第5章 数値モデル

村松久史*牧野行雄*広田道夫*

5.1 モデルの概要

鉛直1次元光化学一拡散モデルを作り成層圏内のオゾン及びオゾンに関連する微量気体成分の定常状態及び日変化の計算を行った。考慮に入れた成分は34種類である。N₂とO₂の高度分布は標準 大気から採用し、H₂・CO₂の混合比は一定とし他の成分の分布を求めた。

5.2 基礎資料

表5.1 に考慮した光解離反応を示す。表5.2 には素反応過程とその反応速度定数を示す。反応速 度定数は主として Hampson (1980)のものを採用した。

大気外太陽放射は800-8000Å の範囲を考慮した。表5.3a と表5.3b にその波長分布を示す。表5. 3a は 800-1300Å の波長範囲の線スペクトルであり放射強度は Hinteregger (1970) の値を採用した。

1300-8000Å の範囲の連続スペクトルは 25-100Å づつの区間に分け平均対射強度を 表5.3b に 示す。この波長区間では放射強度が測定者によりかなり異なる値が報告されているのでいくつかの 場合を考えた(Muramatsu, 1975)。

Case A は短波長域で Detwiler et al. (1961) の値を採用したので 2600Å 以下で他の場合に比べ て最も大きい放射強度を与える。

Case B は Case A の 1450-2075A の範囲を Widing et al. (1970) の値でおきかえたもので Ackerman (1971) の分布に近い。

Case C は 2425Å 以下の波長域で Parkinson and Reeves (1969) と Brewer and Wilson (1965) の値を採用したもので三者のうちで最も低い放射強度を与える。長波長領域 (Case A、Case B で は 2600Å 以上、Case C では 2425Å 以上) では Arvesen et al. (1969) の値を用いた。

Case D は Brasseur and Simon (1981) の値を主としたもので 2600A 以下で Case B より少し 小さい値を示す。図5.1a~5.1e に太陽放射強度の波長分布を示す。

表5.4a~表5.4f に気体成分の吸収断面積を示す。表5.4c、表5.4d は酸素分子の Schumann-Runge 吸収帯であり特別の取扱いを必要とする。この報告では Muramatsu (1975)の方法により各波長区 間の平均の透過率、解離率の計算を行った。

モデル大気を表5.5 に示す。大気の密度・気温・スケールハイトは U.S. Standard Atmosphere、 *高層物理研究部

1976を用いた。オゾンの分布は中緯度での平均的分布であり計算の初期値として使用する。最後の 欄には NO の解離率の高度分布を示した (Frederick and Hudson (1979)、太陽天頂角60°の場合)。

