TECHNICAL REPORTS OF THE METEOROLOGICAL RESEARCH INSTITUTE NO.15

AN INTERCOMPARISON STUDY BETWEEN THE WAVE MODELS MRI AND MRI-II

——A COMPILATION OF RESULTS—

BY

OCEANOGRAPHYCAL RESEARCH DIVISION, MRI

気象研究所技術報告

第15号

波浪推算モデル MRI と MRI-II の相互比較研究

-計算結果図集--

海洋気象研究部

気象研究所

METEOROLOGICAL RESEARCH INSTITUTE, JAPAN

MARCH 1985

Meteorological Research Institute

Established in 1946

Director : Dr. Kiyohide Takeuchi

Head : Mr. Taiji Yoshida
Head : Dr. Masahiko Aihara
Head : Dr. Toshihiko Okabayashi
Head : Mr. Tsunehiro Majima
Head : Dr. Keikichi Naito
Head : Dr. Masaharu Ichikawa
Head : Dr. Hayato Iida
Head : Dr. Muneyasu Kano
Head : Mr. Tsutomu Akiyama

1-1 Nagamine, Yatabe-Machi, Tsukuba-Gun, Ibaraki-Ken, 305 Japan

Technical Reports of the Meteorological Research Institute

Editor-in-chief : Tsunehiro Majima

Editors :	Koji Yamazaki	Hiroki Kondoh	Tomoyuki Ito
	Tomoaki Yoshikawa	Jiro Aoyagi	Masami Okada
	Masahiro Endoh	Kunihiko Kodera	Katsuhiko Fushimi
Managing	Editors : Keiko Nishida, Y	usai Yuhara	

Technical Reports of the Meteorological Research Institute

has been issued at irregular intervals by the Meteorological Research Institute since 1978 as a medium for the publication of survey articles, technical reports, data reports and review articles on meteorology, oceanography, seismology and related geosciences, contributed by the members of the MRI. さざ波の広がる海は詩や絵画の世界でありますが、一度時化ると海の波の恐ろしさは想像を絶 するものがあります。とくに我国の周辺海域は、台風の襲来、冬の季節風、低気圧の発達等による 高波の瀕発する難所となっており、今日でも船舶の遭難が続発し、また堅牢を誇る港湾海岸の構築 物も一夜にして無に帰してしまうこともしばしばです。このため、従来の経験的方法による波の予 報から定量的なより精密な予報への改善が要望されておりました。気象庁ではこれ等社会的ニーズ に答えるため定量的な波浪予報の業務化を計画、これに基づき気象研究所海洋研究部は昭和46年から 昭和50年までの5ヶ年の歳月を費やし、内外の諸研究の成果を踏まえ波浪推算モデル(MRI)を 開発しました。このモデルは実用試験の後、昭和52年度波浪予報の業務化と同時に標準モデルとし て使用され現在に至っております。

本報告は、その後の内外の諸研究(とくにSWAMP計画)の成果に加え、MRIのすぐれた点を包含し、欠点を補正するべく開発された第2世代の波浪予報モデルMRI-IIの諸特性を明らかにするためのものであります。同モデル利用のマニュアルとして、また、波浪予報モデルの次の段階への発展のための基礎資料として有効に活用されることを期待するものであります。

最後になりましたが、本研究を実施した海洋研究部、宇治豪主任研究官の功労を多とするとともに、 惜しみなく各種協力をしていただいた所内、部内の関係官、研究者、気象庁海洋気象部関係官、適 確かつ建設的な意見・批判および有用な情報を提供して下さった東北大学、九州大学の同学の志に 深甚の感謝の意を表す次第であります。

昭和60年1月

気象研究所 海洋研究部長 飯 田 隼 人

次

	$\overline{\nabla}$
1	7
,	-

概	要	(文)
1-54	~		~~
		1	F
		2	Eデルの概説
		3	牧値実験
		4	計算と出力の推定

要	(多	英文)	17
	1.	Introduction	17
	2.	Outline of the Models	18
	3.	Test Case of the Intercomparison Study	20
	4.	Specifications for Calculation and Plots	25
	5.	List of Diagrams	30
	6.	References	36
	要	要(引 1. 2. 3. 4. 5. 6.	要 (英文) 1. Introduction 2. Outline of the Models 3. Test Case of the Intercomparison Study 4. Specifications for Calculation and Plots 5. List of Diagrams 6. References

DIAGRAMS

Case	I		39
Case	I		53
Case	Ш		69
Case	IV		88
Case	VII	·····	106
Case	V		135
Case	VI		151

波浪推算モデルMRIとMRI-Ⅱの相互比較研究*

1. 序

1981年に10の波浪推算モデル(波モデル)のグループが米国,ヨーロッパ,日本から参加して波 モデル相互比較研究が行なわれた。この研究はIUCRMの波浪の力学と海面の電波探査のシンポ ジュウムの中の一つのテーマであって,その結果は同シンポジュウムのプロシーディングとして出 版された(The SWAMP Group (Part 2) 1982, (Part 1) 1984)。この研究の第一の 目的は風で生じる水の表面波の物理についての理解が現時点でどのように波モデルに反映している かをテストすることであった。この研究は,実験や理論だけでなく波モデルの数値的取り扱いにつ いての将来の指針を得ることに特に役立つと考えられる。この研究に我々が開発した第一世代に属 する線形な波モデルMRI(Uji and Isozaki 1972, Isozaki and Uji 1973, Uji 1975) も参加した。その結果,このモデルは波高の推算の点では特に欠点はなく,しかも複雑な風系での 性能は優れていることが確認された。しかし、このMRIは風波のパラメータ表現を利用した第二 世代の波モデルに較べ,発達初期の風波のスペクトルの形をうまく表せないことも明らかになった。 この点を改良するため風波のパラメータ表現を利用した波モデルMRI – IIを新たに作成した(Uji 1984)。

この新しい波モデルMRI – IIの性質を明らかにしておくことは、利用の便に供する意味から重 要である。さらに、MRI – IIは、波浪の数値的表現および波浪エネルギーの伝播を計算する工夫 が旧いMRIと全く同じであるところから、数値的取扱による結果の差異はこれらのモデル相互の 間には生まれないので、両者の結果を比較することはモデルの基礎となっている物理的仮定の違い を浮かびあがらせる意味で特に有効である、この意味で、この相互比較研究は波モデルの将来の発 展に取っても、重要な基礎データを提供し得ると考えられる。このような理由で、新しいMRI – IIを用いてSWAMPで行なわれた全ての数値実験を再現し、その結果をSWAMPの作図様式に 則って描いた。ここにそれらの図をMRIの結果と合わせて全て収録する。The SWAMP Group 1982、 1984には上記の相互比較研究の過程で作図された全ての図は収録されていないので、ここにはそ れらに含まれていない図もある。この図集は上記の The SWAMP Groupの結果とあわせて利 用すればより有効に活用できる。そこで、The SWAMP Groupによる結果と対比できるように、 図の番号は図15-7.4-1.のように示されている。即ち、最初の15は本誌全体の通し番号、二 番目の7.4は The SWAMP Group 1984 (Part 1)に示された番号、三番目の1.は The SWAMP Group 1982 (Part 2)の番号である。SWAMPの文献に対応する図がない場合

* 宇治 豪 : 海洋気象研究部

はその番号を0にしてある。

2. モデルの概説

波浪の推算には,

$$\frac{\partial F}{\partial t} + Cg \cdot \nabla F = S_{\text{net}} = S_{\text{in}} + S_{\text{nl}} + S_{\text{ds}}$$
(2,1)

で表されるエネルギーバランスの式を用いている。ここで $F = F(\sigma, \theta; x, t)$ は波浪の2次元 スペクトル, σ は角周波数, θ は成分波の進行方向, $Cg = Cg(\sigma, \theta)$ は成分波の群速度, S_{net} は成分波が単位時間に得る全エネルギーを, S_{in} は風から波へのエネルギーの流入を, S_{nl} は非線形 相互作用による成分波相互のエネルギー輸送を, Sds はエネルギーの散逸を表す。なお, t は時間 x は場所である。式(2.1)の右辺にある S_{net} , (S_{in}, S_{nl}, S_{ds}) については厳密な意味では未 だ全てが明らかになってはいない。この S_{net} の表現の仕方と波浪の数値的表現方法によって色々 な種類の波モデルが存在する。

2.1 波モデルMRI

このモデルでは*S_{net}*の内容として,順風による線形および指数関数的成長,波浪が成長すると共 にピアソンーモスコビッツ(P-M)のスペクトルで表される平衡状態に近づくような形をした砕 波の効果,成長しすぎた成分に対する摩擦によるエネルギーの散逸および逆風の効果が考慮されて いる。波と波の相互作用と,浅海効果は無視している。

数値的には波のエネルギーを352 個 (16方位×22周波数成分)のスペクトル成分で表現している。 波のエネルギーの伝播の計算にはエネルギーの空間分布の歪みを防止する工夫がなされている(Uji and Isozaki 1972)。

MRIでは波浪のスペクトル成分と風との関係を次の三つの過程に分けて取り扱かっている。各々の過程におけるS_{net} は次のように表される。

 $S_{\text{net}} = (A + B \cdot F) \quad (1 - (F/F_{\infty})^{2}) \Gamma (\theta - \theta_{W}),$ $| \theta - \theta_{W} | \leq 90^{\circ}, F \leq 1.41 F_{\infty},$ $S_{\text{net}} = -D \cdot f^{4} F, \quad | \theta - \theta_{W} | \leq 90^{\circ}, F > 1.41 F_{\infty},$

 $S_{\text{net}} = - \left(\mathbf{B} \cdot \boldsymbol{\Gamma} \left(\boldsymbol{\theta} - \boldsymbol{\theta}_{\mathbf{W}} \right) + \mathbf{D} \cdot \mathbf{f}^{*} \right) \mathbf{F}, \quad |\boldsymbol{\theta} - \boldsymbol{\theta}_{\mathbf{W}}| > 90^{\circ} \right] \quad (2.2)$

ここで、AとBは風速と成分波の周波数で決まる定数で I_{noue} (1966)の値を用いている。Dは定数でその値は1 / 3600 s³,また十分発達したスペクトル F_{∞} は

 $F_{\infty} = \phi_{\rm PM} \Gamma \left(\theta - \theta_{\rm W} \right)$

と表される。ここに ϕ_{PM} は P-Mのスペクトル, Γ (θ) は方向分布関数で

-2-

$$\Gamma (\theta) = \begin{cases} (2 / \pi) \cos^2 \theta, & | \theta | \leq 90^{\circ} \\ 0, & | \theta | > 90^{\circ} \end{cases}$$

と仮定されている。 θ_w は風向を表す。

2.2 波モデルMRI-Ⅱ

このモデルは5個の過程を含んだエネルギーバランスの式を基礎としている。その過程とは、順 風によるエネルギー入力、風波をなす成分波間での共鳴相互作用による非線形なエネルギー輸送、 砕破、摩擦による散逸および逆風の効果である。このモデルでは風波の単一パラメータ表現によっ て風からの入力と共鳴相互作用による非線形エネルギー輸送を同時にかつ陰に表現している。この 単一パラメータ表現の内容は、Tobaによる波高と周期間の2/3乗則、パラメータであるスペクト ルピーク周波数 σ_Pに対する Toba の予報式

 $(d\sigma_{P} * - 2 / dt) = 1.783 \times 10^{-3} \{ 1 - \text{erf} (4.59 \times 10^{-2} \sigma_{P} * - 1) \}$ (2.3) およびP-Mのスペクトルに風波のスペクトルが相似であるという仮定である(変数の右肩の*は 摩擦速度 u_{*} と重力の加速度 g によって無次元化した量であることを常に示す)。

以上から,パラメータ表現を用いた風波のスペクトル F_pは

 $F_{p}(\sigma; \sigma_{P}) = (\sigma_{P} / \sigma_{PM}) \phi_{PM}(\sigma; \sigma_{P}) \Gamma (\theta - \theta_{W})$ と表される。うねりとうねり、又はうねりと風波の共鳴相互作用は無視してある。

砕破の効果を表現するため仮説的な考え方を導入した。この仮説は、砕破とは波の峰の処にある 波高の二乗に比例する大きさの水塊が波としてのエネルギーを失う過程だという考え方に立脚してい て、砕波によるエネルギーの散逸 *S*_{ds} 'を

 $S_{ds}' = -C_{b} \cdot P_{i} \cdot \sigma_{P} \cdot E^{2} \left\{ 1 + (\sigma/2 \sigma_{P})^{4} \right\} F/E_{n}$

と仮定する。ここの Cb は長さの – 2 乗の次元を持つ定数で、台風 8013 号の波浪の追算によって 6 / 3600 m⁻² という値に決めた(Uji, 1984)。 P_i は砕波がおこる確率で、E は波浪の全エネ ルギー、En は規格化因子である。この P_i と E_n はそれぞれ

 $P_{\rm i} = 0.27 \log (u_{*}^2 / \sigma_{\rm P} \nu) - 0.78$

 $E_{\rm n} = \iint (1 + (\sigma / 2 \sigma_{\rm P})^{4}) F d\sigma d\theta$

と表される。ここに ν は空気の力学的粘性係数である。さらに、スペクトルFが F_{∞} に近い所では $S_{in} + S_{nl}$ が $-S_{ds}$ におおむね等しいのでFが 1.414 F_{∞} より小さいところでは

 $S_{in} + S_{nl} = \{ (F/F_{\infty})^2 - 2 \} S_{ds}'$ と置いている。

MRI-Ⅱでは波浪のスペクトル成分の変化を次の四つの場合に分けて取り扱かっている。各々の過程における Snet は次のように表される:

$$S_{\text{net}} = \{F_{P} (\sigma_{P} + \varDelta \sigma_{P}) - F_{P} (\sigma_{P}) \} / \varDelta t,$$
$$| \theta - \theta_{W} | \leq 90^{\circ}, F \leq F_{p} (\sigma_{P} + \varDelta \sigma_{P})$$

$$S_{\text{net}} = 0, \qquad | \theta - \theta_{\mathbf{w}} | \leq 90^{\circ}, \quad F_{p} (\sigma_{P} + \Delta \sigma_{P}) < F < F_{\infty}$$

$$S_{\text{net}} = \begin{cases} \{ (F/F_{\infty})^{2} - 1 \} S_{\text{ds}}', \qquad | \theta - \theta_{\mathbf{w}} | \leq 90^{\circ}, \\ F_{\infty} \leq F < 1.41 F_{\infty}, \\ S_{\text{ds}}', \qquad | \theta - \theta_{\mathbf{w}} | \leq 90^{\circ}, \quad 1.41 F_{\infty} \leq F, \end{cases}$$

$$S_{\text{net}} = S_{\text{ds}}' - (B \cdot \Gamma + D \cdot f^{4}) F, \qquad | \theta - \theta_{\mathbf{w}} | > 90^{\circ} \qquad (2.4)$$

但し $\Delta \sigma_{\mathbf{p}}$ は Δt の間における $\sigma_{\mathbf{p}}$ の変化量であって式(2.3)によって計算される。 ただしうねりのエネルギーが順風方向に存在するときはそのエネルギーを考慮して風波のピーク周 波数の変化量 $\Delta \sigma_{\mathbf{p}}$ を次の式を満足する $\Delta \sigma_{\mathbf{p}}$ に置換する。

$$\sum_{\sigma,\theta} \left[F_{p} \left(\sigma_{P} + \Delta \sigma_{P}' \right) - F(\sigma) \right] = \sum_{\sigma,\theta} \left[F_{p} \left(\sigma_{P} + \Delta \sigma_{P} \right) - F_{p}(\sigma_{P}) \right]$$

ここでFは初期の波浪の2次元スペクトルである。また左辺の和は

 $F_{p}(\sigma_{p} + \Delta \sigma_{p}') > F(\sigma)$

の関係を満たす成分についてのみ行なう。

2.3 MRIとMRI-Ⅱの相違

MRIでは波浪のスペクトル成分は風や砕破や粘性の影響を受けながら変化するが、これらは全 て各成分について独立に働く。一方、MRI - Ⅱでは風波のパラメータ表現と砕破によるエネルギ ーの散逸が全エネルギーと風波のピーク周波数と摩擦速度によって決定されるという仮定が導入さ れている。その結果、MRI-Ⅱでは全局面で波浪のスペクトル成分がお互いに独立ではない。

