7. Penetrative cumulus convection*

7.1 Introduction

The horizontal scale of a cumulus cloud ranges from about 1 to 10 km and this scale is
much smaller than the horizontal resolution of the GCM which is about 100~500 km.
Therefore, it is impossible to resolve each cumulus cloud in the GCM. On the other hand, the
cumulus clouds sometimes extend to about 10 km or more in the vertical direction and play
an important role in the vertical transfer of heat, moisture and momentum.

Deep cumuli are a major heating source in the ITCZ and a driving force of Hadley
circulation. Thus a cumulus cloud parameterization is essential in simulating global climate
by the GCM.

For the parametrization be possible, we have to assume that effects of cumulus cloud
ensemble can be determined by the large-scale environment. In other words, the
parameterization problem is how to determine grid-scale heat, moistire and momentum
changes due to cumulus cloud ensemble in terms of grid-scale fields.

The cumulus parameterization scheme of the MRI- GCM is based on Arakawa-Schubert
cumulus parametrization (hereafter abbreviated as the A-S cumulus parameratization. For
details, see Arakawa and Schubert, 1974, Lord and Arakawa, 1980, Lord, 1982, Lord, Chao
and Arakawa, 1982, etc.). The A-S cumulus parameterization consists of two major parts.
One is the cloud model which is described in sections 7.2 and 7.3, and the other is the closure
assumption which is-described in section 7.4. The discretized form of the parameterization is
described in sections 7.5 through 7.8. Section 7.9 describes the parameterization of ice phase
cumuli. Appendix 7.1 gives the selected results from the MRI. GCM-I integrations and
discussions. Appendix 7.2 gives simple examples of the solution for the mass flux distribution

equation.

7.2 Cloud Model I : Modification of the large-scale environment by cumulus clouds
The dry static energy s and the moist static energy h are used in the A-S
parameterization. s is an approximately conserved variable during the dry adiabatic process.

On the other hand, h is an approximately conserved variable during the moist adiabatic

% This chapter is prepared by K. Yamazaki.
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process. They are defined by
s=c,T+gz (7.1)
h=s+Lq=c,T+gz+Lq ‘ (7.2)
respectively, where ¢, is the specific heat of air under constant pressure, T the temperature,
g gravity, z height, L the latent heat per unit mass of water vapor and q the mixing ratio of
water vapor.

All the cumulus clouds are assumed to have their roots in the planetary boundary layer
(PBL). Other types of clouds are considered separately and described in Chapter 9.

Consider an area which is large enough to contain an ensemble of cumulus clouds but
small enough to have a quasi-uniform large-scale environment. There might be various types
and stages of cumulus clouds, for example, deep or shallow clouds in developing, mature or
decaying stages in the area at a specific moment. Of course, it is impossible to describe each
individual cloud by using the GCM. Only the overall statistical effects of the cumulus
ensemble can be considered.

We assume that a cloud ensemble can be divided into a cloud subensemble of which
thermal stratification in clouds and large-scale effects due to clouds are uniquely defined by
a single parameter. We choose the cloud top pressure level P, as this characteristic
parameter instead of the entrainment rate A as A-S did. 1 is the fractional rate of
entrainment from environment to the cloud air and assumed to be constant with height.
Larger entrainment rate makes the cloud lose its buoyancy sooner, and decrease its cloud
height. The highest cloud is realized when the entrainment rate A is equal to zero. There is
a one-to-one correspondence between A and Pg.

We assume that the height of cloud top is equal to the height of the vanishing buoyancy
level. An overshooting effect is neglected. The overéhooting, that is, cloud air keeps going
upward due to its inertia even after losing its buoyancy, occurs in the real atmosphere.
Although overshooting is noticeable for deep cumulonimbus, overshooting depth is small
when compared with model’s vertical resolution. The detrainment of the cloud air occurs at
the level P,. So, P, is also called as the detrainment pressure level. Note that P, is not the
height of the individual cloud at the moment. The cloud top does not reach the P, level until
the cloud reaches the mature stage, and the cloud detrains cloud air after it reaches the
mature stage. We will discuss the cloud ensemble model in more detail in the next section.

The static energy and moisture budgets for the total area are
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pZe= oV 2 (pws) +L(3C,—e) @3
p%: ~V(ova) — 2 (owa) — (SCi—e) (7.4)

where p is the density which depends only on z, v is the horizontal velocity, w the vertical
velocity, V the horizontal del operator, C; the condensation rate of water vapor per unit
height in the type-i cloud subensemble, & the evaporation of the liquid water detrained from
the clouds per unit height. The overbar () vindicates the area average. Storage term in the
clouds and radiation effects are neglected.

The total transport of s and q can be expressed by the sum of cloud parts and

environmental parts.

PWS=p (20"1 Wi S+ (1— O‘C)WE/)
=3M, s;+M§ (7.5)

The tilde (~) indicates the environmental mean value, subscript ¢ indicates total cloud
mean value and subscript i indicates the mean value over type-i cloud subensenble. a; is the

fractional area covered by the type-i cloud subensemble.

A zgo‘i 7.7)
M =p(l—0c)W : (7.8)
M: =pSai w, (7.9)
oW =M. +M ' (7.10)

. 0. is the total fractional area covered by all clouds. M. is the total vertical mass flux by
all clouds, M is the vertical mass flux of environment.

The mass continuity equation is

) +%(pw) =0 (7.11)

Neglecting the net lateral horizantal transport across the boundary of the large-scale

area by cumulus clouds, the following equations can be obtained
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Ve (pv)=V-(p¥) (7.12)
Ve (pvs)=V-(pVs) (7.13)
Ve(pvq) =V-(p¥q) (7.14)

Then, the continuity equation (7.11) becomes
- o -
Ve (p¥) +§(pw) =0 : (7.15)

Using egs. (7.13) and (7.15), eq. (7.3) can be written as

5_ 0 ov vvs_ O3,
pa—saz(pw) pVeVs§ azi251 M,

RV CCRRY . ar
oz oz i

Using egs. (7.14) and (7.15), eq. (7.4) can be written as

94_ -9, o - B

Pt =z, (PW) =¥V az§q‘ M;
~0M ~04d
~geM_mel_(sc,— 1
15, M7, (%C; &) (7.17)

Assuming no accumulative storage of mass, s and q within the cloud ensemble, we obtain

oM.
E-D-2le=0 (7.18)
Es—Dss— = (SM, 5,) ~LZC,=0 | (7.19)
Eq-Dg.—o-(SM, q) —3C,=0 (7.20)

where subscript d denotes the values in cloud ensemble which detrain at the level under
consideration, D is the detrainment and E is the entrainment. We assume that the evaporation
of the detrained liquid water takes place at the same level where the water is detrained from
the clouds, that is, at the cioud top. Then, )

e=Dgq (7.21)
where { 4 is the mixing ratio of liquid water in the air detrained from the cloud subensemble.

Using egs. (7.10), (7.18), (7.19), (7.20) and (7.21), eqgs. (7.16) and (7.17) can be rewritten as

os

p5e=D (5L L) —sh+ (- 520
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~

~0S o
ML vy
5, pVeVs (7.22)
aq_ oM

~

~o0q.
—M===p¥+V
M 37 pveva (7.23)

Note that the cloud condensation term does not appear in egs. (7.22) and (7.23).

