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The Study of Melting of Snowflakes in the Atmosphere
Takayo Matsuo

Physical Meteorology Research Division, MRI

ABSTRACT

The phenomena of melting of snowflakes in the atmosphere have been studied by analysis of sur-
face weather observation, laboratpry experiment; theoretical calculation, and field observation.

Analysis was made of the relationship between forms of precipitation and surface meteorological
elements. The occurrence frequency of snow increased with decreasing air temperature and relative
humidity. That of sleet and rain increased with increasing temperature and relative humidity. With in-
creasing precipitation intensity, in this case, sleet rather than rain frequently occurred. These results
suggest that the melting of snowflakes in the atmosphere is influenced not only by air temperature but
also by relative humidity and precipitation intensity. The precipitation intensity is probably associated
with snowflake size or density, and according to Gunn and Marshall (1958) snowflakes of larger size
become dominant as precipitation intensity increases. It is presumed that sleet is likely to form at high
intensity of precipitation because large snowflakes melt slowly.

In the experiment, the melting process of snowflakes was observed in a vertical wind tunnel in an
airstream of 5.5 °C in temperature and of 100 cm sec™ in velocity. The examination revealed that no
break-up .of snowflakes took place in melting and that the melted water did not accumulated on the
snowflake surface but percolated into the inside. The percolation may be due to capillary action. By the
above result, a micro-physical model was proposed of a snowflake in melting. Using the model, an em-
pirical formula for the melting rate of snowflakes, which is expressed as the rate of decrease in radius R
by melting, was obtained to give the relation dR/dt = —&d (KAT + LyDAo)/L:P;R. The coefficient €
is an adjustable parameter to bridge the gap between experiment and theory, and evaluated as 1.75. d is
the ventilation coefficient of spheres, K the thermal conductivity of air, Ly the latent heat of vaporiza-
tion of water, D the coefficient of molecular diffusion of water vapor in air, P; the density of the
snowflake, Ao the difference between water vapor density of airstream and equilibrium water vapor
density on the snowflake surface, and AT the temperature difference between snowflake and ambient
airstream.

Using the empirical formula as a basic equation, simulation of melting of snowflakes in the at-
mosphere was made to estimate the effects of air temperature, relative humidity, and snowflake size
and density on the process of melting; the effect of relative humidity and snowflake size and density in
particular was noted in this simulation. The results indicated that the fall distance for the onset of

melting below freezing level increased with decreasing relative humidity and that the fall distance for
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the completion of melting increased with decreasing relative humidity and with increasing snowflake
size and density. If the air below freezing level is subsaturated, say 50 %, snowflakes reach the ground
in unmelted condition, even at a warm surface air temperature of 5 °C. If it is saturated, snowflakes
begin to melt from just below freezing level. Snowflakes of ordinary size, with equivalent diameter 1-4
mm in raindrop, completed melting within several hundred meters below freeiing level. Large.
gnowﬂakes with diameter 5-6 mm in raindrop did not complete melting as far as 1 Km below freezing
level. The fall distance for the completion increased further with decreasing relative humidity. ‘

The fall distance for the onset of melting is explained in terms of wet-bulb temperature of
snowflakes. With decreasing relative humidity, the wet-bulb temperature of snowflakes decreased and
snowflakes which would have a wet-bulb temperature below 0 °C do not melt. The fall distance for the
completion is interpreted by the heat capacity of snowflakes and latent heat due to evaporation of
water vapor from the snowflake surface; large snowflakes with large heat capacity melt slowly and a
large amount of evaporation of water at low relative humidity suppresses the melting rate.

To verify the result of simulation, field observation has been carried out of snowflake water con- -
tent, fall velocity, mass, and cross-sectional area under various conditions of surface air temperature
and relative humidity. The results showed that fall velocity and liquid water content of snowflakes were
dependent on surface air temperature above 0 °C, relative humidity, and snowfalke mass. Fall
velocities increased with increasing air temperature and relative humidity. Increase in velocity was
greater with snowflakes of smaller mass. At surface air temperatures above 1 °C, fall velocities were
almost constant with respect to snowflake mass. These findings show a differeﬁt tendency from the
results of Magono (1953) and Langleben (1954) which were obtained mainly about non-melted
snowflakes. The water content in snowflakes was highest at the highest surface air temperature of 1.8
°C. In the case of the same air temperature, it increased with increasing relative humidity and in the
‘case of the same air temperature and relative humidity, it increased with decreasing snowfalke mass.
These observations agree well with the result of simulation.

It is concluded that the melting process of snowflakes is under the control of (1) heat transfer from
the ambient air to the snowflakes, (2) latent heat accompanying the phase change of water vapor on the
snowflake surface, (3) heat capacity of snowflakes. The factors important in the process are air
temperature, relative humidity, and snowflake size and density.

The present study will contribut§ to the clarification of bright-band formation in radar
meteorology. It will also be useful for predicting the precipitation form and snow accretion in routinel

weather forecast.