表 5.1 光解離反応

J 1	$O_2 + h\nu \rightarrow O(^{3}P) + O(^{3}P)$: $1760 < \lambda < 2424$ Å
J 2	$O_2 + h\nu \rightarrow O ({}^{3}P) + O ({}^{1}D)$: $\lambda < 1760$ Å
J 3	$O_3 + h\nu \rightarrow O_2(^{3}\Sigma g) + O(^{3}P)$: 3100 Å $< \lambda$
J 4	$O_3 + h\nu \rightarrow O_2 ({}^1 \varDelta g) + O ({}^1 D)$: $2660 < \lambda < 3100$ Å
J 5	$O_3 + h\nu \rightarrow O_2({}^1\Sigma_g) + O({}^1D)$: $2000 < \lambda < 2660$ Å
J 6	$O_3 + h\nu \rightarrow O_2({}^1\varDelta g) + O({}^1S)$: $1800 < \lambda < 2000$ Å
J 7	$O_3 + h\nu \rightarrow O_2 ({}^{1}\Sigma_g) + O ({}^{1}S)$: $\lambda < 1800 \text{ \AA}$
J 8	N_2O + $h\nu \rightarrow N_2 + O(^1D)$: $1500 < \lambda < 3150$ Å
J 9	$N_2O + h\nu \rightarrow NO + N$	$: 1500 < \lambda < 1696 \text{ \AA}$
J 10	$N_2O_5 + h\nu \rightarrow 2NO_2 + O$: $2050 < \lambda < 3800$ Å
J 11	$N_2O_5 + h\nu \rightarrow NO_2 + NO_3$: $2050 < \lambda < 3800$ Å
J 12	$NO_3 + h\nu \rightarrow NO + O_2$: $5800 < \lambda < 9000$ Å
J 13	$NO_3 + h\nu \rightarrow NO_2 + O$: $\lambda < 5800$ Å
J 14	$NO + h\nu \rightarrow N + O$: eta , δ Bands
J 15	$NO_2 + h\nu \rightarrow NO + O$: $2450 < \lambda < 3980$ Å
J 16	$NO_2 + h\nu \rightarrow NO + O(^1D)$: $1350 < \lambda < 2450$ Å
J 17	$HNO_3 + h\nu \rightarrow H + NO_3$: 1650 $< \lambda <$ 2400 Å
J 18	$HNO_3 + h\nu \rightarrow HO + NO_2$: $1880 < \lambda < 3250$ Å
J 19	$H_2O + h\nu \rightarrow HO + H$: 1300 < λ < 2420 Å, 1216 Å
J 20	$HO_2 + h\nu \rightarrow HO + O$: $1850 < \lambda < 2700$ Å
J 21	$H_2O_2 + h\nu \rightarrow HO + HO$: $1900 < \lambda < 3500$ Å
J 22	$CH_4 + h\nu \rightarrow CH_3 + H$: 1350 < λ < 1600 Å, 1216 Å
J 23	$CH_2O + h\nu \rightarrow CHO + H$: $2400 < \lambda < 3340$ Å
J 24	$CH_2O + h\nu \rightarrow H_2 + CO$: 2750 $< \lambda <$ 3600 Å
J 25	$CO_2 + h\nu \rightarrow CO + O$: $1200 < \lambda < 1950$ Å
J 26	$CF_2Cl_2 + h\nu \rightarrow CF_2Cl + Cl$: $1860 < \lambda < 2220$ Å
J 27	$C F Cl_3 + h \nu \rightarrow C F Cl_2 + Cl$	$: 1860 < \lambda < 2250 \text{ Å}$
J 28	$CH_3 Cl + h \nu \rightarrow CH_3 + Cl$: 1750 < λ < 2125 Å
J 29	$CCl_4 + h\nu \rightarrow CCl_3 + Cl$: $1750 < \lambda < 2375$ Å
J 30	$HC1 + h\nu \rightarrow C1 + H$: $1400 < \lambda < 2200$ Å
J 31	$ClONO_2^+ h \nu \rightarrow ClO + NO_2$: 1860< λ < 4600 Å