By definition and using (7.7), we obtain

§5=(1-0) §4306 =S +2(5,— ) o (7.24)
=(l-0)d 430 =d+Z(q— Do (7.25)
We assume
c. <1 ‘ (7.26)
This means that the fractional horizontal area covered by the clouds is much less than unity.
We then get
5~'s (7.27)
q~4q (7.28)

In order that eq. (7.28) be a good approximation, the environment must not be extremely dry.
Substituting (7.27) and (7.28) into (7.22) and (7.23) respectively and using (7.10), we finally

obtain
=D {(s—L)s—5)+M2>
”at d 3z

—pVeVE— pW +Qr ' (7.29)

—pv-vq—pv-v—g—czl (7.30)

We have restored a radiation term Q: in eq. (7.29). Except Q;,the second lines of (7.29) and (7.
30) are the large-scale advection terms which can be calculated by large-scale process of the

GCM and the first lines of the r. h. s. of (7.29) and (7.30) are the cloud terms which should be
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given by cumulus parameterization scheme. Adding (7.29) to (7.30), we obtain the time change

equation of h,

oh - oh
P2 =D (hy—h) +M.2"
—p¥-Vh-pF 21 Q, (731)

According to eqs. (7.29) and (7.30), large-scale fields are modified by clouds through two
effects. One is the cloud detrainment effect (D-term ) which is the first term of the r. h. s. of
(7.29) and (7.30), and the other is the term due to compensating downward motion of
environmental air (M.-term) which is the second term of the r. h. s. of eqgs. (7.29) and (7.30).
Under usual circumstances, D-term acts to cool and moisten the large-scale fields and M,
-term acts in the opposite way.

7.3 Cloud Model II : Cloud ensemble model
M. (z), the cloud mass flux at level z can be divided into contributions from cloud

subensemble as
Pov
M. ()= [ ‘m(z, Py)dPs (7.32)

where P, is the pressure at the top of the PBL, m(z, P,) is the cloud mass flux of which the
top is P4 (hereafter we call this cloud subensemble as P4-cloud), at z level. As mentioned in
section 7.2, we have adopted P4 as a characteristic parameter instead of an entrainment rate

A. And also A is assumed to be constant with height for P4-cloud. Then
2 m(z Pa) =Am(z, Po) for 2,<2<ze (7.33)

where z,, is the PBL top height, z, the detrainment level (corresponding to Py). Integrating eq.
(7.33), we obtain the subcloud mass flux profile as
my (Py) et @ for z,<z< 24

m(z, Pa) = [ 0 for z4<z (734
where m, (Py) is the mass flux of P4-cloud at the PBL top. We define normalized cloud mass
flux # for convenience.

et (z-2) for z,<z=<1z4

7()= { 0 for z4<z (7:35)

We can write down the budget equation of h and total water content for Ps-cloud in a

similar fashion
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2 {m(z, Po)he(z Po) } = Ah(2) (7.36)

2 {m(z, Py) (ac(z Po) + £ (z, Po)))

=1m(z, P4)q(z)—m(z, Po)r(z, Po) (7.37)
where h. (z, Pa), qc (z, Py) and £ (z, P,) are h, q and liquid water in the P4-cloud respectively
and r(z, P,) is the precipitation rate which depends on parameterization of the precipitation
process. In the current MRI-GCM, precipitation takes place proportional to the excess water.

Let us consider s, q and h in the clouds. In the kclouds, the air is saturated. Neglecting
pressure difference between the in-the-cloud and in the environment, we can write

Ge(z, Pa)=qc*(T¢, Pa)
.o 1,08 _
=q (Z)Jra(?T—)"(SC(Z’ P.) —§(2)) (7.38)

where asterisk (*) denotes the saturation value. Using definition of h and eq. (7.38), we obtain

Se(z, Pa) — S(Z)N {h (z, Ps) —h*(2)} (7.39)
Qe(z, Pa) — *(Z)"“ L {he(z, Ps) —h*(2)} (7.40)

where
EL(aaGT* ). (7.41)

If m, (Pg) and A are given, and if h, and q. at PBL top, i. e;, h. (zy, Ps) and q. (zv, PJ),
are given and further if precipitation parameterization is specified, we can compute h, (z, P4),
Qe (z, Py) and £ (z, P,). Since we assume cumulus clouds have their roots within the PBL, it
is plaﬁsible to assume

he (25, Po)=hn (7.42)
Qe (2o, Pa)=@n (7.43)
where h, and qn are h and q averaged over the PBL depth.

There then remain two unknowns, i. e., A and m, (P4). To determine A, non-buoyancy
assumption at the cloud top is utilized. The buoyancy is measured by the virtual static energy
Sy. 8y is approximately expressed by

sy=s+c, T (6q— ) (7.44)

where 6=0.608. The non-buoyancy condition is given by sy(z4)=Svc(z4, Pa), 7. €.,
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§(za) +¢p T(2a) 6q(2a) =S¢ (za, Pa)

+¢p T(za) (3Qc(za, Pa) — £ (24, Pa)) (7.45)
Using (7.39) and (7.40), eq. (7.45) can be rewritten as '
he (24, Pa) —h*(24) =0 (7.46)
where
i* (z0) =h* (z0) — 0L (5 (Gr(2) —a(20))— £ (26, PO} (7.47)

1+ ves
where e =c, T/L.
Eq. (7.46) is the equation which determines A from given P4. Since the equations are too
intricate to be solved analytically, an iterative method is adopted in the MRI « GCM-1.
The second term in the r. h. s. of (7.47) is usually small compared with h*. Fig. 7.1 shows
a typical thermal structure of both clouds and environment in the tropics. As you can see in
Fig. 7.1, the highést possible cloud ensemble should have zero entrainment. In that case, h, is
equal to hy. Then if an inequality h, <h* (z) holds, there are no clouds that éan reach the level
z or above that level. In the MRI + GCM-], the model checks this criterion and if the condition
is met, such cloud ensemble is excluded from the possible existing cloud ensemble.
Suppose if we have a situation like the one shown in Fig. 7.2. In the range 1, <A <A,,

there are three possible cloud top heights that satisfy the non-buoyancy condition. Branch II
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Fig. 7.1 Typical profiles of dry static energy s, moist static energy h and saturation moist
static energy h*. The profiles are taken from Jordan’s (1958) mean West Indies
sounding. Dashed lines show schematic profiles of moist static energy h in the
clouds.
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AN—

Fig. 7.2 Schematic diagrams of non-buoyancy levels for a special case. In the left panel,
the solid line shows saturation moist static energy h* for the environmental air.
The dashed lines show the moist energy h in the clouds. The right hand panel
shows the variation of the entrainment rate A with the cloud top height.

in Fig. 7.2 is obviously not realized, because non-buoyancy level is bounded by a positive
buoyancy layer above and a negative buoyancy layer below hence the level is unstable. In the
real atmosphere, branch I might be possible due to overshooting. However, since we have
assumed no-overshooting at the cloud top, branch I should be discarded. Branch III is then
the desired choice. The artificial cloud types are excluded currently by checking the A

variation with height.