3. 数值実験

3.1 序

MRI-Iを用いてSWAMPの全事例について数値実験を行なった。事例についての解説は The SWAMP Group Part 1 1984, Part 2 1982 に記載されているが、参照を容易にす るためにここに再録する。

現時点では、実際のデータに照らして波モデルを検討しても、モデルのどの部分(例えば発達過程の基本式、減衰過程の取り扱い、波浪の数値的表現方法)の影響でそのような結果がでてきたかを分離して判断することは困難であると考えられている。その代りに以下にあげる7つのテスト例は波モデルの各部分に別々に焦点をあててその部分の効果がうきあがってくるように設計されている。事例の順は後で追加された第7例を除けば事例の番号が増すほど複雑さが増すように並んでいる。波モデルMRIとMRI-IIは全て同じ格子点を用いて同じ条件下で計算されている。

3.2 計算事例

第1事例(移流テスト)は純粋なうねりの伝播の実験(うねりの減衰は考慮しない)で,波浪を 有限個のスペクトル成分で表現している波モデルにおける移流項計算のスキームのテストである。

-4-

第2事例(吹送時間と吹送距離による成長)はまっすぐな海岸から直角に海に向かって吹き出し ている一様でかつ一定な風による,波のない状態からの波の場の成長に関係したテストである。こ の場合,十分大きな吹送距離における時間的な波の成長は一つの理想的な吹送時間による波の成長 曲線を与え,十分時間が経過して波の状態が定常状態に漸近的に近づいた時の岸から沖に向かって の波の変化は吹送距離による波の成長曲線を与える。

この事例は最も単純な条件下での波の成長であるので他の事例のより複雑な風系が波の場に及ぼ す効果を議論する際の基礎となる。

第3事例(斜めの吹送距離)は第2事例の風向を風上の海岸線に対して45°になるように一般化したものである。この実験は一様一定の風の下で考えられる最も単純な方向の非対称性を風上の境界条件によって導入し、これに対する波モデルの応答を調べるものである。

第4事例(海の半分のみ風)は風が吹いている海域から無風域へのうねりの伝播のテストである。 さらに風向に平行な風域の境界が風域内の波場にどのように作用するかも調べる。

第5事例(斜めに走るフロント)ではフロントを横切って伝播する風波に対し、その前後で順風から横 風に90°風向が変化するようになっている。この実験では風向が突然変化した時の波の方向特性に 対するモデルの応答を調べるのが目的である。しかしながら、波の場が場所によって異るため、こ の実験には波の方向に対する応答と波の伝播の効果が複雑にかさなって現れる。そこで、この二つ の効果を分離するために第7事例が追加された。

第6事例(止まっているハリケーンと動いているハリケーン)我々が取り扱わなければならない 最も複雑な風系である。この事例では非常に極端な、しかし、現実的な風系に対するモデルの性能 テストになっている。このような複雑な条件の下でのモデル間の結果の重要な違いを明瞭に分類す るには前もって行なった理想的な風の下でのテストの解析結果を参照する必要がある。

第7事例(風向の90°変化)は第5事例から移流の効果を取り除いて単純にしたものである。広い 海において一様な風がある時間吹き続いた後,急に風向が全ての場所で同じように90°変って今ま で発達してきた風波に対し横風が吹きはじめる。波の場はどこも一様なので波の状態は時間のみに 依存する。

4. 計算と出力の指定

計算と出力の様式においてSWAMPの実験で提案されたものとMRI—IIを用いて行なった実験では多少違った点がある。そこで例えば、SWAMPの出力点はX = 30 kmで我々のはX = 40 kmの場合、今後、出力点はX = 40 (S.30) kmのように記載することにする。

4.1 第1事例(移流テスト)

平面上に x-y 座標を考えてその上に x方向 y方向に同じ大きさの格子間隔 dx, dy で 格子 を作る。波のエネルギーとしては単一のスペクトル成分(単一方向,単一周波数)を考える。伝播

-- 5---

方向としてはy軸に対して平行の例と30°の角度をなす例をテストする事にSWAMPではなって いるが我々のモデルでは波浪の2次元スペクトルを16方向成分で表現しているのでy軸に対しては 平行, 22.5°および45°の3例を計算した。周波数としては1/20,1/10,1/5Hzの3例とする。 各格子点上の初期のエネルギー量は下図のようにする:

 .0
 .0
 .0
 .0
 .0

 .0
 .1/16
 .1/8
 .1/16
 .0

 .0
 .1/8
 .1/4
 .1/8
 .0

 .0
 .1/16
 .1/8
 .1/16
 .0

 .0
 .1/16
 .1/8
 .1/16
 .0

 .0
 .0
 .0
 .0
 .0

この分布の全エネルギー量は1である。波は3日間にわたり伝播させ、この間半日ごとのエネルギー場を出力する。理論的に予想されるエネルギーの中心も図中に示すことになっている。この数値 実験の格子間隔△x, △yは40km, 積分時間間隔 *dt* は1時間である。

波モデルにおける伝播は、1つの格子点上にエネルギーが集中している初期条件の下での、分散 S² のクーラン数C又はモデルのタイムステップ数nによる振舞いによっても特徴ずけられる。 目的:

本事例では波モデルがどのようにエネルギーを格子上で移流させるかをテストする。特に,エネ ルギーの空間分布が伝播に伴ってどのように変化するかに注意する。 作図:

SWAMP では分散 S^2 をクーラン数C又は,タイムステップ数nに対して描く事が提案されているだけである。ここでは以下の作図を行なった。

エネルギーの空間分布:

初期に上に示した9個の格子点に有った単一のスペクトル成分のエネルギーの空間分布の等値線 をX-Y平面内に描く。

全エネルギー対タイムステップ数 n :

初期に上に示した9個の格子点に有った単一のスペクトル成分のエネルギーの計算海域内の総和 をタイムステップ数nに対して描く。周波数fと波向θを曲線族のパラメータとする。

エネルギーの中心位置対タイムステップ数 n :

エネルギーの中心位置 I (n) および J (n) をタイムステップ数 n に対して描く。波向 θ を曲 線族のパラメータとする。

分散S²対タイムステップ数 n :

分散*S²* をタイムステップ数 n に対して描く。曲線族のパラメータとしてはクーラン数*C*を用いる。 第1事例においては作図形式は指定されていない。

-6-

4.2 第2事例 (吹送距離と吹送時間による発達)

十分広い海の上を 19.5 m(S.10 m) 高度での風速が 20 m/s の一様で一定な西風が沖合に向かって 西の海岸線に直角に吹いている。初期(t = 0)には全海上で全く波のない状態であり、海岸線で は t > 0においても波はないようにする。数値実験は全海域において波が定常状態に達するまで続 ける。ここでは風は西風で、海の辺がそれぞれ東西と南北に平行な 1000 kmの正方形とし、その西 岸のみを海岸線とした。格子間隔は40 km、積分時間間隔は 1 時間で、積分時間は72時間とした。こ れは波の状態が全海域で定常になるのに十分な時間である。格子は東西に26点南北に26点取り西 端の点を全て陸とした。

目的:

どのモデルも一様で一定な風場での観測で得た吹送距離による成長曲線によって更正されている。 このテストの結果は,他のより複雑な風場におけるテストの結果の議論のために重要である。また, 吹送距離による発達と吹送時間による発達の関係が波モデルによってどう変化するかを調べるのに 都合がよい。特に,風波のパラメータによる表現を用いていないMRIと用いているMRI-IIの あいだの基本的な違いを明確にするのに有効である。

出力:

風と平行な海の中心線上での,風波の時間と空間による変化を見る。結果が出力されるべき点は次に示すとうりである:吹送距離X =10,20,30,50,100,150,200,300,400,500,750,1000 km,吹送時間T=1,2,4,6,9,12,15,18,24,30,36 時間と以後定常状態に達するまで6時間ごと。我々の実験では Δ Xが40 km であるので出力点はX =40,80,120 kmと指定された点に最も近い格子点を用いた。

作図:

全エネルギー対吹送距離:

無次元全エネルギーE*を無次元吹送距離X*に対して描く。 曲線族のパラメータとしては無次 元吹送時間T*を用いる(作図形式 #1)(作図形式の説明はその項で行なう); ピーク周波数対吹送距離:

無次元ピーク周波数 f_P *を無次元吹送距離 X*に対して描く。 曲線族のパラメータとしては無次 元吹送時間 T*を用いる(作図形式 # 3);

全エネルギー対吹送時間:

*E**を*T**に対して描く。パラメータは*X**とする(作図形式 # 2); ピーク周波数対吹送時間:

*f*_P*を*T**に対して描く。パラメータは*X**とする(作図形式 # 4);
全エネルギー対吹送距離一吹送時間:

 $X^* - T^*$ 平面に規格化された E^* の等値線を描く(作図形式 # 5);

-7-

ピーク周波数対吹送距離-吹送時間:

X* – T* 平面に規格化された fp の等値線を描く(作図形式 # 6); 周波数スペクトル対吹送距離:

定常状態における規格化された周波数スペクトル ϕ (f)を無次元周波数f*に対して描く。スペクトル族のパラメータはXとする(作図形式 # 7);

周波数スペクトル対吹送時間:

吹送距離 1000 kmにおける規格化された $\phi c_f * c \chi$ して描く。 パラメータは $T c \tau$ とする(作図形式 #7);

2次元スペクトル:

規格化された 2 次元スペクトル $F(f, \theta)$ の等値線を $f^* - \theta$ 平面に描く。 描く図はT = 6, 36時間, X = 150, 1000 km 0.4 枚とする (作図形式 # 8)。

ここで示した第2事例での作図は全部で12枚である。

SWAMP Part 1による追加:

定常状態での X^* に対する E^* の発達曲線がSWAMPの結果の平均値にできるだけ近ずくように 摩擦係数 $Cd = 1.83 \times 10^{-3} & Cd'$ に変更して無次元化した X^* に対する E^* ;

同様に処理した*X**に対する*f*_P*;

同様に処理した*T**に対する*E** ;

同様に処理した T^* に対する f_P^* 。

ただし, Cd' / Cd はMR I では 1.05, MR I − IIでは 0.87 である。

4.3 第3事例(斜めの海岸線)

第2事例と同じ形だが全境界が陸の1000×1000kmの大きさの静かな海に突然19.5(S.10)m高度で 20m/sの南西風が一様に吹きはじめる。x軸を東西にy軸を南北にとり,角度は北から時計回りに 計るものとする。図31-8.1-0において点A,B,C,D,EおよびFで示された場所での波 の時間変化を記録しておく。また,十分時間が経過して波が定常状態に達するまで計算を続け,そ の時の全点での波の状態を記録しておく。SWAMPの境界条件は西岸と南岸を陸とし,全ての境 界は完全にエネルギーを吸収し,かつ境界を通って外部からのエネルギーの流入はないものとする。 目的:

このテストでは風上の海岸線が風向に対して45°の角度をなしていることによって境界条件がも たらす風向に対する非対称性が波の場にどのように現れるかを見るのを目的とる。そこで、この非 対称性が最も強く現れるF点における2次元スペクトルの形に焦点をあてる。波の場の空間分布は 全エネルギー、ピーク周波数と平均波向で論じる。

この事例の風の場は単純なものであるが波の場は方向によって変化する風からの入力,波のエネ ルギー伝播,波と波の共鳴相互作用による成分波間の非線形エネルギー輸送およびエネルギー散逸

-8-

の各項の間のバランスによって制御されている。このように、この事例は多くの過程が単なる発達 曲線では調整できない非対称の条件下でお互いにどのように作用し合うかをテストするものである。 作図:

定常状態の規格化された全エネルギーEの等値線をX*-Y*面に描く(作図形式 # 9)。

定常状態の規格化されたピーク周波数fpの等値線をX*-Y*面に描く(作図形式 #10)。

定常状態のカスターダイヤグラム(規格化された全エネルギーと平均波向を示す矢印)を描く (作図形式 #11)。

ここでは簡単のため地点を表す場合(X, Y) = (1 km, 2 km)のことを単に(1, 2)とする。 地点(75, 75)と(300, 300)および(750, 750)での規格化された周波数 スペクトルの族 をパラメータに吹送時間Tを用いて描く(作図形式 # 7)。同じく周波数スペクトル族を原点からの距 離($X^2 + Y^2$)^{1/2}をパラメータとして描く。この際,結果の出力点はさきほどの3点で出力時間は 第2事例で優先させた時間とする。

定常状態の6地点(75,75),(300,75),(750,75),(300,300),(750,300), (750,750)の規格化された2次元スペクトルを周波数一波向(f*-θ)面に描く(作図形式 #8)。

上記の出力点は我々の場合それぞれ(80,80), (320,80), (760,80), (320,320), (760,320), (760,760) である。

第3事例において提案された作図は全部で17枚である。

SWAMP Part 1 による追加:

F地点での E_{II} / E_{II} 対 $f_{P_{II}} / f_{P_{II}}$ のパラメータ平面内でのモデルの位置を作図する。 添字の II とII は同じ吹送距離における第 II 事例と第 III 事例の結果であることをそれぞれ示す。

4.4 第4事例(半面のみ有風)

1000×1000 kmの海があり、その西側半面で19.5 (S.10) m 高度で20 m/s の南風が吹き、 東側半面は無風である。つまり、海を東西に二等分する線が風域と無風域のフロントになっている。 海の東半面は無風のままとする。風域と無風域の境は南北に走っていて、その位置は西側からX = 500 kmになるべく近く設定する。全ての境界は完全にエネルギーを吸収し、かつ境界を通っては 外部から計算領域内へのエネルギー流入はないものとする。計算は初期に静穏な海から始め、波が 定常状態に達するまで行なう。図50-9.1-0に風場と計算結果の特別な出力地点を示す。 目的:

風がある海域から無風の海域へのうねりの放出の様子を調べる事によってモデル内で風波からう ねりへのエネルギーの転稼の操作をテストする。また、洋上での風のフロントが風域内の波におよ ぼす影響も調べる。

-9-

作図:

作図は全て定常状態の波について行なう。

規格化された全エネルギー*E*の分布図を描く(作図形式 # 9)。

規格化された平均周波数 fの分布図を描く(作図形式 # 10)。

全エネルギーEと平均波向 θを示すカスターダイヤグラムを描く(作図形式 #11)。

Y=80,320,760 (S. 75,300,750) km, X=フロントの位置±20 (S. 40) kmとX=760
 (S. 750) kmの9点での定常状態における規格化された2次元スペクトルの等値線を描く(作図形式#8)。

規格化された1次元スペクトル族を前記のXの3個の出力点についてYをパラメータとして描く (作図形式 # 7)。

第4事例での全作図は15枚である。

SWAMP Part 1による追加:

図50-9.1-0 に示したA地点における (E N/E_I)とB地点における同様な値をパラメータとした平面内におけるモデルの位置を作図する。

地点BとCにおけるエネルギー比 E_c/E_B と平均周波数比 $\overline{f_c}/\overline{f_B}$ をパラメータとした平面内におけるモデルの位置を作図する。

4.5 第7事例 (風向の90°変化)

無限に広い海に19.5 (S. 10) m高度で20 m/s の一様な南風が十分に長い時間吹いて風波 は半 分発達 ($f_P = 2 f_{PM}$, MR I では $E = E_{PM} / 8$ とする,第7事例の1),か又は,十分発達している ($f_P = f_{PM}$,第7事例の2)。このとき (T = 0で突然に)風速は変らないで風向のみが90°変り 東風になる。 風場も波の場も共に一様であるのでモデルの演算としては移流項を無視して一つの 格子点だけで波浪の時間による変化を追うことができる。

目的:

風向が変化した瞬間,今までの風波のエネルギーの多くの部分はうねりになる。そして新たに新 しい風の方向に風波が発達を始める。このうねりと風波からなる波浪は時間とともに新しい風によ る十分発達した風波に漸近的に近ずく。この事例ではこの変化の過程を調べる。このテストは次の 第5事例の風向が変るフロントが海上にある場合を単純化して時間的推移のみを追跡したものであ る。

作図:

