2. Upper boundary condition*

2.1 Introduction

Almost any models, so far, use w (the vertical p-velocity) =0 or w (the vertical velocity)=
0 as the upper boundary condition, the use of which causes reflection of wave energy as
demonstrated by Lindzen et al.(1966). If we apply the condition, @ =0, at the level p=p, (*
0), air particles are not allowed to cross the level p=p; from below to above it, which is not
true in the real atmosphere, and thus causes wave reflections. This situation is not essentially
changed at all even when p; is replaced by 0, unless sub-grid-scale physical processes in the
vertical direction are properly included pérametrically in the model.

So far as the open boundary condition in the horizontal directions is concerned, several
‘methods have been proposed (Wurtele ef al., 1971; Pearson, 1974; Beland and Warn, 1975;
Orlanski, 1976, etc.). The method proposed by the above authors is essentially the
implementation of Sommerfeld radiation condition. By estimating phase velocity in the

normal direction to the boundary, say c, we may write Sommerfeld radiation condition as;
oY 9¥_ '
3t —I-can—O 2.1)

for a variable ¢, where n is the coordinate normal to the boundary. The authors mentioned
above discuss various ways of applying Eq. (2.1) to the unbounded hyperbolic flows. Beland
and Warn (1975) have derived a transient radiation condition for both Rossby and inertio-
gravity waves.

As an upper boundary condition, one may think of using Eq. (2.1), replacing ¥ by @ or
w. However, this method, as is shown in the Appendix 2.2, turns out to be impractical,
because the method causes instability, the growth rate of which is not small, especially in the
low latitude regions.

In this paper, we describe, as an alternative method, a sponge layer model. In the sponge
layer model, we include a sponge term in the thermodynamic equation, which is designed to
cancel out erroneous effects caused by the inappropriate upper boundary condition, @ =0,
below the sponge layer. In another words, the sponge layer is designed so as to play an

equivalent role to the radiation condition.

s This chapter is prepared by T. Tokioka.
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Although the sponge term is a kind of generalization of a Newtoniah cooling term, it is
required to be highly dependent on modes, especially on frequency, and is also required to be
a complex number. The real part of the sponge term has a damping effect as a Newtonian
cooling term does, while the imaginary part modifies the vertical wavenumber of a
disturbance in the sponge layer.

The basic formulation of the sponge layer model has already been presented in Chapter
4 of AM (1974). In section 2.2, a discrete form of vertical structure equation is derived. The
effect of upper boundary condition is demonstrated in 2.3. A “sponge layer” is formulated
in 2.4, where we describe one practical way of applying the sponge layer model to the global
circulation model. Some test examples of the sponge layer model are presented in the
Appendix 2.1, demonstrating that the model works well to the forcings with the wide range

of Lamb’s parameter, when only one mode is forced from below.

2.2 The vertical structure equation
Using the vertical index k shown in Fig. 1.2, the equations linearized with respect to

perturbations on a resting isothermal basic state, may be written in a discrete model as

- . is 4 _

IGﬁk—ZQSIH¢Vk+m¢k—O (22)
0, + 20singt, + 128 = 2.3)
k @ Uy a.a(p .
0D, — 2 (Rt + Suduer) = — M, T 2.4)
k Apk k@1 k +1 k k .
$k_$k+z=cp(Pka +Qk+2Tk+Z) (2.5)
ist, +ai¢(vkc05¢)+a coS@ (@1 — &1}/ Apc =0 (2.6)

where any variable, say ¢, has been assumed a solution of the form,

¥ =Re(Je'e1+e) @27
s is the longitudinal wavenumber and o is the angular frequency. Re ( ) is an operation to
take a real part of ( ). Here s is assumed to be positive. Then a positive (negative) o
represents a westward (eastward) moving wave. The form of the vertical differencing of the
first law of thermodynamics (2.4), and the hydrostatic equation (2.5) is just a linearized
version of (1.11) and (1.18). We have included a damping term in (2.4), with the coefficient M,,

for later convenience. The coefficients R, Sy, Py, and Q, are given the following forms;

— 90 —
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Ru=p-(2)(Bi -~ &) | 2.8)
Sk:%o(%)@k—?m) | 2.9)
P (@) Rz ()] 2 | 10
Qe (=@ 3 e

where the overbar denotes the basic state. From the definition of 8.,,, these coefficients for .

