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1996 ACTIVITIES

INTRODUCTION
In 1996, GRD scientists forcused their study on atmospheric chemistry, biogeochemical oceanography, and
environmental radioactivity.

International/National scientific programs and budgetary funds for our studies are shown in Table 2.

L. Field Observation Studies
GREENHOUSE GASES (CO,, CH,, and CO)
1. Studies on Greenhouse Gases in Upper Air Using Commercial Airliners
1.1 Atmospheric CO, and CH, measurements from 1993 to 1994
Matsueda and Inoue (1996)

The increase of trace gases such as carbon dioxide in the atmosphere is expected to contribute to on-going
global warming and to affect the chemical cycles in the atmosphere. Recent levels of greenhouse gases in surface
air have been regularly observed at worldwide sampling networks such as NOAA/CMDL and GAW, but few
systematic measurements have been made of greenhouse gases in the upper atmosphere.

Matsueda and Inoue (1996) developed a new automatic flask sampling system for the Boeing 747
commercial airliner in April 1993 to observe the mixing ratios of CO, CH, and other trace gases in the upper
atmosphere at altitudes of 9-13 km using regular commercial flights between Australia and Japan. This program
was to clarify seasonal variations and secular trends in greenhouse gases in the upper atmosphere through
cooperation supported by the JAL Foundation, Japan Airlines (JAL), the JMA, and Japan’s Ministry of
Transportation.

They described their sampling system and the results of CO, and CH, measurements in the upper
troposphere for one year from 1993 to 1994 (Fig. 96-1). The air sampling system was developed to collect air
samples automatically in 12 electrochemically buffed titanium flasks of automatic air sampling equipment
(ASE) using a metal bellows pump. Engine bleed (fresh air outside the aircraft) was introduced into the ASE
through a pneumatic system and a bypass intake using a metal bellows pump for flushing and compressing the
air sample into flasks. Storage tests indicated no signiﬁcént change of CO, and CH, mixing ratios in sample flask
until analysis. ‘

The air sample was analyzed for the CO, mixing ratio using an NDIR and for CH, mixing ratio using a
GC-FID in the laboratory. Analytical precision for measurement was less than *0.02 ppm for CO, and less than
+0.12% for CH,.

The CO, and CH, mixing ratios in the air sample were referenced to five working standard gases of CO,
in air and CH, in air. Working standards were calibrated regularly by primary standards. No significant drift of
mixing ratio was found in any of the working standards in high-pressure aluminum cylinders for one year. All

mixing ratios are reported in ppm or ppb by mole fraction in dry air based on the WMO x85 scale for CO, and
the MRI/GRD scale for CH,.

Author: Katsuhiko Fushimi e-mail: kfushimi@mri-jma.go.jp
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Fig. 96-1 Air flow diagrams of flask sampling system developed for Boeing 747 commercial airliner. Bold lines indicate
sample airstream in the aircraft by bird’s-eye view (a), rear view (b), and side view (c).
Reprinted from Atomospheric Environment, 30, Matsueda and Inoue, Measurements of atomospheric CO, and CH,
using a commerecial airliner from 1993 to 1994, 1647-1655, Copyright (1996), with kind permission from Elsevier
Science.
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Fig. 96-2 Averaged CO, mixing ratios (closed circles) and SD (error bars) for 12 latitudinal bands between 30°N and

30°S at 9-13 km over western Pacific. Selected data presented as (+). Thick lines: best fit curve of data; dotted
lines: fitted straight trend.
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Air was sampled monthly over the western North Pacific between Narita (35°46N, 140°23"E), Japan, and
Cairns, (16°53°S, 145°45’E), Australia, during 1993-1994 (Figs. 1 and 2). Measurements of CO, and CH, in the
Northern Hemisphere showéd a clear seasonal cycle greatly influenced by the seasonal variation in the lower
troposphere (Figs. 96-2 and 96-3). A significant decrease in mixing ratio during winter was observed in CH,
variation, suggesting the intrusion of lower stratospheric air into the upper troposphere. The seasonal variation
of both gases gradually decayed toward the equator, but a different seasonal cycle appeared in the Southern
Hemisphere. This change indicated the significance of meridional transport of both gases through the upper
troposphere into the Southern Hemisphere. The mixing ratio level of both gases showed a recent increase in the

upper troposphere.

