1. Vertical differencing*

1.1 The vertical coordinate and the vertical index

The model atmosphere is discretized by constant o-levels. There are eight choices of
distributing variables on the vertical levels as shown in Fig.1.1. Tokioka{1978) studied this
problem from the standpoint of describing vertical dispersions of wawes. Here we follow his
results and adopt Scheme C’. Horizontal wind v and temperature T are defined at odd levels,
and geopotential ¢ and E)‘(individual time derivative of o) are defind at even levels. ¥, T and
# in Fig.1.1 indicate values interpolated in some ways from the non-hat values of them.

The vertical indices are given consecutively from the top to the surface as shown in Fig.
1.2. We locate vertical levels above p=p; in equal interval in In p, again following Tokioka’
s analysis(1978), for best simulation of internal waves. Currently, we have two versions of the
model. One is the 5-level tropospheric model, where pi=pi=100mb and ¢,=0.111111, ¢,=0.
333333, 06=0.555556, 0s=0.777778, 010=1.0 (see Fig.1.2(a)). The other is the 12-level model,

K2 — g — —o, T— -G,V,p — -0,V, ¢, T— (even)
K+l =W, ¢, T--=  —=-W,p=--  —==-Tommom  —mmmmmmme (odd)
K—g — o, T— -o,V,p—  -0,V,¢,T— (even)
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K+2 —gV— —G,V,T— -G,0(V,T) —0,¢,T— (even)
Kl == ¢,T--— = p-—— -V, T($)- ----W-—---(odd)
K—ogWV— —0o,V,T— -0, (W, T) — G,¢, T— (even)
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Fig. 1.1 Eight choices of distributing variables on vertical levels. Levels with solid and
dashed lines are called as “even” and “odd” levels, respectively. v is horizontal
wind vector ; ;)', vertical o-velocity ; T, temperature ; ¢, geopotential. ~ is a
reminder that the variable is an interpolated value from the non-hat ones. Scheme
C’ is adopted in the MRI - GCM-1.

% This chapter is prepared by T. Tokioka.
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Fig. 1.2 The vertical indices and the position of vertical levels. (a) Five layer version (5L
-MRI - GCM-I) and (b) twelve layer version (12L-MRI - GCM-I). As in Fig. 1.1,
solid and dashed lines indicate even and odd levels, respectively. The lowest odd
level is indicated as K. Approximate positions of the levels in km is shown when
the surface pressure is 1000mb.

where pi=1mb and pr=100mb. The model atmosphere between p=p; and p: is discretized into
seven levels in equal interval in In p (see Fig.1.2(b)). The model structure below the level p=

p1 is the same as that of the 5-level model.

1.2 Flux form of a variable
Let Ay be a variable A defined at the odd level k and Ay.1, an interpolated value of A

at the even level k+1. We introduce a notation
2(7: *‘A ):12(7[ A+ Ve (mviA )—I———l—[(ﬂ';')m 1Auis
Dt k k ‘—‘*at k k k Yk k AG‘I\
_(”(})k— A1) (1.1

where V is the horizontal divergence operator. This is the flux form of variable A and

conserves mass weighted integral of A under the vertical boundary condition o= 0,+1=0. We

define Ax+1 as
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1.2)

where Gx=G(A\) is an arbitrary function of variable Ax and G’, =dG(Ax)/dAx. We can
further conserve mass weighted integral of G by use of this form (Arakawa, 1972; Arakawa

and Mintz, 1974; or Arakawa and Lamb, 1977)**.

1.3 The equation of continuity

The equation of continuity, (0.14), may be expressed in a discretized form as

Dmk1)=0. 13)

1.4 The acceleration term

The acceleration term in the momentum equation may be expressed as
D kv (L4)
In order to conserve kinetic energy in the process of vertical advections, we define
P 1
k+1—7(vk+vk+ 2), (1.5)
This form is obtained from Eq.(1.2) by setting G(A)=A2.
1.5 The pressure gradient force
We introduce the pressure gradient force at the odd level k as
V(zkak)—ﬁ(tﬁkﬂo‘k“~¢k~16‘k—1)V7lk » (1.6)

so that no spurious acceleration of a circulation may occur even in a discretized model with
topography (see A, AM or AL). Keeping in mind the identity V(z¢)— 8(¢0)/d6Vr=nV ¢ +

roaV z, we define (oa): by

moa) = ;sk—ALﬂ(qu | Okt 1 — B 1 Ok 1) (1.7)

where « is the specific volume.