the isothermal basic state become

_c _ (Pre2/P)*—1=In(pys2/pr)*
P,=Si=
(Pus2/Du)*—1

(2.12)
_ P2/ — 1 —In(pu2/pu)*
Q.=Ri=
1—{Pu—2/D)*
Eliminating @ and ¢ from (2.2), (2.3) and (2.6), we obtain

c d N A2 z@k+1 CﬂJk 1

L(iog)=4a’Q N (2.13)
where the differential operator L is given by

__9/1-4*03 1 s P44 g*

L= ou fz—,ﬁaﬂ)“sz—,ﬁ\f f2—p? l—,uz) @2.14)

where g=sin ¢ and f=0/2Q.
From (2.4) and (2.5), on the other hand, we obtain

10‘(¢‘k dir2)=cTo (kak L S rery) etz Qi (Qk+26)k+1+5k+szk+3)]
r‘);- St 2ADk+2
(2.15)
Here
& =1-iM,/o.
Eliminating @, between (2.13) and (2.15), we obtain
Wk—lA_pka+1 Wk-kAlp_kj]z[kH — gh [(’; \Qka_l +ScWiir)+
%(Qk+2wk+t +Sk+2Wk+3)] 2.16)

where the separation of variable @t =F(u)W,,, and the separation constant, h, defined by

LF¥=¢F, e=(2Qa)*/gh (2.17)

— 91 —
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have been used. h and e are often called equivalent depth and Lamb’s parameter,
respectively. (2.16) is a finite difference analog of the vertical structure equation. Let’s

assume, to this equation, the following solution,
Wiy = (Bext)e (218)
Po

Setting &= &+2=1 in (2.16), we obtain two
solutions for a, i. e, a; and a;, (=a* : e
complex conjugate of a;). The thick solid

lines in Fig. 2.1 show Re (a;) and —Im 10
(a;) =n as a function of e. d=1In(py+:1/

Pr-1)=0.658 (or e=1.93) and T, =270°K are

used in the calculation. The real part is 1/ e_(z;n_'%)*

2, exactly as it is in the continuous case. Fig. 2.1 The dependence of @ (see Eq. (2.13))
on Lamb’s parameter e in an
isothermal atmosphere (270°K) for
both continuous case (thin line) and

There are some unavoidable errors in n,
however, as n approaches the highest

resolvable wavenumber 7/d. The vertical discrete case (thick line) where d=1n
(Pr+1/Px-1)=0.658. The vertical

spacing of the MRI+GCM-I in the
to take a larger value in the discrete model, stratosphere (see Fig. 1. 2 (b)) is

wavelength (=2zRT,/gn), therefore, tends

compared to that in the continuous case, chosen to be d=0.658.

with the increase of e. At e=>~2.1x10% n is equal to z/d. Beyond that value, n remains equal
to z/d, while Re (a;) is no longer equal to 1/2, and damped and amplified oscillations occur.
We cannot avoid these oscillations in the present discrete model, although the present vertical

differencing scheme is superior to others as is discussed by Tokioka (1978).

2.3 Effect of the upper boundary
Here we demonstrate the effect of an upper boundary condition @ =0, which drastically
alters the solution by thorough reflection of the wave energy and consequent resonance.

The solution of (2.16) is given by
—A (B)a PYe
W=A (po) +B (po)

If we confine our discussion to the westward moving waves (¢>0), the first term is

responsible for upward propagation of wave energy and the second term is responsible for

— 929 —



Tech. Rep. Meteorol. Res. Inst. No. 13 1984

downward propagation of wave energy. For eastward moving waves, the situation is
reversed. In the following we will consider a westward moving wave as an example.

Suppose that a wave is forced from below and that its energy propagates upwards. If the
upper boundary condition is such that the wave energy can radiate away through the
boundary (the radiation condition), there is no downward propagation of wave energy and we
have the case B=0. Let us choose A=1 for convenience. This case, with A=1 and B=0, is
considered to be the ekact solution in the following discussion.