7.4 The closure assumption : Quasi-equilibrium assumption

As mentioned in the introduction, some kind of statistical balance must exist between the
cumulus cloud ensemble and the large-scale (grid-scale) fields for a cumulus parametrization.
When the large-scale processes tend to generate the moist convective instability, the cumulus
cloud ensemble tends to destruct the instability mainly by compensating subsidence in the
environment. In the A-S parameterization, this balance is stated by the quasi-equilibrium of

“cloud work function”. The cloud work function A (Pg) is defined as a work done by the
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buoyancy force per unit cloud-base mass flux, i. e,
AP = [“:8 P,) (Tve(z, Po) =T\ (z)) d (7.48)
(Po) = [ 7551(2, Pa) (Tuclz, Pa) = Tu(2)) dz :

where T,c(z, Ps) and T.(z) are the subensemble and environmental virtual temperature
respectively. Note that the cloud work function depends upon the thermal stratification

only. Using moist static energy, eq. (7.48) can be written as

AP = [TEREYBEBI 6, P (hele, P —fi*(2)) a2 (7.49)

The work A(P,) generates the kinetic energy of cloud subensemble, while the cloud-scale
dissipation acts to prevent the increase of the cloud kinetic energy. Thus, the kinetic energy

budget for the cloud 'subensemble is described as .

%K(Pd)de—: (A(Ps) =D (P4)) m, (Pa)dPs (7.50)

where K(Py) dP; is the cloud-scale kinetic energy for the subensemble P4 with cloud top
between P, and Py+dP,, D (Pg) is the cloud-scale kinetic energy dissipation per unit cloud
-base mass flux. For the first approximation, D (P4) depends upon only cloud depth. When
we consider the time scale much longer than the decay time of clouds, the 1. h. s. of (7.50) can

be neglected. Eq. (7.50) then becomes

A(P)=~D(Py) for m,(P4) >0 (7.51)
In case that A (P,) is less than D (Py), the cloud can not be sustained. Therfore,
m, (Ps) =0 for A(Py) <D (Py) (7.52)

These equations (7.51) and (7.52) express the “kinetic energy quasi-equilibrium” for each
cumulus subenemble. Equation (7.51) poses very strict constraint for the stratification,
because A (P,) is the function of the stratification and cloud depth, while D (P4) is the
function of cloud depth only. When cloud subensemble exists (m, (P4)>0), the temperature
and/or humidity must change with time, but A (P,) must remain constant. This implies
temperature field and moisture field can not vary independently. When clouds exist the
stratification remains “neutral” in a sence.

Let it be clear by taking the derivative of eq. (7.51) with respect to time

d d
aA (Pd)%aD (Pa)=0 (7.53)
The time derivative of A (Ps) can be divided into two parts, one representing the effects of

cumulus feedback on the large-scale fields and the other representing the effects of the large
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Fig. 7.3 Mean values and standard deviations of the cloud work function versus cloud top
pressure P4 calculated from the Marshall Islands, VIMHEX, GATE and AMTEX
datasets. Error bars represent one standard deviation from the mean. Adopted
from Fig. 9 of Lord and Arakawa (1980). Thick solid line is added to show the base
line cloud work function A, (P4) used in the MRI « GCM-I.

-scale process. Eq. (7.53) then becomes
d d _d
(AP ), (AP ] =gA®)
~ (7.54)

where the subscript CU refers to cumulus effects and LS refers to the large-scale effects.
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CLOSURE ASSUMPTION

SUB ENSEMBLE CLOUD WORK FUNCTION
KINETIC ENERGY EQUATION TENDENCY EQUATION

dK (Py) dA(R)_ , ,

T = (A(P)-B(P) m, (P,) at =) K(PaPImy(Py)dP; +F(Pa)

cLouD
KINETIC ENERGY A(Py) =5 (Py) WORK FUNCTION
QUASI-— > OUASI -
EQUILIBRIUM EQUILIBRIUM

A(Pa)<® (Pa)

MASSFLUX
my(Ps)=0 DISTRIBUTION EQUATION

[K(Py,PIM(PAIAPI+F (Pa)=0

Fig. 74 A summary of the derivation of the mass flux distribution equation using the
kinetic energy quasi-equilibrium and the cloud work function quasi-equilibrium.
Adopted from Fig. 2 of Lord and Arakawa (1980) with minor changes.

The large-scale term is called the large—s‘cale forcing and denoted as F (Py). Positive F (Py)
means destabilization for the cloud subensemble. The cumulus term represents the cloud

—cloud interaction and can be written as
d -Pb 7 / ’ 7 4
(A ), = [ K (P, p) my ) dp (7.55)

where the kernel K (Pg, p’) represents the effect of p’ cloud on P4 cloud. Since cumulus
clouds tend to stabilize the stratification, typically the kernel K (p, p’) takes negative value.

From egs. (7.54) and (7.55), we obtain
Pb
SR ®, p) my () dp'+F (P)=0  for my (P)>0 (7.562)

This is a statement of “cloud-work function quasi-equilibrium” for cumulus ensemble. In

case of zero m, (Py), cloud work function may be reducing with time.
[7K Py, ) my ) dp/+F (P)=0  for my (Po)=0 (7.56b)

D (P,) is an intrinsic cloud subensemble variable and does not depend on the large-scale
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fields. From eq. (7.51), D(Py) can be estimated by computing the observed cloud work
function. Lord and Arakawa (1980) computed the cloud work function for various
geographical areas and situations (Fig. 7.3). The thick solid line in Fig. 7.3 is the characteristic
cloud work function A, (P,) currently used in the MRI.GCM-I (see section 7.6.2 for details).

The closure assumption of the A-S cumulus paramerization is summarized in Fig. 7.4.

7.5 The vertical structure of the discrete model and the discretized form of the cloud model.

This section describes the discretized form of the parametrization whose continuous
form is described in sections 7.2 and 7.3. In the MRI-GCM-I preadjustments of the large
-scale thermodynamic structure are made before the cumulus parameterization is applied.
The preadjustments include dry convective adjustment, middle level convection and large
~scale precipitation, and are performed in this order. Details of the preadjustments are found

in Chapter 9.

7.5.1 The vertical structure of the discrete model -

The vertical structure of the MRI « GCM-I is shown in Fig. 7.5. The left hand side of
the figure shows the vertical structure of the large-scale model. The dashed lines indicate
levels with integer index k where the large-scale temperature T (k) and water vapor mixing
ratio q (k) are predicted. In other chapters the levels are identified as “odd levels”. The solid
lines iﬁdicate half-integer levels where the large-scale vertical p-velocity is defined (“even
levels”). The region bounded by levels k—1/2 and k+1/2 is referred to as “layer k”. The
PBL top in the MRI » GCM-I is not the sigma surface. Although the top of the PBL is
assumed within the lowest layer LM in this figure, it can be in upper layers, of course.
Thermal structures within the PBL are determined in a way described in Chapter 8.

The right hand side of Fig. 7.5 shows the vertical indices for the cumulus
parameterization. The part of layer LM above the PBL is referred to as layer KB (In other
chapters, this layer is identified as E layer. See Fig. 8.4 for example.). When the PBL top lies
within the lowest layer, LM is equal to KB.