初期(*T*=0), *T*=2,4,6,9,12,15,18,24,30時間における規格化した2次元スペクト ルの等値線を描く(作図形式 # 8)。

平均波向が45°変化した時間 T 45°を周波数に対して描く(作図形式 # 17)。

全エネルギーEを時間Tに対して描く(作図形式 # 2)。

-10-

 $f^* - T$ 平面内に $F(f) \ge \theta$ を示すカスターダイヤグラムを描く (作図形式 #18)。 第7事例での作図は全部で26枚である。

SWAMP Part 1による追加;

T = 0における風向変化後の風波(新風向)の2次元スペクトルのピーク値の時間変化を実線で, うねり(旧風向)の2次元スペクトルのピーク値の時間変化を点線で描く。

4.6 第5事例(斜めのフロント)

1000 km四方の海の南西から北東に向って走る対角線上にフロントが存在している。初期は静穏 な海とし、全ての境界は陸とする(S.外部からのエネルギーの流入はなく、内部からのエネルギー は完全に吸収するものとする)。フロントの南東側の海では20 m/s の南風が北西側の海では20 m/s の東風が吹いている。ちょうど対角線上に並ぶ格子点上では南風とする。計算は波が定常状態に達 するまで行ない、その時の波の場を調べる。この事例の風場と計算結果の特別出力地点を図97-11.1 -0 に示す。

目的:

前の節で示した第7事例では風向の変化に対するソースファンクション S_{net} のみ関与する場合 のモデルの応答を調べた。この事例では第7事例の効果に南東半面での吹送距離による波の発達の 性質と波がフロントを通過した後の北西半面での第3事例に似た斜の吹送距離の効果が加わる。

定性的にはフロントの南東半面では境界の影響を除けば風上岸からの距離によって大きさが決ま り、平均波向が風向に平行な波の場ができる。風上岸である南岸からフロントまでの距離は西から 東に行くにしたがって増加するのでフロント上での波のエネルギーはフロントの南西端から北東に 進むにつれてだんだん増加する。この北進する波はフロント通過後うねりとなって伝播し、新に東 風によってフロントの北西側で生じた風波と共存することになる。

フロントの北西側ではどこでも方向スペクトルは東風による風波と南から伝わってきたうねりと によって決定される。ここでの波の状態は斜めの吹送距離における風波の発達,うねりのエネルギ ーの散逸とうねりと風波の相互作用による。波の場は非一様であり,さらに強い方向依存性がある。 このように波の場は第3事例や第7事例に比較すると相当複雑であるけれども実際のフロント通過 時の強い風場の不連続性をモデル化したもので,この結果は興味深い。

作図:

作図は全て定常状態の波の場について行なう。

規格化された全エネルギーEの等値線をX*-Y*平面に描く(作図形式#9)。

規格化された平均周波数 \overline{f} の等値線を $X^* - Y^*$ 平面に描く(作図形式 #10)。

 $E \ge \theta$ を示すカスターダイヤグラムを $X^* - Y^*$ 平面に描く(作図形式 #11)。

格子点 (240, 360), (280, 320), (320, 280), (360, 240), (680, 800), (720, 760), (760, 720), と (800, 680) [S. (225, 350), (250, 325), (325, 275),

(350, 250), (675, 800), (700, 775), (775, 725) と(800, 700)〕 における波の 規格化された $F(f, \theta)$ の等値線を $f^* - \theta$ 平面に描く(作図形式 # 8)。ここで指定した出力格 子点は南岸の境界から300 と 750 kmの所でフロントを直角に横切る線の近傍にあり, それらの 点はフロントから約53kmと88kmそれぞれ離れている(図97-11.1-0参照)。

南の境界から300 km地点の4点を曲線族のパラメータとして,規格化されたφ(f) を描く(作 図形式 # 7)。

南の境界から 750 km地点の 4 点を曲線族のパラメータとして,規格化された $\phi(f)$ を描く(作図形式 # 7)。

ここで提案された全作図枚数は13枚である。

SWAMP Part 1による追加:

図97-11.1-0 に示すS線に沿った規格化された全エネルギーEと平均波向 $\overline{\theta}$ をXに対して描く。

4.7 第6事例(ハリケーン)

モデル化されたハリケーンの風場を用いて次の2例を計算する。

第6事例の1 (止っているハリケーン):東西1280 (S. 1300) km,南北1720 (S. 1700) kmの海で計算を行なう。ハリケーンの中心は (650, 1400) にあり,風場は Atlantic Oceanographic and Meteorological Labs. で用意されたのを用いる。初期条件と全時間を通じての境 界条件は Ross のハリケーンモデルをエネルギーを 1/2 倍にして (S. そのまま) 用いる。計算は 24時間続行し,その結果を調べる。

第6事例の2(北に54km/h で動いているハリケーン):ハリケーンの風場は第6事例の1と全 く同じものを用いる(移動に伴う風場の変形は無視する)。計算開始時のハリケーンの位置は(650, 104)で24時間後に(650,1400)に至る。

その他の条件は第6事例の1と同様とする。

ハリケーンの風場と計算結果の特別出力地点を図113-12.1-0に示す。

目的:

このテストは一つの極端に複雑で今まで各々独立に調べてきた多くの風波についての過程が同時 に作用する風場で、かつ現実的な風場に対する波モデルの性能を調べるものである。 作図:

有義波高の分布図を描く(作図形式 #12)。

平均周期の分布図を描く(作図形式 #13)。

有義波高と平均波向を示すカスターダイヤグラムを描く(作図形式 #14)。

中心から北東,北西,南西と南東の各々の方向に沿った4地点の1次元スペクトルを中心からの 距離をパラメータとして描く(作図形式 #16)。

-12-

以下に示す格子点の規格化された $F(f, \theta)$ の等値線を描く(作図形式 #15)。

作図地点はハリケーンの中心から四方向(北東,北西,南西,南東)に向って距離がそれぞれ約 0,70,140 と 318 kmの地点で,それらは各々(640,1400),(600,1440),(600,1360), (680,1440),(680,1360),(560,1520),(560,1280),(760,1520),(760, 1280),(440,1640),(440,1160),(880,1640),と(880,1160)〔S. (650, 1400),(700,1450),(750,1500),(825,1625),(600,1450),(550,1500), (425,1625),(600,1350),(550,1300),(425,1175),(700,1350),(750, 1300),(875,1175)〕である。

作図枚数は第6事例の1,2の各々について20枚である。

SWAMP Part 1による追加:

ハリケーンによる波場に現れる最大の有義波高の大きさとその平均波向を示す矢印を最大波高が 現われた位置に描く。

4.8 注 意

以上述べてきた数値実験を行なうにあたって大事なことは可能な限り全実験を通じて同一の分解 能や計算スキームで行なうことと,海は線形直交座標で表現することである。

4.9 作図形式

SWAMP 指定の作図形式を以下に示す。ただしここに掲げる図は印刷の都合で縮尺してある。 また、SWAMP では第1事例の図の作図形式は指定されていない。

#1 $T^* \varepsilon r = 0$ ングレン $T^* \circ T = 0$ ング $T^* \circ T = 0$ ン

 $E^* = E \cdot g^2 / u^4_*$ $X^* = X \cdot g / u^2_*$

 $T^* = T \cdot g / u_*$ である, ただし

 $g = 9.806 \text{ m/s}^2$

 $u_* = 0.855 \text{ m/s}$ の値を用いる。

- # 2 X*をパラメータとしたE*のT*に対する図:原点を(T*, E*) = (10*, 10)にする以
 外は # 1と同じ。

#4 $X^* & \xi \in I_P^*$ の T^* に対する図: T^* 軸は#2とf軸は#3と同様にする。

5 $X^* - T^*$ 平面の E/E_{PM} の等値線:両軸線形目盛りとし、 X^* 軸は 0 ~ 2 × 10⁷ を20 cm に T^* 軸は 0 ~ 1.5 × 10⁶ を15 cm にとる。Eは $E_{PM} = \alpha g^2$ (2 πf_{PM})⁻⁴ / 5 で規格化する,ただし $f_{PM} = 0.13 \text{ g} / U_{10} = 0.06374 \text{ Hz}$,

α = 0.0081 である。

 $U_{10} = 20 \text{ m/s}, u_* = 0.855 \text{ m/s}$ および g = 9.806 m/s とすると、

 $f_{\rm PM}$ * = 5.5575 × 10⁻³

 $E_{\rm PM} = 0.60552 \, {\rm m}^2$

 $E_{PM}^* = 1.0896 \times 10^3 \text{ cbs}$

等値線は 0.1 間隔で描く。

- # 6 X* T* 平面の f_P / f_{PM} の等値線: X* T* 平面は # 5と同じ。等値線間隔は1から2
 の間は 0.1, 2 以上では 0.5 とする。
- #7 X*, Y*, T*又は格子点を曲線族のパラメータとした1次元スペクトル F(f) / FPM (fPM): F(f)の規格化は
 - $F_{PM}(f_{PM}) = \alpha g^2 (2\pi)^{-4} (f_{PM})^{-5} e^{-5/4} = 136.1 \text{ m}/\text{Hz}$ で行なう。縦軸は $0 \leq F/F_{PM}$ ≤ 1.5 の範囲を15㎝に、横軸は $0 \leq f^* \leq 0.02$ を20㎝にそれぞれ線形に目盛る。
- #8 $f^* \theta$ 平面の2次元スペクトル $F(f, \theta) / F_{MAX}$ の等値線: F_{MAX} は $F(f, \theta)$ の最 大値である。縦軸は-180° $\leq \theta \leq 180^\circ$ を16cmに横軸は $0 \leq f^* \leq 0.02$ を20cmにそれぞ れ線形に目盛る。ここで、 θ は波の進行方向で北から時計回りに計る。 F_{MAX} の値を図中 に明示する。
- #9 ある T^* における $X^* Y^*$ 平面の E/E_{PM} の等値線:両軸線形目盛の X^*, Y^* をいずれも 0 $\leq X^*$ 又は $Y^* \leq 1.5 \times 10^7$ の範囲を15cmの長さにとる。縦軸 Y^* は北を横軸 X^* は東を 正とする。等値線間隔は 0.1とする。
- #10 ある T^* における $X^* Y^*$ 平面の f_P / f_{PM} 又は \overline{f} / f_{PM} の等値線:両軸は # 9 と同じとする。 等値線間隔は1~2では0.1,2以上では0.5 とする。

$$\overline{f} = \int_{0}^{2\pi\infty} \int_{0}^{\infty} f \cdot F(f, \theta) \, df \, d\theta / E \, \overline{c} \, \overline{s} \, \overline{s}_{0}$$

#11 X*-Y*平面内に E/E_{PM} と e を表す矢印を描く(カスターダイヤグラム):#9と同じ
 平面を用いる。矢じりの位置は、 ΔX、 ΔY =80km (S. 75km)で定義される格子点とす
 る。矢の向きは平均波向 e とする。θは北から時計回りに計り、

 $\overline{\theta} = \arg \left[\int_{0}^{2\pi\omega} F(f, \theta) e^{i\theta} df d\theta \right] とする。矢の長さは<math>E/E_{PM}$ に比例し、 E/E_{PM} が1のとき 1.5 cmとする。

- #12 X Y平面内の H_s の等値線: 240 km $\leq x \leq 1080$ km, 680 km $\leq Y \leq 1720$ km (S.250 $\leq X \leq 1050$ km, 700 km $\leq Y \leq 1700$ km)を100 kmを2 cmの長さにして両軸線形に目盛る。等値線は H_s が 2 m以下では 0.5 m間隔でそれ以上では 1 m間隔で描く。
- #13 X-Y平面内の Fの等値線:両軸は #12と同じ。0.05 Hz 以上を0.01 Hz 間隔で描く。

-14-

- #14 X Y平面内に $H_s \geq \overline{\theta}$ を表す矢印を描く(カスターダイヤグラム): #12と同じ平面を 用いる。矢じりの位置は、4X、4Y = 40km(S. 50km) で定義される格子点とする。矢 の向きは平均波向 $\overline{\theta}$ とし、 $H_s = 10$ mを 1 cmの矢の長さで表す。
- #15 $f \theta$ 平面内のF $(f, \theta) / F_{MAX}$ の等値線:縦軸は 180° $\leq \theta \leq 180$ °を16cmに横軸 は 0 $\leq f \leq 0.2$ Hz を20cmにそれぞれ線形に目盛る。 F_{MAX} の値を図中に明示する。等値線 は 0.1 間隔で描く。
- #16 ハリケーンの目からの距離をパラメータとした周波数 f に対する規格化された 1 次元スペ クトルF (f) / F_{MAX} :両軸線形目盛で 0 $\leq f \leq 0.2 \text{ Hz} を 20 \text{ cm}$ の長さに横軸にとり、0 $\leq F / F_{MAX} \leq 1 \epsilon 15 \text{ cm}$ の長さに縦軸にとる。F (f)の一族中における最大値 F_{MAX} の値 を記入すると共に格子点とグラフの対応も明示する。
- #17 fに対するT₄₅°:両軸線形目盛りで原点を(0時間, 0.04 Hz)にとり, T₄₅°は縦軸
 に2時間を1cmに, 横軸は0.01 Hz を1cmに目盛る。
- #18 両軸線形目盛の f*-T*平面でのF(f)と θを示すカスターダイヤグラム: 矢の長さは最大で1 cmになるように規格化する。 θ = 0を上向き,つまり,周波数軸と平行にする。
 出力する周波数は 0.04, 0.05, 0.06 …… 0.21 Hz の18点(S. 0.04, 0.045, … 0.080, 0.090, 0.100, 0.110, 0.120, 0.150, 0.175, 0.200 の16点)とし,fはf* に変換して用いる。出力点は縦横共1 cm間隔に作図する。
- その他:全作図にはモデル名,事例番号,時間,場所および規格化因子(例えば # 15の F_{MAX}) を 明示する。

AN INTERCOMPARISON STUDY BETWEEN THE WAVE MODELS MRI AND MRI-II*

- A COMPILATION OF RESULTS -

I. Introduction

In 1981, a wave model intercomparison study was carried out by the SEA WAVE MODELLING PROJECT (SWAMP) Group composed of ten groups from USA, Japan and Europe. The main purpose of the intercomparison study was to test our present understanding of the physics of wind generated surface waves from the view point of wave medelling. Fortunately, the author was able to participate in the intercomparison study with a linear wave model called MRI (Meteorological Research Institute) developed for the routine operation of wave prediction (Uji and Isozaki 1972, Isozaki and Uji 1973 and Uji 1975) and it is now in use for the operation at the Japan Meteorological Agency. The study made clear strong points as well as weakness of MRI relative to models based on the parametric representation of the growth of wind waves (The SWAMP Group 1984 (Part 1), 1982 (Part 2) ; MRI gives always reasonable wave height distribution for any complex wind fields but it is inferior in predicting the spectral form for early growth stages of windsea.

A new wave model MRI-II was developed to overcome the weaknesses of MRI (Uji, 1984). MRI-II inherits both the way of numerical representation of wind wave spectrum and the calculation scheme for wave propagation. The intercomparison between MRI and MRI-II, therefore, is effective to made clear how the difference in basic physical assumptions for wave models produces an effect on predicted wave fields and the results can be useful for further wave model development. Furthermore, it is of great inportance to clarify the characteristics of MRI-II for the use of it in practical operation.

For above reasons, numerical experiments for all the SWAMP test cases are carried out using MRI-II and the results are plotted according to the SWAMP format. Here, all diagrams of MRI-II are collected together with those of MRI. For easy reference to the SWAMP reports, a diagram is numbered as Fig. 15-7. 4-1 i.e., the first numeral 15 shows the sequential number in this text, the second one 7.4 corresponds to the number in the SWAMP (Part 1) for the corresponding diagram and the third one 1 is in the SWAMP (Part 2). When there is no corresponding diagram in the SWAMP Part 1 or Part 2, the second or the third

^{*} Takeshi Uji : Oceanographical Research Division

numeral is written zero. These diagrams will be more instructive if it will be used in conjunction with the SWAMP reports Part 1 and Part 2.