If the upper boundary condition is @ =0, as in most numerical models, the solution is
drastically altered. The boundary conditions then become

W=1 —at p=p,

W=0 at pP=D:. 25k ; Lan
The coefficients A and B are now complex. 20 | i EL,Im(B)
5 A I L T B
Fig. 2.2 shows the real and imaginary parts ol | ,': ! ! \ ;" \ ,'
/ AR AN R
of A and B, as a function of e when pr= Z:Z \//‘gg‘é}\/ ViV \7
/ / ! / /
1mb, p():lOOmb, d:hl (pk+1/pk_.1):0.658 -05 |f ’Il ;/ /” ,l/ ,I/\
1 i !
Q10+ i !
and T,=270°K. The real part of A has I f' i ,: fl !D!SCRETE CASE (NS)
|
S " = ! ! ! p°x|l()l'l))mb
decreased from 1 to 1/2, and the real part 200 4| AR
-25 ! d-0.658
of B has increased from 0 to 1/2. The ‘ \ , \
' . 10' 10° i0° o
imaginary parts of A and B become infinite (200
€="21
when —n 1n (pi/po)==, 27, 3w, - . For 9
. . . Fig. 2.2 Th litude of th d (A) and
these values of n, there exist free solutions '8 ¢ ampiitude of the upwar' )
the downward (B) propagating modes
of the vertical structure equation, which as a function of e, where the upper

boundary condition o=0is applied at
p=pi=1mb, and the wave is forced at
non-zero values of w at p=p,, a resonance p=po=100mb in terms of vertical
velocity. Isothermal atmosphere (270
K) is assumed with d=0.658.

satisfy @ =0 both at p=po and p=pr. With

occurs for discrete values of e which give
those values of n. Essentially the same

result has been demonstrated by Lindzen et al. (1966).

2.4 Sponge layer formulation

2.4.1 Basic formulation
We now let the uppermost layer of the model be the sponge layer. Then & =&=1—iM/

o for k=1, and &,=1 for all other k. Let’s again consider the isothermal case. The discrete

vertical structure equation (2.16) at k=2, with the upper boundary condition W, =0, is written
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as;

W, — (W, — W)= —%%(ed%vvz +QQW, +SW.)). (2.19)

The vertical structure equations at other levels are written as;

Wiy = Wiy = Wiy = Wieg)= =12 [€98@QWi i + W)+ Q@QWirs +SWero)]
(2.20)

where
Q=Q=(e*~1+xd)/(1 —e =)
Su=S=(e*—1—xd)/(ex*—
By choosing & properly in (2.19), we can let the ratio W,/W, be equal to that of the exact
solution in the discrete model under the radiation condition, which is determined by (2.20) for
a given equivalent depth. In this way, we can simulate a solution under the radiation

condition. The resultant condition is

e(FEx+Q)- =0 (2.21)

X (=W,/W,) in the above equation is determined by

(er ) e (0 i D) Kot (er 0 =0
2.22)

One of the solutions of (2.22), which

describes the structure of the upward 20

energy propagating’ mode, should be

RelM)Ac)

substituted into (2.21). The upward energy

~LmiM)/o

propagating mode can be selected by the

M/ 00
condition n/e <0 7. e,
Im (X))« ¢<0 (2.23) iy
Fig. 2.3 shows M/ ¢, thus obtained, as a : - L Al
function of e=(2Qa)?/gh when T,=270°K ° © ez‘%ﬁ?’zlo ’

and d=0.658. The required coefficient of Fig. 2.3 Sponge coefficient M, normalized

. . ith f f R

the sponge term, M, is a complex function with . requency o ,a wave o, as a
function of Lamb’s parameter e.

of the equivalent depth and frequency. The Conditions of the discrete model are

real part of M thus obtained remains the same as those in Fig. 2. 1.

— 24 —
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positive while the wave is treated as internal (z. e., 9.7< e <2.1x10%), and therefore acts as
damping in that range. Beyond the value ¢ =2.1x10¢, damped and aniplified oscillations occur,
as shown in Fig. 2.1. Therefore, propet simulation of wave in that range itself is meaningless.
When e is small (e <30), Re (M)/ | ¢ | is quite small, while —Im (M)/¢ is close to unity. This
means that the sponge term has negligible damping effect but has exclusive effect in
modifying vertical wavelength. With the increase of e (or decrease of equivalent depth), the
damping effect of the sponge term increases. At e ~3.5x10%, Im (M) vanishes, 7. e. the sponge
term formally reduces to the so called Newtonian cooling term.

Because the vertical wavelength of a wave is a decreasing function of e, we may
summarize the present result as follows; The sponge term is more effective in changing the
vertical wavelength in the sponge layer than in damping the amplitude of the wave, for the
waves with large vertical wavelengths. On the other hand, the damping effect of the sponge

term becomes important to handle waves with short vertical wavelengths.