1.2 CO,, CH,, and CO in the upper troposphere from 1993 to 1996
Matsueda, Inoue, and Ishii (1997)

Matsueda ef al. (1997) summarized observation results for CO, CH, and CO in the upper troposphere
observed using a commercial airliner from 1993 to 1996. To expand the observation region to the south,
sampling flights after July 1994 were made using a different JAL airliner from Sydney (16°53’S, 145°45’E) to
Narita, Japan. Sampling flight frequency was increased to about twice a month to obtain higher time resolution
data.

The sampling system was operated regularly using a JAL airliner between Australia and Japan for 3 years
from April 1993 to April 1996. A unique set of data for trace gases has been obtained in the upper troposphere
at 9-13 km over the western Pacific. Data analysis of the observed results indicated they were successful in
observing recent trends and seasonal cycles of CO,, CH,, and CO between 30°N and 30°S (Figs. 96-2, 96-3 and
96-4). The recent trend indicated recovery in the rate of CO, and CH, increase after the great anomaly around
1992. Seasonal cycles showed a large difference between the Northern and Southern Hemispheres. The northern
seasonal cycle was influenced by lower tropospheric variations and mixing processes in stratospheric air, while
upper tropospheric transport was identified as an important process for the seasonal cycle in the Southern
Hemisphere. In addition, biomass burning in the Southern Hemisphere was identified as an additional source of
trace gases in the upper troposphere.

More long-term observation is necessary in this program to gain a better understanding of the global cycle
of trace gases in the upper troposphere. Special attention should be paid to the impact of widespread biomass

burning on the upper atmospheric environment.
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2. Greenhouse Gas Behavior in Western and Central Pacific Ocean
2.1 Evaluation of CO, exchange at sea surface in western North Pacific: ApCO, distribution and CO, flux
Murata, Fushimi, Inoue, Hirota, Nemoto, Okabe, Yabuki, and Asanuma (1996)

We conducted repeated observation of carbon dioxide partial pressure (pCO,) in the western North Pacific
since 1981. The increasing trend of pCO, in surface water in the region north of 10°N at 137°E was reported for
the first time by Inoue ef al. (1995) as described in 1995 ACTIVITIES. This result suggests that the middle
latitude of the western North Pacific is a sink for atmospheric CO, and pCO, is increasing.

To evaluate CO, exchange at the sea surface in the western North Pacific (130°E-160°E, 30°N-0°)
throughout one year, Murata et al. (1996) mapped the ApCQO, using data observed from 1987 to 1993 by the
JMA and the MRI on board several research vessels (Fig. 96-5). They calculated the CO, flux based on surface
seawater CO, normalized, interpolated, and extrapolated using the temperature dependence of dissolved CO,
determined empirically (Fig. 96-6).

They obtained the following results:

(1) The ApCOZ map shows that the region north of 10°N is a sink of <-70 uatm at a maximum in winter and
a source of >40 gatm at a maximum in summer. This demonstrates a large seasonal change in ApCO,
reaching 90 patm.

(2) The region south of 10°N is a source of 40 gatm in winter and is almost at equilibrium with atmospheric CO,
in summer. This seasonal tendency is the reverse of that in the region north of 10°N.

(3) Integrated annual net CO, flux is -22.4/-486 MtC (ocean influx) in the region north of 10°N and 3.7/54

MtC (ocean efflux) south of it, depending on the wind-dependent transfer velocity and exchange coefficient
(Table 96-1).
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Fig. 96-5 Surface seawater CO, data points observed from 1987 to 1993 by JMA and MRL
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Table 96-1 Estimates of sea-to-air CO, flux (Mt of C) in the regions north and south of 10°N for each month,
separated for (a) LM and (b) TFT formula.