The cloud top is placed at the integer levels as shown in Fig. 7.6. In the following it is
convenient to identify each cloud ensemble with the vertical index of each cloud top. The left
-hand ensemble in Fig. 7.6 is the type-i cloud, for example. Height-dependent variables of a
cloud subensemble are represented by double arguments. The subensemble vertical mass flux

for type-i cloud, defined at the half-integer level, is denoted by m (i, k—1/2) and can be
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Fig. 7.5 The vertical structure and indices of the model. Indices on the r. h. s. are used in
the cumulus parameterization model. Ones on the 1. h. s. are for the large-scale
model. KM is the index of the PBL and KB denotes the part of the layer
immediately above the PBL.

expressed as

m (i, k—1/2)=#(, k—1/2) m, (i) (7.57)
where m, (i) is the cloud-base mass flux for type-i cloud and # (i, k—1/2) is the normalized
subensemble vertical mass flux at level k—1/2. In general, the first argument corresponds
to the cloud type and the second one corresponds to the layer concerned. The entrainment of
environment of environment air, denoted by E (i, k), occurs at all integer levels penetrated by
the cldud including the cloud tob layer. The detrainment of cloud air, denoted by D (i), occurs

only at the cloud top level (see Fig. 7.6).

7.5.2 The mass budget
A discretized form of the subensemble mass budget equation (7.33) of section 7.3 for layer

k, k=1, can be written as

from which
7(, k—=1/2) =5, k+1/2) (1+2(Q)Az(k)) (7.59)
is obtained. HereAz (k)=z (k—1/2) —z (k+1/2). The mass budget for the cloud top layer
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Fig. 7.6 Vertical structures of type-i cloud (on the left) and type-KB cloud (on the right).
Entrainment E takes place at all integer levels penetrated by the cloud including
“the cloud top level, while detrainment D takes place at the cloud top level only.

The subensemble cloud mass flux is calculated at the half-integer levels.

k=i is given by

dd) =#(, i+1/2) (1+2{)Az(3)) (7.60)
where d(i) is the cloud top mass detrainment integrated over layer i and normalized by the

cloud-base mass flux m,(i), and A2 ()=z (I)—z @, 1/2).
7.5.3 The moist static energy budget

‘For layer k and type-i cloud, let h(i, k+1/2) be the subensemble moist static energy

before entrainment and let h(i, k—1/2) be the subensemble moist static energy after
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Fig. 7.7 Typical vertical profiles of normalized cloud mass flux 7 and moist static energy
h for the type-i cloud. The 1. h. s. profile shows h for the environment.

entrainment (Fig. 7.7). Then the discretized subensemble moist static energy budget
integrated over layer k can be written as '
7, k—=1/2)h (i, k—1/2)=#% (i, k+1/2) h (i, k+1/2)
+2({)Az (k) (i, k+1/2) h (k) (7.61)

From eq. (7.61), we obtain

h (i, k+1/2)+ @Az (k) h (k)

h @, k—1/2)= IF2()Az (k)

(7.62)

When k=KB in egs. (7.62), h (i, KB+1/2)=hy, the mean h in the PBL (see (8.36)). In the cloud

-top detrainment layer (7.62) becomes

& o b, i+1/2)+2 Az () B (+1/4)
h (@)= 1+ (082 () | (7.63)

where h (i) is the moist static energy at the cloud-top and h (i+1/4)=0.5 + (h (i)+h (i+1/2)).
Sequential substitutions of (7.62) into (7.63) with i+1<k<KB result in a complicated
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expression for fi (i) which depends on the known Hy, h (k) for i<k=<XKB and the unkown 2
(). By requiring non-buoyancy at the vcloud~t0p, i. e, h)= h* () (see eq. (7.46) and (7.47)), A

(i) may be determined iteratively as shown in the section 7.5.5.

7.5.4 The total water budget

The budget for total cloud water is calculated in two steps as described below. Let g
(i, k+1/2) be the value of the total cloud water (vapor and suspended liquid water) mixing
ratio entering layer k from below for type-i cloud. And let q(i, k) be the value after
entrainment but before the precipitation process. And let q* (i, k —1/2) be the value after the
precipitation process, which also is the value leaving layer k. Also, let q,(i,k) be the cloud
suspended liquid water mixing ratio before precipitation, and q,* (i, k—1/2) the value after the
precipitation process.

The first step in the total cloud water budget is calculated in the similar manner as eq.
(7.62)

q' (i, k+1/2)+ 21 (D)Az (k) g (k)
1+ ()Az (k)

q (i, k)= (7.64)

where q (k) is the large-scale total water mixing ratio. Since the large-scale precipitation
process is implemented before the cumulus parameterization is applied, q (k) is identical to
water vapor mixing ratio g, (k). When k=KM in eq. (7.64), ¢ (i, KB+1/2)=qn.

The second step in the total water budget calculation determines the amount of
precipitation produced in layer k from type-i cloud. When the cloud is saturated at level k
the cloud water vapor mixing ratio qv (i, k) is calculated from a discretized form of eq. (7.

40) of section 7.3,

0 i =8 )+ 500 (b k=1/2-h* () (7.65)

where y (k)=L/c, (8q,* (k)/2T),.
The resulting suspended liquid water mixing ratio before precipitation is
@, W=q G, B—q (K | - (766)
Part of q, (i, k) is converted into precipitation by assuming a constant conversion rate per unit
height. Therefore
qet (G, k—1/2)=q. (@, k)—CoAz (k) q.* (i, k—1/2) ‘ (7.67)

from which
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qet (G, k—l/z)zﬁ% (7.68)

A conversion coefficient C, in egs. (7.67) and (7.68) is set to 0.004 m~! for the cloud-top layer
and 0.002 m~! for the rest of layers. Lord (1978) has shown that this values of C, pfoduce
good agreement with observed liquid water content in hurricanes summarized by Ackerman
(1963). Similar calculation by Schubert (1973) for Marshall Islands data also have shown good

agreement with observations.

7.5.5 The solution procedure for A (i)
Let a functional F (A(i)) be defined by

F (2@)=h O)~h* @) 7 G 1) (7.69)
where F depends on A (i) through h(), #(, i) and h*() (see eq. (7.47)). If the virtual temperature
effects are neglected, h* (i) does not depend on 1 (i). Since virtual temperature effects are
small, dependence of h* (i) on A (i) is weak. The non-bouyancy condition at cloud top is

F (A@))=0 , (7.70)
which is an implicit equation for A (i) and may be solved iteratively by the Newton-Raphson
method. Let v be the number of iterations and let 1, (i) be 1(i) at the v-th iteration. For the

first guess, A;())=0 is used. For succeeding iterations, 1,+1(i) can be obtained as

A= 10— @1

where F "(A.,()) is the value of the first derivative of F'(A(i)) with respect to A(i) at A())=
1,(). When F'(1.,()) is computed, h*(i) is assumed to be constant with respect to A. The
iteration is repeated until | h)—h*q) | £1.0 J kg™' which is equivalent to a cloud-top/
environment temperature difference of about 1072 K.

In case that the iteration does not converge after 15 iterations for type-i cloud, such
cloud is discarded. Also if cloud air is not saturated at the cloud top, such cloud type is
discarded. After we get all possible cloud types, the order of computed values of A is

checked according to the consideration mentioned in section 7.3.