2.4.2 Estimation of equivalent depth and frequency

As mentioned in 2.4.1, the sponge coefficient M is a complex function of equivalent depth
and frequency, both of which are not explicitly known in a numerical model. This causes
difficulties in evaluating M in initial value problems.

In the following, we describe one successful way of estimating equivalent depth and
frequency in a numerical model.

From (2.4), (2.5), (2.15) and (2.17), we have;

T,

ioTy— Ap Q@ +52)=0 (2.24)
é— b= CP(STI +QTy) (2.25)
iog, =gh-22 2.26
icd,=gh Ap, » | (2.26)
o, =gh®4— 22 | 2.27
icg; =gh ADs | ( )

From (2.24) and (2.27), we obtain

_(2Qa)"_ _Q+San/@s s
gh="= =Re(T, WS f)' , (2.28)

By knowing &,/&, and &5/ T3, € can be estimated by (2.28). (2.24), (2.26) and (2.27) can be used
to estimate ¢. Once we know e and ¢, X is determined by (2.22) and (2.23). Finally, (2.21) gives
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us M.

2.4.3 Extension of the sponge layer model to the non-isothermal case with a constant.
zonal wind

We may extend the sponge layer formulation in the previous sub-section to the non-
isothermal case with a constant zonal wind. We may include the effect of a constant wind by
replacing o with the doppler shifted frequency o*(=o+si/a cose). The thermodynamic

equation (2.4) should be replaced by
. *T Tk ~ ~ . AN a
10 k*A—pk(Rk&)kﬂ +Skdner)=—M T —Qx (2.29)

where T, is the globally averaged temperature at the level k, and 4y is the cooling rate due
to diabatic processes other than the sponge term. T, that appears in the definition of R, and
S« should be replaced by T..

The vertical structure equation is now written as follows;

Wiii—Wior Wit =Wigs P,
Apx Apusyz [T & Apx RiWieos +ScWiep 1) +
%(Rk+zwk+l +Sk+2Wk+3)] (2.30)
where
gk*:§k+Qk/i6*Tk 2.31)

In the following is given one practical way of evaluating sponge terms currently adopted. In
order to evaluate them, we have to know both the equivalent depth and the doppler shifted

frequency. For this end we estimate, at first, the vertical structure X (= ../ éx) as follows;

1 A 5 5 5 TS
Xe=3 {& Ag3(¢ A i —)} (2.32)

The doppler shifted frequency, ¢*, is estimated by use of (2.29). In doing so, a kind of time
averaging is necessary to avoid a rapid fluctuation of the estimated value due to short lived

waves. Currently the following form is adopted;

e (1 o1, € 1 Ty . N s 1 Ts o ~ s
(6*)=(1—e)o*) ‘—}-?Im [m'T(Rawz+st4)——ﬁ+zp—sﬁ(Rs(m+ste)—7ﬁ-]

(2.33)

The averaging factor ¢ is assigned the value 0.08. Superscript 7 indicates a time step to

evaluate a sponge term. Currently this is done in every 60 min. The equivalent depth is

— 9% —
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estimated, now, with the use of a similar equation to (2.33), as follows;

(gh)"=(1—e)(gh)* 1 +5Re [(;;i‘%aj;ii) . S%ff:ff (239

where S and R are representative values of S, and R, in the highest three levels. ¢ is again
set to 0.08.

We are now able to recalculate the vertical structure X by use of the vertical structure
equation (2.30) applied at the level k:4‘, This gives us two solutions for X, 7. e., X; and X,.
We choose X; when X, satisfies either

[Xi ] > 11X, |
or (2.35)
[ X, ] =X, | and Im(X;)o*<Im(X,)o*
The sponge coefficient M is ‘determined by use of the vertical structure X, thus determined
and the vertical structure equation applied at the level k=2. Currently, sponge terms are

calculated for each latitude circle for the zonal wavenumber up to 4.

