3. Horizontal differencing*

3.1 Horizontal grid and indices

Spherical coordinate is adopted in the model. Grids on the sphere are distributed in equal
intervals in both longitudinal and latitudinal directions. Winninghoff (1968) has shown that
thé geostrophic adjustment process depends on how the variables are distributed over the grid
points. Among five ways of distributing the dependent variables (see Fiq. 3.1), Scheme C gives
the best dispersion relation for inertio-gravity waves, where u and v are velocity components

in both “i” and “j” directions, respectively and ¢ is geopotential.
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Fig. 3.1 Five ways of distributing variables on the horizontal grids. (Taken from AL) u
and v are horizontal components of wind in “i” and “j” directions, respectively.
¢ indicates geopotential.

% This chapter is prepared by T. Tokioka.
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Based on the above results, Scheme C
is adopted in distributing variables over the
sphere. Indices “i” and “j” are used to
indicate grid position in longitudinal and
latitudinal directions respectively (see Fig.
3.2). Surface pressure ps, geopotential ¢,

temperature T, mixing ratios of water 4

vapor q and ozone Os, and vertical velocity

c;' are defined at the z-point in Fig.3.2. )
Fig. 3.2 Horizontal indices and location of

variables. At =z-points, all
differencing described below are the same thermodynamic variables, including
water vapor and ozone, are carried.

As for the definitions of F and G, see
some special treatments near the poles. text. (Taken from AL)

The details of the horizontal

as that described by AM or AL except for

3.2 The equation of continuity

The equation of continuity (0.14) is expreseed as follows;

al-IiJ'|'F1+/2 1 %3 +G11+/ Gu /+ (Skﬂ ég—l):(] @.1)
where
_ A;—'An A77 A& ¢
= o F=zu G= V2 S= =l (3.2)
and
=1, g=9¢, += l_ 3.3
§=21, n=9, S-=acosp and —-=a (3.3)

The mass flux F and G are defined as follows;

F%:.%,j_%( Tn) |+é](7zi+11+7511)
(3.4)

G%(Jur%:% (VH&-) |]+/(7t13+1+71—'11)

For the time being, ignore the superior bar operators in (3.4), which are linear smoothing

operators in &.
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3.3 The pressure gradient force

The pressure gradient force in the & -direction is
~2(2+ 0u )

For the first term, we choose the form

o A = =
— (Z88) = —xzay (D) g (st ) (B = 85) (35)

As for the second term, we choose the form

— (B = —waay (2D (70w Nhsnat (m0a) § ) (er— ) (3.6)

Rearranging the right hand side of (3.5), we confirm that both (3.5) and (3.6), with the help of
(1.7), guarantee the relation (1.6) at each grid point.

Similarly, the pressure gradient force in the »-direction is

—(A' )j+1/2 2 [(7511+1+7Zn)(¢”+1 ¢:J)+{(7’v’°’l¥)1]+1+(750'01) Ej}(”i,ﬂl_m,j)]
3.7

3.4 Kinetic energy generation and the first law of thermodynamics

The contribution of the pressure gradient force to the kinetic energy generation
o
—a—t(l'[ u )|+ Y

is obtained by multiplying (3.5) and (3.6) by uf, ;. Then the kinetic energy generation is

— 1 (BD) Yy (st ) Fers— 85) +{(mow) ey + (m0@) &) (s 7))
(3.8)

As the superior bar indicates a linear smoothing operator in &, the summation of (3.8) over

i is identical to that of the following,
Ay
-1 ( 77) 145 [(71-'1+11+751J) (¢1+1] ¢1] )+ (”Ga)1+1j+ (71:0'0[) ij g — 7511)]

(3.9

This can be written as;
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(3.9)=— F}\+/](¢1+1J d’u)“ 1 (UA” f\.{./.j{ (71'0‘61’)§(+1‘j+(756a) 3\, }(”in,j—ﬂi,j) 3.9y

Therefore we can show that

?(39) 2(FH—/] FF‘%J)%EJ _%( Tﬂ 1+/]{ (nda)l+1]+ (7[0'(2) ij }(7[1+11 ”!J)

I(An)

4 i ,éj{ (moa) § + (750'4)?—1,5}(711,1—7&—1,5) (3.10)

Similarly, the contribution of the pressure gradient force to
o
S0

is given by

2(Glye=Gliose) B — (V) S { (o) 4+ (0@) by } (=)

_%( E‘g)u /{(”‘m’ f + (zoa) ;- 1}(”1: Ti5-1)
(3.11)

The sum of both (3.10) and (3.11), with the use of continuity equation (3.1), is transformed into

the following form;

oIl
at) k+1 (Si(, 1+ 6iy at)d’

kinetic energy generation=— 2—— [ ( S K4 G

—3I1§; (wa) 3

provided that (wa) {jis defined by

. OI*
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This expression may be compared with the definition given by (1.9).
Thus the thermodynamic energy equation (1.11) may be written as