7.6 The discrete form of the mass flux distribution equation
7.6.1 The discretized equation
The mass flux distribution equation for the continuous case is given by (7.46) in section

7.4. This equation is discretized and integrated over a time step At, (see Fig. 5.1) and is
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written as

m, (D)Aty>0 and

2 (K (0, ) m@at) +F HAt.=0 (7.72a)
or

my, ()Atg=0 and

]gl (K @i, j) me(DAt ) +F (D)Ata<0 (7.72b)

for 1=<i<inax. Here imax is the number of possible existing subensembles ; K (i, j), for 1=i, j<
imax, is a discrete form of the mass flux kernel which gives the stabilization of the type-i cloud
subensemble through modification of the large-scale environment by the type-j cloud
subensemble ; and F (i) is the large-scale forcing for the type-i cloud subensemble. Note
that there is an equal sign in the second equation of (7.72b). This equal sign is placed in
order to assure the existence of solution (there is no equal sign in Arakawa and Schubert’s

eq. (74) etc.). Let us consider the simplest case in which in.x=1. Then equation becomes

myAts >0 and
(7.72ay
K mbAtd +FAtd =0
or
myAty=0 and
(7.72by
K myAty+FAt, =0

where we omitted suffices for simplicity. If an equal sign in the second equation of (7.72b)’
is dropped, (7.72b) becomes
m,Aty=0 and
(7.72¢cY
K mbAtd + FAtd < 0
If F is exactly zero and K+0, m,=0 is the solution of the equations of (7.72a) and (7.72b)’.
However there are no solutions for equations (7.72a) and (7.72c)’. This modification is also

justified from the physical consideration. Under completely neutral and steady condition, the

cloud work function also must be steady and m, should be zero.

7.6.2 The large-scale forcing
The large-scale forcing for the type-i cloud subensemble is defined in section 7.4 as the
change in cloud work function due to large-scale processes. Let the large-scale

thermodynamical variables (temperature, water vapor mixing ratio, efc.) be denoted
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collectively by v, where the subscript denotes a particular time t,. The effects of the large
-scale processes {e.g., large-scale vertical and horizontal advections of temperature and
moisture, radiative heating and boundary layer processes) are added over Aty to give the

change
F=t+ (2] (1.73)

where (2v/01t).s represents the time change of ¥ due to the large-scale processes. Let the
cloud work function for the type-i cloud subensemble calculated from ¥ be denoted by A’
(i). The large-scale forcing is then written as

A A()

F Aty

(7.74)

Although A,(@) is the cloud work function at t, by definition, A,(i) can be replaced by a
characteristic value for the type-i cloud subensemble. The replacement of Ay(i} by a
characteristic value is justified by the kinetic energy quasi-equilibrium (e. g., see (7.51) and
the following discussion). Lord and Arakawa (1880) showed that when both large-scale and
cloud processes are operating, cloud work function values fall into a well-defined narrow
range for each subensemble, and the variation in the cloud work function becomes negligible
over the time scale of the large-scale motions. It follows that the values based on observed
time-mean cloud work function may be used as A, (i) in the GCM. Modification of ¥ by the
cumulus mass flux obtained from (7.74) should restore A’(i) to the characteristic value A,(i).
Currently,
A())=2 x 10°° {P,—p (i)}® (7.75)

is used for simplicity, where P, and p (i) are values in mb (see Fig. 7.3).

7.6.3 The mass flux kernel

The kernel element K(j, j) is defined as the time rate of change of the cloud work function
for the type-i cloud subensemble due to modification of the large-scale environment by a unit
mass flux of the type-j cloud subensemble. The changes in the large-scale environment by the
cumulus terms are given by the first lines of the r. h. s. of (7.29) and (7.30). These terms are
written in the discrete form as egs. (7.82) and (7.83) in section 7.8. After the above definition
of K(j, j), it is evaluated in the following way. The large-scale environment, represented by
¥’ from eq. (7.73) is modified by an arbitrarily chosen amount of mass per unit area from the

type-j cloud subensemble m,” (j)At” to give

— 6 —
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P k)=¢k)+6 (Pk) m (At (7.76)
Here the index k has been added to indicate the level in the large-scale model, & (¥{k))
refers to the time rate of change in y{k) per unit mass flux of the type-j cloud subensembile,
and the double prime denotes a value used in the mass flux kernel element calculation. A new
fractional entrainment rate A ”(i) and the cloud work function A”(i) are then calculated for the
type-i cloud subensemble using A”. Finally, the kernel element is calculated as

_AT()—A()

K @, j)_W (7.77)

The test mass flux my” (j)At” is arbitrarily chosen to be 100 kg m™2. The choice of a
particular value for m,” (j)At” is not important because non-linearity of A”(i)— A’(i) on the
test mass flux is weak.

Since a given cloud type tends to stabilize the large-scale fields for-all cloud types, the
kernel elements K (i, j) should be typically negative. In particular, a given subensemble must
reduce its own cloud work function, i. e., for all i,

K (4, 1)<0 (7.78)
Otherwise, such cloud subensemble is unstable and develops by itself. However, under very
unusual circumstances, the calculated value of K (i, i) may not satisfy (7.78) primarily due to

too coarse a vertical resolution. Therefore, K (i, i)= — &, where & is arbitrarily chosen to be

kel

¢"‘ at —
” y
i) X(i)

'

Ali) T A —T<A[i)
KG, j))—T1< F(i)
mb(i)

]

Fig. 7.8 A schematic diagram of the procedure applying the discretized cumulus model to
a large-scale prognostic model. Adopted from Fig. 5 of Lord et al. (1982).
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5x 107 J m~? kg, is enforced. Note that when i=in.x=1, eq. (7.78) is a necessary and
sufficient condition for the existence of a unique solution of m,At, for (7.72a) and (7.72b)".
Incidentally, the mass flux distribution equations (7.72a) and (7.72b) do not necessarily have
their unique solution. This mathematical aspect of equations is discussed in Appendix 7.2.
The procedure for obtaining the cloud base mass flux distribution in the GCM is
summarized in Fig. 7.8. The thermodynamical variables after modification by the large
-scale processes () are the inputs to this cumulus parameterization scheme. From these
variables ‘A’(i) and A’(i) are calculated for each subensemble. Using an empirically defined
characteristic cloud work function A,(i), the large-scale forcing is calculated from eq. (7.74).
The large-scale environment is then modified by the test mass flux m,” (j)At” to produce
thermodynamical variables ¢ which are then utilized to calculate a new value of the cloud
work function A”(i). The kernel elements are calculated from (7.77) and the my(i) are
determined from the mass flux distribution equations (7.72a) and (7.72b). The method to

solve the equations (7.72a) and (7.72b) is described in the next section.

7.6.4 The cloud work function

To compute the large-scale forcing and the kernel elements, the cloud work function
must be computed. The discrete form of the cloud work function is written straightforwardly
from eq. (7.49) as

KB+1
A= =

g,
poinc T (kK —1/2)7 (i, k' —=1/2)

% [h(i, k’—1/2)—h*G4, k’

TP —V2Y (i —1)—2()) (7.79)

where z(KB+1)=z,.

7.7 Solution of the mass flux distribution equation
The mass flux distribution eqaution (7.72) must be solved subject to the constraints of
non-negative m,(i) and the inequality. conditions (7.72b). For convenience, eq.(7.72) is

rewritten here, replacing m,(i)At, with x(i) and F (i)Aty with c(i).

x{1)>0 and
EIK G, j) x()+ci)=0 (7.80a)

or
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START,

-
>

select a set i (0)
Xi=0 for i€i(0)

i max

4 solve jE KijXj+ Ci=0
=|
for i & i (o)

any
Xi <0
forigi(o)

~~ check
max

2KijXj+Ci<0
J=Ifor i€i(o)

solution is found
store {Xi}

all sets are
searched ?