A2.1 Test examples of the sponge layer model
A2.1.1. Model

We apply the sponge layer model designed in 2.4 to the linearized equatorial S-plane
model. We assume rest, isothermal atmosphere as a basic state and consider the following

form of a perturbation motion,

u i
v %
w | =Re| & | ™
T T
¢ ¢
where m is a wavenumber in the zonal direction. Then we obtain a following set of linearized
equations;
&ﬁj—%fi(vi+1+vi—l): —imé; (A2.1.1)
1. . . 1~ ~
A +§(fj+1uj+1 +fi0-) = _A—(¢j+1 — ) (A2.1.2)
y
atTk‘Z%‘(bek—l +Sén1)= _Mka (AZ.]..S)
k
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Fig. A21.1 The vertical and the horizontal structure of the discrete model used for the test
calculations. Vertical structure is the same as that in Fig. 1.2(b).

gk - $k+2 =CD(STk +QTk+2) (A2.1.4)
. 1. N 1 . ~ ke
1mu;“+A—y(V“,-+1—V“j_l)+m(m,-k“— 1) =0 (A2.1.5)
where
i, 20

M, is set to zero except the one at k=1, which is estimated by the procedure described in
section 2.4. Location of variables is shown in Fig. A2.1.1. Horizontal location of variables

corresponds to the scheme adopted by the MRI - GCM-I. Q and S in (A2.1.3) and (A2.1.4) are
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Table A2.1.1
Numerical parameters and lateral boundary conditions used in initial value problems. A
y is a grid size in the meridional direction, J the number of grids in y-direction, A t a time
increment, and m a wavenumber in the longitudinal direction.

Lateral Assigned
Case Ay(km),] | At(sec) m(M™) | Boundary Frequency e= (22; y
Condition (sec™?)
Mixed Rossby- 44478 150 6.2784 x| ©,=1_,
. —6 3
Gravity Wave (=122) e #=0 6.2784 x 10 2.030x 10
44478 1.5696 X | ¥=0
Kelvin Wave 450. —6.0602x107% | 5.760x10%
(J=22) 10-7 =0 '
600. 3.1392 X | ¥,=0
Rossby Wave 600. 8.0x107% | 1.230x10?
, (J=22) 1077 =0 _
Semi-Dirunal 600. 600 3.1392 X | ¥,=0
. 1.4526x10~* | 1.219x10*
Wave J=21) 10°7 & =0 .

the ones defined in (2.12). Vertical index k and latitudinal index j are dropped in the
momentum equations, and in the thermodynamic and hydrostatic equations, respectively. As
for the time differencing, &, we use the centered scheme with a periodical insertion of the
Euler backward step.

By use of the separation relation;
—1_(&7K+1_&7k—1):i_0-¢k (A2-1-6)
Apy gh

and (A2.1.1), (A2.1.2) and (A2.1.5), a difference analog of the horizontal structure equation is
obtained. The equivalent depth, or Lamb’s parameter, and the eigenfunction for geopotential,
F, are obtained by solving it under the lateral boundary conditions listed in Table A2.1.1. The
eigenfunction thus obtained is used as the forcing to the model. Geopotential at the lowest
level (k=15) is prescribed as
3,15 = OF eloatr (A2.1.7)

where 7 is a time step, and ® is a constant chosen to be | #52, | =10.0m?sec™?. Prescribed
frequency ¢ is not used in any other places than in (A2.1.7), in the model. Integrations are
started from a rest condition in the interior.

Four examples of the initial value problem are demonstrated in the following. They are
the propagation of a mixed Rossby-gravity wave, a Kelvin wave, a Rossby wave and a semi-

diurnal wave (see Table A2.1.1). Lamb’s parameter e are chosen in such a way as to be close
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to the resonance points except a semi-diurnal wave case. Arrows in Fig. A2.1.2 show the
location of Lamb’s parameters listed in Table A2.1.1. The differences between Fig. 2.2 and
A2.1.2 are due to the differences in the forcing level and the way in which waves are forced.

In Fig. A2.1.2, waves are forced by ¢ at the level k=15, while they are forced by  at the

level k=14 in Fig. 2.2.

251 |
, | :
. . '
A2.1.2. Propagation of a mixed Rossbhy- 20 ;' ! 4o
| i ] 1
; sl | A O B i
gravity wave ! i ! i | i |
] ! ll 1 !
. . Lo | I ! ! ! i !
As the first test, we simulate a I.' 33‘{‘;’,,‘ A / {
1] i ] I
. . . . OS5 7 7 7 7 7 7
propagation of a mixed Rossby-gravity . / \/’ / \/ \,’ \/ \/ \
0 ) : ¢
. . . . LIm{A)/ 7 ) / 4
wave. This is observed in the equatorial 'O5r{ " / JANAN AN /
/ / i ! ! / /
1 tratosphere. The parameter in ! VAR R R /
ower stratosphere. e p e 10f | fma)| | VAR i ‘,
. ! f ! ! i | i
Table A2.1.1 roughly simulates the st }! T T T X
: :‘ ,|' I DISCRETE CASE (NS)
L Po=139mb
observed waves. 201 | | bomb
25k ! T, =270°K
The equivalent depth is gh=424m? ! d =058
1 1 1
0t 10" o ! 10*

