々uとvを掛けて和を取り,静水圧方程式(5-1)と熱方程式(11-1)を使うと次の エネルギの式に成る。

 $\partial (\Psi, B^{f}) / \partial (z, x) = uF + vG - zH,$

 $B^{f} = B - fU \eta$, $B = u^{2}/2 + v^{2}/2 + \Phi - z\Theta$.

(11-5)

これを流線 {**Ψ**=一定} に沿って-∞から x 迄積分して次のエネルギ保存式が得られる。

	> /			(· · · · · · · · · · · · · · · · · · ·
$ B^* \Psi \mathbf{x} = B^* \Psi + 1 d\mathbf{x} \mathbf{u} + \mathbf{v} - \mathbf{z}$	H)/11			(11-6)
$D [\mathbf{x}, \mathbf{x}] = D [\mathbf{x}] + J [\mathbf{x}] + J [\mathbf{x}]$	11//u.			(11-0/

摩擦FとGが零で且つ加熱Hが零の場合にはB^f=B^f_{in}[Ψ] であり,B^fは至る所で流線関数 Ψ にのみ依存する。即ち流線 $|\Psi=-cc|$ に沿って保存される。回転系でも非回転系でもエネルギBは3次元流線に沿って保存されている。非回転系 では(鉛直2次元断面へと射影された)鉛直2次元流線 $|\Psi=-cc|$ に沿ってもエネルギBは保存される。即ち非回転系で のエネルギ保存式(6-2)が成立する。回転系では温位Θはy方向の勾配∂Θ/∂y=-fAを持つ。これは風上領域での速 度u_{in}(z)=U+Azと地衡風平衡する為である。この為に3次元流線のy方向の変位には、この温位勾配に基づくエネル ギ増加分が伴う。これに加えてy方向の変位には気圧傾度力に基づく仕事も伴う。これらを相殺する項-fU7を付け加 える事によって、2次元流線 $|\Psi=-cc|$ に沿っての保存量B^fが得られる。図11-3参照。

最後に,運動方程式(10-1)を鉛直座標 z で微分し,更に少々複雑な計算の末に次の渦位の式が得られる。

 $\partial \left(\Psi \,, Q^{f} \right) / \, \partial \left(z \,, x \right) \; = \; u \left(\, \partial \, / \, \partial \, \Psi \right) \left(u F \, + \, v G \, - \, z H \right) / u \,,$

$$Q^{f} = \frac{\partial^{2} \Psi}{\partial z^{2}} - z \partial \Theta^{f} / \partial \Psi - \partial (\eta, v + fx) / \partial (z, x).$$
(11-7)

これを流線 {Ψ=一定} に沿って-∞から x 迄積分して次の渦位保存式が得られる。

$$Q^{f}[\Psi, x] = Q^{f}_{in} [\Psi] + (\partial/\partial \Psi) \int_{-\infty}^{x} dx (uF + vG - zH)/u.$$
(11-8)

非回転系での場合(6-1)と(6-2)と(6-3)と同様に、 Θ ^fとB^fとQ^fは風下領域では流線関数 Ψ のみに依存する。即ちの流線 $|\Psi|$ =一定|に沿って保存される。

$$\begin{split} \Theta_{\text{out}}^{f}[\Psi] &= \Theta_{\text{in}}^{f}[\Psi] + \int_{-L}^{+L} dx H/u, \end{split} \tag{11-9} \\ B_{\text{out}}^{f}[\Psi] &= B_{\text{in}}^{f}[\Psi] + \int_{-L}^{+L} dx (uF + vG - zH)/u, \end{aligned} \tag{11-10} \\ Q_{\text{out}}^{f}[\Psi] &= Q_{\text{in}}^{f}[\Psi] + (d/d\Psi) \int_{-L}^{+L} dx (uF + vG - zH)/u. \end{aligned}$$

式(11-9,10,11)の積分は勿論流線関数Ψのみに依存する。図11-4参照。

-29-

非静水圧系の場合にはエネルギB^fの中の静水圧近似の運動エネルギu²/2+v²/2が真の運動エネルギu²/2+v²/2+w²/2 に置き替わる。同様に渦位 Q^fの中の静水圧近似の渦度 $\partial u / \partial z = \partial^2 \Psi / \partial z^2$ が真の渦度 $\partial u / \partial z - \partial w / \partial x = \partial^2 \Psi / \partial z^2 + \partial^2 \Psi / \partial x^2$ に置き替わる。非回転系の場合 (7-1) と同様に渦位 Q^fはエネルギ B^fの ¥ 導関数に一致する。

$Q^{f}[\Psi, x] = \partial B^{f}[\Psi, x] / \partial \Psi.$		(11-12)

12 地球回転の効果 - 近似系

第11節で導いた保存則を手がかりに問題を解析してもよいが,第4節で述べた様に地球回転の効果は小さい。そこで地 球回転の第1次の効果だけを考慮した近似系を考える事もできる。式(10-3)を代入してy方向の運動方程式(10-2)は次の 様に成る。

$$\partial (\Psi, \mathbf{v}) / \partial (\mathbf{z}, \mathbf{x}) = f(\mathbf{u}_{in} - \mathbf{u}) + G.$$
 (12-1)

いま y 方向の強制力 G が零で,風上領域の y 速度 v in が零の場合を考える (即ち式 (10-6) で α が零の場合を考える)。この 場合には式 (12-1) より v は f に比例する。

 $v = f \int_{-L}^{x} dx (u_{in} - u) / u.$ (12-2)

但し積分は流線 {Ψ=一定} に沿って行う。式(12-2)を代入して,x方向の運動方程式(10-1)と熱方程式(11-1)は,コ リオリ因子fの1次迄の近似(f²を無視する近似)で次の様に成る。

$\partial (\Psi, u) / \partial (z, x) + \partial \Phi / \partial x = F$	to $0(f)$.	(12-3)
$\partial (\Psi, \Theta) / \partial (z, x) = H$	to 0(f).	(12-4)

これらは非回転系の式(5-2)及び式(5-3)と全く同じ形をしている。静水圧方程式(5-1)は回転系でも同じである。故にf の1次迄の近似では(x,z)鉛直断面内での速度(u,w) は地球回転の影響を受けない。即ち非回転系での速度(u_0, w_0)に等 しい。今の場合には風上領域のy方向の速度 v_{in} が零なので,非回転系ではy方向の速度 v_0 は至る所で零である。しかし 地球回転の効果でfに比例する vが惹起される。

$$u = u_0, \quad w = w_0, \quad v = f \int_0^t dt (u_{in} - u_0) \neq v_0 = 0$$
 to $0(f)$. (12-5)

非回転系での温位 Θ_0 は y に依存せず $\Theta_0 = \Theta_0(\mathbf{x}, \mathbf{z})$ である。回転系での温位 Θ には、 $u_{in}(\mathbf{z}) = U + \Lambda \mathbf{z}$ と地衡風平衡する回 転項 $-f\Lambda y$ が付け加わるだけである。即ち (\mathbf{x}, \mathbf{z}) 鉛直断面内での温位 Θ の分布は地球回転の影響を受けない。

 $\Theta(\mathbf{x},\mathbf{y},\mathbf{z}) = \Theta_0(\mathbf{x},\mathbf{z}) - \mathbf{f} \Lambda \mathbf{z}$ to $O(\mathbf{f})$.

(12-6)

式(12-5)及び式(12-6)より次の事が分かる。即ちfの1次迄の近似で,y方向の速度成分vを別にして,流れの様子は地 球回転の影響を受けず非回転系と同じに成る。式(12-5)及び(12-6)は非定常系 and/or 非静水圧系の場合にも成立する。 但し非定常系の場合には式(12-5)の積分は流体粒子の軌跡に沿って行う。図12-1参照。

13 非定常の効果 - 渦位エネルギ関係式

定常で非回転の場合には式(7-1)で表される様に, 渦位QはエネルギBを流線関数Ψで微分したものに等しかった。摩 擦Fや加熱Hの強制が零で,強制領域には地面の起伏hだけが在る場合を考える。この場合には温位Θも渦位Qもエネ ルギBも流線関数Ψのみの関数であり,渦位エネルギ関係式は次の様に成る。

 $dB/d\Psi = Q, \quad B = K + \Phi - z \quad \Theta, \quad Q = \zeta - z d\Theta/d\Psi.$ (13-1)

但し $K = u^2/2 + w^2/2$ は運動エネルギで $\zeta = \partial u/\partial z - \partial w/\partial x$ は渦度である。非定常の場合の運動方程式は、定常の水平運動方程式(5-2)と鉛直運動方程式(9-1)に速度(u, w)の時間変化項が付け加わって次の様に成る。

 $\frac{\partial \mathbf{u}}{\partial \mathbf{t}} + \partial (\Psi, \mathbf{u}) / \partial (\mathbf{z}, \mathbf{x}) + \partial \Phi / \partial \mathbf{x} = 0.$ (13-2)

 $\frac{\partial \mathbf{w}}{\partial \mathbf{t}} + \partial (\Psi, \mathbf{w}) / \partial (\mathbf{z}, \mathbf{x}) + \partial \Phi / \partial \mathbf{z} - \Theta = 0.$ (13-3)

定常の熱方程式(5-3)にも、非定常の場合には温位のの時間変化項がつけ加わる。

$$\frac{\partial \Theta}{\partial t} + \partial (\Psi, \Theta) / \partial (z, x) = 0.$$
(13-4)

定常の場合と同様に式(13-2)にuを掛け式(13-3)にwを掛けて足し合わせ、式(13-4)を使って次のエネルギの式が得られる。

$$\partial E/\partial t + \partial (\Psi, B)/\partial (z, x) = 0, \quad E = B - \Phi, \quad B = K + \Phi - z\Theta.$$
 (13-5)

即ち非定常の場合にもエネルギ(正確にはエネルギ流束密度)は $B=K+\Phi-z\Theta$ で与えられる。少々複雑な計算の結果,式(13-2)と式(13-3)は次の形に変形される。

$$(1/2K) (\partial K/\partial t) [u,w] + (\zeta + \omega) [w,-u] + *B + z * \Theta = 0.$$
(13-6)

但し ω は点(x,z) での速度ヴェクトル [u,w] の回転角速度である。即ち点(x,z)での風向の回転角速度である。 * は勾 配ヴェクトルである。即ち * B= $[\partial B/\partial x, \partial B/\partial z]$ 及び * $\Theta = [\partial \Theta/\partial x, \partial \Theta/\partial z]$ である。図13-1参照。

式(13-6)と* Ψ =[$\partial \Psi / \partial x$, $\partial \Psi / \partial z$] との内積と取り,流線関数の式(2-3)より* Ψ =[-w, u] である事に注意して次式が得られる。

$$* \Psi \cdot * B = (\zeta + \omega) * \Psi \cdot * \Psi - z * \Psi \cdot * \Theta.$$
(13-7)

式(13-7)の右辺第2項の*** Ψ・* Ψ**は

$$* \Psi \cdot * \Psi = u^2 + w^2 \tag{13-8}$$

即ち速度の大きさの2乗である。式(13-8)を使い,更に * Ψ ・* Bおよび * Ψ ・* Θ が, Bおよび Θ の, Ψ の勾配方向の微分に比例する事に注意して,式(13-7)より次の渦位エネルギ関係式が得られる。

$\partial \mathbf{B} / \partial \Psi = \zeta + \omega - \mathbf{z} \partial \Theta / \partial \Psi.$							(13-9)
--	--	--	--	--	--	--	--------