Fig. 7.9 Flow diagram for the exact direct method used in the MRI « GCM-I for

solving the mass flux distribution equation.

— 79 —



Tech. Rep. Meteorol. Res. Inst. No. 13 1984
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Fig. 710 A schematic diagram of the large-scale budget of v for type-i cloud.

x{(i)=0 and
{ le (1)) x()+ci)=0 (7.80b)

Schubert (1973) proposed an initial-value iterative method of solving the equation and
Lord et al. (1982) discussed both a direct solution method and a linear programming method.
It is mentioned that neither of these methods guarantee exact solutions. In the following we
introduce, as an alternative, an “exact direct method” adopted in the MRI-GCM-I.

x(i) can be either positive or zero. Since there are two possibilities for each x(i), there
are 2'max possibilities in all. Suppose it; i(0) be the set whose elements are non-existing cloud
types. In other words, i(0) is the set which satisfies the condition below

x(1)=0 for ie i0) (7.81)

The first step is to solve the equation (7.80a) for i & i(0) by Gaussian elimination. The second
step is to examine the solution, x(i) for i & i(0). If x(i)<0 for any i, this set i(0) is not the right
one, thus select another set and repeat the procedure from the beginning. Otherwise, we
proceed the third step. The third step is to examine inequality conditions (7.80b)' for i e i(0).
If equations (7.80b) are satisfied, the sqlution is the right one and stored. This procedures are
repeated 2™2* times. The exact direct method is illustrated in Fig. 7.9.

Although one set of solutions is uniquely obtained under usual circumstances, ther are

unusual cases where two sets or more are obtained. In the A-S cumulus parameterization
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theory, no selection rule among sets of solutions is derived. Therefore, as the true set, we
tentatively select the one which has the maximum number of existing cloud type. In case we
have many sets of solutions of which numbers of existing cloud types are the same, we
arbitrarily choose the first found set.

In the current MRI-GCM, the number of troposheric layers is 5. Then iy is 5 at most
and the number of possibilities that the exact direct method must examine is 2°=32 at most.
Therefore, the exact direct method is not so time-consuming even if compared with other
methods. And, of course, the exact direct method guarantees the exact solution except
roundoff errors. In the 12-layer version, the search for possible penetrated cumuli with their

top above p=p;=100 mb is suppressed from the beginning currently.

7.8 The large-scale budget and cumulus cloud feedback on the large-scale fields.

Lower part of Fig. 7.10 shows the large-scale budget of y(h or q) for layer k and type
-i cloud. The downward fluxes of ¥ per unit cloud base mass flux at the top and the bottom
of the layer are given by #» (i, k—1/2) ¥ (k—1/2) and # (i, k+1/2) ¥ (k+1/2), respectively.
The entrainment of ¢ is A ()Az (k) # (, k+1/2) ¥ (k). Let 6 (¢ (k)) represent a change
in ¥ (k) per unit m, (i) and let the mass per unit area at layer k be Ap (k)/g, where Ap (k)=
p (k+1/2)—p (k—1/2). Then the change in the large-scale budget of ¥ is written as

22005, (300

=50, k—1/2) ¥k —1/2)— 5@, k+1/2) ¥k +1/2)— A (D)Az(k) 7(i, k+1/2) (k)
=n(, k—1/2) (Yk—1/2)— (k) + n(ik+1/2) ($k)—P{k+1/2)) (7.82)
Upper part of Fig. 7.10 shows the large-scale budget of ¢ in the cloud top layer for the
i-th cloud type. At the cloud top the detrainment of v per unit my(i) is d(i) ¢{i). The
downward flux of ¥ at the layer is #(i, i+1/2) ¥ (i+1/2) and the entrainment of ¢ is assumed
to be A([DA2G) 7, i+1/2) ¥ (+1/4). Theréfore, the counterpart to (7.82) for the cloud top

layer is
%(% (F0) =dG) ) — 70, i+1/2) Hi+1/2)

—1(0)Az3) 54, i+1/2) YWi+1/4)
=20, i+1/2) {(1+21()Az() x
(P)— P+ 1/9)) + Pi+1/4)— i+1/2)} (7.83)
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In this model all detrained liquid water is assumed to evaporate instantaneously at the
detrainment level. Consequéntly, the changes in T(k) and G, (k) are calculated from ¢ (h(k))
and ¢; (q(k)) as

o (@v&))=a (k)] (7.84a)

and
6 (TON=¢- {6 (B -Ls; (a0} (7.84b)

The large-scale byudget described above and the cumulus induced subsidence at the PBL
top are used to compute the kernel elements. After solving mass distribution equation, results
of the large-scale budget calculation are used for obtaining the cumulus feedback on the
large-scale fields, too.

The total temperature and moisture changes at each level over the time At, due to

cumulus convection are given by

(2 gt(k)]nAtdzig"@ (T (k)) mo()Ate (7.852)
and
(P48 a="%s @) moat (7.85b)

where the form of d; is given by (7.82) and (7.83). The cumulus mass flux at the PBL top, Mg
is given by
MBAtd:‘Eixmb(j)Atd (7.86)
iz
The amount of precipitation PAt, is given by

KB
PAty= = {k};.HCOAZ(k) qe'(i, k—1/2) m(, k—1/2)

i=1
+ i) a0, i-1/2) mG, i-1/2) | Aty (7.87)
where C,=2 x 10~* m~" and C,=4 x 10~® m™* (see section 7.5.4 for details).

Momentum changes due to cumulus convection are also computed in a similar way by
assuming that momentum is conserved within cloud ensemble. Details are described in
Chapter 11.

The cloudiness of cumulus clouds in the model is neglected, unless cloud top is above 400
mb level or 233°K level. If the cloud top is above such level, we regard that anvil clouds spread

out as cirrus from the cloud top. The cloudiness of such cloud is set to unity at the cloud-top
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layer though its blackness is regarded as 0.5 in the radiation calculation. For details, see
Chapter 13.

7.9 Ice phase parameterization

So far, we have not mentioned ice phase parameterization to avoid complexity. In the
current MRI-GCM-], the effects of ice phase are incorporated in a simple manner described
below.

When the environmental temperature T (z) is less than the critical temperature T
(currently —20°C is assumed), we introduce y defined below instead of h.

y=h+L;qv.=c, T+gz+L; qv (7.88)
where L;=L+L; and L is the latent heat of vaporization per unit mass of water vapor, L, is
the latent heat of fusion, and L; is the latent heat of sublimation.

In the ice phase layer where T(z)< —20°C, y is approximately conserved, while in the
liquid phase layer where T(z)> —20°C, h is approximasely conserved. We assume that phase
change occurs adruptly at the level of T.. Because of the difference between saturation
water vapor pressure on ice and water, excess water vapor sublimates in the layer above. At
the same time, cloud liquid water freezes and releases the latent heat. The temperature
change due to those process at T is

AT=(L:Aq+Li0)/cp (7.89)
where Qb is liquid water content, Aq is difference between the saturated mixing ratio on ice
and on water. In the discrete model, temperature at the integer level T (k) is compared with
Te. If T (k) is less than T, the layer k is assumed to be the ice phase layer and the phase
change is assumed to happen at the bottom of the layer k (4. e., k+1/2 level).