sec™? or € =2.03x103. Therefore the vertical .
€= (_zf‘ﬁ)

g

wavelength in the present discrete model is _
h Fig. A2.1.2 Same as in Fig. 2.2 except that

waves are forced at the level p=
139mb in terms of geopotential.

model gives about 5km for the same value Arrows indicate positions of
Lamb’s parameter used as the

estimated approximately as 12.5km wit
the aid of Fig. 2.1. While the continuous

of e. The horizontal profile of F, used as L
forcing in the present test (see

the boundary forcing, is proportional to the Table A2.1.1).

one shown in Fig. A2.1.3 (c) by E.
The time change of the amplitude of &%, is shown in Fig. A2.1.3 (a), where the solid line

with (S) is the case with the sponge layer, and the dashed line with (NS) is the case without
the sponge layer. The thin solid line with (E) shows the steady state amplitude of the exact
solution with the sponge layer, which is identical to the exact solution under the radiation
condition below the sponge layer. We do ndt observe any significant differences between
Cases (S) and (NS) until about 240 hours. However, the amplitude of (NS) still continues to
increase and tends to have a large value after that. On the other hand, the amplitude of (S)
fluctuates around the exact value. . .

The vertical structure at j=1 (Fig. A2.1.3 (b)) and the horizontal structure at k=3 (Fig.

A2.1.3 (c)) of geopotential field show that the sponge layer well supresses artificial reflections,
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Fig. A213 (a) The time change of
geopotential amplitude at the
a0l A grid point j=1, k=3 for the
(N mixed Rossby-gravity wave
case (unit : m? s72). “S” and
7 “NS” indicate the case with
e NS and without the sponge layer,
N respectively. “E” is the exact
steady solution with the
sponge. The exact solution is
identical to the solution
the radiation

150
under
condition, below the sponge

1200
layer.
(b) The vertical structure of

50
720 960
geopotential at j=1 after

1200 hours of integration for
the mixed Rossby-gravity
case. Amplitude is shown in
unit of m? s72. The phase is
measured relative to that at
the bottom layer (k=15).
Crosses indicate the results

where Rayleigh f{riction
terms with the damping rate
107%s! are included in the

mb
T

momentum equations at the
as a

level k=1 as well
Newtonian cooling term with

1

2T

a constant cooling rate 10~°
in the thermodynamic

B0 20 o
PHASE
S—l
equation at k=1.
(c) The horizontal structure

of geopotential at k=3 after
1200 hours of integration for

the mixed Rossby-gravity

100
AMPLITUDE

(b)

MIXED ROSSBY-GRAVITY WAVE: HORIZONTAL STRUCTURE OF $3(f=l200hrs)
case. Amplitude unit is m?
y -
| * . !
w6 4ng/3  3m/2  5w/3
PHASE

AMPLITUDE
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caused by the upper boundary condition @ =0, below the sponge layer. The solution below
that layer is almost identical to the exact one, in this example. Vertical profile of | @ | in
(N\S) clearly shows the exisistence of a nodal point caused by reflections at the top.

When there is a Rayleigh friction term in the momentum equation, simple analysis of the
effect of the term is prohibited because of the change in the horizontal structure between the
layers with and without the Rayleigh friction term. Because the Rayleigh friction term is
sometimes included in the model for the purpose of dissipating reflected waves caused by the
upper boundary, the method is tested numerically.

In the numerical test, a Newtonian cooling term is also retained in the model with a
constant cooling rate. Both the momentum damping rate and the cooling rate are set to 10~
sec™! and those damping terms are included only in the highest layer. Crosses in Fig. A2.1.3
(b) and (c) show the geopotential field after 1200 hrs. of integration. Gross features are very
close to those without sponge (NS). The case with the damping rate of 10~° sec™! has also
been tested. However, the change in the damping rate does not cause much differences in the

results except in the highest three levels.