但しΨでの微分は*Ψの方向(即ち流線に直交する方向)に行う。定常系での渦位エネルギ関係式(13-1)の渦度ζは, 非定常系(13-9)では渦度と速度の回転角速度の和ζ+ωに置き替わる。

$$-32-$$

第2部 具体的応用

第1部で述べた諸公式は,非線形性が非常に強い場合には成立しない可能性がある。例えば波の破砕が起こる様な場合(従って流線が定義できない様な場合)にはもはや成立しない。以下では非線形性は第1部の諸公式が成立する様な 範囲のものであるとする。また以下では特に断わらない限り,定常・静水圧近似・非回転・非強制の場合を考える。

14 重力流 ー 暖気内の速度シアの効果

既に第3節「非線形問題」で述べた様に、重力流は軽い暖気内を重い寒気塊が進行する現象である。図14-1参照。

但しては暖気の厚みでありΘ_wは暖気の(一定と仮定された)温位である。δΘは暖気と寒気の間の(一定と仮定された) 温位の差である。図14-1は寒気と共に動く座標系(即ち寒気が止まって見える座標系)で描いてある。即ち寒気の進行速 度Uは、遥か上流での暖気の進入速度Uと成る。Benjamin(1968)によると寒気の厚みhと進行速度Uは次式で与えられ る。但し、gは重力加速度である。

h = Z/2, U =
$$(1/2) \{ gZ(\delta \Theta / \Theta_w) \}^{1/2}$$

(14-1)

Xu (1992) は暖気内に一様な速度シアが在る場合の問題を解いた。即ち寒気と共に動く座標系から見た遥か上流の暖気の速度が $u_{in}(z) = U + \Lambda z$ となる場合の問題を解いた。図14-2参照。

但し図14-2はシアΛが負の場合を描いてある。Xu(1992)によると暖気内の負シアは寒気の厚みhと進行速度Uを増加 させる。正シアは減少させる。

-34-

h > Z/2,	U > (1/2) $ gZ(\delta\Theta/\Theta_w) ^{1/2}$	if $\Lambda < 0$.	1.	· · · · · · · · · · · · · · · · · · ·	
h < Z/2,	$U < (1/2) gZ(\delta \Theta / \Theta_w) ^{1/2}$	if $\Lambda > 0$.	11 M.	to da la segura se	(14-2)

Kanehisa (1993a) は暖気内のシアが負ジェト型の場合を考察した。負ジェット型とは、遥か上流での暖気の速度が、 中層で極小値を持つ事を意味する。図14-3参照。

鉛直方向に平均したシアは零と成る。Kanehisa (1993a) によると平均シアが零であるにも拘らず,下層の負シアの為に, 寒気の厚みhと進行速度U=u_{in} (0) は増加する。

h	> H/2, U > (1/2) $\{gZ(\delta \Theta / \Theta_w)\}^{1/2}$	if $u_{in}(z)$ is negative jet-type.	(14-3)

式(14-3)は、一様な負シアの場合(14-2)と定性的に同じである。これより重力流の厚みhと進行速度Uには下層のシアが重要である事が分かる。

.....

以下にKanehisa (1993a)の概略を示す。暖気の厚みZと暖気の温位Θwおよび寒気暖気の温位差δΘを既知として、寒気の厚みhと進行速度Uを求める事を考える。

[1] 遥か上流で温位が一定(Θ_{in} =定数 Θ_{w}) で且つ非強制(F=H=0)の場合には,暖気内の温位保存式(6-1)とエネル ギ保存式(6-2)と渦位保存式(6-3)は次の形に簡単化される。

$\Theta = \Theta[\Psi] = \Theta_{in}[\Psi] = $ $\Xi \pm \Theta_{w}$.	(14-4)
	and the second secon
$B = B[\Psi] = B_{in}[\Psi], B = (\partial \Psi / \partial z)^2 / 2 + \Phi - z \Theta_W.$	(14-5)
	(a) A set of the se
$Q = Q[\Psi] = Q_{in}[\Psi], Q = \partial^2 \Psi / \partial z^2.$	(14-6)

[2] 渦位保存式(14-6)より, 遥か上流の速度 $u_{in}(z) = d\Psi_{in}(z)/dz$ は次式を満たす。 $d^2u_{in}/dz^2 = u_{in}dQ[\Psi_{in}]/d\Psi.$ (14-7)

遥か上流の速度u_{in}(z)は正で負ジェット型であるとする。

 $u_{in}(z) > 0$, $u_{in}(0) = u_{in}(Z) = U$. $d^2 u_{in}/dz^2 > 0$. (14-8)

式(14-7)と式(14-8)より dQ[Ψ_{in}]/d Ψ は正と成る。これを満たす一番簡単な次式の場合を考える。

$$Q[\Psi] = a^2 \Psi. \tag{14-9}$$

但しa〉0はシア・パラメタである。式(14-9)を渦位保存式(14-6)に代入して遙か上流と下流の流線関数Ψに対する方程式 が得られる。

$$d^2 \Psi_{in}/dz^2 = a^2 \Psi_{in}, \quad d^2 \Psi_{out}/dz^2 = a^2 \Psi_{out}.$$
 (14-10a, b)

式(14-10a)を境界条件

 $d\Psi_{in}(0)/dz = u_{in}(0) = U, \quad d\Psi_{in}(Z)/dz = u_{in}(Z) = U,$ (14-11)

の下に解いて遙か上流での速度 u_{in} =d Ψ_{in} /dz得られる。これは鉛直座標zの関数であるがシア・パラメタaと寒気の進行速度Uにも存在する。これは望み通り負ジェット型の鉛直分布を持ち、シア・パラメタaが零の極限でシア無しの一様流Uに成る。

$$u_{in} = u_{in}(z; a, U), \quad u_{in} \to U \quad \text{as } a \to 0.$$
(14-12)

式(14-10b)を境界条件

$$\Psi_{out}(h) = \Psi_{in}(0), \quad \Psi_{out}(Z) = \Psi_{in}(Z).$$
 (14-13)

の下に解いて遙か下流での速度 $u_{out}=d\Psi_{out}/dz$ が得られる。これは鉛直座標zの関数であるがシア・パラメタaと寒気の進行速度Uと寒気の厚みhにも依存する。これもシア・パラメタaが零の極限でシア無しの一様流に成る。この速度は質量保存則(即ち $ZU=(Z-h)u_{out}$)よりUZ/(Z-h)と成る。

$$u_{out} = u_{out}(z; a, U, h), \quad u_{out} \rightarrow UZ/(Z-h) \quad \text{as } a \rightarrow 0.$$
(14-14)

[3] エネルギ保存式(14-5)よりエネルギBは流線 {Ψ=一定} に沿って保存される。暖気上端は一つの流線であるか ら暖気上端に沿ってエネルギBは保存される。

$$B(x=-\infty, z=Z) = B(x=+\infty, z=Z), i.e.,$$

$$U^{2}/2 + \Phi_{in}(H) - Z\Theta_{w} = u_{out}(H)^{2}/2 + \Phi_{out}(H) - Z\Theta_{w}.$$
(14-15)

暖気下端も一つの流線であるから暖気下端に沿ってもエネルギBは保存される。

$$B(x=-\infty,z=0) = B(x=0, z=0) = B(x=+\infty,z=h)$$
, i.e.,

$$U^{2}/2 + \Phi_{in}(0) = \Phi(0,0) = u_{out}(h)^{2}/2 + \Phi_{out}(h) - h\Theta_{w}.$$
(14-16)

寒気下端も一つの流線であるから寒気下端に沿ってもエネルギBは保存される。

$$B(x=0, z=0) = B(x=+\infty, z=0), \quad i.e., \quad \Phi(0,0) = \Phi_{out}(0). \quad (14-17)$$

一方,静水圧方程式(5-1)より遙か上流と下流でのジオポテンシャル Φ_{in} と Φ_{out} は次の式で与えられる。

$\Phi_{\mathrm{in}}(z) = \Phi_{\mathrm{in}}(0) + z \Theta_{\mathrm{w}}$	for $0 < z < Z$,	
$\Phi_{\text{out}}(z) = \Phi_{\text{out}}(0) + z (\Theta_{\text{w}} - \delta \Theta)$	for $0 < z < h$,	
$\Phi_{out}(z; h) = \Phi_{out}(h) + (z-h) \Theta_w$	for $h < z < Z$.	(14-18)

式(14-14)のu_{out}(z; a,U,h),及び式(14-18)のΦ_{in}(z)とΦ_{out}(z; h)を式(14-15)と式(14-16)に代入し、更に式(14-17) を使って、進行速度 U はシア・パラメタ a と寒気の厚み h の関数として与えられる。

U = U(a,h).

[4] 定常状態では遥か上流から移入する運動量は、遥か下流から移出する運動量に等しくなければならない。これの 数式表現は、運動方程式(5-2)で強制力Fを零としたものを全領域(x,z)で積分する事によって得られる。

 $\int dz u_{in}(z)^2 + \int dz \Phi_{in}(z) = \int dz u_{out}(z)^2 + \int dz \Phi_{out}(z).$ (14 - 20)

式(14-12)と式(14-14)のu_{in}(z; a,U)とu_{out}(z; a,U,h),及び式(14-18)のΦ_{in}(z)とΦ_{out}(z; h)を式(14-20)に代入して、 シア・パラメタaと進行速度Uと寒気の厚みhの関係式を得る事ができる。更に式(14-19)を使い此の関係式からUを 消去して、寒気の厚みhをシア・パラメタaの関数として得る事ができる。

$$h = h(a)$$
. (14-21)

[5] シア・パラメタaが零の時には、式(14-21)のh (a)と式(14-19)のU(a,h)は勿論シアの無い場合の値(14-1)に一 致する。

$$h(0) = Z/2, \qquad U(0,Z/2) = (1/2) \{gZ(\delta \Theta / \Theta_w)\}^{1/2}.$$
 (14-22)

シア・パラメタaが零でない時に、式(14-19)のU(a,h)や式(14-21)のh(a)をあからさまに書き下す事はできない。し かしシア・パラメタaが小さい時の表現は得る事ができる。これよりa=0での微分係数を求める事ができる。各々の微 分係数は正と成る。

dh(0)/da > 0.

dU(0,Z/2)/da > 0.

即ち遥か上流の暖気の速度uin(z)が、シア無し一様流から負ジェット型シア流に成った時に、寒気の厚みhも進行速度 Uも増加する。

なお渦位Q = Q[Ψ]の関数形として式(14-7)の代わりに

 $Q = Q[\Psi] = -a^2 \Psi$

とすれば遥か上流の暖気の速度 uin(z)は、正ジェット型シア流と成る。この場合も同様に解析ができて、寒気の厚みh と進行速度Uは減少する事が分かる。

(14-23)

(14-24)

(14-19)

15 重力流 - 暖気内の成層の効果

第14節に述べた Benjamin (1968)では,暖気内の温位 Θは一定と仮定されていた。即ち暖気内の成層は中立であった。 Kanehisa (1995a) は暖気内の成層が安定である場合を考察した。即ち遥か上流の暖気内の温位 Θ_{in} (z) の鉛直勾配が正の場 合を考察した。図15-1参照。

Kanehisa (1995a) によると暖気内の安定成層は重力流の厚みhを減少させ、進行速度Uを増加させる。

h < Z/2, U > (1/2) {gZ(
$$\delta \Theta / \Theta_w$$
)}^{1/2} if $d\Theta_{in}(z)/dz > 0.$ (15-1)

以下に Kanehisa (1995a)の概略を示す。第14節と同様に,暖気の厚み Z と暖気下端の温位 ⊕ wおよび寒気暖気の温位差 δ Θ を既知として,寒気の厚み h と進行速度 U を求める事を考える。

[1] 非強制(F=H=0)の場合には,暖気内の温位保存式(6-1)とエネルギ保存式(6-2)と渦位保存式(6-3)は次の形に簡単化される。

 $\Theta = \Theta [\Psi] = \Theta_{in} [\Psi] , \qquad (15-2)$ $B = B[\Psi] = B_{in} [\Psi] , \qquad B = (\partial \Psi / \partial z)^2 / 2 + \Phi - z \Theta . \qquad (15-3)$ $Q = Q[\Psi] = Q_{in} [\Psi] , \qquad Q = \partial^2 \Psi / \partial z^2 - z d \Theta / d \Psi . \qquad (15-4)$