2. Outline of the models

The evolution of a surface wave fields in space x and time t is governed by the energy balance equation

$$\frac{\partial \mathbf{F}}{\partial t} + \mathbf{C}g \cdot \nabla F = S_{\text{net}} = S_{\text{ln}} + S_{\text{nl}} + S_{\text{ds}}'$$
(2.1)

where $F(\sigma,\theta;x,t)$ is the two-dimensional (2-D) wave spectrum, dependent on angular frequency σ and propagation direction θ , $\mathbf{Cg} = \mathbf{Cg}(\sigma, \theta)$ is the group velocity, ∇ is the gradient operator in the horizontal plane and the net source function S_{net} is represented as the sum of the input S_{in} from the wind, the non-linear transfer S_{n1} and the dissipation S_{ds} .

However we still do not have full understanding about the physics of energy transfer from wind to waves and the energy dissipation of wind waves and also do not have simple way of calculation for S_{nl} . A wave model, therefore, can have its own assumptions on the physics of wind waves, own parametrization of the source functions and own numerical style of representation of wind waves, so that several kinds of wave model were developed according to its usage.

2.1 MRI wave model

MRI contains four energy transfer processes, namely, linear and exponential wave growth, wave breaking leading to an equilibrium state of Pierson & Moskowitz (P-M) spectrum, frictional dissipation for over-saturated waves and decay of waves due to opposing winds. Neither wave-wave interactions nor shallow water effects are considered.

Wave energy is numerically represented by 352 (16 directions times 22 frequencies) spectral components. A special numerical scheme is used to prevent computational spacial deformation of each wave energy component (Uji and Isozaki, 1972). Equally spacing grids on local Cartesian co-ordinates are employed.

Three stages of the sea state are considered, and the source functions are assumed according to the each stage as follows :

$$S_{\text{net}} = (A + BF) \Gamma(\theta - \theta_{\text{W}}) \quad (1 - (F/F_{\infty})^{2}), \ |\theta - \theta_{\text{w}}| \leq 90^{\circ}, \sqrt{2} F_{\infty} = F,$$

$$S_{\text{net}} = -D \cdot f^{4}F, \qquad |\theta - \theta_{\text{w}}| \leq 90^{\circ}, \sqrt{2} F_{\infty} < F,$$

$$S_{\text{net}} = -(B\Gamma(\theta - \theta_{\text{w}}) + D \cdot f^{4})F, \qquad |\theta - \theta_{\text{w}}| > 90^{\circ}, \qquad (2.2)$$

where θ_{W} is the wind direction, $F_{\infty} = \Gamma(\theta - \theta_{W}) \phi_{PM}$ the fully developed 2-D spectrum, ϕ_{PM} the P-M spectrum, $\Gamma(\theta)$ the angular distribution of 2-D spectrum and is assumed to be propor-

tional to $\cos^2 \theta$. The numerical values of A and B were given by Inoue (1967) and the constant D is $1/3600 \text{ sec}^3$.

2.2 MRI-II wave model

MRI-II contains five energy transfer processes, namely, the input by the wind, the non-linear transfer among the components of windsea by resonant wave-wave interactions, wave breaking, frictional dissipation and the effect of opposing winds. The non-linear energy transfer is expressed implicitly together with the wind effect by Toba's one-parameter representation of windsea, but neither swell-swell nor swell-windsea resonant interactions are considered.

The bases of the one-parameter representation are Toba's 2/3 power law between wave height and period, Toba's growth equation for the peak frequency of windsea,

$$d\sigma_{\rm P}^{*-2}/dt^* = 1.783 \times 10^{-3} (1 - \text{erf} \ (4.59 \times 10^{-2} \sigma_{\rm P}^{*-1})), \tag{2.3}$$

and the assumption that the form of the windsea spectrum is similar to that of P-M spectrum. These leads the parametric expression

$$F_{\rm P}(\boldsymbol{\sigma};\boldsymbol{\sigma}_{\rm P}) = (\boldsymbol{\sigma}_{\rm P}/\boldsymbol{\sigma}_{\rm PM}) \boldsymbol{\phi}_{\rm PM}(\boldsymbol{\sigma};\boldsymbol{\sigma}_{\rm P}) \Gamma(\boldsymbol{\theta}-\boldsymbol{\theta}_{\rm w})$$

for the 2-D spectrum of windsea, where σ_{PM} is the peak frequency of P-M spectrum .

Hypothetical assumptions are introduced to describe wave breaking effects. The basic idea on the assumptions is that wave breaking is a process in which a water mass at a wave crest with a mass proportional to the square of the wave height loses its wave motion energy. The expression of S_{ds} ' thus obtained is

$$S_{\rm ds}' = -Br \cdot F = -\left\{C_{\rm b} \cdot Pi \cdot \sigma_{\rm P} E^2 \left(1 + (\sigma/2\sigma_{\rm P})^4\right)/E_{\rm n}\right\} F,$$

where E is the total energy, Br is the damping ratio, Pi is the probability of breaking determined from data collected by Toba (1979) as

$$Pi = 0.27\log \left(\frac{u^2}{\sigma_{\rm P}\nu}\right) - 0.78,$$

 $E_{\rm n} = \iint \left(1 + (\sigma/2\sigma_{\rm P})^4\right) F d\sigma d\theta, \ C_{\rm b} = 1/600 {\rm m}^{-2} \text{ and } \nu \text{ is the kinematic viscosity of}$

air.

After all the net source function S_{net} is expressed as

$$S_{\text{net}} = (F_{\text{P}}(\sigma_{\text{P}} + \Delta \sigma_{\text{P}}) - F_{\text{P}}(\sigma_{\text{P}})) / \Delta t, \ | \theta - \theta_{\text{w}} | \leq 90^{\circ} \text{ and } F \leq F_{\text{P}}(\sigma_{\text{P}} + \Delta \sigma_{\text{P}})$$
$$S_{\text{net}} = 0, \qquad | \theta - \theta_{\text{w}} | \leq 90^{\circ} \text{ and } F_{\text{P}}(\sigma_{\text{P}} + \Delta \sigma_{\text{P}}) < F \leq F_{\infty}$$

$$\begin{split} \mathbf{S}_{\mathsf{net}} &= (1 - (F/F_{\infty})^2) Br \cdot F, \qquad |\theta - \theta_{\mathsf{w}}| \leq 90^\circ \text{ and } F_{\infty} < F \leq 1.414 \cdot F_{\infty} \\ &-Br \cdot F, \qquad |\theta - \theta_{\mathsf{w}}| \leq 90^\circ \text{ and } F > 1.414 F_{\infty} \\ \mathbf{S}_{\mathsf{net}} &= -(B\Gamma(\theta - \theta_{\mathsf{w}}) + Df^4 + Br) \mathbf{F}, \ |\theta - \theta_{\mathsf{w}}| > 90^\circ \qquad (2.4) \end{split}$$

where Δt is the time interval of numerical integration, $\Delta \sigma_{\rm P}$ is the amount of change $\sigma_{\rm P}$ given by Eq. (2.3) for Δt , B is the growth rate of waves by wind and D is the constant, whose numerical values are taken over from MRI. When the energy of swells is preexisting at t= 0, the effect of it for the growth of windsea is incorporated by the replacement of $\Delta \sigma_{\rm P}$ by $\Delta \sigma_{\rm P}$ ' which satisfies the relation

$$\Sigma(F_{P}(\sigma,\theta;\sigma_{P}+\Delta\sigma_{P})) - F(\sigma,\theta)) = \Sigma(F_{P}(\sigma,\theta;\sigma_{P}+\Delta\sigma_{P}) - F_{P}(\sigma,\theta;\sigma_{P})),$$
(()positive)

where (() positive) means to summarize only for the positive bracketed values and $F(\sigma, \theta)$ is the 2-D spectrum at t=0 including the swell energy.

MRI-II has the same numerical representation of the wave spectrum and also the same scheme for wave energy propagation as MRI.

2.3 Fundamental differences between MRI and MRI-II

For MRI every spectral component is independently evolved with each other by the action of wind, the effect of wave breaking and the effect of the viscosity of water. On the other hand, for MRI-II a parametrical description of the windsea spectrum and the hypothetical assumptions of wave breaking on which the energy dissipation term is described by the total energy, the peak frequency of windsea and the friction velocity, are introduced. On the consequence of this introduction, spectral components are not independent with each other for MRI-II.

3. Test cases of the intercomparison study

3.1 Introduction

Seven test cases were proposed for the Wave Model Intercomparison Study by SWAMP Group in 1981. This set of seven test cases was so well designed to focus separately on various critical properties of the models that it is also useful to compare MRI-II to MRI and other wave models according to the same procedures as proposed in the Wave Model Intercomparison Study. Description of the test cases are printed in the SWAMP report Part 1 and Part 2. However, for easy reference a short description of notation and model tests is

included in this report.

3.2 Test Cases

Seven test cases presented by the SWAMP Group are as follows :

Case I (advection test) is a pure swell propagation experiment. The wave energy of only one component of 2-D spectrum is assumed to be initially, t=0, on grid points. The spatial distribution at t>0 is calculated by the numerical advection scheme of the wave models.

Case II (fetch and duration limited growth) concerns the growth of a wave field for a uniform, stationary wind blowing orthogonally off a straight shore. The sea state was initially zero. For large fetch the evolution of the wave field with time provides duration limited growth curves, while for large duration the evolution of the wave field with distance off shore yields fetch limited growth curves. The results from this case provides a reference base for discussing this effects of the more complicated wind field geometries considered the remaining case study.

Case III (slanting fetch) represents a generalization of Case II to an off-shore wind blowing at an angle 45° to the coast. The purpose of the experiment is to test the directional response of the models for the simplest case of a uniform wind field in which an asymmetry is introduced by the boundary condition.

Case IV (half-plane wind) is intended to test the propagation of swell away from the side of a laterally bounded wind field into a neighbouring calm region. The case also provides information on the effect of a lateral wind field boundary on the generation of waves within the wind field region.

Case V (diagonal front) concerns the propagation of wind waves across a diagonal front where the wind turned suddenly by 90° from a parallel to a cross-wave direction. The purpose of the experiment is to test the directional response of the models to sudden change in the wind direction. Because of the inhomogeneity of the wave field, however, the experiment actually represents a rather complex superposition of directional response and advection effects. To separate the two, Case VII is added to the set of experiments.

Case VI (stationary and moving hurricane) represents the most complex wind field considered. It is included to test the performance of the models under extreme but nevertheless realistic wind conditions. Most of the critical elements of the models which are investigated separately in the other case studies come into play simultaneously in the examples.

Case VII (90° change in wind direction) represents a simpler analogue to Case V in which the advection effects are removed by considering a non-stationary rather than inhomogeneous wind field. At a given stage in the development of a duration limited windsea, the direction of a uniform wind field is suddenly turned by 90° into the cross wave direction, remaining constant thereafter. Since the wave field remains homogeneous throughout, only one integration variable, the time, enters rather than the two spatial co-ordinates of Case V.

3.3 Symbols

The symbols used in the description and the plots are recapitulated below.

	$m{C}$ is a single final set	Courant number
	`Cg ¹ difference of the second s	group velocity
	E	total energy (kinematic total wave energy per unit area devid-
		ed by ρg , where ρ is the density of water)
	$E_{ m PM}$	total energy of the P-M spectrum
	$\mathcal{J}^{(i)}$ is a first second secon	\mathbf{fr} équency de la company
	s ∱ r a station de la de la s	mean frequency
	$f_{ m P}$	spectral peak frequency
	f _{PM}	peak frequency of P-M spectrum
	$F(f)$ or ϕ	one-dimensional (1-D) energy density spectrum
	F _{MAX}	maximum value of the energy density spectrum
	$F_{\rm PM}(f)$ or $\phi_{\rm PM}$	1-D P-M spectrum
	$F(f, \theta)$	2-D energy density spectrum
	g	accerelation of gravity
	$H_{ m s}$.	significant wave height
•	$\boldsymbol{n}^{\mathrm{rand}(\boldsymbol{k})}$. The second	number of time steps
	${}^{5}\!S$, which is the transformed set of the set o	energy dispersion factor
	T (or t)	time variable
• •	T_{45} °	time for which mean direction of a given frequency band has
	$f_{0} = \left(f_{0} \left(f_{0} \right) \right) = f_{0} \left(f_{0} f_{0}$	turned by 45° (case VII)

Δt	time step
<i>u</i> *	friction velocity
U_{10}	wind speed at 10 m height
U19.5	wind speed at 19.5 m height
X, Y (or x,y)	Cartesian space variables $(X \text{ is in ease-west direction and } Y \text{ in})$
	north-south)
$\Delta X, \Delta Y$	grid spacings
α and $\alpha_{\rm PM}$	Phillips' "constant" and that for P-M spectrum
θ	wave direction
$\overline{oldsymbol{ heta}}$ is the set of the se	mean wave direction
$ heta_{ m w}$	local wind direction
ď	angular frequency
3.4 Definitions of qu	uantities

The definisions of dimensional quantities are as follows :

$\alpha_{\rm PM}$	=0.0081,
g	$=9.806 \text{m/s}^2$,
<i>u</i> *	= 0.855 m/s,
U_{10}	=20 m/s,
$f_{\rm PM}$	$=0.13g/U_{10}=0.06374Hz$,
$E_{ ext{pm}}$	$= (\alpha_{\rm PM} g^2 (2\pi f_{\rm PM})^{-4}) / 5 = 6.0552 {\rm m}^2,$
$H_{ m s}$	$=4E^{1/2}$,
$F_{\mathrm{PM}}(f)$	$= \alpha_{\rm PM} g^2 (2\pi)^{-4} f^{-5} \exp(-5/4 (f_{\rm PM}/f)^4)$ or
$oldsymbol{\phi}_{ ext{PM}}$	$= \alpha_{\rm PM} g^2 \sigma^{-5} \exp(-5/4 (\sigma_{\rm PM}/\sigma)^4),$
	where $\sigma_{\text{PM}} = ((4/5)0.74)^{1/4} (g/U_{19.5}),$
$F_{\rm PM}(f_{\rm PM})$	$= \alpha_{\rm PM} g^2 (2\pi)^{-4} (f_{\rm PM})^{-5} \exp(-5/4) = 136.1 {\rm m}^2/{\rm Hz},$
$F_{\rm PM}(f,\theta)$	$=F_{\rm PM}(f)\frac{2}{\pi}\cos^2(\theta-\theta_{\rm w}), \text{ for } \theta-\theta_{\rm w} \leq \frac{\pi}{2},$
	0, for $ \theta - \theta_{w} > \frac{\pi}{2}$,
$F_{\rm PM}(f_{\rm PM},\theta_{\rm w})$	$=86.64 m^2/Hz$ rad,
Ī	$=\frac{1}{E} \iint F(f,\theta) \ df \ d\theta,$
$\overline{ heta}$	$= \arg \iint e^{i\theta} F(f,\theta) df d\theta$, with measured clock wise from North,
E(n)	$=\sum_{\mathbf{x},\mathbf{y}}E\left(\mathbf{x},\mathbf{y},\mathbf{n}\right),$

$$\begin{split} \overline{X}(n) &= \sum_{\mathbf{X},\mathbf{Y}} x \ E(x,y,n) / E(n), \\ \text{or } I(n) &= \overline{X}(n) / \Delta X \\ \overline{Y}(n) &= \sum_{\mathbf{X},\mathbf{Y}} y \ E(x,y,n) / E(n), \\ \text{or } J(n) &= \overline{Y}(n) / \Delta Y \\ S_{\mathbf{X}}^{2} &= \sum_{\mathbf{X},\mathbf{Y}} (x - \overline{X}(n))^{-2} \ E(x,y,n) / E(n), \\ S_{\mathbf{Y}}^{2} &= \sum_{\mathbf{X},\mathbf{Y}} (y - \overline{X}(n))^{-2} \ E(x,y,n) / E(n), \\ S^{2} &= S_{\mathbf{X}}^{2} + S_{\mathbf{Y}}^{2}, \\ C &= Cg \cdot \Delta t / \Delta x. \end{split}$$

In Case VI, the Ross hurricane model has been used with a multiplication factor 0.5 for our calculation. The model is defined as follows

$$\begin{split} F_{\mathrm{R}}(f,\theta) &= F_{\mathrm{R}}(f) S_{\mathrm{R}}(\theta), \\ S_{\mathrm{R}}(\theta) &= (2/\pi) \cos^{2}(\theta - \theta_{\mathrm{w}}), \left| \theta - \theta_{\mathrm{w}} \right| \leq \frac{\pi}{2}, \\ 0, \left| \theta - \theta_{\mathrm{w}} \right| > \frac{\pi}{2}, \\ F_{\mathrm{R}}(f) &= \frac{\alpha g^{2}}{(2\pi)^{4}} f^{-5} \exp\left\{ -1.25(f/f_{\mathrm{P}})^{-4} + (\ln \gamma) \exp\left(-\frac{1}{2\delta^{2}}(\frac{f}{f_{\mathrm{P}}} - 1)^{2}\right) \right\}, \end{split}$$
h parameters given by

wit

=0.1,δ $=\frac{g}{U_{10}} \cdot 0.97 \xi^{-0.21},$ f_{P} $= 0.035 \left(\frac{U_{10}}{g} \cdot f_{P}\right)^{0.82},$ α $=4.7\xi^{-0.13}$, for $\xi \leq 3 \times 10^4$, γ

and ξ is the dimensionless equivalent fetch

 $= g \cdot r / U^2$, ξ

where r is the distance to the eye of the hurricane. For $\xi > 3 \times 10^4$,

set F_{R} =0.