TH, +T§ _Gk T+ Ti
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3.5 Momentum fluxes

The expression of momentum fluxes in the finite difference form strictly follows the one

developed by Arakawa (see AM or AL). We choose for

o A“’;'An A;y ) *AéAR
—a—t(n P )-I-A«fa;_.(nu )+A?]a (7zV—u)+ ( 6———mn u)
the form;
(H(u)u i) +_[Fl+/2 (Ui ) —FP s (wig+ o)

-+ Gl(;‘-)(— v (Uger ) — Gl(;l)_ v (U +5-1)

+f1:<i(-]’l‘-)%,j+l/2 (Uis 141 +y5) —fﬁ"i(f)%,j—yz (g +Uiop5-1)

+G1 /21+/(Ui i+ FUy) — l+/] /(U1;+U1+1J )

+M ZES‘“’I‘“(uE‘,rZJru%‘_j) SWEI(uly +u?) (3.15)



Tech. Rep. Meteorol. Res. Inst. No. 13 1984

where IV, SW Fw GW, T and T are not defined yet. When u is constant both in space

and time, (3.15) should be zero. Then we get a continuity equation;

s "
ot +(Fx+/1 F1 /J+G|J+/z 1(1)/2) +(F H‘/l"/z F i(E)‘/z.j—%"'PG/i(E)Vz.H‘/z“
G 1(+/J /) + (S (Wk+1__ S i("]:l)kfl) =0 (3.16)
Following AM or AL, we let

Fx(i)éf (Bl t 2Pt iy o0

) 1
Gl]+/ (Gii%,j+Gi-*l-‘/z'j+1+Gii‘/2,j+Gi*—‘/2.j+l)

6
(3.17)
~u 1 x x
Fi(+)%,j+%ZE(GI+/§J+G1+/ZJ+1+Fi+%,j+Fi+‘/2,j+1)
ai(g)%,j—% (Gn /2 . A,j+1_Fi*—%,j—Fii%,j+1)
where F* and G* are defined by
F* 5=+ (Frris + Fiovas)
i — 2 i+1/2,j i—1/2,j
G*; :%(Gi,ﬂllz +Gij-1r2) (3.18)

With the use of (3.17) and (3.18), it is shown that (3.16) is identical to (3.1) provided that

l(+/] [H1+1J+1+H13+1+Hij 1+H1+11 1+2(HH—IJ+HU)] (319)
and
S i(:)yz,j:%[ S i+1,41 T S ijt+1 +S -1t S i+1,j-1 +2 ( S i+1,j +8S l,j)] (320)

For v-component, we use a form identical to (3.15), with u replaced by v. Corresponding
to (3.17), (3.19) and (3.20), we let
v — 1 * * * *
Fi(+)‘/2,j_F(Fi+1,j+l/2+Fi+l.j—1/g+Fi,j+%+Fi,j—'/2)

v 1 * * *
G = 6 (G265, G y)

— 45 —
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~ (Vv — 1 * * * *
Fi(+)1/g,j+1/2“ﬁ(Gi+1.j+%+Gi,j+1/2+Fi+1vj+1/§+Fi,j+1/2’) (3'21)
~ (V) _i(G* +G* _F* _F* )

Gi~%.j+%_12 ij+% i—1j+% ijt+% i-1j+%

Hi(.jvlr%:%‘[nin,jn+Hi+1,j+Hi—1,j+1 FIo1,;+2 (Mg +105) ) (3.22)

S8=t S+ St Siasm+ S+ 2(Sun+$1w) (3.23)
In the limit of two-dimensional non-divergent flow, the flux form described above

guarantees the conservation of enstrophy as well as kinetic energy as shown by A,AM or AL.

3.6 Coriolis force

Coriolis force plus the metric term which contributes to %(Hu) is

AEA 2 1
(S —udsang () Jav (.24)
and the Coriolis force which contributes to %(HV) is

— (ER—ungar 2 () )z (3.25)

Defining C¥ at z-point as follows,

Cl=t,(A287) — Liu,tu ) { B e~ B i) (3.26)
we express (3.24), at u-point (i+1,j), in the following way,

(Bl (v +Visnsa) * + 7Cly (e +is) ) (327)
(3.25), at v-point (i,j+ %), is expressed as

_% [”i,j-(-lcgfj-(»l (U241 + Wi 1y2,541) ky 7Z1,1‘C :(, (Ui 12 + ui—l/Z,i) k] (3.28)

Note that exact cancellation of kinetic energy generation through Coriolis force is

guaranteed by the forms (3.27) and (3.28).
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