[2] 温位保存式(15-2)及び渦位保存式(15-4)より暖気内の流線関数Ψは次の微分方程式を満たす。

 $\partial^2 \Psi / \partial z^2 = Q[\Psi] + z d \Theta[\Psi] / d \Psi.$

 $\Theta[\Psi]$ 及びQ[Ψ]の関数形は,遥か上流での $\Theta_{in}(z)$ 及び $u_{in}(z)$ の鉛直分布によって決まる。或は逆に $\Theta_{in}(z)$ 及び $u_{in}(z)$ の鉛直分布は、 $\Theta[\Psi]$ 及びQ[Ψ]の関数形によって決まる。いま遥か上流の速度 $u_{in}(z)$ は一様Uであるが、温位勾配d $\Theta_{in}(z)/dz$ は正とする。

(15-5)

$$\Psi_{in}(z) = Uz, \qquad d\Theta_{in}(z)/dz > 0.$$
(15-6a,b)

-38-

遥か上流の温位 $\Theta_{in}(z)$ が一定 Θ_w の場合には温位勾配は勿論零である。そこで温位の関数形を次の形に書く。

$$\Theta_{\rm in}[\Psi] = \Theta_{\rm out}[\Psi] = \Theta_{\rm w} + \varepsilon \Xi[\Psi] . \qquad (15-7)$$

但し $\epsilon > 0$ は成層パラメタで $\epsilon = 0$ は中立を表す。関数 $\Xi[\Psi]$ は、暖気下端での温位の値が Θ_w であり、暖気が安定成層(即 ち $d\Theta_{in}/dz = Ud\Theta_{in}/d\Psi > 0$)である事より次の条件を満たす。

$$\Xi [\Psi_{in}(0)] = \Xi [0] = 0. \quad d\Xi [\Psi]/d\Psi > 0.$$
(15-8)

式(15-6a)に注意して,式(15-5)より渦位Q[**Ψ**]の関数形は次の形に決まる。

$$Q[\Psi] = -(\varepsilon/U)\Psi d\Xi[\Psi]/d\Psi.$$
(15-9)

式(15-9)を式(15-5)に代入して,遥か下流での流線関数Ψoutに対する方程式は次式で与えられる。

$$d^{2}\Psi_{\text{out}}/dz^{2} = \epsilon (z - \Psi_{\text{out}}/U) d\Xi [\Psi_{\text{out}}]/d\Psi \quad \text{for } h < z < Z.$$
(15-10)

式(15-10)を境界条件

$$\Psi_{out}(h) = \Psi_{in}(0) = 0.$$
 $\Psi_{out}(Z) = \Psi_{in}(H) = UZ,$ (15-11)

の下に解いて、遥か下流の流線関数 Ψ_{out} (従って速度 u_{out})を得る事ができる。これらは勿論、鉛直座標zの関数であるが、 成層パラメタ ε 及び関数日、更に寒気の進行速度 U 及び厚み h に依存する。

$$\mathbf{u}_{\text{out}} = \mathrm{d} \boldsymbol{\Psi}_{\text{out}} / \mathrm{d} z, \qquad \boldsymbol{\Psi}_{\text{out}} = \boldsymbol{\Psi}_{\text{out}}(z; \boldsymbol{\varepsilon} \boldsymbol{\Xi}, \boldsymbol{U}, \mathbf{h}). \tag{15-12}$$

[3] エネルギー保存式(15-3)よりエネルギBは流線に沿って保存される。暖気上端は一つの流線であるから暖気上端 に沿ってエネルギBは保存される。

$$B(x = -\infty, z = Z) = B(x = +\infty, z = Z),$$
 i.e.,

 $U^{2}/2 + \Phi_{in}(Z) - Z\Theta_{in}(Z) = u_{out}(Z)^{2}/2 + \Phi_{out}(Z) - Z\Theta_{out}(Z).$ (15-13)

暖気下端も一つの流線であるから暖気下端に沿ってもエネルギBは保存される。

$$B(x=-\infty,z=0) = B(x=0,z=0) = B(x=+\infty,z=h)$$
, i.e.,

$$U^{2}/2 + \Phi_{in}(0) = \Phi(0,0) = u_{out}(h)^{2}/2 + \Phi_{out}(h) - h\Theta_{out}(h).$$
(15-14)

寒気下端も一つの流線であるから寒気下端に沿ってもエネルギBは保存される。

$$B(x=0,z=0) = B(x=+\infty,z=0), \quad i.e., \quad \Phi(0,0) = \Phi_{out}(0).$$
(15-15)

一方,静水圧方程式(5-1)を使い式(15-7)の温位を鉛直積分して,遥か上流と下流でのジオポテンシャル Φ_{in} と Φ_{out} が得られる。これらは鉛直座標zの関数であるが,成層パラメタ ϵ 及び関数E,更に寒気の厚みhにも依存する。

$$\Phi_{in} = \Phi_{in}(z; \varepsilon \Xi), \qquad \Phi_{out} = \Phi_{out}(z; \varepsilon \Xi, h).$$
(15-16)

式(15-12)のu_{nut}(z; ε Ξ, U, h),及び式(15-16)のΦ_{in}(z; ε Ξ)とΦ_{out}(z; ε Ξ, h)を式(15-13)と式(15-14)に代入し,更に式

(15-15)を使って、進行速度Uは成層パラメタ ¢ 及び関数日、更に寒気の厚みhに依存する形で与えられる。

 $U = U(\varepsilon \Xi, h).$

[4] 定常状態では遥か上流から移入する運動量は,遥か下流から移出する運動量に等しくなければならない。これの 数式表現は運動方程式(5-2)で強制力Fを零とした物を全領域(x,z)で積分する事によって得られる。

 $\int dz U^2 + \int dz \Phi_{in}(z) = \int dz u_{out}(z)^2 + \int dz \Phi_{out}(z). \qquad (15-18)$

式(15-12)の $u_{out}(z; \epsilon \Xi, U, h)$,及び式(15-16)の $\Phi_{in}(z; \epsilon \Xi)$ と $\Phi_{out}(z; \epsilon \Xi, h)$ を式(15-18)に代入して,成層パラメタ ϵ 及び関数 Ξ と進行速度 U と厚み h の関係式を得る事ができる。更に式(15-17)を使い此の関係式から U を消去して,厚み h を成層パラメタ ϵ 及び関数 Ξ に依存する形で得る事ができる。

 $h = h(\varepsilon \Xi)$.

(15 - 19)

(15-21)

(15 - 17)

[5] 成層パラメタ ∈ が零の時には,式(15-19)のh(εΞ)と式(15-17)のU(εΞ,h)は勿論,中立成層の場合の値(14-1) に一致する。

$$h(0) = Z/2, \qquad U(0,Z/2) = (1/2) \left\{ gZ(\delta \Theta / \Theta_w) \right\}^{1/2}.$$
(15-20)

成層パラメタ ϵ が零でない時には,式(15-17)のU($\epsilon \Xi$,h)や式(15-19)のh($\epsilon \Xi$)をあからさまに書き下す事はできない。 しかし成層パラメタ ϵ が小さいとして近似計算を行う事はできる。そして成層パラメタ $\epsilon = 0$ 於ける微分係数を求める事 ができる。各々の微分係数は負および正と成る。

 $dh(0)/d\varepsilon < 0, \quad dU(0,Z/2)/d\varepsilon > 0.$

即ち遥か上流の暖気の成層が中立から安定に成った時に, 寒気の厚みhは減少し進行速度Uは増加する。

16 重力流に伴う重力波

第14節で述べた Benjamin (1968)では, 暖気の成層が中立(温位 0 は一定)なので重力波は生じない。しかし第15節の様 に暖気が安定成層している場合には,重力波の発生する可能性が在る。Kanehisa (1995d) はどの様な場合に重力波が発生 し或は発生しないかを考察した。遥か上流での暖気の浮力振動数 N が一定の場合を考察した。 図16-1参照。

Kanehisa (1995d) によれば,遥か上流の暖気の浮力振動数NがπU/Zよりも大きい時に(遥か下流で)重力波が発生する。NがπU/Zに比べて非常に小さい時には(遥か下流で)重力波は発生しない。

重力波発生	if $N > \pi U/Z$,		· · · · · · · ·		(16-1)
重力波無し	if $N \ll \pi U/Z$.	. 4			(16-2)
	·			<i>p</i> 1	

(16-2)

暖気内の成層の強さは

 $\{\Theta_{in}(Z) - \Theta_{in}(0)\}/Z = N^2,$

で表される。暖気・寒気間の成層の強さの程度は

$$\delta \Theta / Z = (4 \Theta_w / g Z^2) (1/4) (\delta \Theta / \Theta_w) g Z \sim (4 \Theta_w / g) (U^2 / Z^2) \sim 4 U^2 / Z^2, \qquad (16-3)$$

で見積られる。従って式(16-1)は、暖気内の成層が暖気・寒気間の成層に比べて強ければ重力波が発生する事を示して いる。

以下に Kanehisa (1995d)の概略を示す。第14と第15節では静水圧系を考えた。暖気と寒気の衝突や暖気の寒気上への 乗り上げ等を考えると、静水圧近似は妥当しない様に見える。しかし遥か下流で重力波が伴わなければ、非静水圧系で 考えても静水圧系で考えても同じ結果が得られる。この節では重力波を扱うので非静水圧系で考える。

[1] 非強制(F=H=0)場合には,暖気内の温位保存式(6-1)とエネルギ保存式(9-2)と渦位保存式(9-3)は次の形に簡単化される。

$$\Theta = \Theta [\Psi] = \Theta_{in} [\Psi] . \qquad (16-4)$$

$$\mathbf{B} = \mathbf{B}[\boldsymbol{\Psi}] = \mathbf{B}_{in}[\boldsymbol{\Psi}] , \quad \mathbf{B} = (\partial \boldsymbol{\Psi}/\partial z)^2/2 + (\partial \boldsymbol{\Psi}/\partial x)^2/2 + \boldsymbol{\Phi} - z\boldsymbol{\Theta}, \quad (16-5)$$

$$Q = Q[\Psi] = Q_{in}[\Psi] , \quad Q = \partial^2 \Psi / \partial z^2 + \partial^2 \Psi / \partial x^2 - z d\Theta / d\Psi.$$
(16-6)