Non-dimensional variables are as follows :

- E^* $=Eg^{2}/u^{4}$, $=f_{\mathrm{P}}u_{\mathbf{*}}/g,$ $f_{\rm P}^*$
- $= T \cdot g / u_*,$ T^* X

*
$$= X \cdot g/u *^2$$

-24-

 $f_{PM}^* = 5.5575 \times 10^{-3}$ and $E_{PM}^* = 1.0896 \times 10^3$.

4. Specifications for calculation and plots

There are some differences in the conditions of calculation between SWAMP suggestions and ours. When the SWAMP out put is X=30km and ours is X=40km, from now on, it will be described as "out put is 40 (S. 30) km".

4.1 Case I ——Free Propagation

The purpose of this test is to see how well the models advect energy. We consider a flat earth with an X-Y co-ordinate system. The models have equal grid spacings Δx and Δy of 40km in the 1560km square sea. The wave energy is uni-directional. Two directions were considered in SWAMP. However, our model have three characteristic directions and three directions of propagation are considered : (a) parallel to the Y-axis, (b) a 22.5° angle relative to the Y-axis and (c) a 45° angle relative to the Y-axis. Three different values of the frequency 0.05, 0.1 and 0.2 Hz are considered.

The initial distribution of energy in grid models should be as follows :

 .0
 .0
 .0
 .0
 .0

 .0
 .1/16
 .1/8
 .1/16
 .0

 .0
 .1/8
 .1/4
 .1/8
 .0

 .0
 .1/16
 .1/8
 .1/16
 .0

 .0
 .0
 .0
 .0
 .0

The waves should propagate for 3 "simulated" days. The energy distributions every half day are plotted with theoretical location of the center of energy distribution.

 S^2 for a wave packet initially at a single grid point is also plotted vs. C and n. For this case, no special plot formats required.

The time step of numerical integration Δt is 1 hour.

4.2 Case II——Fetch and Duration limited growth

With an initially calm sea, a wind of $U_{19.5}$ (S. U_{10}) =20m/s is turned on at T=0. The wind direction is perpendicular to a boundary, form the west. The western boundary is land, the energy at this boundary remains zero for T>0. All other boundaries are perfectly absorbing. Since our model results seem to become stationary by about 36 hours, the test was

run for 72 hours to check the stationariness. Output :

The evolution of the sea with time and fetch along the center of the grid from west to east will be displayed. Suggested output are X = 10, 20, 30, 50, 100, 150, 200, 300, 400, 500, 750and 1000 km at T = 1, 2, 4, 6, 9, 12, 15, 18, 24, 30 and 36 hours, and additional output every 6 hours until stationary condition is attained. However our output are X = 40, 80, 120 km and nearest grid points to the suggested ones, because our Δx and Δy are 40km. The time step is 1 hour.

Plots :

 $---E^*$ and f^* vs. X^* with T^* as the family parameter (plot description #1 and #3, from now on, it will be abbreviated "#1 and #3")

 $--E^*$ and f^* vs. T^* with X^* as the family parameter (#2 and #4)

—Contours of E/E_{PM} vs. X^* and T^* (#5)

----Contours of $f_{\rm P}/f_{\rm PM}$ vs. X^* and T^* (#6)

 $-F(f)/F_{PM}(f_{PM})$ vs. f^* with X^* as family parameter, stationary state (#7)

 $-F(f)/F_{PM}(f_{PM})$ vs. f^* with T^* as family parameter, at X=1000km (#7)

-----F(f, θ)/F_{MAX} vs. f* and θ for T=6 and 36 hrs at X=160(S. 150) km, and for T=6 and 36 hrs at X=1000km(#8).

Total number of suggested plots=12.

4.3 Case III——Slanting fetch

This test starts with the same configuration as Case II, except that the wind now blows diagonally (45°) across the 1000km \times 1000km box ocean, and that both southern and western boundaries are land. The remaining boundaries are also land (S. subject to the same conditions as in Case II). The test run 72 hours(S. should be run until the model results are stationary) with Δx and Δy are 40km and Δt is 1 hour.

Output :

The test displays the evolution of the sea with time and asymmetric fetch. Suggested out put points for the spectra are at (X, Y) = (80,80), (320,80), (760,80), (320,320), (760,320), and (760,760) (S. (X,Y) = (75,75), (300,75), (300,300), (750,75), (750,300), and (750,750)) kilometers. Priority output times are T = 6, 12, 24, 36 hours and stationary. Plots :

—Contours of E/E_{PM} vs. X^* and Y^* , stationary state (#9)

-26-

- —Contours of $f_{\rm P}/f_{\rm PM}$ vs. X^* and Y^* , stationary state (#10)
- -----Custer diagram of E/E_{PM} and $\bar{\theta}$, stationary state (#11)
- ---- $F(f)/F_{PM}(f_{PM})$ vs. f^* with T^* as family parameter, at the co-ordinates (X, Y) = (80, 80), (320,320), (760,760) km (#7)
- ---- $F(f)/F_{PM}(f_{PM})$ vs. f^* with distance from the origin $\{(X^*)^2 + (Y^*)^2\}^{1/2}$ as the family parameter corresponding to the same three coordinates as above. Use priority times (# 7).
- ----F $(f,\theta)/F_{\text{max}}$ vs. f^* and θ for the steady state, at the coordinates (X, Y) = (80,80), (320, 80), (760,80), (320,320), (760,320), and (760,760) km (#8).

Total number of suggested plots=17.

4.4 Case IV—Half-plane wind field

A stationary wind of $U_{19.5}$ (S. U_{10}) = 20 m/s is turned on at T=0 over the left half-plane. The right half-plane remains calm. The wind blows offshore to the north, paralled to a north-south front. This front lies grid points, to the left of and as near as possible to X = 500 km in the 1000 km square sea. All boundaries are land (S.The southern boundary is land. All other boundary condition are as in Case II). Output :

The test shows the radiation of swell from the windy half-plane into the calm half-plane and the influence of the front on the windsea development in the windy half-plane. Special output co-ordinates are Y = 80,320 and 760 (S.75,300,750) km and X equals front location ± 20 (S.40) km and 760 (S.750) km. Output only for the steady state. Plots :

——Contours of E/E_{PM} vs. X^* and Y^* (#9)

Contours of \bar{f}/f_{PM} vs. X^* and $Y^*(\#10)$

——Custer diagram of E/E_{PM} and $\bar{\theta}$ (#11)

---- $F(f)/F_{PM}(f_{PM})$ vs. f^* with Y^* as family parameter for each output $X^*(\#7)$ ---- $F(f,\theta)/F_{max}$ vs. f^* and θ at grid points with the co-ordinates Y=80,320 and 760km and X equals front location ± 20 km and 760km.

Total number of suggested plots = 15.

4.5 Case VII—90° change in wind direction

A stationary wind of $U_{19.5}$ (S. U_{10}) = 20m/s is blowing to the north over an infinite ocean. At T = 0 the wind turns instantaneously from north to west. Consider two cases : an initial state (at T=0) equal to a fully developed wind sea as developed by the model for times T < 0, and an initial state equal to a half developed sea state, defined as the state for which the peak frequency of the wave spectrum $f_{\rm P}$ equals 2 $f_{\rm PM}$ for $U_{19.5}=20$ m/s (S $f=0.26~g/U_{10}=2f_{\rm PM}$) and for MRI the state is defined by $E=E_{\rm PM}/8$ for $U_{19.5}=20$ m/s. The ocean and wind field should be regarded as completely uniform spatially. This is achieved by bypassing the advection terms in the transport equation. The problem should be one-dimensional, dependent on time only.

Output :

The test displays the directional relaxation characteristics of the sea state under the influence of a turning wind. The problem is strictly one-dimensional, so the output is required at a single grid point only.

Plots :

 $--E^*$ vs. T^* for $T^*>0$, both cases(#2)

 $-T_{45^{\circ}}$ vs. f, both cases(#17)

—Custer diagram of $F(f,T)/F_{MAX}(f)$ and $\bar{\theta}(f,T)$, both cases (#18)

 $---F(f,\theta)/F_{MAX}$ vs. f^* and θ for T=0, 1, 2, 4, 6, 9, 12, 15, 18, 24, and 30 hrs, both cases(# 8).

Total number of suggested plots=26.

4.6 CaseV——Diagonal front

A front is runing diagonally southwest to northeast across a 1000km square grid. All boundaries are land (S. The southernboundary is land and all other boundary conditions are as in Case II) An initial condition is as in Case II. At T=0, a wind of $U_{19.5}$ (S. $U_{10})=20$ m/s, to the north below the front, and to the west above the front, is turned on. For grid points on the diagonal, the wind is to the north, so the front lies between the main diagonal line of grid points and the next diagonal line of points above (to the north of) the main diagonal. Output :

The test shows the influence of a steady but spatially inhomogeneous wind field on the development of the sea. Special output points are at (X, Y) = (240,360), (280,320), (320,280), (360,240), (680,800), (720,760), (760,720) and (800,680) (S. (X, Y) = (225,350), (250,325), (325, 275), (350,250), (675,800), (700,775), (775,725), and (800,700)) km. These points lie close to orthogonal lines crossing the front 300 and 750km from the southern boundary; the points are about 53 and 88km from the front. Choose your computing grid points to closest the these

co-ordinates. Output only for the steady state. Plots :

— Contours of E/E_{PM} vs. X^* and $Y^*(\#9)$

——Contours of \bar{f}/f_{PM} vs. X^* and $Y^*(\#10)$

-----Custer diagram of E/E_{PM} and $\bar{\theta}$ (#11)

— $F(f)/F_{PM}(f_{PM})$ vs. f^* with grid point as family parameter for the four points near 300 km(#7)

 $-F(f)/F_{PM}(f_{PM})$ vs. f^* with grid point as family parameter for the four points near 750 km(#7)

 $-F(f,\theta)/F_{MAX}$ vs. f^* and θ at or closest to the above mentioned special output points (# 8).

Total number of suggested plots=13.

4.7 Case VI——Stationary and moving hurricane

Using idealized hurricane wind fields prepared by Atlantic Oceanographic & Meteorological Labs., run two cases : a stationary storm and a storm translating to the north (Y-direction) at 15 m/s. Consider the storms to be defined on coordinate $0 \le X \le 1280$ (S. 1300)km, $0 \le Y \le 1720$ (S. 1700)km. The eye of the stationary storm is at co-ordinates (650, 1400); the eye of the moving storm is at the same co-ordinates after 24 hours. If the computing grid is smaller, its position relative to this co-ordinate system is fixed at the modeller's discretion. Use the hurricane model whose energy is as much as 1/2 of Ross hurricane model (defined before) (S. Use the Ross hurricane model) for initial conditions and for boundary conditions throughout the run. Start the moving storm's eye 1296km south of (650,1400), even if much of the storm is off the computing grid. Run both storms for 24 hours. Output :

Special output points are at (X, Y) = (640, 1400), (600, 1440), (600, 1360), (680, 1440), (680, 1360), (560, 1520), (560, 1280), (760, 1520), (760, 1280), (440, 1640), (440, 1160), (880, 1640) and (880, 1160) (S. <math>(X, Y) = (650, 1400), (600, 1450), (600, 1350), (700, 1450), (700, 1350), (550, 1500), (550, 1300), (750, 1300), (425, 1625), (425, 1175), (875, 1625) and (875, 1175) km). These points lie at distance 10 (S. 0), 70, 140, and 318km to the northwest, southwest, northeast, and southeast of the eye. Output is required only at T = 24 hours.

——Contours of H_s vs. X and Y for each storm (#12)

——Contours of \overline{f} vs. X and Y for each storm (#13)

——Custer diagram of H_s and $\overline{\theta}$ for each storm (#14)

- $-F(f)/F_{MAX}$ vs. f with distance from eye as family parameter for each azimuth and for each storm (#15)
- ----- $F(f,\theta)/F_{MAX}$ vs. f and θ for each storm and at or closest to the above mentioned spectral output points (#16).

Note that all hurricane variables are dimensional.

Total number of suggested plots=40.

4.8 Note

It is important that essentially the same resolution and numerical scheme of each individual model is maintained in all tests, wherever possible. Further, it has to be noted that all models are supposed to operate in Cartesian co-oedinates for all exercises of the intercomparison study.

5. List of Diagram

Case I

- 1-0-0 contours of $F(f,\theta)$ vs. X and Y for f=0.05 Hz and $\theta=\pi$, every 0.5 day. Numerals on the contours show the interval of them in the unit of 1/1000. The energy is initially at the grid points marked+. The mark \times shows the theoretically expected location of the center of the energy packet.
- 2-0-0 The same as Fig. 1-0-0 except for $\theta = 9\pi/8$
- 3.0.0 The same as Fig. 1.0.0 except for $\theta = 10\pi/8$
- 4-0-0 The same as Fig. 1-0-0 except for f = 0.10 Hz and $\theta = \pi$
- 5-0-0 The same as Fig. 1-0-0 except for f = 0.10 Hz and $\theta = 9\pi/8$
- 6-0-0 The same as Fig. 1-0-0 except for f = 0.10 Hz and $\theta = 10\pi/8$
- 7-0-0 The same as Fig. 1-0-0 except for f = 0.20 Hz and $\theta = \pi$
- 8-0-0 The same as Fig. 1-0-0 except for f = 0.20 Hz and $\theta = 9\pi/8$
- 9-0-0 The same as Fig. 1-0-0 except for f = 0.20 Hz and $\theta = 10\pi/8$
- 10-0-0 E(n) vs. n with f and θ as parameters. The energy level falls to zero when the energy travels out of the calculation area.
- 11-0-0 I(n) and J(n) vs. n with θ as parameter. The end effect appears at around n=50, because the maximum grid number in I and J direction is 40.
- 12-0-0 S^2 vs. n with C as parameter for $\theta = \pi$. The larger the value of C of the wave component, the faster the wave travels out of the calculation area and S^2 is reduced in value.