These additional heating in the cloud due to phase change generates vouyancy and makes
cloud work function larger. This means that cloud top is raised when the ice phase is included
in the cumulus parametrizasion. We assume that precipitation from ice phase layer is in ice
phase (i. e., snowfall), and snowfall melts at 0°C level to cool the environment.

Although inclusion of ice phase makes the cumulus parameterization program

complicated, its effect seems to be minor and not so significant.
A7.1 Some results from simulation studies
In this Appendix, we describe the selected results related to cumulus parameterization.

Materials are taken from the forthcoming paper by Tokioka, Kitoh, Yagai and Yamazaki
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Fig. A7.1.1 January mean cumulus precipitation rate (top) and total precipitation rate
‘(middle) simulated by the MRI « GCM-I. The observed precipitation rate for
December, January and February is shown at the bottom. Contours are 1, 2, 5
and 10 mm day~'. Regions greater than 5 mm day~' are shaded and less than
1 mm day™!, dotted. The observed data are from Schutz and Gates (1972).
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Fig. A7.1.2 Same as Fig. A7.1.1 except for July (top and middle) and June, July, August

(bottom).
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(1985) and Kitoh and Tokioka (1985). The simulation is made with the 5-layer tropospheric
version of the MRI-GCM-I with a seasonal cycle.

A7.1.1 Precipitaion

Precipitaion in the model is produced through three processes, namely, large-scale
precipitation, mid-level convection, and cumulus precipitation. Among them, precipitation
caused by mid-level convection is small compared with other two. Figs. A7.1.1a and b show
the cumulus and the total precipitation rates in the model for January. Cumulus
precipitation is mainly produced in the tropical region (20°N-30°S). The cumulus precipitatidn
accounts for most of the total precipitation there. It is also noted that the model favorably
simulates the observed heavy precipitation area (see Fig. A7.1.1c), namely, north equatorial
Pacific ITCZ, band-like area extending from the equatorial Pacific Ocean to the
southeastern Pacific, the area over Indonesia extending to northern Australia, the ITCZ over
equatorical Indian Ocean, the area from central Africa to Madagascar Island, and the area
over Brazil. Although the central Atlantic I'TCZ in the model is not active, precipitation is
maximum there. The simulated amount of precipitation shows relatively good agreement
with the observed amount, although the simulated one is slightly larger than the observed.

The distribution of precipitation rate for July is shown in Fig. A7.1.2. Over the tropical
region, precipitation mainly consists of cumulus preéipitaion. Noticeable observed features
are well simulated by the model. The heavy precipitation area along 10°N latitude over the
African continent, the north Atlantic ITCZ, the area extending from the northern part of
Brazil to the central America, the ITCZ over north equatorial Pacific starting from southeast
Asia, ‘high precipitation band along 5-10°S over south central Pacific, and the monsoon area
over India and Indian Ocean are among them. Though, there are a few deficiencies in the
precipitation of the model. The ITCZ over north central Pacific is broad and extends to too
far north in the model, which corresponds to insufficient southward expansion of subtropical
high pressure over north Pacific. There also are fictitious heavy precipitation area over the
western Arabian Sea and southern Arabian Peninsula.

Cumulus clouds produce heavy precipitation not only over tropical region, but also over
mid-latitude continent in the summer hemisphere. The preicipitation over summer mid
-latitude continent in the model is too high compared with the observation. This may allude
some shortcomings of the model’s ground hydrology and/or cumulus parameterization.

Suarez and Arakawa (1981) showed that the ground wetness and cumulus convection have
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Fig. A7.1.3 Simulated zonal mean cloud base mass flux m,(P,) for January (top) and July

(bottom). Note that the ordinate indicates the cloud top pressure. Contour
interval is 0.2 mb/hour. Values larger than 1 mb/hour are ahaded.
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positive feedback due to enhanced tranfer of moisture through diurnal change of the PBL
depth. Therefore, precipitation over summer continent is very sensitive to the ground
wetness. Most of the cumulus precipitation over mid-latitude continent are caused by shallow
clouds. Hence, the present cumulus parameterization may overestimate precipitation from

shallow clouds.

A7.1.2 Cumulus cloud base mass flux.

Fig. A7.1.3 shows the zonal mean cloud base mass flux for Januaryv and July. Over
tropics, bi-modal mass flux distribution is noticeable, namely the deep clouds, whose top lie
at 300mb, and shallow clouds (~900mb) are predominant. In January the peaks of deep cloud
mass fluxes are located at 5N and 15°S, whereas in July, one péak appears at 10°N. The
shallow cloud dominates over the subtropical region. In July, shallow cloud extends to mid
-latitude (~60°N). As seen in subsection A7.1.1, this mid-latitude shallow cloud is

predominant over the continent and produces excessive amount of precipitation there.

A7.1.3 Comparison with Marshall Islands data.

* Yanai, Chu, Stark and Nitta (1976) analyzed the upper air and surface observation in the
Marshall Islands region from 15 April through 22 July, 1956. They computed the mean
apparent heat source and moisture sink by the budget analysis and estimated the cloud base
mass flux m, as a function of detrainment level by using the spectral cloud ensemble model
similar to the model described in this chapter. Fig. A7.1.4 shows Yanai ef al. ’s estimate and
results of the five-layer MRI-GCM-1 over the corresponding region (average of values at 6
grid points within the square enclosed by 6°N, 10°N, 160°E, and 170°E) for the same season.
The observation clearly shows the dominance of mass fluxes associated with very shallow
and very deep clouds. The model’s calculation shows the similar pattern, but the mass fluxes
are much smaller than the observed ones (note the difference of the vertical resolutions
between observation and simulation). The dominani deep cloud in the model has its top at 300
mb level, whereas the observed one has at 125 mb level. In the observation shallow clouds
have much mass flux than deep clouds, whereas the simulation shows opposite feature. The
observed precipitation rate is 10.1 mm/day and simulated one is 7.2 mm/day which ié 30%
less than the observed.

There might be ambiguity in the observation and large interannual variability of cumulus.

activity over the equatorial Pacific region. However, comparison of simulated results and
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Fig. A7.1.4 The observed (left) and the simulated (right) mean cloud base mass flux m,(P4)
over the Marshall Islands region during the period 15 April through 22 July.
The observed data are taken from Fig. 5 of Yanai ef al. (1976). See text for

details.
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Fig. A7.1.5 The mean apparent heat source Q, (solid), moisture sink Q. (dashed) and
radiational heating rate Qg (thin solid) given by Dopplick (1970) over the
Marshall Islands region. Adopted from Yanai et al. (1976). Simulated results
by the MRI « GCM-I are also shown by corresponding lines with small open
circles. The suffix M indicates the simulated values by the model.
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observation seems to allude the drawback in the cumulus model. The drawback can be seen
more clearly in the apparent heat source Q, and moisture sink Q, (Fig. A7.1.5). Q, in the
model is the rate of temperature change due to cumulus clouds, Q, is the rate of change of
-L q, due to cumulus clouds. Q; and Q, in the model are less than the observed values except
in the lowest layer. For the lowest layer, cumulus clouds in the model make the environment

too dry.