[2] 温位保存式(16-4)及び渦位保存式(16-6)より暖気内の流線関数Ψは次の微分方程式を満たす。

$\partial^2 \Psi / \partial z^2 + \partial^2 \Psi / \partial x^2 = Q[\Psi] + z d \Theta [\Psi] / d \Psi.$	(16-7)
 Θ[Ψ] 及びQ[Ψ] の関数形は、遥か上流でのΘ_{in}(z)及びu_{in}(z)の鉛直分布によって決まる。 u_{in}(z)は一様Uで、温位勾配dΘ_{in}(z)/dzも一様N²とする。 	いま遥か上流の速度
$\Psi_{in}(z) = Uz.$ $\Theta_{in}(z) = \Theta_w + N^2 z.$	(16-8a,b)
この場合には温位の[Ψ] の関数形は次の様に決まる。	
$\Theta \left[\Psi\right] = \Theta_{w} + (N^{2}/U) \Psi.$	(16-9)
式(16-8a)と式(16-9)を式(16-6)に代入して,渦位Q[Ψ]の関数形は次の様に決まる。	
$Q[\Psi] = -(N^2/U^2)\Psi.$	(16-10)
式(16-9)と式(16-10)を代入して流線関数Ψの方程式(16-7)は次の形に成る。	
$\partial^2 \Psi / \partial z^2 + \partial^2 \Psi / \partial x^2 + (N^2/U^2) \Psi = zN^2/U.$	(16-11)
寒気の厚みをh(x)とすると流線関数Ψに対する境界条件は次の様に成る。	
$\Psi(\mathbf{x},\mathbf{h}(\mathbf{x})) = \Psi_{\mathrm{in}}(0) = 0, \qquad \Psi(\mathbf{x},Z) = \Psi_{\mathrm{in}}(Z) = \mathrm{UZ}.$	(16-12a.b)
[3] 先ず成層が強い時を考える。次の関数η(x)を導入する。	
$\eta(\mathbf{x}) = \int_{0}^{h(\mathbf{x})} d\mathbf{z} \left\{ \partial \Psi / \partial \mathbf{z} \right\} / U.$	(16-13)
式(16-13)の関数刃(x)を使えば境界条件(16-12a)は次の形に成る。	
$\Psi(\mathbf{x},0) = - \mathbf{U} \boldsymbol{\eta}(\mathbf{x}) .$	(16-14)
微分方程式(16-11)と境界条件(16-12b)と(16-14)は、形式的に(関数η(x)に依存する)線形問題で 数Ψを水平 x 方向にフウリエ変換する事により形式的に解ける。	ある。これは流線関

$$\Psi = \Psi(\mathbf{x}, z; \mathcal{I}) = Uz + \int_{-\infty}^{\infty} d\mathbf{k} \left\{ e^{i\mathbf{k}\mathbf{x}} / (2\pi)^{1/2} \right\} \psi(\mathbf{k}, z; \mathcal{I}),$$

$$\psi(\mathbf{k}, z; \mathcal{I}) = -U\mathcal{I}(\mathbf{k}) \sin \left\{ \omega_{\mathbf{k}} (Z-z) \right\} / \sin \omega_{\mathbf{k}} Z. \qquad \omega_{\mathbf{k}}^{2} = N^{2} / U^{2} - \mathbf{k}^{2}.$$
(16-15)

但し $\eta(k)$ は $\eta(x)$ のフウエリ変換である。定義式(16-13)より関数 $\eta(k)$ はk=0に極を持つ。式(16-15)の積分路は, 遥か 上流($x=-\infty$)で流線関数がUzに成る様に(即ち積分が零に成る様に)この極k=0を避ける。関数 $\eta(k)$ はk=0以外にも 極を持つ可能性がある。積分の他の極は分母 sin ω_k Zの零点より生じる。これは無限個の虚零点を持つ。

$$k_n = i\kappa_n = i(n^2\pi^2 - N^2/U^2)^{1/2}, \quad n = natural number > NZ/\pi U.$$
 (16-16)

この虚零点からの寄与は遥か下流(x=+∞)で指数関数的に零に成る。

 $\exp[ik_n x] = \exp[-\kappa_n x] \to 0 \quad \text{as} \quad x \to +\infty.$ (16-17)

一方,実零点はNZ/Uがπよりも大きい時に存在する。この実零点よりの寄与は遥か下流(x=+∞)でも生き残る。即ち

重力波が伴う。	
遥か下流の重力波 if $N > \pi U/Z$.	(16-18)
NZ/U が π よりも小さい時には分母の実零点は無いが、 $\eta(k)$ の $k=0$ 以外の零点より重力波の生じ	る可能性が在る。
[4] 次に成層が十分に弱い時を考える。	
NZ/U $\ll \pi$.	(16-19)
式(16-19)の左辺を NZ/U= ¢ と置くと流線関数 Ψ の方程式(16-11)は次の様に成る。	
$\partial^2 \Psi / \partial Z^2 + \partial^2 \Psi / \partial x^2 = \epsilon (1/Z^2) (U_Z - \Psi).$	(16-20)
諸量を€で展開する。	
$U = U^{(0)} + \varepsilon U^{(1)} + \cdots,$	
$h_{out}(x) = h_{out}^{(0)}(x) + \epsilon h_{out}^{(1)}(x) + \cdots$	
$\Psi_{\text{out}}(\mathbf{x},z) = \Psi_{\text{out}}^{(0)}(\mathbf{x},z) + \varepsilon \Psi_{\text{out}}^{(1)}(\mathbf{x},z) + \cdots.$	(16-21)
¢の0次の項は勿論,中立成層の時の解(14-1)である。	
$U^{(0)} = (1/2) \{ gZ(\delta \Theta / \Theta_w) \}^{1/2}.$	
$h_{out}^{(0)} = Z/2.$	
$\Psi_{\text{out}}^{(0)}(z) = \{gZ(\delta \Theta / \Theta_w)\}^{1/2} z.$	(16-22)
展開式(16-21)を方程式(16-20)に代入して, $\Psi_{out}{}^{(1)}$ に対する方程式は次の様に成る。	
$\partial^2 \Psi_{out}{}^{(1)} / \partial z^2 + \partial^2 \Psi_{out}{}^{(1)} / \partial x^2 = \epsilon (1/Z^2) (U_z - \Psi_{out}{}^{(0)}).$	(16-23)
境界条件(16-12a,b)より $\Psi_{out}^{(1)}$ に対する境界条件は次の様に成る。	
$\Psi_{out}^{(1)}(x,Z/2) = -2Uh_{out}(x), \qquad \Psi_{out}^{(1)}(x,Z) = 0.$	(16-24)
エネルギ保存式(16-5)を暖気の下端の流線, (x=0,z=0)から(x=∞,z=h _{out}),に適用して, これ 式が得られる。	.の € の1次を考えて次
$U \partial \Psi_{out}^{(1)}(x, Z/2) / \partial z = h_{out}^{(1)}(x) \delta \Theta.$	(16-25)
方程式(16-23)の右辺が水平座標 x に依存しない事と境界条件(16-24)及びエネルギ条件(16-25)よ 平座標 x には依存しない。	:り h_{out} ⁽¹⁾ と Ψ_{out} ⁽¹⁾ は水
$h_{out}^{(1)} = const., \Psi_{out}^{(1)} = \Psi_{out}^{(1)}(z).$	(16-26)
同様に €の高次の項も水平座標 x には依存しない事を示せる。故に十分に成層が弱い時には遥か	下流(x=∞)で重力波は
生じない。	

 $h_{out} \; = \; \text{const.} \, , \qquad \Psi_{out} \; = \; \Psi_{out}(z) \qquad \text{if} \quad \text{NZ/U} \; \ll \; \pi \; .$

17 下ろし風 – 安定度の勾配の効果

既に第3節「非線形問題」で述べた様に、下ろした風は山の風下で強い風が吹き降りて来る現象である。図17-1参照。

但しZは遥か上流の大気の厚みである。遥か上流の速度Uと浮力振動数Nは一定と仮定してある。浮力振動数Nが一 定である事は、遥か上流の温位 Θ_{in} が鉛直座標zの一次関数である事を意味する。即ち $\Theta_{in}(z) = \Theta_{in}(0) + N^2 z_o F(x)$ は下 降して来る大気の厚みである。遥か上流(x=-∞)でF(-∞)=Zであり、風下の麓(x=0)でF(0)<Zである。淀み層(Z >z>F(x)+h(x))では温位 Θ は一定と仮定されている。Smith(1985)によれば、山の風下の麓(x,z)=(0,0)での下ろし 風の風速u(x=0,z=0)は次式で与えられる。

 $u(x=0,z=0) = NZ - U(\pi/2-1).$ (17-1)

式(17-1)の右辺の第1項は第2項に比べて遥かに大きい。従って下ろし風の大きさの程度は、大気の安定度(浮力振動数) Nと厚みZの積で与えられる。式(17-1)は遥か上流の大気の安定度Nが一定の場合の結論であるが、Kanehisa(1995c)は 安定度Nが一様でない場合を考察した。平均の安定度Nを一定にして、上層に強い安定度を持つ温位分布 $\Theta_U(z)$ と下層 に強い安定度を持つ温位分布 $\Theta_L(z)$ を考えた。図17-2参照。

(16-27)

-44-

Kanehisa (1995c) によれば、下層の安定度よりも上層の安定度の方が山の風下の麓での下ろし風の風速u(x=0,z=0) を強める。

$$u(x=0, z=0) > NZ - U(\pi/2-1) \text{ for } \Theta_{in}(z) = \Theta_{U}(z),$$

$$u(x=0, z=0) < NZ - U(\pi/2-1) \text{ for } \Theta_{in}(z) = \Theta_{L}(z), \qquad (17-2)$$

以下に Kanehisa (1995c)の概略を示す。

[1] 非強制 (F=H=0)の場合には,温位保存式(6-1)とエネルギ保存式(6-2)と渦位保存式(6-3)は次の形に簡単化される。

$$\Theta = \Theta [\Psi] = \Theta_{\rm in} [\Psi] , \qquad (17-3)$$

$$B = B[\Psi] = B_{in}[\Psi] , \quad B = (\partial \Psi / \partial z)^2 / 2 + \Phi - z\Theta , \qquad (17-4)$$

$$Q = Q[\Psi] = Q_{in}[\Psi] , \quad Q = \partial^2 \Psi / \partial z^2 - z d \Theta / d\Psi.$$
(17-5)

[2] 遥か上流での速度 u_{in}(z) は一定 U だが,安定度 d
$$\Theta_{in}(z)/dz$$
は一定ではない場合を考える。

$$\Psi_{in}(z) = Uz, \qquad \Theta_{in}(z) = \Theta_{in}(0) + N^2 z + \varepsilon \Xi [Uz] . \qquad (17-6a,b)$$

一般性を失う事なく $\Theta_{in}(z)$ は式(17-6b)の形に書ける。但し¢は安定度パラメタであり、 $\varepsilon = 0$ は一様安定度 d $\Theta_{in}/dz = N^2 = -$ 定を意味する。式(17-6b)より温位 Θ の関数形は次の形に決まる。

$$\Theta \left[\Psi \right] = \Theta_{in}(0) + (N^2/U) \Psi + \varepsilon \Xi \left[\Psi \right] .$$
(17-7)

式(17-6a)と式(17-7)を渦位保存式(17-5)に代入して,渦位Qの関数形は次の形に決まる。

$$Q[\Psi] = -(N^2/U^2)\Psi - \varepsilon(1/U)\Psi d\Xi/d\Psi.$$
(17-8)

式(17-7)と式(17-8)を渦位保存式(17-5)に代入して、次の流線関数Ψの方程式が得られる。

$$\partial^2 \Psi / \partial z^2 + (N^2/U^2) \left(\Psi - Uz \right) = -\varepsilon \left(1/U \right) \left(\Psi - Uz \right) d\Xi / d\Psi.$$
(17-9)

流線関数Ψの方程式(17-9)を境界条件

$$\Psi(\mathbf{x}, \mathbf{h}(\mathbf{x})) = \Psi_{in}(0) = 0, \qquad \Psi(\mathbf{x}, \mathbf{h}(\mathbf{x}) + F(\mathbf{x})) = \Psi_{in}(Z) = UZ.$$
(17-10)

の下に解いて流線関数 Ψ (従って速度 u= $\partial \Psi / \partial z$)を得る事ができる。これは鉛直座標 z の関数であるが、山の形 h(x) と大気の厚み F(x)を通じて水平座標 x の関数と成る。さらに安定度パラメタ ϵ および関数日、そして勿論遥か上流の大 気の厚み Z にも依存する(勿論遥か上流の速度 U にも依存するが、U は固定された定数と考える)。 $\Psi = \Psi(z, h(x), F(x), Z; \epsilon \Xi).$ (17-11)

[3] 下降して来る大気の上端(z=h(x)+F(x))は一つの流線である。エネルギ保存式(17-4)をこの上端に適用して次

式が得られる。

$$U^{2}/2 + \Phi_{in}(Z) - Z\Theta_{in}(Z) = u^{2}/2 + \Phi - z\Theta \quad \text{on } z = h(x) + F(x).$$
(17-12)