- 13-0-0 The same as Fig. 12-0-0 except for $\theta = 9\pi/8$
- 14-0-0 The same as Fig. 12-0-0 except for $\theta = 10\pi/8$

Case II

- 15-7.4-1 E^* vs. X^* with T^* as parameter
- 16-7.5-3 f_{p}^{*} vs. X^{*} with T^{*} as parameter
- 17-7.6-2 E^* vs. T^* with X^* as parameter
- 18-7.7-4 f_{p}^{*} vs. T^{*} with X^{*} as parameter
- 19-7.8-0 rescaled E^* vs. X^* by redefining the drag coefficient to lie the curve E^* vs. X^* as close as possible to the mean curve of the SWAMP results. The ratios Cd'/Cd of modefied drag coefficient Cd' to Cd of 1.83×10^{-3} are 1.05 and 0.87 for MRI and MRI-II respectively.
- 20-7.9-0 Same as Fig. 19-7.8-0 except rescaled f_p^* vs. X^*
- 21-7.10-0 Same as Fig. 19-7.8-0 except rescaled E^* vs. T^*
- 22-7.11-0 Same as Fig. 19-7.8-0 except rescaled f_p^* vs. T^*
- 23-0-5 contours of E/E_{PM} vs. X^* and T^*
- 24-0-6 contours of f_p/f_{PM} vs. X^* and T^*
- 25-7.3-7 scaled 1-D spectrum $F(f)/F_{PM}(f_{PM})$ vs. f* with X* as parameter
- 26-0-8 scaled 1-D spectrum $F(f)/F_{PM}(f_{PM})$ vs. f* with T* as parameter
- 27-0-9 scaled 2-D spectrum $F(f,\theta)/F(f,\theta)_{MAX}$ for T=6 hrs, X=160 km
- 28-0-0 scaled 2-D spectrum $F(f,\theta)/F(f,\theta)_{\text{MAX}}$ for T=36 hrs, X=160 km
- 29-0-0 scaled 2-D spectrum $F(f,\theta)/F(f,\theta)_{MAX}$ for T=6 hrs, X=1000 km
- 30-0-10 scaled 2-D spectrum $F(f,\theta)/F(f,\theta)_{MAX}$ for T=36 hrs, X=1000 km
- CaseIII
- 31-8.1-0 wind field geometry for CaseIII and special output points
- 32-0-11 contours of E/E_{PM} vs. X^* and Y^*
- 33-8.2-12 contours of $f_{\rm P}/f_{\rm PM}$ vs. X^* and Y^*
- 34-8.3-13 custer diagram of E/E_{PM} and $\bar{\theta}$ vs. X^* and Y^*
- 35-0-0 scaled 1-D spectrum $F(f)/F_{PM}(f_{PM})$ vs. f^* for T = 6, 12, 24, 72 and point (80,80)
- 36-0-0 scaled 1-D spectrum $F(f)/F_{PM}(f_{PM})$ vs. f^* for T = 6, 12, 24, 72 and point (320,320)
- 37-0-0 scaled 1-D spectrum $F(f)/F_{PM}(f_{PM})$ vs. f^* for T = 6, 12, 24, 72 and point (760,760)
- 38-0-0 scaled 1-D spectrum $F(f)/F_{PM}(f_{PM})$ vs. f^* for T=6 hours and points A, B, and D
- 39-0-0 scaled 1-D spectrum $F(f)/F_{PM}(f_{PM})$ vs. f^* for T=12 hours and points A, B, and D

40-0-0 scaled 1-D spectrum F(f)/F_{PM}(f_{PM}) vs. f* for T = 24 hours and points A, B, and D
41-0-14 scaled 1-D spectrum F(f)/F_{PM}(f_{PM}) vs. f* for T = 36 hours and points A, B, and D
42-0-0 scaled 1-D spectrum F(f)/F_{PM}(f_{PM}) vs. f* for T = 72 hours and points A, B, and D
43-0-15 scaled 2-D spectrum F(f,θ)/F(f,θ)_{MAX} for T = 72 hrs and point (80,80)
44-0-0 scaled 2-D spectrum F(f,θ)/F(f,θ)_{MAX} for T = 72 hrs and point (320,80)
45-8.4-16 scaled 2-D spectrum F(f,θ)/F(f,θ)_{MAX} for T = 72 hrs and point (760,80)
46-0-0 scaled 2-D spectrum F(f,θ)/F(f,θ)_{MAX} for T = 72 hrs and point (320,320)
47-0-17 scaled 2-D spectrum F(f,θ)/F(f,θ)_{MAX} for T = 72 hrs and point (760,320)
48-0-0 scaled 2-D spectrum F(f,θ)/F(f,θ)_{MAX} for T = 72 hrs and point (760,760)
49-8.5-0 location of models in the E_{III}/E_{II} vs. f_{PIII}/f_{PII} parameter plane at point F(MRI is not shown, as the peak wind sea frequency was not well defined for Case II for small

fetch), where indices III and II refer to Case III and Case II for the same fetch.

Case IV

50-9.1-0 Wind field geometry for Case IV. A,B and C denote special output points.

51-0-18 countours of E/E_{PM} vs. X^* and Y^*

52-0-19 countours of $\bar{f}/f_{\rm PM}$ vs. X^* and Y^*

53-9.2-20 custer diagram of $E/E_{\rm PM}$ and $\bar{\theta}$ vs. X^* and Y^*

54-0-0 scaled 2-D spectrum $F(f,\theta)/F(f,\theta)_{MAX}$ for T = 72 hrs and point (480,80)

55-0-21 scaled 2-D spectrum $F(f,\theta)/F(f,\theta)_{MAX}$ for T = 72 hrs and point (480,320)

56-0-0 scaled 2-D spectrum $F(f,\theta)/F(f,\theta)_{MAX}$ for T = 72 hrs and point (480,760)

57-0-0 scaled 2-D spectrum $F(f,\theta)/F(f,\theta)_{MAX}$ for T = 72 hrs and point (520,80)

58-0-22 scaled 2-D spectrum $F(f,\theta)/F(f,\theta)_{MAX}$ for T = 72 hrs and point (520,320)

59-0-0 scaled 2-D spectrum $F(f,\theta)/F(f,\theta)_{MAX}$ for T = 72 hrs and point (520,760)

60-0-0 scaled 2-D spectrum $F(f,\theta)/F(f,\theta)_{MAX}$ for T = 72 hrs and point (760,80)

61-0-0 scaled 2-D spectrum $F(f,\theta)/F(f,\theta)_{\text{MAX}}$ for T = 72 hrs and point (760,320)

62-9.4-23 scaled 2-D spectrum $F(f,\theta)/F(f,\theta)_{MAX}$ for T = 72 hrs and point (760,760)

- 63-0-24 scaled 1-D spectrum $F(f)/F_{PM}(f_{PM})$ for T = 72 hrs and point (480,80),(480,320) and (480,760)
- 64-0-0 scaled 1-D spectrum $F(f)/F_{PM}(f_{PM})$ for T = 72 hrs and point (520,80),(520,320) and (520,760)
- 65-0-25 scaled 1-D spectrum $F(f)/F_{PM}(f_{PM})$ for T = 72 hrs and point (760,80),(760,320) and (760,760)

-32-

- 66-9.3-0 model locations in the partameter plane spanned by the values of $(E_{\rm Iv}/E_{\rm II})$ at points A and B
- 67-9.5-0 model locations in the partameter plane of $E_c/E_B \text{ vs } \overline{f_c}/\overline{f_B}$, where indices B and C refer to points B and C.

 $CaseVII-I(f_{P}=2f_{PM})$

68-0-55 scaled 2-D specturm $F(f,\theta)/F(f,\theta)_{MAX}$ for 0 hrs

69-0-0 scaled 2-D specturm $F(f,\theta)/F(f,\theta)_{MAX}$ for 1 hrs

70-10.1a-56 scaled 2-D specturm $F(f,\theta)/F(f,\theta)_{MAX}$ for 2 hrs

71-0-0 scaled 2-D specturm $F(f,\theta)/F(f,\theta)_{MAX}$ for 4 hrs

72-10.1b-57 scaled 2-D specturm $F(f,\theta)/F(f,\theta)_{MAX}$ for 6 hrs

73-0-0 scaled 2-D specturm $F(f,\theta)/F(f,\theta)_{MAX}$ for 9 hrs

74-0-0 scaled 2-D specturm $F(f,\theta)/F(f,\theta)_{MAX}$ for 12 hrs

75-0-0 scaled 2-D specturm $F(f,\theta)/F(f,\theta)_{MAX}$ for 15 hrs

76-0-58 scaled 2-D specturm $F(f,\theta)/F(f,\theta)_{MAX}$ for 18 hrs

77-0-0 scaled 2-D specturm $F(f,\theta)/F(f,\theta)_{MAX}$ for 24 hrs

78-0-0 scaled 2-D specturm $F(f,\theta)/F(f,\theta)_{MAX}$ for 30 hrs

79-0-0 T_{45}° vs. f

80-0-0 E^* vs. T^*

81-0-0 custer diagram of F(f) and $\overline{\theta}$ vs. T^* and f^*

 $CaseVII-2(f_{\rm P}=f_{\rm PM})$

82-0-59 scaled 2-D specturm $F(f,\theta)/F(f,\theta)_{MAX}$ for 0 hrs 83-0-0 scaled 2-D specturm $F(f,\theta)/F(f,\theta)_{MAX}$ for 1 hrs 84-0-60 scaled 2-D specturm $F(f,\theta)/F(f,\theta)_{MAX}$ for 2 hrs 85-0-0 scaled 2-D specturm $F(f,\theta)/F(f,\theta)_{MAX}$ for 4 hrs 86-0-61 scaled 2-D specturm $F(f,\theta)/F(f,\theta)_{MAX}$ for 6 hrs 87-0-0 scaled 2-D specturm $F(f,\theta)/F(f,\theta)_{MAX}$ for 9 hrs 88-0-0 scaled 2-D specturm $F(f,\theta)/F(f,\theta)_{MAX}$ for 12 hrs 89-0-0 scaled 2-D spectrum $F(f,\theta)/F(f,\theta)_{MAX}$ for 12 hrs 90-0-62 scaled 2-D spectrum $F(f,\theta)/F(f,\theta)_{MAX}$ for 15 hrs 91-0-0 scaled 2-D spectrum $F(f,\theta)/F(f,\theta)_{MAX}$ for 24 hrs 92-0-0 scaled 2-D spectrum $F(f,\theta)/F(f,\theta)_{MAX}$ for 24 hrs 93-0-0 T_{45}° vs. f
94-0-0 E* vs. T*

95-0-0 custer diagram of F(f) and $\bar{\theta}$ vs. T^* and f^*

CaseVII-1 and 2

96-10.11-0 peak spectral densities $F_{MAX}(f,\theta)/F_{PM}(f_{PM},\theta_W)$ for windsea and swell vs. time

 $\operatorname{Case} V$

97-11.1-0 wind field geometry for the diagonal front Case V

98-0-26 contours of E/E_{PM} vs. X^* and Y^*

99-0-27 contours of $\bar{f}/f_{\rm PM}$ vs. X^* and Y^*

100-0-28 custer diagram of $E/E_{\rm PM}$ and $\bar{\theta}$ vs. X^* and Y^*

101-0-0 scaled 2-D spectrum $F(f,\theta)/F(f,\theta)_{MAX}$ for T = 72 hrs and point (360,240)

102-0-0 scaled 2-D spectrum $F(f,\theta)/F(f,\theta)_{MAX}$ for T = 72 hrs and point (320,280)

103-0-30 scaled 2-D spectrum $F(f,\theta)/F(f,\theta)_{MAX}$ for T = 72 hrs and point (280,320)

104-0-31 scaled 2-D spectrum $F(f,\theta)/F(f,\theta)_{MAX}$ for T = 72 hrs and point (240,360)

105-0-0 scaled 2-D spectrum $F(f,\theta)/F(f,\theta)_{MAX}$ for T = 72 hrs and point (800,680)

106-0-29 scaled 2-D spectrum $F(f,\theta)/F(f,\theta)_{MAX}$ for T = 72 hrs and point (760,720)

107-0-33 scaled 2-D spectrum $F(f,\theta)/F(f,\theta)_{MAX}$ for T = 72 hrs and point (720,760)

108-0-32 scaled 2-D spectrum $F(f,\theta)/F(f,\theta)_{MAX}$ for T = 72 hrs and point (680,800)

- 109-0-0 scaled 1-D spectrum $F(f)/F(f_{PM})$ for points (360,240), (320,280), (280,320) and (240, 360)
- 110-0-34 scaled 1-D spectrum $F(f)/F(f_{PM})$ for points (800,680), (760,720), (720,760) and (680, 800)
- 111-11.5-0 E along the section S(cf. Fig.97-11.1-0). Note that fetch increase to the right (decreasing X^*)

112-11.6-0 Relaxation of mean wave direction along the section S

CaseVI-I (Stationary Hurricane)

113-12.1-0 Hurricane wind field and selected output points for spectra

114-0-35 contours of H_s vs. X and Y

115-0-36 contouts of \overline{f} vs. X and Y

116-0-37 custer diagram of H_s and $\bar{\theta}$ vs. X and Y

117-0-47 scaled 1-D spectrum $F(f)/F(f)_{MAX}$ for points (640,1400),(680,1440),(760,1520) and (880,1640) (eye and NE direction)

-34-

- 118-0-0 scaled 1-D spectrum $F(f)/F(f)_{MAX}$ for points (640,1400),(600,1440),(560,1520) and (440,1640) (eye and NW direction)
- 119-0-0 scaled 1-D spectrum $F(f)/F(f)_{MAX}$ for points (640,1400),(600,1360),(560,1280) and (440,1160) (eye and SW direction)
- 120-0-0 scaled 1-D spectrum $F(f)/F(f)_{MAX}$ for points (640,1400),(680,1360),(760,1280) and (880,1160) (eye and SE direction)
- 121-0-38 scaled 2-D spectrum $F(f,\theta)/F(f,\theta)_{MAX}$ for point (640,1400) (eye)
- 122-12.5-0 scaled 2-D spectrum $F(f,\theta)/F(f,\theta)_{MAX}$ for point (680,1440) (NE1)

123-0-39 scaled 2-D spectrum $F(f,\theta)/F(f,\theta)_{MAX}$ for point (760,1520) (NE2)

124-0-40 scaled 2-D spectrum $F(f,\theta)/F(f,\theta)_{MAX}$ for point (880,1640) (NE3)

125-0-0 scaled 2-D spectrum $F(f,\theta)/F(f,\theta)_{MAX}$ for point (600,1440) (NW1)

- 126-0-41 scaled 2-D spectrum $F(f,\theta)/F(f,\theta)_{MAX}$ for point (560,1520) (NW2)
- 127-0-42 scaled 2-D spectrum $F(f,\theta)/F(f,\theta)_{MAX}$ for point (440,1640) (NW3)
- 128-0-0 scaled 2-D spectrum $F(f,\theta)/F(f,\theta)_{MAX}$ for point (600,1360) (SW1)
- 129-0-43 scaled 2-D spectrum $F(f,\theta)/F(f,\theta)_{MAX}$ for point (560,1280) (SW2)
- 130-0-44 scaled 2-D spectrum $F(f,\theta)/F(f,\theta)_{MAX}$ for point (440,1160) (SW3)
- 131-0-0 scaled 2-D spectrum $F(f,\theta)/F(f,\theta)_{MAX}$ for point (680,1360) (SE1)
- 132-0-45 scaled 2-D spectrum $F(f,\theta)/F(f,\theta)_{MAX}$ for point (760,1280) (SE2)
- 133-0-46 scaled 2-D spectrum $F(f,\theta)/F(f,\theta)_{MAX}$ for point (880,1160) (SE3)
- Case VI-2 (moving Hurricane)
- 134-0-48 contours of H_s vs. X and Y
- 135-0-49 contours of \overline{f} vs. X and Y
- 136-0-50 custer diagram of H_s and $\bar{\theta}$ vs. X and Y
- 137-0-54 scaled 1-D spectrum $F(f)/F(f)_{MAX}$ for points (640,1400),(680,1440),(760,1520) and (880,1640) (eye and NE direction)
- 138-0-0 scaled 1-D spectrum $F(f)/F(f)_{MAX}$ for points (640,1400), (600,1440), (560,1520) and (440,1640) (eye and NW direction)
- 139-0-0 scaled 1-D spectrum $F(f)/F(f)_{MAX}$ for points (640,1400),(600,1360),(560,1280) and (440,1160) (eye and SW direction)
- 140-0-0 scaled 1-D spectrum $F(f)/F(f)_{MAX}$ for points (640,1400),(680,1360),(760,1280) and (880,1160) (eye and SE direction)
- 141-0-51 scaled 2-D spectrum $F(f,\theta)/F(f,\theta)_{MAX}$ for point (640,1400) (eye)
- 142-0-53 scaled 2-D spectrum $F(f,\theta)/F(f,\theta)_{MAX}$ for point (680,1440) (NE1)

scaled 2-D spectrum $F(f,\theta)/F(f,\theta)_{MAX}$ for point (760,1520) (NE2) 143-0-0 scaled 2-D spectrum $F(f,\theta)/F(f,\theta)_{MAX}$ for point (880,1640) (NE3) 144-0-0 scaled 2-D spectrum $F(f,\theta)/F(f,\theta)_{MAX}$ for point (600,1440) (NW1) 145-0-0 scaled 2-D spectrum $F(f,\theta)/F(f,\theta)_{MAX}$ for point (560,1520) (NW2) 146-0-0 scaled 2-D spectrum $F(f,\theta)/F(f,\theta)_{MAX}$ for point (440,1640) (NW3) 147-0-0scaled 2-D spectrum $F(f,\theta)/F(f,\theta)_{MAX}$ for point (600,1360) (SW1) 148-0-0 scaled 2-D spectrum $F(f,\theta)/F(f,\theta)_{MAX}$ for point (560,1280) (SW2) 149-0-52 scaled 2-D spectrum $F(f,\theta)/F(f,\theta)_{MAX}$ for point (440,1160) (SW3) 150-0-0 scaled 2-D spectrum $F(f,\theta)/F(f,\theta)_{MAX}$ for point (680,1360) (SE1) 151-0-0 scaled 2-D spectrum $F(f,\theta)/F(f,\theta)_{MAX}$ for point (760,1280) (SE2) 152-0-0 153-0-0 scaled 2-D spectrum $F(f,\theta)/F(f,\theta)_{MAX}$ for point (880,1160) (SE3)