(a)

J F M A M J J A S o} N D Total
> 10°N -7.2 -5.6 -6.3 -4.0 -2.1 0.0 1.2 2.6 1.9 1.3 -0.5 -3.5 -22.4
= 10°N 0.6 0.3 0.3 0.3 0.'1 0.2 0.0 0.1 0.1 0.1 1.3 0.3 3.7
(b)
J F M A M J J A S (0] N D Total
> 10°N -15.1 -12.3 -13.4 -8.7 -4.7 0.0 2.3 5.2 3.9 2.7 -1.1 -7.3 -48.6
= 10°N 1.1 0.6 0.3 0.4 0.0 0.2 0.0 0.1 0.1 0.1 2.1 0.3 5.4

2.2 Changes in longitudinal distribution of CO, partial pressure in central and western equatorial Pacific,
west of 160°W
Inoue, Ishii, Matsueda, Aoyama, and Asanuma (1996)

We focused our study on pCO, distribution variation in the western and central equatorial Pacific with
relation to El Nifio/Southern Oscillation (ENSO) phenomena. The equatorial Pacific is known as a strong oceanic
source of atmospheric CO,. CO, is supplied to the atmosphere mostly in the eastern and central equatorial Pacific
due to upwelling containing CO,-rich water.

Tnoue ef al. (1996) described spatial and temporal variations in pCO, in the central and western equatorial
Pacific based on measurements conducted between 1987 and 1994. Surface water pCO, data indicate significant
differences in longitudinal distribution depending on ocean conditions (Figs. 96-7 and 96-8). They examined the
relationship between the area showing higher surface pCO, and ENSO phenomena by using the Southern
Oscillation Index (SOI) (Fig. 96-9). Results indicate that the area showing higher surface pCO, correlates with
the SOIL and the western edge of the higher pCO, area moves eastward with increasing SOI, which suggests
significant intra- and interannual fluctuations of CO, outflux from the central and western equatorial Pacific

(Fig. 96-10).
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along equator for January-February 1994.
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Fig. 96-9 SOI times series. Dotted line: monthly mean SOI; solid line: 5-month running mean. Arrows: pCO, observation
times. Cruises in western and central equatorial Pacific were conducted January-February 1987,
January-February 1989, January-February 1990, September-December 1990, January-February 1991,
November-December 1992, January-February 1994, and Novermber-December 1994.
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Fig. 96-10 Position (P) of abrupt change in pCO, and SOL SOI during observation was calculated based on a 5-months
running mean. pCO, data from September-October 1990 was not used because data around P (170°E-180°)
was insufficient. Open circle: P along 5°S. During January-February 1989, P was estimated based on SST data
(solid triangle).

2.3 Temporal and spatial variations in atmospheric and oceanic CO, in western North Pacific From 1990
to 1993: Possible link to 1991/92 ENSO event
Murata and Fushimi (1996)

Murata and Fushimi (1996) presented the results of atmospheric and oceanic CO, observations conducted
by the JMA at 137°E in the western North Pacific for 1990 - 1993, covering an ENSO event (onset; spring 1991;
disappearance: summer 1992) (Fig. 96-11). The atmospheric CO, concentration over the region south of 30°N
increased drastically between 1990 and 1991 during winter (4.0 ppmv) and summer (4.5 ppmv), although values
are not seasonally adjusted. Over the other two years of observation, growth rates were smaller or even negative
(Figs. 96-12 and 96-13).

Oceanic CO, expressed in units of the mole fraction (ppmv) in dry air equilibrated with seawater,
significantly increased, especially in low latitudes during both seasons of 1991 — 1993, compared to 1990 (Fig.
96-14). Oceanic CO,, normalized at a constant temperature, also significantly increased, with larger magnitudes
for winter and smaller for summer. This implies that increased summer oceanic CO, results mostly from changes
in surface seawater temperature, while for that in winter, other factors, unknown at present, are more related to
increased oceanic CO,.