淀み層(Z>z>h(x)+F(x))では温位Θが一定である。

$$\Theta = \Theta_{in}(Z) = \Theta_{in}(0) + N^2 Z + \varepsilon \Xi [UZ] \quad \text{for } Z > z > h(x) + F(x), \qquad (17-13)$$

式(17-13)および静水圧方程式(5-1)より保存式(17-12)は次の形に簡単化される。

$$u = U$$
 on $z = h(x) + F(x)$. (17-14)

[4] 式(17-11)の流線関数Ψを鉛直座標 z で微分して水平速度 u が得られる。

$$\mathbf{u} = \partial \Psi(\mathbf{z}, \mathbf{h}(\mathbf{x}), \mathbf{F}(\mathbf{x}), \mathbf{Z}; \boldsymbol{\varepsilon} \boldsymbol{\Xi}) / \partial \mathbf{z}.$$
(17-15)

この速度 u は z = h(x) + F(x)でエネルギ保存式(17-14)を満たさねばならない。式(17-15)を式(17-14)に代入して, h(x) と F(x) と Z の間の関係式が得られる。

$$\Omega(\mathbf{h}(\mathbf{x}), \mathbf{F}(\mathbf{x}), \mathbf{Z}; \boldsymbol{\varepsilon} \boldsymbol{\Xi}) = 0.$$
(17-16)

関係式(17-16)は大気の厚みF(x)の、山の形h(x)と遥か上流の大気の厚みZへの依存性を表している。式(17-16)より、 風下の麓(x=0)での大気の厚みF(0)は次の方程式の解で与えられる。

$$\Omega(0, F(0), Z; \epsilon \Xi) = 0.$$
(17-17)

これには二つの解が在る。一つはF(0) = Zである。即ち大気の厚みF(x)は麓(x=0)で元の遥か上流 $(x=-\infty)$ の値Zに 戻る。従って下ろし風は起こらない。

$$F(x=-\infty) = Z.$$
 $F(x=x_m) = F_m < Z.$ $F(x=0) = Z.$ (17-18)

但し山の高さh(x)が最大 h_m となる点を $x=x_m$ と書いた。即ち

$$h(x_m) = Max \{h(x)\} = h_m.$$
 (17-19)

他の解はF(0) < Z と成る。即ち大気の厚み<math>F(x)は麓(x=0)で遥か上流 $(x=-\infty)$ の値Zよりも小さく成る。従って風が 吹き降りて来る。

$$F(x=-\infty) = Z$$
. $F(x=x_m) = F_m < Z$. $F(x=0) < F_m < Z$. (17-20)

第一の解(17-18)はいつでも可能である。第二の解(17-20)は次の条件が満たされる時にのみ可能である。

$$\Omega(\mathbf{h}_{\mathrm{m}},\mathbf{F}_{\mathrm{m}},\mathbf{Z};\boldsymbol{\epsilon}\Xi) = 0 \quad \text{and} \quad \partial \Omega(\mathbf{h}_{\mathrm{m}},\mathbf{F}_{\mathrm{m}},\mathbf{Z};\boldsymbol{\epsilon}\Xi)/\partial \mathbf{F} = 0.$$
(17-21)

式(17-21)の第2式は大気の厚みF(x)が、山の高さh(x)が最大と成る点 $x = x_m$ で下降し続ける為の必要条件である。式 (17-21)の第1式と第2式からFmを消去して下ろし風の起こる条件式が得られる。

$$h_m = h_m[Z; \varepsilon \Xi] \quad .$$

-46-

気象研究所技術報告 第38号 1999

遥か上流の大気の厚みZと山の高さの最大値hmが此の条件(17-22)を満たす時にのみ下ろし風が起こる。

[5]式(17-15)に第二の解(17-20)を代入して風下の山の麓(x=0,z=0)での風速を求める事ができる。安定度パラメタ ε が零(即ち遥か上流の安定度が一様)の時には u (x=0,z=0) は Smith (1985)の解(17-1) に一致する。

 $u(x=0,z=0; \varepsilon \Xi) = \partial \Psi(0,0,F(0),Z; \varepsilon \Xi) / \partial z,$

 $u(x=0,z=0;0) = NZ - U(\pi/2-1).$ (17-23)

いま関数日[Ψ]の形として次のものを考える。

$$\Xi \left[\Psi \right] = \Psi \left(UZ - \Psi \right). \tag{17-24}$$

この関数形(17-24)を式(17-7)に代入して,遥か上流の安定度は次式で与えられる。

$$d\Theta_{in}(z)/dz = N^2 + \varepsilon U^2(Z-2z). \qquad (17-25)$$

安定度パラメタ ∈ が正の時は安定度は下層に集中し、負の時は上層に集中する。安定度パラメタ ∈ が零でない時に式 (17-23)をあからさまに書き下す事はできない。しかし ∈ が小さい時には近似計算を行う事ができる。そして ∈ =0での 微分係数を求める事ができる。

$$du(x=0,z=0, \epsilon=0)/d\epsilon < 0.$$
 (17-26)

即ち上層の安定度が下ろし風を強める事が分かる。

18 下ろし風 ー 非断熱加熱の効果

Kanehisa (1997b) によれば、非断熱強制が可逆的 (比例係数が上昇流域と下降流域で同じ) 或は非可逆的 (下降流域の比 例係数が上昇流域の比例係数よりも小さい) とに拘らず、下ろし風の風速 u (x=0,z=0) は、断熱の場合 (即ち式(17-1)) よりも小さく成る。非可逆的の場合の風速は可逆的の場合の風速よりも大きく成る。

-47-

$u(x=0,z=0; 可逆) < u(x=0,z=0; 非可逆) < u(x=0,z=0; 断熱) = NH - U(\pi/2-1).$	(18-1)
以下に Kanehisa (1997b)の概略を示す。	
[1]加熱強制が在る場合(F=0,H≠0)には温位保存式(6-1)とエネルギ保存式(6-2)と渦位保存式(6-3)は次	の様に成る。
$\Theta = \Theta [\Psi, \mathbf{x}] = \Theta_{\mathrm{in}} [\Psi] + \int_{-\infty}^{\mathbf{x}} \mathrm{d}\mathbf{x} \mathrm{H/u},$	(18-2)
$B = B[\Psi, x] = B_{in}[\Psi] - \int_{-\infty}^{x} dx z H/u, \qquad B = (\partial \Psi/\partial z)^{2}/2 + \Phi - z\Theta.$	(18-3)
$Q = Q[\Psi, x] = Q_{in}[\Psi] - (\partial/\partial \Psi) \int_{-\infty}^{x} dx z H/u, Q = \partial^{2} \Psi/\partial z^{2} - z \partial \Theta/\partial \Psi.$	(18-4)
[2] 非断熱加熱 H として鉛直速度 w に比例するものを考える。	
$H = \gamma^{2} \Gamma (w) w = \gamma^{2} \Gamma (w) \partial (\Psi, z) / \partial (x, z),$	(18-5)
但し γ^2 は加熱パラメタであり、 γ^2 =0は断熱を意味する。関数 $\Gamma(w)$ は次の様な階段関数である。	
$\Gamma\left(w\right)\ =\ 1 \text{for} w\ >\ 0,\qquad \Gamma\left(w\right)\ =\ a\ \text{positive\ const.}\ \le\ 1 \text{for}\ w\ <\ 0.$	(18-6)
特に $\Gamma(w<0)=1$ の場合を可逆的と言う。 $\Gamma(w<0)<1$ の場合を非可逆的と言う。先ず可逆的の場合を考え、	る。可逆的の
場合には $w/u = -\partial(z, \Psi)/\partial(x, \Psi)$ に注意して,流線 $\{\Psi = -c\}$ に沿っての積分を実行して,温位保存	式(18-2)とエ
ネルギ保存式(18-3)と渦位保存式(18-4)は次の様に成る。	
$\Theta = \Theta [\Psi, x] = \Theta_{in} [\Psi] + \gamma^2 \{z - z_{in} [\Psi]\}$,	(18-7)
$B = B[\Psi, x] = B_{in}[\Psi] - (\gamma^2/2) \{z^2 - z_{in}[\Psi]^2\},$	(18-8)
$Q = Q[\Psi, x] = Q_{in}[\Psi] - \gamma^2 z \partial z / \partial \Psi + \gamma^2 z_{in}[\Psi] dz_{in}[\Psi] / d\Psi,$	(18-9)
但しz _{in} [Ψ] は流線 {Ψ=一定} の遥か上流での高度である。	
[3] 遥か上流では大気の速度 uinは一定 U で,安定度(浮力振動数)も一定N ² とする。	
$\Psi_{in}(z) = Uz, \Theta_{in}(z) = \Theta_{in}(0) + N^2 z.$	(18-10)
式 $(18-10)$ より $z_{in}[\Psi]$ と $\Theta_{in}[\Psi]$ と $Q_{in}[\Psi]$ の関数形は次の様に決まる。	
$z_{in}[\Psi] = \Psi/U.$ $\Theta_{in}[\Psi] = \Theta_{in}(0) + (N^2/U)\Psi.$	
$Q_{in}[\Psi] = -(N/U)^2 \Psi.$	(18-11a,b,c)
式(18-7)と式(18-11)を式(18-9)に代入して次の流線関数Ψの方程式が得られる。	
$\partial^2 \Psi / \partial z^2 + (N/U)^2 (\Psi - U_Z) = (\gamma / U)^2 (\Psi - U_Z).$	(18-12)
方程式(18-12)を境界条件	

$$\Psi(\mathbf{x}, \mathbf{h}(\mathbf{x})) = \Psi_{in}(0) = 0, \qquad \Psi(\mathbf{x}, \mathbf{h}(\mathbf{x}) + \mathbf{F}(\mathbf{x})) = \Psi_{in}(Z) = \mathbf{U}Z.$$
(18-13)

の下に解いて流線関数Ψを得る事ができる。

[4] 吹き降りて来る大気の上端(z=h(x)+F(x))は一つの流線である。エネルギ保存式(18-3)と(18-8)を此の上端に 適用して次式を得る。

 $u^{2}/2 + \Phi - z\Theta = U^{2}/2 + \Phi_{in}(Z) - Z\Theta_{in}(Z) - (\gamma^{2}/2) \{z^{2} - z_{in}[UZ]^{2}\}$ on z = h(x) + F(x). (18-15) 温位保存式(18-7)と式(18-11a)を代入して、エネルギ保存式(18-15)は次の形に成る。

 $u^{2}/2 = U^{2}/2 + \Phi_{in}(Z) - \Phi + (z-Z)\Theta_{in}(Z) + (\gamma^{2}/2)(z-Z)^{2} \quad \text{on} \quad z = h(x) + F(x).$ (18-16)

淀み層(Z>z>h(x)+F(x))では流線関数Ψは一様である事に注意して,静水圧方程式(5-1)を積分して次式を得る。

$$\Phi = \Phi_{in}(Z) + (z-Z)\Theta_{in}(Z) + (\gamma^2/2)(z-Z)^2 \quad \text{on} \quad z = h(x) + F(x). \quad (18-17)$$

式(18-17)を式(18-16)に代入してエネルギ保存式は次の形に簡単化される。

$$u = U$$
 on $z = h(x) + F(x)$. (18-18)