Case VI-1 and 2

154-12.4-0 Positions of $(H_s)_{MAX}$ for different models. Arrows point in θ and are proportional to $(H_s)_{MAX}$ in length

6. References

- Allender, J.H., T.P.Barnett and M.Lybanon(1984) : An improved spectral model for ocean wave prediction. Proc. Symp. on Wave Dynamics and Radio Probing of Ocean Surface, Miami, 1981, Plenum Press.
- Cavaleri, L., and C.Bertrotti(1984) : A wave model for wind wave prediction. Proc. Symp. on Wave Dynamics and Radio Probing of Ocean Surface, Miami, 1981, Plenum Press.
- De Voogt, W.J.P., G.J.Komen and J.Bruinsma (1984) : The KNMI operational wave prediction model GONO. Proc. Symp. on Wave Dynamics and Radio Probing of Ocean Surface, Miami, 1981, Prenum Press.
- Golding, B.(1984) : The UK Meteorogical Office operational wave model. Proc. Symp. on Wave Dynamics and Radio Probing of Ocean Surface, Miami, 1981, Plenum Press.
- Greenwood, J.A., V.J.Cardone and L.M.Lawson (1984) : Intercomparison test version of the SAIL wave model. Proc. Symp. on Wave Dynamics and Radio Probing of Ocean Surface, Miami, 1981, Plenum Press.
- Günther, H. and W.Rosenthal (1984) : The hybrid parametrical (HYPA) wave model. Proc. Symp. on Wave Dynamics and Radio Probing of Ocean Surface, Miami, 1981, Plenum Press.

- Hasselmann, S., and K.Hasselmann(1984) : Integrations of the spectral transport equation with exact and parametrical computation of the nonlinear energy taransfer. Proc. Symp. on Wave Dynamics and Radio Probing of Ocean Surface, Miami, 1981, Plenum Press.
- Haug, O.(1968) : A numerical model for prediction of sea and swell. The Norwegian Met. Inst., Meteor. Ann. 5, No.4.
- Inoue, T.(1967) : On the growth of the spectrum of wind generated sea according to a modified Miles-Phillips mechanism and its application to forecasting. Geophys. Sci. Lab. Tr-67-5, New York Univ.,74.
- Isozaki, I. and T.Uji(1973) : Numetical prediction of ocean waves. Papers in Met. and Geophys., 24(2), 207-232.
- The SWAMP Group : J.H.Allender, T.P.Barnett, L.Bertotti, J.Bruinsma, V.J.Cardone, L. Cavaleri, J.Ephraums, B.Golding, A.Greenwood, J.Guddal, H.Günther, K.Hasselnamm, S. Hasselmann, P.Joseph, S.Kawai, G.J.Komen, L.Lawson, H.Linne, R.B.Long, M.Lybanon, E.Maeland, W.Rosenthal, Y.Toba, T.Uji, and W.J.P. de Voogt(1984) : The Sea Wave Modelling Project (SWAMP), An intercomparison study of wind wave prediction models, Part 1: Principal results and conclusions. in Proc. IUCRM Symp. on Wave Dynamics and Radio Probing of Ocean Surface, Miami, 1981, Plenum Press.
- The SWAMP Group : J.H.Allender, T.P.Barnett, L.Bertotti, J.Bruinsma, V.J.Cardone, L. Cavaleri, J.Ephraums, B.Golding, A.Greenwood, J.Guddal, H.Günther, K.Hasselmann, S. Hasselmann, P.Joseph, S.Kawai, G.J.Komen, L.Lawson, H.Linne, R.B.Long, M.Lybanon, E.Maeland, W.Rosenthal, Y.Toba, T.Uji, and W.J.P. de Voogt(1982) : The Sea Wave Modelling Project(SWAMP), An intercomparison study of wind wave prediction models, Part 2 : A compilation of results, KNMI Publication 161.
- Toba, Y. (1979) : Study on wind waves as a strong nonlinear phenomenon. 12th Symp. on Naval Hydrodynam., National Acad. of Sci., Washington, D.C., 521-540.
- Toba,Y., S.Kawai and P.S.Joseph (1984) : The Tohoku wave model. Proc. Symp. on Wave Dynamics and Radio Probing of Ocean Surface, Miami, 1981, Plenum Press.
- Uji,T. and I.Isozaki (1972) : The calculation of wave propagation in the numerical prediction of ocean waves. Papers in Met. and Gedophys., 23(4), 347-359.
- Uji,T.(1975) : Numerical estimation of the sea waves in a typhoon area. Papers in Met. and Geophys., 26(4), 199-217.
- Uji,T.(1984) : The MRI wave model. Proc. Symp. on Wave Dynamics and Radio Probing of Ocean Surface, Miami, 1981, Plenum Press.

Uji,T.(1984) : A coupled discrete wave model MRI-II. J. Oceanogr. Soc. Japan, 40(4), 303-313.

- anna a Coatta Staata ngolaa ay sooray saaray ka maraa ayaa ay ahaana ahaa ay ahaan oo soo ahaan oo saaray ah baraa na Staan ahiiga ah ahaa ahaa ahaana baraa ahaa na sooray ahaanaa
- (1) Description of the second of the second of the second state of the second s second s second s second s second seco
- (a) For the state of the state the state of the state
- (a) Set (1) Set subseque (1) subseque (1) (1) Set (1) Set (2) Set
- ig gobber o Nagas (gobber) and endere of old basis solar of the transmission of the Menorem Sector Sector Secto Basis and solar of the co
- e eg # − 420 por 1912, 2012, 2012, 220 e de Carelo e o goorno do escontro e deservo de entre e deservo entre e Porte en deservo Mereko de Carelo de Parison Chorne.

-38-

39

Fig. 1-0-0 contours of $F(f,\theta)$ vs. X and Y for f=0.05 Hz and $\theta=\pi$, every 0.5 day. Numerals on the contours show the interval of them in the unit of 1/1000. The energy is initially at the grid points marked+. The mark \times shows the theoretically expected location of the center of the energy packet.

Fig. 2-0-0 The same as Fig. 1-0-0 except for $\theta = 9\pi/8$

Fig. 3-0-0 The same as Fig. 1-0-0 except for $\theta = 10\pi/8$

Tech. Rep. Meteorol. Res. Inst. No. 15 1985

-41

42-

Fig. 4-0-0 The same as Fig. 1-0-0 except for f = 0.10 Hz and $\theta = \pi$

人名英格兰人姓氏克特的名称形式 化乙基乙基乙基乙基乙基乙基乙基乙基乙基

Fig. 5-0-0 The same as Fig. 1-0-0 except for f = 0.10 Hz and $\theta = 9\pi/8$

-43

Fig. 6-0-0 The same as Fig. 1-0-0 except for f = 0.10 Hz and $\theta = 10\pi/8$

Tech. Rep. Meteorol. Res. Inst. No. 15 1985

44 -

45

Fig. 7-0-0 The same as Fig. 1-0-0 except for f = 0.20 Hz and $\theta = \pi$

Fig. 8-0-0 The same as Fig. 1-0-0 except for f = 0.20 Hz and $\theta = 9\pi/8$

-46

47

Fig. 9-0-0 The same as Fig. 1-0-0 except for f = 0.20 Hz and $\theta = 10\pi/8$

48

Fig. 10-0-0 E(n) vs. n with f and θ as parameters. The energy level falls to zero when the energy travels travels out of the calculation area.

Fig. 11-0-0 I(n) and J(n) vs. n with θ as parameter. The end effect appears at around n=50, because the maximum grid number in I and J direction is 40.

-49--

Fig. 12-0-0 S^2 vs. n with C as parameter for $\theta = \pi$. The larger the value of C of the wave component, the faster the wave travels out of the calculation area and S^2 is reduced in value.

Tech. Rep. Meteorol. Res. Inst. No. 15 1985

- 50

Fig. 13-0-0 The same as Fig. 12-0-0 except for $\theta = 9\pi/8$

51

Fig. 14-0-0 The same as Fig. 12-0-0 except for $\theta = 10\pi/8$

Tech. Rep. Meteorol. Res. Inst. No. 15 1985

- 52-

Fig. 15-7.4-1 E^* vs. X with T^* as parameter

-53-

Fig. 16-7.5-3 f_{p}^{*} vs. X^{*} with T^{*} as parameter

-54-

- 55-

Fig. 18-7.7-4 f_{p}^{*} vs. T^{*} with X^{*} as parameter

--- 56 ---

Fig. 19-7.8-0 rescaled E^* vs. X^* by redefining the drag coefficient to lie the curve E^* vs. X^* as close as possible to the mean curve of the SWAMP results. The ratios Cd' /Cd of modefied drag coefficient Cd' to Cd of 1.83×10^{-3} are 1.05 and 0.87 for MRI and MRI-II respectively.

-58-

Tech. Rep. Meteorol. Res. Inst. No. 15 1985

Fig. 23-0-5 contours of E/E_{PM} vs. X^* and T^*

-61-

Fig. 24-0-6 contours of f_p/f_{PM} vs. X^* and T^*

-62-

Fig. 25-7.3-7 scaled 1-D spectrum $F(f)/F_{PM}(f_{PM})$ vs. f* with X* as parameter

Fig. 26-0-8 scaled 1-D spectrum $F(f)/F_{PM}(f_{PM})$ vs. f* with T* as parameter

-64-

Tech. Rep. Meteorol. Res. Inst. No. 15 1985

Fig. 27-0-9 scaled 2-D spectrum $F(f,\theta)/F(f,\theta)_{MAX}$ for T=6 hrs, X=160km

-65-

Tech. Rep. Meteorol. Res. Inst. No. 15 1985

Fig. 28-0-0 scaled 2-D spectrum $F(f,\theta)/F(f,\theta)_{MAX}$ for T=36 hrs, X=160 km

-66-

Tech. Rep. Meteorol. Res. Inst. No. 15 1985

Fig. 29-0-0 scaled 2-D spectrum $F(f,\theta)/F(f,\theta)_{MAX}$ for T=6 hrs, X=1000 km

-67-

Fig. 30-0-10 scaled 2-D spectrum $F(f,\theta)/F(f,\theta)_{MAX}$ for T=36 hrs, X=1000 km

Tech. Rep. Meteorol. Res. Inst. No. 15 1985

Fig. 32-0-11 contours of E/E_{PM} vs. X^* and Y^*

-70-

Tech. Rep. Meteorol. Res. Inst. No. 15 1985

Fig. 33-8.2-12 contours of f_p/f_{PM} vs. X^* and Y^*

1.5 -

Fig. 34-8.3-13 custer diagram of E/E_{PM} and $\overline{\theta}$ vs. X^* and Y^*

-72-

Fig. 35-0-0 scaled 1-D spectrum $F(f)/F_{PM}(f_{PM})$ vs. f^* for T = 6, 12, 24, 72 and point (80,80)

Fig. 36-0-0 scaled 1-D spectrum $F(f)/F_{PM}(f_{PM})$ vs. f^* for T = 6, 12, 24, 72 and point (320,320)

-74-

Fig. 37-0-0 scaled 1-D spectrum $F(f)/F_{PM}(f_{PM})$ vs. f^* for T = 6, 12, 24, 72 and point (760,760)

Fig. 38-0-0 scaled 1-D spectrum $F(f)/F_{PM}(f_{PM})$ vs. f^* for T=6 hours and points A, B, and D

Fig. 39-0-0 scaled 1-D spectrum $F(f)/F_{PM}(f_{PM})$ vs. f^* for T=12 hours and points A, B, and D

Tech. Rep. Meteorol. Res. Inst. No. 15 1985

Fig. 41-0-14 scaled 1-D spectrum $F(f)/F_{PM}(f_{PM})$ vs. f^* for T=36 hours and points A, B, and D

-79-

Fig. 42-0-0 scaled 1-D spectrum $F(f)/F_{PM}(f_{PM})$ vs. f^* for T=72 hours and points A, B, and D

Tech. Rep. Meteorol. Res. Inst. No. 15 1985

Fig. 43-0-15 scaled 2-D spectrum $F(f,\theta)/F(f,\theta)_{MAX}$ for T=72 hrs and point (80,80)

Fig. 44-0-0 scaled 2-D spectrum $F(f,\theta)/F(f,\theta)_{MAX}$ for T=72 hrs and point (320,80)

Fig. 45-8.4-16 scaled 2-D spectrum $F(f,\theta)/F(f,\theta)_{MAX}$ for T = 72 hrs and point (760,80)

Tech. Rep. Meteorol. Res. Inst. No. 15 1985

Fig. 46-0-0 scaled 2-D spectrum $F(f,\theta)/F(f,\theta)_{MAX}$ for T=72 hrs and point (320,320)

Fig. 47-0-17 scaled 2-D spectrum $F(f,\theta)/F(f,\theta)_{MAX}$ for T=72 hrs and point (760,320)

Fig. 48-0-0 scaled 2-D spectrum $F(f,\theta)/F(f,\theta)_{MAX}$ for T=72 hrs and point (760,760)

Tech. Rep. Meteorol. Res. Inst. No. 15 1985

-87-

Fig. 50-9.1-0 Wind field geometry for Case IV. A,B and C denote special output points.

Fig. 51-0-18 countours of E/E_{PM} vs. X^* and Y^*

Tech. Rep. Meteorol. Res. Inst. No. 15 1985

Fig. 52-0-19 countours of \overline{f}/f_{PM} vs. X^* and Y^*

and a second sec

 $\label{eq:constraint} \left\| \left(\left\| \left\| \frac{1}{2} - \frac{1}{2} \right\| \right) - \left\| \left\| \left\| \frac{1}{2} - \frac{1}{2} \right\| \right\| \right) - \left\| \left\| \left\| \frac{1}{2} - \frac{1}{2} \right\| \right\| \right\| + \left\| \left\| \frac{1}{2} - \frac{1}{2} \right\| \right\| + \left\| \frac{1}{2} - \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} +$

-91-

Tech. Rep. Meteorol. Res. Inst. No. 15 1985

Fig. 54-0-0 scaled 2-D spectrum $F(f,\theta)/F(f,\theta)_{MAX}$ for T = 72 hrs and point (480,80)

-92-

Fig. 55-0-21 scaled 2-D spectrum $F(f,\theta)/F(f,\theta)_{MAX}$ for T = 72 hrs and point (480,320)

Tech. Rep. Meteorol. Res. Inst. No. 15 1985

Fig. 56-0-0 scaled 2-D spectrum $F(f,\theta)/F(f,\theta)_{MAX}$ for T = 72 hrs and point (480,760)

Fig. 57-0-0 scaled 2-D spectrum $F(f,\theta)/F(f,\theta)_{MAX}$ for T = 72 hrs and point (520,80)

Tech. Rep. Meteorol. Res. Inst. No. 15 1985

Fig. 58-0-22 scaled 2-D spectrum $F(f,\theta)/F(f,\theta)_{MAX}$ for T = 72 hrs and point (520,320)

Fig. 59-0-0 scaled 2-D spectrum $F(f,\theta)/F(f,\theta)_{MAX}$ for T = 72 hrs and point (520,760)

Fig. 60-0-0 scaled 2-D spectrum $F(f,\theta)/F(f,\theta)_{MAX}$ for T = 72 hrs and point (760,80)

-98--

Fig. 61-0-0 scaled 2-D spectrum $F(f,\theta)/F(f,\theta)_{MAX}$ for T = 72 hrs and point (760,320)

Fig. 62-9.4-23 scaled 2-D spectrum $F(f,\theta)/F(f,\theta)_{MAX}$ for T = 72 hrs and point (760,760)

Fig. 63-0-24 scaled 1-D spectrum $F(f)/F(f_{PM})$ for T = 72 hrs and point (480, 80),(480,320) and (480,760)

Tech. Rep. Meteorol. Res. Inst. No. 15 1985

Fig. 64-0-0 scaled 1-D spectrum $F(f)/F(f_{PM})$ for T = 72 hrs and point (520, 80),(520,320) and (520,760)

Fig. 65-0-25 scaled 1-D spectrum $F(f)/F(f_{PM})$ for T = 72 hrs and point (760, 80), (760, 320) and (760, 760)

Fig. 66-9.3-0 model locations in the partameter plane spanned by the values of $(E_{\rm IV}/E_{\rm II})$ at points A and B

-104-

Fig. 67-9.5-0 model locations in the partameter plane of $E_{\rm C}/E_{\rm B}$ vs $\bar{f}_{\rm C}/\bar{f}_{\rm B}$, where indices B and C refer to points B and C.