表5.2 反応式と反応速度定数

反応式

	反応式	反応速度定数
R 1	$O + O + M \rightarrow O_2 + M$	$4.8 \times 10^{-33} (300 \times T)^2$
R 2	$O + O_2 + M \rightarrow O_3 + M$	5.6 x 1 0^{-34} (300 \checkmark T) ^{2.4}
R 3	$O + O_3 \rightarrow O_2 + O_2 (^1 \Delta g)$	$2.0 \times 10^{-11} \exp(-2280 \times T)$
R 4	$O(^{1}D) + O_{2} \rightarrow O + O_{2}(^{1}\Sigma_{g}^{+})$	$2.9 \times 10^{-11} \exp(65 \angle T)$
R 5.	$O(^{1}D) + N_{2} \rightarrow O + N_{2}$	$2.0 \times 10^{-11} \exp((1107 \times T))$
R 6	$O(^{1}D) + O_{3} \rightarrow O_{2}(^{1}\Sigma_{g}^{+}) + O_{2}$	$1.2 \times 10^{-10} \exp((0 \pm 50) / T)$
R 7	$O(^{1}D) + O_{3} \rightarrow O_{2} + 2O(^{3}P)$	$1.2 \mathrm{x} 1 0^{-10} \exp$ ((0 \pm 50)/T)
R 8	$O_2(^1\Sigma_g) + O_3 \rightarrow 2O_2 + O$	2.3×10^{-11} : Anderson (1976)
R 9	$O_2 ({}^1\Sigma_g) + O_2 \rightarrow 2O_2$	1.5×10^{-16} : Noxon (1970)
R10	$O_2 ({}^1\Sigma_g) + N_2 \rightarrow O_2 + N_2$	$2.0 \ge 10^{-15}$
R11	$O_2 ({}^1 \mathcal{A}_g) + O_3 \rightarrow 2O_2 + O$	$1.2 \times 10^{-11} \exp(-2400 \times T)$
R12	$O_2 ({}^1 \varDelta_g) + O_2 \rightarrow 2O_2$	2.2×10^{-18} (T $\swarrow 300$) ^{0.8}
R 13	$O_2 ({}^1 \Delta g) + N_2 \rightarrow O_2 + N_2$	$<2 \times 10^{-20}$ (300 K)
R14	$O_2({}^1\mathcal{A}_g) + O \rightarrow O_2 + O$	1.0×10^{-16} : Hunt (196.6)
R15	$O_2 ({}^1 \varDelta g) \rightarrow O_2 + h \nu$	1.5×10^{-4} : Jones and Gattinger (1963)
R16	$O_2 ({}^1 \Sigma_g) \rightarrow O_2 ({}^1 \varDelta_g) + h \nu$	2.5×10^{-4} : Noxon (1961)
R17	$O_2 ({}^1\Sigma_g) \rightarrow O_2 + h\nu$	1.4×10^{-1} : Noxon (1961)
R18	$N_2O + O(^1D) \rightarrow 2 NO$	$6.2 \ge 10^{-11} \exp((0 \pm 50) / T)$
R19	$N_2 O + O (^1D) \rightarrow N_2 + O_2$	$4.8 \times 10^{-11} \exp((0 \pm 50) / T)$
R 20	$NO + O_3 \rightarrow NO_2 + O_2$	$2.3 \times 10^{-12} \exp(-1450 / T)$
R 21	$NO + O + M \rightarrow NO_2 + M$	$1.2 \ge 10^{-31} (T \swarrow 300)^{-1.8}$
R 22	$\rm NO + NO_3 \rightarrow 2 NO_2$	2×10^{-11}
R 23	$NO_2 + O \rightarrow NO + O_2$	$9.3 \ge 10^{-12}$
R 24	$NO_2 + O_3 \rightarrow NO_3 + O_2$	$1.2 \times 10^{-13} \exp(-2450 / T)$
R 25	$NO_2 + O + M \rightarrow NO_3 + M$	$9.0 \ge 10^{-32} (T \swarrow 300)^{-2.0}$
R 26	$NO_2 + NO_3 + M \rightarrow N_2O_5 + M$	$1.4 \ge 1.0^{-30} (T \swarrow 300)^{-2.8}$
R 27	$N_2O_5 + M \rightarrow NO_2 + NO_3 + M$	$8.8 \times 10^{-6} \exp(-9700 \times T)$
R 28	$N + O + M \rightarrow NO + M$	$1.8 \times 10^{-31} (T)^{-0.5}$
R 29	$N + O_2 \rightarrow NO + O$	$4.4 \times 10^{-12} \exp(-3220 / T)$
R 30	$N + O_3 \rightarrow NO + O_2$	$<1 \times 10^{-15}$
R 31	$N + NO \rightarrow N_2 + O$	$3.4 \ge 10^{-11}$
R 32	$N_2O_5 + H_2O \rightarrow 2 HNO_3$	$<1.3 \text{ x } 10^{-20}$
R 33	$HNO_3 + O \rightarrow NO_3 + HO$	$<3 \text{ x } 1 \text{ 0}^{-17}$
R 34	$HNO_3 + HO \rightarrow NO_3 + H_2O$	$8.5 \ge 10^{-14}$
R 35	$NO + HO_2 \rightarrow NO_2 + HO$	$4.3 \times 10^{-12} \exp (200 / T)$
	157	