[5] 流線関数 Ψ の方程式(18-12)は勿論加熱パラメタ γ^2 に依存する。しかしこれは($N^2 - \gamma^2$)と言う形を通じてのみ依存する。境界条件(18-13)は加熱パラメタ γ^2 を含まない。エネルギ条件式(18-13)も加熱パラメタ γ^2 を含まない。即ち境界条件式とエネルギ条件式は断熱($\gamma^2=0$)の場合と同じである。且つ方程式も N^2 が($N^2 - \gamma^2$)に置き変わっているだけである。故に可逆的非断熱(Γ (w>0) = Γ (w<0) = 1)の場合の解は断熱($\gamma^2=0$)の場合の解の N^2 を($N^2 - \gamma^2$) に置き換えたものに成る。

$$\Psi = \Psi(z, h(x), F(x); N^2 - \gamma^2).$$
(18-19)

従って風下の山の麓(x,z)=(0,0)での下ろし風の風速u(x=0,z=0)も,断熱(γ²=0)の場合の式(17-1)のN²をN²-γ²で 置き換えたものに成る。

$$u(x=0,z=0; \overline{\Pi} \oplus \overline{B}) = (N^2 - \gamma^2)^{1/2} Z - U(\pi/2-1).$$
(18-20)

これは断熱(γ²=0)の場合の値(17-1)よりも小さい。即ち可逆的非断熱によって下ろし風は弱く成る。

[6] 式 (18-19) から分かる様に,可逆的非断熱 (Γ (w > 0) = Γ (w < 0) = 1) の効果は,実質的な安定度を,N²からN²- γ^{2} に減少させる事である。即ち可逆的非断熱は安定度を小さくする。

安定度(断熱) = N^2 > 実質的安定度(可逆的非断熱) = $N^2 - \gamma^2$ (18-21)

非可逆的非断熱 (Γ (w>0) =1, Γ (w<0) <1) では下降領域 (w<0) での非断熱効果が,可逆的非断熱に比べて小さい。故 に実質的な安定度の減少も弱いと予想される。

 $安定度(断熱) = N^2 > 実質的安定度(非可逆的非断熱)$

> 実質的安定度(可逆的非断熱) =
$$N^2 - \gamma^2$$
. (18-22)

-49-

可逆的非断熱の場合と同じ様な解析によって,実際に式(18-22)が成り立つ事を示す事ができる。従って非可逆的非断熱の下ろし風の大きさは断熱の場合よりも小さく,可逆的非断熱の場合よりも大きく成る。

 $u(x=0,z=; M M) > u(x=0,z=0; \# T \oplus M) > u(x=0,z=0; T \oplus M).$ (18-23)

19 回転系での山越え気流

回転系での山越え気流(即ち地球の回転を考慮に入れた山越え気流)に就いては色々な数値実験が知られている。それ らの結果に依ると(x,z)鉛直2次元断面内の流れの様子は,地球回転の影響をあまり受けない様である。これは第12節「地 球回転の効果 – 近似系」で示した事「(無次元化された)fの1次迄の近似では(x,z)鉛直2次元断面内の流れの様子は地 球回転の影響を受けない」と矛盾しない。Kanehisa(1997a)は上空に蓋が在る場合の回転系での山越え気流の一つの厳密 解を求めた。図19-1参照。

遙か上流では、x方向の速度成分 $u_{in}(z)$ は一定Uとし、y方向の速度成分 $v_{in}(z)$ を零とした。成層は中立(即ち d $\Theta_{in}(z)/dz=0$)とした。この場合には(x,z)鉛直2次元断面内の速度成分(u,w)は(近似なしに正確に)地球回転の 影響を全く受けず、非回転系での解 (u_0,w_0) に等しい。また地球回転の影響に依って惹起されたy方向の速度成分vは(近 似なしに正確に)コリオリ因子fに比例する。

$$u = u_{0} = UZ / \{U-h(x)\}, \qquad w = w_{0} = UZ (Z-z) \{dh(x)/dx\} / \{Z-h(x)\}^{2},$$

$$v = -f(1/Z) \int_{-\infty}^{x} dxh(x) \qquad \text{if } u_{in}(z) = U, \qquad v_{in}(z) = 0 \quad \text{and} \quad d\Theta_{in}(z)/dz = 0.$$
(19-1)

以下に Kanehisa (1997a)の概略を示す。

[1] 非強制(H=F=0)の場合には回転系での温位保存式(11-4)とエネルギ保存式(11-6)と渦位保存式(11-8)は次の形 に簡単化される。

$$\Theta^{f} = \Theta^{f}[\Psi] = \Theta^{f}_{in}[\Psi] , \qquad \Theta^{f} = \Theta - f\Lambda \eta , \qquad (19-2)$$

$$B^{f} = B^{f}[\Psi] = B^{f}_{in}[\Psi] , \qquad B^{f} = u^{2}/2 + v^{2}/2 + \Phi - z\Theta - fU\eta , \qquad (19-3)$$

$$Q^{f} = Q^{f}[\Psi] = Q^{f}_{in}[\Psi] , \qquad Q^{f} = \partial^{2}\Psi / \partial z^{2} - zd\Theta^{f}/d\Psi - \partial (\eta, v+fx) / \partial (z, x)$$
(19-4)

[2] 遥か上流での速度のx成分は一定U(即ち Λ =0)とする。速度のy成分	は零とする。
$u_{in}(z) = U$, i.e., $\Psi_{in}(z) = Uz$, and $v_{in}(z) = 0$.	(19-5a,b)
式(19-5a)を式(10-4)に代入して,温位 Ø の y 方向の勾配は零と成る。	
$\partial \Theta / \partial y = \partial \Theta_{in} / \partial y = 0.$	(19-6)
遥か上流の成層は中立 (即ち∂ Θ _{in} / ∂z=0)とする。これと式 (19-6)より Θ _{in} は り Θ ^f [Ψ] = Θ [Ψ] = Θ _{in} [Ψ] は至る所で一定と成る。	定数⊕ _№ と成る。故に温位保存式 (19-2)よ
$\Theta^{f}[\Psi] = \Theta[\Psi] = \Theta_{N}$ const	(19-7)
式(19-5b)より v _{in} = η _{in} =0である。これと式(19-5a)より渦位保存式(19-4)の	$Q^{\mathrm{f}}[oldsymbol{\Psi}] = Q^{\mathrm{f}}_{\mathrm{in}}[oldsymbol{\Psi}]$ は零に成る。
$Q^{\mathrm{f}}[\Psi] = 0.$	(19-8)
式(19-7)と式(19-8)を渦位保存式(19-4)に代入して,次の方程式が得られる。	
$\partial^2 \Psi / \partial z^2 - \partial (\eta_{v+fx}) / \partial (z,x) = 0.$	(19-9)
[3] 摩擦Gが零である事および式(10-3)を代入して, y方向の運動方程式(1	0-2) は次の形に成る。
$\partial (\Psi, \mathbf{v}) / \partial (\mathbf{z}, \mathbf{x}) = f(\mathbf{U} - \mathbf{u}).$	(19-10)
式(19-5b)に注意して式(19-10)を流線 {Ψ=一定} に沿って積分して次式と成	220
$\mathbf{v} = \int_{-\infty}^{x} d\mathbf{x} (\mathbf{U}/\mathbf{u}-1), \mathbf{u} = \partial \Psi / \partial z.$	(19-11)
η _{in} =0に注意して式(11-2)を流線 {Ψ=一定} に沿って積分して次式と成る。	
$\eta = \int_{-\infty}^{x} dx (v/u), u = \partial \Psi / \partial z.$	(19-12)
式 (19-11) と式 (19-12) を式 (19-9) に代入して流線関数 Ψ の方程式が得られる。 無限大) を仮定する。この場合には境界条件は次の様に成る。	、上空 z = Z に硬い蓋 (即ち z⟩ Z で安定度が
$\Psi(\mathbf{x}, Z) = \Psi_{\mathrm{in}}(Z) = UZ, \qquad \Psi(\mathbf{x}, \mathbf{h}(\mathbf{x})) = \Psi_{\mathrm{in}}(0) = 0.$	(19-13a,b)
境界条件(19-13a,b)の下に方程式(19-9,11,12)を解いて流線関数 Ψ (従って流	れの速度(u,w))を得る事ができる。
[4] (無次元化された) コリオリ因子fは小さい。そこで諸量をfで展開する	0
$A = A^{(0)} + fA^{(1)} + f^{2}A^{(2)} + f^{3}A^{(3)} + \cdots$	(19-14)
式 (19-11) と式 (19-12) より 7 ⁽⁰⁾ と v ⁽⁰⁾ は零である。	
$\eta^{(0)} = v^{(0)} = 0.$	(19-15)
式(19-15)を式(19-9)に代入して, $\Psi^{(0)}$ と $\Psi^{(1)}$ は次の方程式を満たす。	

-51-

$\partial^2 \Psi^{(0)} / \partial z^2 = 0, \qquad \partial^2 \Psi^{(1)} / \partial z^2 = 0.$		(19-16)
境界条件(19-13)の下に式(19-16)を解いて、 $\Psi^{(0)}$ と $\Psi^{(1)}$ は次式で与えら	n3.	
$\Psi^{(0)} = UZ \{z-h(x)\} / \{Z-h(x)\}, \qquad \Psi^{(1)} = 0.$		(19-17)
式(19-17)を式(19-11)と式(19-12)に代入して η ⁽¹⁾ , v ⁽¹⁾ と η ⁽²⁾ , v ⁽²⁾ が次の	の様に決まる。	
$v^{(1)} = \int_{-\infty}^{x} dx (U/u^{(0)} - 1), \qquad u^{(0)} = \partial \Psi^{(0)} / \partial z.$		
$\eta^{(1)} = \int_{-\infty}^{x} dx (v^{(1)}/u).$		(19-18)
$v^{(2)} = \eta^{(2)} = 0.$		(19-19)
以下同様にして次式を得る事ができる。		
$\Psi^{(n)} = \eta^{(n)} = v^{(n)} = 0, \qquad n = 2,3,4, \cdots.$		(19-20)
[5] 式(19-17)と式(19-18)と式(19-19)と式(19-20)より次の式を得る。	· · · · · · · · · · · · · · · · · · ·	
$\Psi = \Psi^{(0)} = UZ \{z-h(x)\} / \{Z-h(x)\}$,	. 1	
$v = fv^{(1)} = f \int_{-\infty}^{x} dx (U/u^{(0)} - 1).$		
$\eta = f \eta^{(1)} = f \int_{-\infty}^{x} dx (v^{(1)}/u).$		(19-21)
式(19-21)の最初の2式より直ちに(u,w,v)が得られる。		
u = u(f=0) = UZ/ Z-h(x) ,		
$w = w(f=0) = UZ(Z-z) \{dh(x)/dx\} / \{Z-h(x)\}^2,$		
$v = -f(1/Z) \int_{-\infty}^{x} dx h(x) .$		(19-22)
(\mathbf{x}_{z}) 鉛直2次元新面内の速度 (\mathbf{u}_{w}) は地球回転の影響を受けない。断面	こ垂直な v 方向の速度 v はコリオリB	日子fに比例

(x,z)鉛直2次元断面内の速度(u,w)は地球回転の影響を受けない。断面に垂直なy方向の速度vはコリオリ因子fに比例 し、遥か上流から点x迄の山の断面積 $\int_{-\infty}^{x} dxh(x)$ を大気の高度Zで割った物に比例する。少々複雑な計算の後にy方向 の変位 η は次式で与えられる。

$$\eta = (f/ZU) \int_{-\infty}^{x} d\xi (x-\xi) h(\xi) + (f/2Z^{2}U) \{\int_{-\infty}^{x} dx h(x)\}^{2}.$$
(19-23)

山の風下では y 方向の速度 v は一定(負) であり y 方向の変位 η は水平座標 x の一次関数で減少する。

-52-

20 山岳効力

大気の流れが山h(x)に当たると波が生まれる。この波は上方へ運動量を運び去る。その結果,大気は運動量の一部を 失う。即ち山から抵抗力D[h]を受ける。この抵抗力が山岳効力である。図20-1参照。