A2.1.3. Propagation of a Kelvin wave
Kelvin waves are also dominantly observed in the tropical lower stratosphere. The
parameters in Table A2.1.1 roughly simulates observed Kelvin waves.
Because ¥;=0 in the Kelvin wave, the dispersion relation reduces simply to
o=—/ghm (A2.1.8)
This gives us 1.49 x 10® m?sec™? as gh (or e=576). The vertical group velocity W, of the
Kelvin wave, in the present discrete model, can be evaluated with the aid of the following

relation;

90 _H,o  olne

We=—-Hog,=7 on

(A2.1.9)

where H, is the equivalent depth (=C,T,/g)and use has been made of (A2.1.8). 9lne/onin the
present model can be evaluated from Fig. 2.1. Thus we obtain 2km - d-! as an approximate

value of W, for the present choice of parameters.

Fig. A2.1.4 (a) shows the time change of | ¢%-, | . We notice a great difference between
Cases (S) and (NS) after about 380 hrs. The value 380 hrs is compared well with the value 400
hrs, which is an approximate time required for the bottom disturbance to arrive at the level

k=3.
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Fig. A2.1.4 Same as in Fig. A2.1.3 (a), (b) (c) except for the case with a Kelvin wave forcing
(see Table A2.1.1).
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After 400 hrs, the amplitude of the case with sponge (S) fluctuates around the exact value
(E). While the amplitude of (NS) seems to settle at a large value. This is a plausible result
because the Lamb’s parameter (e =576) is close to a resonance point (see Fig. A2.1.2).

Vertical and horizontal structures of geopotential at 1200 hrs are shown in Fig. A2.1.4 (b)
and (c). From those figures, again, we see that (S) is close to (E) except near the north
boundary region where the amplitude of geopotential itself is small. We may conclude that

the sponge layer is effective in this case.

A2.1.4. Propagation of a Rossby wave

The third example is a Rossby wave’s case. The parameters in Table A2.1.1 are chosen
so as to locate Lamb’s parameter around 102, The value is about 123, and this value is also
close to a resonance point (see Fig. A2.1.2).

The time change of geopotential amplitude at j=1 and k=3 is shown in Fig. A2.1.5 (a).
The amplitude of (S) follows the exact value (E) more closely than that of (NS) after about
300hrs of integration. However, there still remains larger fluctuation in (S) around the exact
value than those observed in the previous two cases. _

Although we do not see much preference of (S) over (NS) from Fig. A2.1.5 (a) alone, the
vertical structure in Fig. A2.1.5 (b) clearly reveals differences between (S) and (NS). Both
amplitude and phase of geopotential in (S) are close to the exact values. On the other hand,
we notice two sharp nodes in (NS). One of the nodes is located at the level k=3.

Judging from both Figs. A2.1.5 (b) and (c), we may say that not bad horizontal structure
of geopotential in (NS) at a particular level k=3 (Fig. A2.1.5 (c)) has happened by chance.

A2.1.5. Propagation of a semi-diurnal wave

As the last example, we test a propagation of ® (2,2) mode of the semi-diurnal tidal
motion (see Chapman and Lindzen (1970) for further details). By use of the parameters in
Table A2.1.1, the simulated ® (2,2) mode in the present discrete model gives gh=7.04 x 10* '
m?sec™? or e=12.2, which gives about 190km as the vertical wavelength,

Fig. A2.1.6 (a) shows the time change of geopotential amplitude at j=1, and k=3.
Corresponding to the very large vertical wavelength, the vertical group velocity is also quite
large. Within 12 hrs, wave energy arrives at the sponge layer. However, the amplitude of (S)
does not converge to the exact one. There still remains a large fluctuation even after 1200 hrs,

and no preference of (S) over (NS) is found both in the horizontal and vertical structures of
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geopotential shown in Fig. A2.1.6 (b) and (c).

In the previous three cases, especially in the first two, the sponge layer was quite
effective in supressing reflection of waves below the sponge layer. While, in the present case,
it is not. One reason for the ineffective sponge in the present case may be explained as
follows; Because we have assumed a steady state in designing the sponge layer model, there
is no surprise even when the sponge did not work at the arrival of wave fronts. If the vertical
group velocity is small, in vague sense, not much noise may be created at the arrival of the
main wave front. On the other hand, if it is large, as is the case for the mode @ (2,2), much
noise might be created, which might cause the sponge model ineffective.