Multplying — vi to Eq.(1.6) and rearranging the terms, we arrive at

% % These papers are abbreviated hereafter as A, AM and AL, respectively.
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—vi+(Eq.(1.6)) = —V°(7rka$k)*ALo_k[{(7w)k+ 1+ 0ok 1'%%}51«4 1

~{(70)-1 + 0 l%ltk}qsk—lj“”k(wa)k : (1.8)

where

(wa)x= ((Td)k(%‘FV'V)?Zk—ﬁ{(”&)kJr b1 — 8k)
— (71 ($x—dx-—1)} (1.9)

This is just a definition of (wa)x based on the identity

v - 24—~ o)~ S 805

1.6 The first law of thermodynamics
If we define temperature at the level k by
Ty= 6Py (1.10)
Px=P(pk+1, Px—1) }

the following enthalpy epuation is derived as a finite difference analog of (0.26);

olnP,

ﬁDt‘(m( * Cka) =miCp Tk o

0
(&'*‘V'V)m{

+ﬁ[(m})k+ yeo(Tis 1 —Prbir D= (20 1co(PrBi— 1 — Th 1)) + Qi 1.11)
k

where Py is an analog to (p/po)* for the level k, x =R/c,, and p, is a reference pressure. (1.

11) is identical to the expression

Q

‘ i%(m( * 0k)ch—P|:
1.7 Total energy conservation and the hydrostatic equation
To conserve total energy in an adiabatic and non-dissipative process, the r.h.s. of (1.11)
except the last term should be identical to zx(wa)x defined by (1.9). Thus we require
e Tvdln Py/om=(0a) | (112)
co(Ths 1 —Prbir1)=dx— b1
Cp(Pkak—lka—l):tﬁk—l—ak ] (1.30)
Eq.(1.12) is required only for k >ki, because zx is constant above the level k=k:. Both (1.12) .

— 17 —
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and (1.13) are analogs of hydrostatic relation in discretized form.

The scheme described so far conserves momentum, kinetic energy, potential enthalpy
and G(6) (provided that & is determined by (1.2)) through the vertical advective process as
well as mass itself. The total energy is also conserved by use of the hydrostatic relations (1.
12) and (1.13), and no spurious acceleration of a circullation occurs through the pressure
gradient force. In the above formulations, there remain several freedoms. They are;

i) the functional form of G(8)

ii) the functional form of P(pk+1, Pxk-1)

iii) a hydrostatic relation that determines either ¢w or Tu

iv) a hydrostatic relation that determines either ¢+, or Txs: for k<ki-3.

These freedoms are eliminated, after Tokioka’s (1978) study, as follows;

i) G(6)=Inb (1.14)
S P (n* /o (pF e L PRI DR ] =02 115
11) Pk—(pk /po),(pk)—1+a pk+1_pk—1’ a ( ' )
i) Pri—ure1=CTurs1 + dInPiry 1 /8pwae(Prrs 2 —Prr) (1.16)
iv) ¢r+1—éx-1=—RTu(npcs 1 —Inpi—1), k<ki—3 (1.17)

The functional form (1.14) is required to describe vertical propagation of waves properly. The
use of (1.14) gives us additional advantage (see AM or AlL), i.e., the conservation of entropy
because of (1.2) and exact thickness between the even levels for the wide range of
stratification including isentropic and polytropic cases.

. It may be useful, for the later convenience, to introduce the following expressions of

hydrostatic relation, which are equivalent to (1.12) and (1.13),

3k+2 —$k= —Cp@kﬁL 1(Pxy 2 —Py) . (1.18)

-~ K/ al P K—[Z ~

dx= ¢s+k:1§+ . kCp Lk ar:zk kvk=%+ . Ok+1Cpbkr 1 (Pt 2 —Pyx) (1.19)
where

By =B/ Ors2) : (1.20)

1/60k+2—1/6k

2’ in (1.19) represents a summation over odd k.
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