遥か上流で速度 u_{in}(z)が一定 U かつ浮力振動数も一定 N の場合には、山の形 h(x)に対する山岳効力 D[h] は、線形近 似で次の公式で与えられる。

$D_{L}[h] = NU / _{-\infty} dk k h(k) ^{2}$.			(20-1)
--	--	--	--------

但しh(k)はh(x)のフウリエ変換である。下添字Lで線形近似を表した。Kanehisa(1997c)等は線形公式(20-1)が非線形 性によってどの様に変更されるのかを調べた。Kanehisa(1997c)等によると以下の事が成り立つ。山の形h(x)が対称(h(-x)=h(x))の時には「h(x)→-h(x)」の置き換えによって山岳効力は変わらない。また山岳効力は線形公式(20-1)の 値よりも大きい。図20-2参照。

即ち山h(x)と谷-h(x)は同じ山岳効力を生み出す。

D[-h] = D[h] and $D[h] > D_L[h]$ if h(-x) = h(x). (20-2)

山の形h(x)が負反対称(h(-x) = -h(x), xh(x) < 0)の時には $[h(x) \rightarrow -h(x)]$ の置き替えによって山岳効力は小さく成る。また山岳効力は線形公式(20-1)よりも大きい。図20-3参照。

勿論, h(x)が負反対称ならば-h(x)は正反対称である。

D[-h] < D[h] and $D[h] > D_L[h]$ if h(-x) = -h(x) and xh(x) < 0. (20-3)

山の形h(x)が正反対称(h(-x) = -h(x), xh(x) > 0)の時には式(20-3)より $\lceil h(x) \rightarrow -h(x)
floor$ の置き換えによって山岳 効力は大きく成る。また山岳効力は、山の高さ $h_m = Max \{h(x)\}$ が十分に小さければ線形公式(20-1)の値よりも小さい。 山の高さ h_m が或程度大きく成れば線形公式の値よりも大きく成る。

$$D[h] < D_L[h] \text{ for } h_m < h_c \text{ and } D[h] > D_L[h] \text{ for } h_m > h_c \text{ with some } h_c$$

$$if \quad h(-x) = -h(x) \text{ and } xh(x) < 0. (20-4)$$

以下の Kanehisa (1997c) 等の概略を示す。

[1] 非強制(F=H=0)の場合には,温位保存式(6-1)とエネルギ保存式(6-2)と渦位保存式(6-3)と渦位エネルギ関係式(7-1)は次の形に簡単化される。

$\Theta = \Theta[\Psi] = \Theta_{\rm in}[\Psi].$	(20-5)
$B = B[\Psi] = B_{in}[\Psi], B = (\partial \Psi / \partial z)^2 / 2 + \Phi - z \Theta,$	(20-6)
$Q = Q[\Psi] = Q_{in}[\Psi]$, $Q = \partial^2 \Psi / \partial z^2 - z d\Theta / d\Psi$,	(20-7)
$Q[\Psi] = dB[\Psi]/d\Psi.$	(20-8)
[2] 遥か上流での浮力振動数は一定 N で風速も一定 U とする。	
$\Theta_{in}(z) = \Theta_{in}(0) + N^2 z, \qquad \Psi_{in}(z) = Uz.$	(20-9)
これより式(20-5)の温位Θ[Ψ]と式(20-7)の渦位Q[Ψ]の関数形は次の様に決まる。	
$\Theta[\Psi] = \Theta_{in}(0) + (N^2/U)\Psi, \qquad Q[\Psi] = -(N^2/U^2)\Psi.$	(20-10a b)

更に渦位エネルギ関係式(20-8)と式(20-10b)より,式(20-6)のエネルギB[Ψ]の関数形は次の形に決まる。

-54-

$B[\Psi] = U^2/2 + \Phi_{in}(0) - (N^2/2U^2) \Psi^2$. The set of the set	(20-11)
式(20-10)を渦位保存式(20-7)に代入して、次の流線関数Ψの方程式が得られる。	1.1 1.3
$\partial^2 \Psi / \partial z^2 + (N^2/U^2) \Psi = (N^2/U) z.$	(20-12)
[3] 山岳効力 D [h] は山 h (x)の面が大気を押す水平方向の力である。即ち大気が山の面を押す水平方向の圧力 合である。	」の逆符
$D[h] = \int_{z=h(x)} dz \Phi = \int_{z=h(x)} dx (dh/dx) \Phi.$	(20-13)
山の斜面 z=h(x) は一つの流線 {Ψ=0} である。従って式(20-6)と式(20-10a)と式(20-11)より山の斜面でのΦ で与えられる。	≥は次式
$\Phi = U^2/2 + \Phi_{in}(0) - u^2/2 + h\Theta_{in}(0)$ on $z = h(x)$	(20-14)
式(20-14)を式(20-13)に代入して次の山岳効力の式が得られる。	
$D[h] = -(1/2) \int_{-\infty}^{+\infty} dx (dh/dx) u(x, h(x))^{2}.$	(20-15)
[4] 流線関数Ψの方程式(20-12)の上部放射境界条件を満たす解は、一つの未知関数A(x)を使って次の様に書	ける。
$\Psi(\mathbf{x},\mathbf{z}) = \mathbf{U}\mathbf{z} + \mathbf{A}(\mathbf{x})\cos(\mathbf{N}\mathbf{z}/\mathbf{U}) - \mathbf{I}\mathbf{A}(\mathbf{x})\sin(\mathbf{N}\mathbf{z}/\mathbf{U}).$	(20-16)
式(20-16)の演算子 I は次の式で定義される。	
IA (x) = $-\int_{-\infty}^{+\infty} dk \{e^{ikx}/(2\pi)^{1/2}\} (ik/ k) A(k)$.	(20-17)
但しA(k)はA(x)のフウリエ変換である。	
A (k) = $\int_{-\infty}^{+\infty} dk \{ e^{-ikx} / (2\pi)^{1/2} \} A(x) .$	(20-18)
式(20-16)のΨは次の下端の境界条件を満たさねばならない。	
$\Psi(\mathbf{x},\mathbf{h}(\mathbf{x})) = \Psi_{in}(0) = 0.$	(20-19)
この条件(20-19)より関数 A (x) は次の様に決まる。	•
$(N/U^2)A = -\Xi/\cos\Xi - \tan\Xi \cdot I(\Xi/\cos\Xi) - \tan\Xi \cdot I\tan\Xi \cdot I(\Xi/\cos\Xi) - \cdots$	

$$= -\sum_{n=0}^{\infty} (\tan \Xi \cdot I)^n (\Xi/\cos \Xi) . \qquad \Xi(x) = Nh(x)/U.$$
(20-20)

但し日(x)=Nh(x)/Uは無次元化された山の高さである。式(20-20)で例えば、-tan日・I(日/cos日)は、日/cos
 日に先ず演算子Iを作用させ、次にtan日を掛け、次に演算子Iを作用させ、最後にtan日を掛ける事を意味する。式
 (20-16)を鉛直座標zで微分し、式(20-20)を代入して山の斜面(z=h(x))での速度が得られる。

$$(1/U)u(x,h(x)) = 1 + \Xi \tan \Xi + (1/\cos \Xi) I \Sigma_{n=0}^{\infty} (\tan \Xi \cdot I)^{n} (\Xi/\cos \Xi).$$
(20-21)

式(20-21)を山岳効力の式(20-15)に代入して、与えられた山h(x)に対する山岳効力D[h]を求める事ができる。

-55-

[5] 式(20-21)の無限和を日の偶関数の部分と、奇関数の部分に分ける。	с. Т
$u/U = I + \Xi \tan \Xi + EVEN + ODD.$. •
EVEN = $(1/\cos\Xi) I \Sigma_{n=0}^{\infty} (\tan\Xi \cdot I)^{2n+1} (\Xi/\cos\Xi)$.	
ODD = $(1/\cos\Xi) I \Sigma_{n=0}^{\infty} (\tan\Xi \cdot I)^{2n} (\Xi/\cos\Xi)$.	(20-22)
式(20-22)を山岳効力の式(20-15)に代入して, Ξ(x)が対称(即ちΞ(-x)=Ξ(x))の場合には山岳効力は次の用 される。	彡に簡単化
$D[h] = -(U^3/N) \int_{-\infty}^{+\infty} dx (d\Xi/dx) (1 + \Xi \tan \Xi + EVEN) \cdot ODD.$	(20-23)
式(20-23)より, Ξ(x)を-Ξ(x)に置き換えても山岳効力は変わらない事が分かる。	
D[h] = D[-h] for symmetric $h(x)$.	(20-24)
演算子 I の定義式 (20-17)より (1+日tan日+EVEN)と ODD の優勢な部分は各々 1+日tan日と (1/cos日) I (日/c る。これを考慮して式 (20-23) の優勢な部分は	:os E) であ
$D[h] \sim -(U^3/N) \int_{-\infty}^{+\infty} dx (d\Xi/dx) (1 + \Xi \tan \Xi) (1/\cos \Xi) I(\Xi/\cos \Xi).$	(20-25)
と成る。式 (20-23)より線形近似(Eが無限小)の場合には山岳効力は次の形に簡単化される。	
$D_{L}[h] = -(U^{3}/N) \int_{-\infty}^{+\infty} dx (d\Xi/dx) I\Xi.$	(20-26)
式(20-25)と式(20-26)を比較して、山岳効力は線形近似の値よりも大きい事が分かる。	
$D[h] > D_L[h]$ for a symmetric $h(x)$.	(20-27)
反対称なE(x)に対しても同様の議論をする事ができる。	
	•••••
第14節から第20節に述べた以外にも関連したものにKanehica (1994) kanehica (1995h) Kanehi	sa (1995a)

第14節から第20節に述べた以外にも関連したものにKanehisa(1994), kanehisa(1995b), Kanehisa(1995e), Kanehisa(1996a). Kanehisa(1996b), Kanehisa(1996c)が在る。

-56-

21 参考文献

Benjamin, B, T., 1968: Gravity current and related phenomena. J. Fluid Mech., 31,209-248.

Kanehisa, H., 1993a: Density currents in jet shear flows. J. Meteor. Soc. Japan. 71,633-636.

- Kanehisa, H., 1993b: Ageostrophic circulation equations (C-vector equations) in semigeostrophic and primitive systems. Pap. Met. Geophys., 44,39-44.
- Kanehisa, H., 1994 : Downslope windstorms in a sheared environmental flow having density decrease with height. J. Meteor. Soc. Japan, 72,613-619.
- Kanehisa, H., 1995a : Density currents in weakly stratified environmental flows with weak shear. J. Meteor. Soc. Japan. 73, 125-129.
- Kanehisa, H., 1995b : Density currents with cold air circulation. J. Meteor. Soc. Japan, 73,827-831.
- Kanehisa, H., 1995c: Downslope windstorms in a uniform environmental flow with non-uniform potential temperature gradient. J. Meteor. Soc. Japan, 73.833-837.
- Kanehisa, H., 1995d : A note on gravity waves assosiated with a density current. J. Meteor. Soc. Japan, 73, 1161-1166.

Kanehisa, H., 1995e : A note on density currents with energy loss. Pap. Met. Geophys., 45. 97-103.

Kanehisa, H., 1996a : Downslope windstorms on an f-plane. J. Meteor. Soc. Japan, 74, 141-146.

- Kanehisa, H., 1996b: A relationship between the Bernoulli function and potential vorticity. J. Meteor. Soc. Japan, 74, 383-386.
- Kanehisa, H., 1996c : Downslope windstorms over a 3-dimensional mountain. J. Meteor. Soc. Japan, 74, 709-714.
- Kanehisa, H., 1997a : Conserved quantities in a 2-dimensional steady flow on an f-plane with an application to a flow over a mountain. J. Meteor. Soc. Japan, 75, 1165-1170.