Tech. Rep. Meteorol. Res. Inst. No. 15 1985

Fig. 69-0-0 scaled 2-D specturm $F(f,\theta)/F(f,\theta)_{MAX}$ for 1 hrs

Fig. 70-10.1a-56 scaled 2-D specturm $F(f,\theta)/F(f,\theta)_{MAX}$ for 2 hrs

Fig. 71-0-0 scaled 2-D specturm $F(f,\theta)/F(f,\theta)_{MAX}$ for 4 hrs

Fig. 72-10.1b-57 scaled 2-D specturm $F(f,\theta)/F(f,\theta)_{MAX}$ for 6 hrs

Tech. Rep. Meteorol. Res. Inst. No. 15 1985

Fig. 74-0-0 scaled 2-D specturm $F(f,\theta)/F(f,\theta)_{MAX}$ for 12 hrs

Fig. 75-0-0 scaled 2-D specturm $F(f,\theta)/F(f,\theta)_{MAX}$ for 15 hrs

Tech. Rep. Meteorol. Res. Inst. No. 15 1985

Fig. 77-0-0 scaled 2-D specturm $F(f,\theta)/F(f,\theta)_{MAX}$ for 24 hrs

Tech. Rep. Meteorol. Res. Inst. No. 15 1985

Fig. 78-0-0 scaled 2-D specturm $F(f,\theta)/F(f,\theta)_{MAX}$ for 30 hrs

Tech. Rep. Meteorol. Res. Inst. No. 15 1985

Fig. 79-0-0 T_{45}° vs. f

-117-

Tech. Rep. Meteorol. Res. Inst. No. 15 1985

Fig. 80-0-0 E^* vs. T^*

Tech. Rep. Meteorol. Res. Inst. No. 15 1985

Fig. 81-0-0 custer diagram of F(f) and $\overline{\theta}$ vs. T^* and f^*

(X,Y)=(OKM.OKM) F_{MAX}=59.70 (M×M SEC/RAD) LOCATION 180.0-7 #8 135.0-90.0 CASE 7-2 MØDEL : 'MRI' 45.0 IMAX=1 : JMAX=1 NØ ADVECTION TERMS 0.0 AC AL WIND DI DT : 1 HOUR NOA NO EXTENT IN X AND Y 0 -45.0 FULLY DEV. SEA BY SOUTH WIND AT T=0 -90.0 WIND : SOUTH WIND : 20 M/SEC -135.0-TIME : O HOURS CONTOURS OF F/FMAN -180.0 1.0 ۵ Ċ f*(10-2) LOCATION (X, Y) = (OKM, OKM)F_{MAX}=59.70 (M×M SEC/RAD) 180.0-'MRI-II' MØDEL : 135.0 90.0 45.0 0.1 0.0 OCAL WIND DIR -45.0 -90.0 -135.0-

Tech. Rep. Meteorol. Res. Inst. No. 15 1985

1.0

f*(10-2)

2.0

-180.0-

0.0

Fig. 83-0-0 scaled 2-D specturm $F(f,\theta)/F(f,\theta)_{MAX}$ for 1 hrs

Tech. Rep. Meteorol. Res. Inst. No. 15 1985

Fig. 84-0-60 scaled 2-D specturm $F(f,\theta)/F(f,\theta)_{MAX}$ for 2 hrs

Fig. 85-0-0 scaled 2-D specturm $F(f,\theta)/F(f,\theta)_{MAX}$ for 4 hrs

Tech. Rep. Meteorol. Res. Inst. No. 15 1985

Fig. 87-0-0 scaled 2-D specturm $F(f,\theta)/F(f,\theta)_{MAX}$ for 9 hrs

-126-

Fig. 89-0-0 scaled 2-D spectrum $F(f,\theta)/F(f,\theta)_{MAX}$ for 15 hrs

Fig. 90-0-62 scaled 2-D specturm $F(f,\theta)/F(f,\theta)_{MAX}$ for 18 hrs

Fig. 91-0-0 scaled 2-D specturm $F(f,\theta)/F(f,\theta)_{MAX}$ for 24 hrs

Fig. 92-0-0 scaled 2-D spectrum $F(f,\theta)/F(f,\theta)_{MAX}$ for 30 hrs

-130-

Fig. 93-0-0 T_{45}° vs. f

Tech. Rep. Meteorol. Res. Inst. No. 15 1985

Fig. 94-0-0 E* vs. T*

Tech. Rep. Meteorol. Res. Inst. No. 15 1985

Fig. 96-10.11-0 peak spectral densities $F_{MAX}(f,\theta)/F_{PM}(f_{PM},\theta_W)$ for windsea and swell vs. time

Fig. 98-0-26 contours of E/E_{PM} vs. X^* and Y^*

#9

1.5 -

#10

Fig. 99-0-27 contours of $\bar{f}/f_{\rm PM}$ vs. X^* and Y^*

1.5 -

Fig. 100-0-28 custer diagram of E/E_{PM} and $\bar{\theta}$ vs. X^* and Y^*

Tech. Rep. Meteorol. Res. Inst. No. 15 1985

Tech. Rep. Meteorol. Res. Inst. No. 15 1985

Fig. 102-0-0 scaled 2-D spectrum $F(f,\theta)/F(f,\theta)_{MAX}$ for T = 72 hrs and point (320,280)

Fig. 103-0-30 scaled 2-D spectrum $F(f,\theta)/F(f,\theta)_{MAX}$ for T = 72 hrs and point (280,320)

Fig. 104-0-31 scaled 2-D spectrum $F(f,\theta)/F(f,\theta)_{MAX}$ for T = 72 hrs and point (240,360)

Tech. Rep. Meteorol. Res. Inst. No. 15 1985

Fig. 105-0-0 scaled 2-D spectrum $F(f,\theta)/F(f,\theta)_{MAX}$ for T = 72 hrs and point (800,680)

Fig. 107-0-33 scaled 2-D spectrum $F(f,\theta)/F(f,\theta)_{MAX}$ for T = 72 hrs and point (720,760)

Fig. 108-0-32 scaled 2-D spectrum $F(f,\theta)/F(f,\theta)_{MAX}$ for T = 72 hrs and point (680,800)

-146-

Fig. 109-0-0 scaled 1-D spectrum $F(f)/F(f_{PM})$ for points (360,240), (320,280), (280,320) and (240,360)

Tech. Rep. Meteorol. Res. Inst. No. 15 1985

Fig. 110-0-34 scaled 1-D spectrum $F(f)/F(f_{PM})$ for points (800,680),(760,720), (720,760) and (680,800)

-149-

Fig. 112-11.6-0 Relaxation of mean wave direction along the section S

-150-

WIND FIELD OF HURRICANE

Fig. 113-12.1-0 Hurricane wind field and selected output points for spectra

- 151 --

Tech. Rep. Meteorol. Res. Inst. No. 15 1985

.

-152-

Fig. 115-0-36 contouts of \bar{f} vs. X and Y

-153

Fig. 116-0-37 custer diagram of $H_{\rm s}$ and $\bar{\theta}$ vs. X and Y

154

Fig. 117-0-47 scaled 1-D spectrum $F(f)/F(f)_{MAX}$ for points (640,1400),(680, 1440),(760,1520) and (880,1640) (eye and NE direction)

Fig. 118-0-0 scaled 1-D spectrum $F(f)/F(f)_{MAX}$ for points (640,1400),(600, 1440),(560,1520) and (440,1640) (eye and NW direction)

Fig. 119-0-0 scaled 1-D spectrum $F(f)/F(f)_{MAX}$ for points (640,1400),(600, 1360),(560,1280) and (440,1160) (eye and SW direction)

Fig. 120-0-0 scaled 1-D spectrum $F(f)/F(f)_{MAX}$ for points (640,1400),(680, 1360),(760,1280) and (880,1160) (eye and SE direction)

Fig. 122-12.5-0 scaled 2-D spectrum $F(f,\theta)/F(f,\theta)_{MAX}$ for point (680,1440) (NE1)

Fig. 123-0-39 scaled 2-D spectrum $F(f,\theta)/F(f,\theta)_{MAX}$ for point (760,1520) (NE2)

Tech. Rep. Meteorol. Res. Inst. No. 15 1985

Fig. 124-0-40 scaled 2-D spectrum $F(f,\theta)/F(f,\theta)_{MAX}$ for point (880,1640) (NE3)

Fig. 125-0-0 scaled 2-D spectrum $F(f,\theta)/F(f,\theta)_{MAX}$ for point (600,1440) (NW1)

Fig. 126-0-41 scaled 2-D spectrum $F(f,\theta)/F(f,\theta)_{MAX}$ for point (560,1520) (NW2)

Fig. 127-0-42 scaled 2-D spectrum $F(f,\theta)/F(f,\theta)_{MAX}$ for point (440,1640) (NW3)

Tech. Rep. Meteorol. Res. Inst. No. 15 1985

Fig. 128-0-0 scaled 2-D spectrum $F(f,\theta)/F(f,\theta)_{MAX}$ for point (600,1360) (SW1)

Fig. 129-0-43 scaled 2-D spectrum $F(f,\theta)/F(f,\theta)_{MAX}$ for point (560,1280) (SW2)

Tech. Rep. Meteorol. Res. Inst. No. 15 1985

Fig. 130-0-44 scaled 2-D spectrum $F(f,\theta)/F(f,\theta)_{MAX}$ for point (440,1160) (SW3)

Fig. 131-0-0 scaled 2-D spectrum $F(f,\theta)/F(f,\theta)_{MAX}$ for point (680,1360) (SE1)

Fig. 132-0-45 scaled 2-D spectrum $F(f,\theta)/F(f,\theta)_{MAX}$ for point (760,1280) (SE2)

Fig. 133-0-46 scaled 2-D spectrum $F(f,\theta)/F(f,\theta)_{MAX}$ for point (880,1160) (SE3)

-172-

173-

-174 --

Fig. 137-0-54 scaled 1-D spectrum $F(f)/F(f)_{MAX}$ for points (640,1400), (680, 1440), (760,1520) and (880,1640) (eye and NE direction)

Fig. 138-0-0 scaled 1-D spectrum $F(f)/F(f)_{MAX}$ for points (640,1400),(600, 1440),(560,1520) and (440,1640) (eye and NW direction)

Tech. Rep. Meteorol. Res. Inst. No. 15 1985

Fig. 139-0-0 scaled 1-D spectrum $F(f)/F(f)_{MAX}$ for points (640,1400),(600, 1360),(560,1280) and (440,1160) (eye and SW direction)
Tech. Rep. Meteorol. Res. Inst. No. 15 1985

Fig. 140-0-0 scaled 1-D spectrum $F(f)/F(f)_{MAX}$ for points (640,1400), (680, 1360), (760,1280) and (880,1160) (eye and SE direction)

Fig. 142-0-53 scaled 2-D spectrum $F(f,\theta)/F(f,\theta)_{MAX}$ for point (680,1440) (NE1)

Tech. Rep. Meteorol. Res. Inst. No. 15 1985

Fig. 143-0-0 scaled 2-D spectrum $F(f,\theta)/F(f,\theta)_{MAX}$ for point (760,1520) (NE2)

Fig. 144-0-0 scaled 2-D spectrum $F(f,\theta)/F(f,\theta)_{MAX}$ for point (880,1640) (NE3)

Tech. Rep. Meteorol. Res. Inst. No. 15 1985

Fig. 146-0-0 scaled 2-D spectrum $F(f,\theta)/F(f,\theta)_{MAX}$ for point (560,1520) (NW2)

Fig. 147-0-0 scaled 2-D spectrum $F(f,\theta)/F(f,\theta)_{MAX}$ for point (440,1640) (NW3)

Fig. 148-0-0 scaled 2-D spectrum $F(f,\theta)/F(f,\theta)_{MAX}$ for point (600,1360) (SW1)

Tech. Rep. Meteorol. Res. Inst. No. 15 1985

Fig. 149-0-52 scaled 2-D spectrum $F(f,\theta)/F(f,\theta)_{MAX}$ for point (560,1280) (SW2)

Tech. Rep. Meteorol. Res. Inst. No. 15 1985

Fig. 150-0-0 scaled 2-D spectrum $F(f,\theta)/F(f,\theta)_{MAX}$ for point (440,1160) (SW3)

Fig. 151-0-0 scaled 2-D spectrum $F(f,\theta)/F(f,\theta)_{MAX}$ for point (680,1360) (SE1)

Fig. 152-0-0 scaled 2-D spectrum $F(f,\theta)/F(f,\theta)_{MAX}$ for point (760,1280) (SE2)

Fig. 153-0-0 scaled 2-D spectrum $F(f,\theta)/F(f,\theta)_{MAX}$ for point (880,1160) (SE3)

Tech. Rep. Meteorol. Res. Inst. No. 15 1985

気 象 研 究 所

1946 (昭和21年) 設立

	所		長	:		理	抖	亅		竹	内	I	清		秀	
予幸	段 研	究	部		部	長	:				吉		田	え	医	治
台厦	臥研	究	部		部	長		Ę	里	博	相		原	Ī	E.	彦
物理	気象	研究	日部		部	長	:	Ŧ	里	博	岡		林	佢	夋	雄
応用気象研究部					部	長	:				真		島	住	Ē	裕
気象衛星研究部					部	長	:	-	Ľ	博	内		藤	見	恵	吉
地震火山研究部					部	長	•	Ę	里	博	巿		Д	Ē	攵	治
海洋	羊研	究	部		部	長	:	Đ	里	博	飯		Ξ	查	丰	人
高層物理研究部					部	長	•	理		博	嘉		納	宗		靖
地球化学研究部					部	長	:				秋		山			勉
気象研究所技術報告																
猫梅委目目,车 卢 归 小																
				編果	安貝	 • •	具		島	但	<u> </u>	裕				
, , <u>, , , , , , , , , , , , , , , </u>						ς.							_			
編集	委員	÷	山	崎	孝	治		近	藤	洋	輝		伊	藤	朋	之
			吉	Щ	友	章	2	青	柳	·	郎		岡	Ξ	ΙĒ	實
			遠	藤	昌	宏	,	小	寺	邦	彦		伏	見	克	彦
事務	局:		两	Ш	圭	子		湯	原	有	哉					

気象研究所技術報告は、気象学、海洋学、地震学、その他関連の地球科学の分野において、 気象研究所職員が得た研究成果に関し、技術報告、資料報告及び総合報告を掲載する。 気象研究所技術報告は、1978年(昭和53年)以降、必要の都度刊行される。

> 昭和60年3月30日発行 ISSN 0386-4049 編集兼発行所 気象研究所 茨城県筑波郡谷田部町長峰1-1 印刷所 東京都港区西新橋2-5-10 日青工業株式会社