Calculated ApCO, and CO, flux at the air-sea interface reveal that in winter, the region north for 10°N acts
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Fig. 96-11 Location of observational lines indicated as a 137°E, by, lines west of 137°E, and ¢ 155°E. The NOAA/CMDL
GMI site (Guam, 13°26'N, 144°47 E) is also indicated.
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Fig. 96-12 Latitudinal distributions of atmospheric CO,

during winter from 1990 to 1993, for (a)
observational line along 137°E and (b) lines
west of 137°E. Letters at upper left of panels
correspond to observational lines in Fig.
96-11. Squares: 1990; circles: 1991; triangles:

1992; crosses: 1993.
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Fig. 96-13 Same as in Fig. 96-12 except for {(a)
observational line along 137°E and (c) that
along 155°E during summer.
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Fig. 96-14 Same as in Fig. 96-12 except for oceanic CO.,.

as a sink for CO,, with a maximum net flux of ~-10.0 mmol -+ m™ - d”". The region south of 10°N, however, at
times becomes a weak source of CO,, with a maximum net flux of 24 mmol + m™? - d”\. In summer, the western
North Pacific becomes a weak source or is almost in equilibrium with atmospheric CO.,

The increase in winter oceanic CO, or ApCO,, related to the 1991/92 ENSO event, is not as distinct as in
the 1982/83 ENSO event, although lower temperatures and higher salinity in surface seawater were commonly
found during both events. The response of CO, flux in the tropical western North Pacific to the 1991/92 ENSO
event was rather small compared to the magnitude of rate changes obtained in previous results for the central

or eastern tropical Pacific.

2.4 Atmospheric methane over North Pacific from 1987 to 1993
Matsueda, Inoue, Ishii, and Nogi (1996)

Atmospheric methane is known as an important greenhouse gas that influences the radiative balance and
climate of the earth. Methane has accumulated in the atmosphere since the Industrial Revolution, but it is known
that the recent global rate of increase shows large interannual variations in both hemispheres. Such growth rate
variations are caused by a change in the relative strength between sources and sinks, but a particular cause
cannot be quantitatively identified at the moment. A long-term record of atmospheric methane measurements is
necessary to better understand recent growth rate variation.

Matsueda ef al. (1996) continued to collect air samples over the western North Pacific region and measured
atmospheric methane mixing ratios during winter from 1987 to 1993 to extend their methane record since 1978
(Matsueda et al, 1992) (Fig. 96-15). The meridional distribution of methane showed a yearly north-to-south
gradient from midlatitudes to the equator (Fig. 96-16). A sharp mixing ratio gradient often appeared at the

boundary between the winter monsoon and trade wind regions around 20°N. No significant longitudinal gradient
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was found during winter, although methane levels along the equator showed a large difference between the
western and eastern Pacific. ;

The overall methane increase rate in the western Pacific was estimated at 13 ppb/yr based on the long-term
record for 15 years from 1978 to 1993. This record indicates that the methane growth rate over this Pacific
region gradually slowed until 1990, followed by no significant increase in the 1990s. The overall deceleration of
the growth rate was more rapid in the middle latitudinal zone (20°N - 30°N) than in the lower latitudinal zone
(3°N - 20°N) (Fig. 96-17a). This latitudinal difference suggests a rapid reduction of methane emission from
continent. The methane growth rate showed an interannual variation with an increasing trend around 1983 and
1987, roughly related to El Nifio events (Fig. 96-17b). The methane growth rate thus appears to have been
affected by a change in interhemispheric transport due to the ENSO events.
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Fig. 96-15 Tracks of R/V Ryofu Maru (RY) and R/V Natsushima (NA) during January-February 1987. The sampling

area of NA cruises was almost the same in 1989, 1990, and 1991, although tracks in these years were slightly
different from that used in 1987.
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Fig. 96-16 Averaged methane mixing ratio in middle (20°N-30°N) and lower (3°N-20°N) latitudinal zones along 137°E
in western Pacific from 1978 to 1993. Dashed lines: quadratic equation £(t); solid lines: function F(t); fitted to
averaged data.
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Fig. 96-17 Growth rate variations of atmospheric methane in middle (20°N-30°N) and lower (3°N-20°N) latitudinal
zones along 137°E in western North Pacific from 1978 to 1993. (a) Overall trends and (b) interannual
variation of growth rate were obtained by derivatives of f(t) and F(t) (Fig. 96-16).
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