Kanehisa, H., 1997b: Effect of a diabatic forcing on downslope windstorms. J. Meteor. Soc. Japan, 75, 1187-1192.

Kanehisa, H., 1997c : A weakly nonlinear correction for the linear mountain drag formula. Pap. Met. Geophys., 48, 67-71.

Smith, R. B., 1985: On the severe downslope winds. J. Atmos. Sci., 42. 2597-2603.

Xu, Q., 1992 : Density currents in shear flows. J. Atmos. Sci., 49, 511-524.

- 第1号 バックグラウンド大気汚染の測定法の開発(地球規模大気汚染特別研究班, 1978) Development of Monitoring Techniques for Global Background Air Pollution (MRI Special Research Group on Global Atmospheric Pollution, 1978)
- 第2号 主要活火山の地殻変動並びに地熱状態の調査研究(地震火山研究部, 1979) Investigation of Ground Movement and Geothermal State of Main Active Volcanoes in Japan (Seismology and Volcanology Research Division, 1979)
- 第3号 筑波研究学園都市に新設された気象観測用鉄塔施設(花房龍男・藤谷徳之助・伴野 登・魚津 博, 1979) On the Meteorological Tower and Its Observational System at Tsukuba Science City (T. Hanafusa, T. Fujitani, N. Banno and H. Uozu, 1979)

第4号 海底地震常時観測システムの開発(地震火山研究部, 1980)

Permannt Ocean-Bottom Seismograph Observation System (Seismology and Volcanology Research Division, 1980)

- 第5号 本州南方海域水温図——400m (又は500m) 深と1000m 深—— (1934-1943年及び1954-1980年) (海洋研究部, 1981) Horizontal Distribution of Temperature in 400m (or 500m) and 1000m Depth in Sea South of Honshu, Japan and Western-North Pacific Ocean from 1934 to 1943 and from 1954 to 1980 (Oceanographical Research, 1981)
- 第6号 成層圏オゾンの破壊につながる大気成分および紫外日射の観測(高層物理研究部, 1982) Observations of the Atmospheric Constituents Related to the Stratospheric Ozone Depletion and the Ultraviolet Radiation (Upper Atmosphere Physics Research Division, 1982)
- 第7号 83型強震計の開発(地震火山研究部, 1983) Strong-Motion Seismograph Model 83 for the Japan Meteorological Agency Network (Seismology and Volcanology Research Division, 1983)
- 第8号 大気中における雪片の融解現象に関する研究(物理気象研究部, 1984)

The Study of Melting of Snowflakes in the Atmosphere (Physical Meteorology Research Division, 1984)

- 第9号 御前崎南方沖における海底水圧観測(地震火山研究部・海洋研究部, 1984) Bottom Pressure Observation South off Omaezaki, Central Honshu (Seismology and Volcanology Research Division and Oceanographical Research Division, 1984)
- 第10号 日本付近の低気圧の統計(予報研究部, 1984)

Statistics on Cyclones around Japan (Forecast Research Division, 1984)

第11号 局地風と大気汚染物質の輸送に関する研究(応用気象研究部, 1984)

Observations and Numerical Experiments on Local Circulation and Medium-Range Transport of Air Pollutions (Applied Meteorology Research Division, 1984)

第12号 火山活動監視法に関する研究(地震火山研究部, 1984) Investigation on the Techniques for Volcanic Activity Surveillance (Seismology and Volcanolgy Research Division, 1984)

第13号 気象研究大気大循環モデルーI (MRI・GCM-I) (予報研究部, 1984)

A Description of the MRI Atmospheric General Circulation Model (The MRI · GCM-I) (Forecast Reserach Division, 1984)

- 第14号 台風の構造の変化と移動に関する研究——台風7916の一生——(台風研究部, 1985)
- A Study on the Changes of Three Dimensional Structure and the Movement Speed of the Typhoon through Its Life Time (Typhoon Research Division, 1985)
- 第15号 波浪推算モデル MRIと MRI-Ⅱの相互比較研究——計算結果図集——(海洋研究部, 1985) An Intercomparison Study between the Wave Models MRI and MRI-Ⅱ——A Compilation of Results—— (Oceanographical Research Division, 1985)

第16号 地震予知に関する実験的及び理論的研究(地震火山研究部, 1985) Study on Earthquake Prediction by Geophysical Method (Seismology and Volcanology Research Division, 1985)

- 第17号 北半球地上月平均気温偏差図(予報研究部, 1986) Maps of Monthly Mean Surface Temperature Anomalies over the Northern Hemisphere for 1891-1981 (Forecast Research Division, 1986)
- 第18号 中層大気の研究(高層物理研究部・気象衛星研究部・予報研究部・地磁気観測所, 1986) Studies of the Middle Atmosphere (Upper Atmosphere Physics Research Division, Meteorological Satellite Research Division, Forecast Research Division, MRI and the Magnetic Observatory, 1986)
- 第19号 ドップラーレーダによる気象・海象の研究(気象衛星研究部・台風研究部・予報研究部・応用気象研究部・海洋研究部, 1986)
 Studies on Meteorological and Sea Surface Phenomena by Doppler Radar (Meteorological Satellite Research

Division, Typhoon Research Division, Forecast Research Division, Applide Meteorology Research Division and Oceanographical Research Division, 1986)

- 第20号 気象研究所対流圏大気大循環モデル(MRI・GCM-I)による12年間の積分(予報研究部, 1986) Mean Statistics of the Tropospheric MRI・GCM-I based on 12-year Integration (Forecast Research Division, 1986)
- 第21号 宇宙線中間子強度1983-1986(高層物理研究部, 1987) Multi-Directional Cosmic Ray Meson Intensity 1983-1986 (Upper Atmosphere Physics Research Division, 1987)
- 第22号 静止気象衛星「ひまわり」画像の噴火噴煙データにもとづく噴火活動の解析に関する研究(地震火山研究部, 1987) Study on Analyses of Volcanic Eruptions based on Eruption Cloud Image Data obtained by the Geostationary Meteorological Satellite (GMS) (Seismology and Volcanology Research Division, 1987)
- 第23号 オホーツク海海洋気候図(篠原吉雄・四竈信行, 1988) Marine Climatological Atlas of the Sea of Okhotsk (Y. Shinohara and N. Shikama, 1988)
- 第24号 海洋大循環モデルを用いた風の応力異常に対する太平洋の応答実験(海洋研究部, 1989) Response Experiment of Pacific Ocean to Anomalous Wind Stress with Ocean General Circulation Model (Oceanographical Research Division, 1989)
- 第25号 太平洋における海洋諸要素の季節平均分布(海洋研究部, 1989) Seasonal Mean Distribution of Sea Properties in the Pacific (Oceanographical Research Division, 1989)
- 第26号 地震前兆現象のデータベース(地震火山研究部, 1990) Database of Earthquake Precursors(Seismology and Volcanology Research Division, 1990)

第27号 沖縄地方における梅雨期の降水システムの特性(台風研究部, 1991)

- Characteristics of Precipitation Systems during the Baiu Season in the Okinawa Area (Typhoon Research Division, 1991)
- 第28号 気象研究所・予報研究部で開発された非静水圧モデル(猪川元興・斉藤和雄, 1991) Description of a Nonhydrostatic Model Developed at the Forecast Research Department of the MRI (M. Ikawa and K. Saito, 1991)
- 第29号 雲の放射過程に関する総合的研究(気象研究部・物理気象研究部・応用気象研究部・気象衛星・観測システム研 究部・台風研究部, 1992)

A Synthetic Study on Cloud-Radiation Processes (Climate Research Department, Physical Meteorology Research Department, Appiled Meteorology Research Department, Meteorological Satellite and Observation System Research Department and Typhoon Research Department, 1992)

- 第30号 大気と海洋・地表とのエネルギー交換過程に関する研究(三上正男・遠藤昌宏・新野 宏・山崎孝治, 1992) Studies of Energy Exchange Processe between the Ocean-Ground Surface and Atmosphere (M. Mikami, M. Endoh, H. Niino and K. Yamazaki, 1992)
- 第31号 降水日の出現頻度からみた日本の季節推移——30年間の日降水量資料に基づく統計——(秋山孝子, 1993) Seasonal Transition in Japan, as Revealed by Appearance Frequency of Precipitating-Days —— Statistics of Daily Precipitation Data During 30 Years —— (T. Akiyama, 1993)
- 第32号 直下型地震予知に関する観測的研究(地震火山研究部, 1994) Observational Study on the Prediction of Disastrous Intraplate Earthquakes (Seismology and Volcanology Research Depaetment, 1994)

第33号 各種気象観測機器による比較観測(気象衛星・観測システム研究部, 1994)

Observation System Research Department, 1995)

- Intercomparisons of Meteorological Observation Instruments (Meteorological Satellite and Observation system Research Department, 1994)
- 第34号 硫黄酸化物の長距離輸送モデルと東アジア地域への適用(応用気象研究部, 1995)
 - The Long-Range Transport Model of Sulfur Oxides and Its Application to the East Asian Region. (Applied Meteorology Research Department, 1995)

第35号 ウインドプロファイラーによる気象の観測法の研究(気象衛星・観測システム 研究部, 1995) Studies on Wind Profiler Techniques for the Measurements of Winds. (Meteorological Satellite and

第36号 降水・落下塵中の人工放射性核種の分析法及びその地球化学的研究(地球化学 研究部, 1996) Geochemical Studies and Analytical Methods of Anthropogenic Radionuclides in Fallout Samples. (Geochemical Research Department, 1996)

第36号 大気と海洋の地球化学的研究 (1995年及び1996年) (地球化学研究部, 1999) Geochemical Study of the Atmosphere and Ocean in 1995 and 1996. (Geochemical Research Department, 1999)

気象研究所

1946 (昭和21) 年 設立

25 m

		ŀЛ	反	•			衣	谷	Л	陲		РJ			
予	報	研	究	部	部	長	:	理	博	洼	ŕ	住	禎	夫	
気	候	研	究	部	部	長	:			近	Ċ.	藤	洋	輝	
台	風	研	究	部	部	長	:			バ		木	Æ	允	
物耳	里気	象	研 究	部	部	長	:			É	١.	﨑	航		
環境	・応	用気	象研究	記部	部	長	:	理	博	礼	5.	房	龍	男	
気象	、衛星	し ・ 御	睍測												
	÷	ノスラ	テム研	F究	部	長	:			Æ	1	中	豊	顯	
				部											
地》	震 火	ш	研 究	部	部	長	:			皇	1	月	英	志	
海	洋	研	究	部	部	長	:	理	博	勻	2	治		豪	
地王	泳 化	学	研 究	部	部	長	:	理	博	Ø	Ċ	見	克	彦	

気象研究所技術報告

編集委員長:近 藤 洋 輝

編集委員	:	加	藤	政	勝	Ш	崎	信	雄	村	田	昭	彦
		深	堀	Æ	志	堤		之	智	鈴	木		修
		上垣内			修	山	中	吾	郎	松	枝	秀	和
事務局	:	佐	藤		博	岡	田	孝	文				

気象研究所技術報告は、1978(昭和53)年の初刊以来、気象研究所が必要の都度発行する刊行物であり、 原則として気象研究所職員及びその共同研究者による気象学、海洋学、地震学その他関連の地球科学に 関する技術報告、資料報告および総合報告(以下報告という)を掲載する。

気象研究所技術報告の編集は、編集委員会が行う。編集委員会は原稿の掲載の可否を判定する。

本誌に掲載された報告の著作権は気象研究所に帰属する。本誌に掲載された報告を引用する場合は, 出所を明示すれば気象研究所の許諾を必要としない。本誌に掲載された論文の全部又は一部を複製,転載, 翻訳,あるいはその他に利用する場合は,気象研究所の許諾を得なければならない。個人が研究,学習, 教育に使用する場合は,出所を明示すれば気象研究所の許諾を必要としない。