Another reason may be due to the small value of Re (M)/ | ¢ | for the mode ® (2,2) (see
Fig. 2.3). Because there are no dissipative mechanisms other than the sponge term in the
present linearized numerical model, secondary noise may not be supressed well by the sponge
term alone.

One may point out, as one of the reasons for the ineffective sponge in the present case,
the way in estimating the sponge term. It is estimated by use of the informations in the
highest three levels, the depth of which is too thin compared to the vertical wavelength of ®
(2,2). We admit that the estimated value of M had not a small fluctuation around the expected
value of it. However, we do not consider this as the major cause for the unsatisfactory results
in the present case because the run where M was fixed to the exact value, expected in the

steady state, did not show much improvement over (S).

A2.2 Stability check of Eq. (2.1) as an upper boundary condition

When we apply Eq. (2.1) as an upper boundary condition, we may rewrite it as follows,
() +eas (95) =0 (A2.2.1)
We discuss in this appendix the stability characteristics of free modes when the use has been
made of (A2.2.1) as an upper boundary condition.

Because c, in (A2.2.1), is to be chosen in such a way as to radiate vertically propagating
wave energy outward, ¢ must be a positive value.

Let’s consider a rest, isothermal model in which there are no variations of variables in
the north-south direction, and the Coriolis parameter f is constant. We assume the following
form of a solution to the linearized system equations:

. =Re(g,e'et+m0) (A2.2.2)
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Fig. A2.1.6 Same as in Fig. A2.1.3 (a), (b) (c) except for the case with a semi-diural wave

forcing (see Table A2.1.1).
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We use the same notations as have been used in the text. Then, the linearized system of

equations are written as follows:
i(iﬁk _‘ka - —im@k,

io'?k_i'fﬁk:(],

i, —-Lo(se 1) =0
101y Apk( Cﬂ)k+1+Q@k—l)_ s
B~ B =(STu+QTw10),

A 1 . N
lmuk+m(wk+l_mk—l):()y k=1, 3,

(A2.2.3)
(A2.2.4)

(A2.2.5)

(A2.2.6)

(A2.2.7)

From these five equations, we obtain the following equation:

e'Aén_1 — By +Adris=0,
where

A=X%2—c, T,m?QS—1?,

(A2.2.8)

B=(1+e)X?+c,Tom?e'S?+ Q%)+ (1+e9)f2,

X =ic,

e=Apy/Apy—z
We apply the bottom boundary condition
as

&k =0. (A2.2.9)
As for the top boundary condition, we
expfess (A2.2.1) in the following form,
X(@n+e 7 @)= y(@o—e ¢ a)=0,

y=2¢c/Ap;. (A2.2.10)

Equations (A2.2.8), (A2.2.9) and (A2.2.10)

where

determine eigen-value X. When we apply
®,=0 instead of (A2.2.10) as the top
boundary condition, all eigen solutions are
neutral, of course, and there are no
computational modes in the solutions.

If we use (A2.2.10) as the top boundary
condition, instead, all inertio-gravity modes
suffer slight damping (stabilization) for

positive value of y. In the present system,

l'.t"( " e-folding time
sec’
(day)

T =13 010" 9sec!
1oel —-‘O.I
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Fig. A2.2.1 The growth rate of the unstable
mode as a function of the number
of vertical layers, K, when Eq. (A2.
2.1) is the upper boundary
condition. f and m are the Coriolis
parameter and the zonal
wavenumber. The same vertical
gridding as is shown in Fig. A2.1.1
is used. T, is set to 270°K.
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however, we have one additional computational mode due to the use of (A2.2.10). This mode
is unstable. The growth rate of the solution is shown in Fig. A2.2.1 for a particular value of
y. Numerical values used for the calculation are as follows:

d=0.658, T, =270K, ¢,=1004m?s2K-!, S=9.1 x 10°?,

Q=9.7x 107%, Ap,=1.93mb and y=1.3 x 10-5s"1.
The growth rate of the unstable mode does not change much with the increase of the number
of the vertical layers K. We see that this mode becomes more unstable with the decrease of
the Coriolis parameter f and with the increase of the zonal wavenumber m. To make the
situation worse, the growth rate is quite large. The rapid growth of errors (about 1/4 day in
e-folding time) was observed in the initial value problem test when Eq. (A2.2.1) was used as
the upper boundary condition with the same Rossby wave forcing as listed in Table A2.1.1,

in which y is approximately equal to 1.3 x 1075 s~
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