A7.14 Cloudiness

The simulated zonally averaged total cloudiness in July is shown in Fig. A7.1.6, together
with the observed one (Dopplick, 1979). As mentioned in section 7.8, the cloudiness of cumulus
cloud is zero except anvil of cirrus cloud. Fig. A7.1.6 shows that the model underestimates the
cloudiness over tropics. The shallow cloud is responsible for this discrepancy between the
simulation and observation. As far as radiation is concerned, shallow clouds act to cool the

middle and upper troposphere. The Hadley circulation in the model is somewhat weaker than
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Fig. A7.1.6 The solid line shows the latidudial distribution of the zonally averaged total
cloudiness (%) for July. The observed distribution is shown by thin solid line
with crosses and taken from Dopplick (1979).
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observation (Tokioka et al., 1985, Kitoh and Tokioka, 1985). Therefore, magnitude of the
Hadley cell may become stronger by taking into account of shallow cloudiness into the
radiation calculation.

The model simulates the precipitation pattern relatively well. But, there are some
drawbacks in the simulated results such as too much precipitaion over summer extratropic
continent, too much dryness of the low layer in the tropics. The origin of these drawbacks
probablely does not lie soley in the cumulus parametrization. Nevertheles, it is necessary to
seek for the improvement and sophistication of cumulus parameterization for better

simulation by the GCM.

AT7.2 Simple examples of the solution for the mass flux distribution equation

The simple 2nd order equation will be considered to elucidate the character of the mass
flux distribution equation. Cloud type 1 is regarded as deep cloud ensemble and cloud type 2
as shallow cloud ensemble. Without loss of generality, we can assume the diagonal elements
of K matrix are —1.

Example 1.

X2§:

Toudt

RavasaussuRsa;
SREARAEaE nnRl
"

no ciloud

2‘C2 XI

Xi=0
X=2=0

Fig. A7.2.1 Graphical representations of fhe equation (left) and solutions (right) for
example 1. See text for details.
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K= I: —1 —1/2
; —1/2 -1
The graphical representation of the equation for cloud 1 and 2 is shown in Fig. A7.21. A
unique solution is found at the intersection point of two lines. The solution is shown on the
two dimensional forcing C, —C, plane in the right hand side of Fig. A7.2.1. When the forcings
for both clouds are comparable, both clouds can exist. When the forcing for the certain cloud
is negative, such cloud can not exist. In any case, the solution is unique. Fig. A7.2.2 shows the
variation of mass flux x, with forcing C, when C, is fixed. It is seen that the cloud-cloud
interaction has reduced the mass flux when the forcing C, is less than 2 C,.
Example 2.
K=[ -1  1/2 | X,
[—1/2 -1 Xe
In this case K (1, 2) is positive which
means that the cloud 2 affects to enhance 2C.
the cloud 1. The possibility that this type of
situation occurs in the real atmosphere can
not be excluded; In the special i
circumstances, the shallow cloud (cloud 2)

might have an positive effect on the deep

cloud (cloud 1) through the moistening

process of the lower atmosphere at the top

of the shallow cloud. Graphical Fig. A7.2.2 Variations of the solutions with

representation of the equation and the the cloud 1 forcing C, for example
1, provided the cloud 2 forcing C,

is held constant. See text for
same manner as in Fig. A7.2.1. In this case details.

solution are shown in Fig. A7.2.3 in the

even if the forcing for cloud 1 is negative
mass flux of cloud 1 can have non-zero values. The solution for this example is also unique.

Example 3.

K= [ -1 -2
-2 -1
In this case the interactions between two types of clouds are stronger than the self

-interactions. Occurrence of such a situation is unlikely but possible in the GCM due to its
coarse vertical resolution and/or any computational errors. There exist three solutions when
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Fig. A7.2.4 Same as Fig. A7.2.1 except for example 3.
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C,/2<C,;<2C,. (see Fig. A7.2.4). There is no selection rule among three solutions. Fig. A5
shows the variation of x, with C, when C, is fixed. Discontinuity of the solution takes place
at C,/2 and 2C,. Untill C, increases from zero to C,/2, x; reamins zero. When C, is larger than
2C,, x, is C,. Between C,/2 and 2C,, x, can have three values. In this example, there is no
unique solution.

It is of interest to check whether the right solution will be obtaind by the overadjustment
simplex method proposed by Lord et al. (1982). In the overadjustment simplex method, the
solution which minimizes linear objective function Z is searched, over the shaded region in

Fig. A7.2.1, where Z is defined as

zzl_zl | 'EIXK(i, ) x4 | (A7.2.1)
i= j= .

See Lord et al. (1982) for details. It is known that solution should occur at the extreme points
on the boundary of the region. When x,; and x, are positive, the solution given by the

overadjust simplex method agrees with the

A
right solution for examples 1 and 2. For ))((" Case 3
2
example 3, however, the overadjustment
simplex method can choose only one
2C2 |-

solution. Let us consider the simple case

that C,=C,=3. In this case there are three

solutions, namely, (x,, x;) equals to 1) (1,1),
2) (3,0), 3) (0,3). The simplex method
chooses the first solution. Next let us

consider the case that C;,=3, C,=1. The

T TSGR
W\
N

right solution is (3,0). In this case, however,

the overadjustment simplex method
chooses (0,3/2) which is not the solution Fig. A7.25 Same as Fig. A7.2.2 except for
(see Fig. A7.2.5). example 3.
Theorem :
x;+ax,=C; and x,>0 or x,=0 and ax,=C,
bx;+x,=C, and x,>0 or x,=0 and bx; =C, (A7.2.2)
The necessary and sufficient condition for the above equation to have an unique solution is
1-ab=D>0, i. e, det | =K | >0 | (A72.3)

There are four cases for the solution.
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1) X1 =X, :0 then,

0=C, (A7.2.4)

0=C, (A7.2.5)
2) x,=0, x,>0 then,

ax,=C, (A7.2.6)

X, =C, >0 : (A7.2.7)
3) x,>0, x,=0 then,

x,=C; >0 (A7.2.8)

bx, =C, (A7.2.9)
4) x;,>0, x,>0 then,

x,=(C;—aC,;)/D>0 (A7.2.10)

X, =(C;—bC,)/D>0 (A7.2.11)

We will show that these four cases are mutually exclusive provided det | —K | >0.
Proof :
Suppose case 1) holds ;
Then it is clear that case 2) and 3) contradict the case 1).
Suppose 4) holds too.
Then, from (A7.2.3) and (A7.2.10)
C,—aC,>0 then C,>aC,.
From (A7.2.4), 0>aC,.
Then a>0 from (A7.2.5)
From (A7.2.11) C;—bC, >0
Multiply a>0 to the above equation and after slight manipulation, we get
C,—aC,<C, (1—ab)<0
This contradicts the condition (A7.2.10).
Suppose case 2) holds.
Suppose case 3) also holds, then C,>0, C.>0, a>0, b>0.
From (A7.2.6), (A7.2.7), (A7.2.8), and (A7.2.9)
aC,=C,
bC,=C,
Then abC,=bC, =2C,
—(1—ab) C,=0 This lead to a contradiction to (A7.2.3).

Suppose case 4) also holds, then aC,=C,. We can derive the relation
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0=C, —aC, which contradicts (A7.2.10).
We can easily lead the contradiction for case 3) as same as case 2).
Let us check the determinants for the previous examples.
Example 1 : det | —K | =3/4
Example 2 : det | —K | =5/4
Example 3 : det | —K | =—3
Therefore, the examples 1 and 2 have their unique solutions while the example 3 does not.
For the equation of general order, the necessary and sufficient condition to have a unique
solution is that all the small determinants det | —K’ | are positive. But this theorem has not

been proved yet.