	反応式	反応速度定数
R 36	$NO + HO + M \rightarrow HNO_2 + M$	$6.7 \ge 10^{-31} (T \swarrow 300)^{-3.3}$
R 37	$NO + HO_2 + M \rightarrow HNO_3 + M$	Neglected
R 38	$NO_2 + HO + M \rightarrow HNO_3 + M$	$2.6 \ge 10^{-30} (T \swarrow 300)^{-2.7}$
R 39	$N + HO \rightarrow NO + H$	$5.3 \ge 10^{-11}$
R40	$H_2O + O (^1D) \rightarrow 2HO$	$2.3 \times 10^{-10} \exp ((0 \pm 50) / T)$
R41	$H + O_3 \rightarrow HO + O_2$	$1.4 \times 10^{-10} \exp (-(470 \pm 200) / T)$
R42	$H + O_2 + M \rightarrow HO_2 + M$	$5.5 \ge 10^{-32} (T \swarrow 300)^{-1.40}$
R 43	$HO + O \rightarrow H + O_2$	4×10^{-11} exp ((0±300)/T)
R 44	$HO + O_3 \rightarrow HO_2 + O_2$	$1.6 \times 10^{-12} \exp (-(940 \pm 300) / T)$
R 45	$HO + HO \rightarrow H_2O + O$	1×10^{-11} exp (-500/T)
R46	$HO + HO + M \rightarrow H_2O_2 + M$	$2.5 \ge 10^{-31} (T \swarrow 300)^{-0.8}$
R47	$HO_2 + O \rightarrow HO + O_2$	$3.5 \times 10^{-11} \exp ((0 \pm 350) \angle T)$
R 48	$HO_2 + O_3 \rightarrow HO + 2O_2$	$1.1 \times 10^{-14} \exp (-580 \angle T)$
R 49	$\mathrm{HO}_2 + \mathrm{HO} \rightarrow \mathrm{H}_2\mathrm{O} + \mathrm{O}_2$	4×10^{-11}
R 50	$\mathrm{HO}_2 + \mathrm{HO}_2 \rightarrow \mathrm{H}_2\mathrm{O}_2 + \mathrm{O}_2$	$2.5 \ge 10^{-12}$
R 51	$H_2O_2 + O \rightarrow HO_2 + HO$	$2.8 \times 10^{-12} \exp (-2625 \angle T)$
R52	$\mathrm{H}_{2}\mathrm{O}_{2}\ +\ \mathrm{O} \twoheadrightarrow \mathrm{H}_{2}\mathrm{O}\ +\ \mathrm{O}_{2}$	$2.7 \times 10^{-12} \exp(-2100 / T)$
R 53	$H_2O_2 + HO \rightarrow HO_2 + H_2O$	1×10^{-11} exp (-750/T)
R 54	$H + HO \rightarrow H_2 + O$	$1.4 \times 10^{-14} \exp (-3500 \angle T)$
R 55	$H + HO + M \rightarrow H_2O + M$	$6.1 \ge 10^{-26} T^{-2}$
R 56	$H + HO_2 \rightarrow HO + HO$	$3.2 \ge 10^{-11}$
R 57	$H + HO_2 \rightarrow H_2 + O_2$	$1.4 \ge 10^{-11}$
R 58	$\mathrm{H} \ + \ \mathrm{H}_2\mathrm{O}_2 \ \rightarrow \ \mathrm{H}_2 \ + \ \mathrm{HO}_2$	$5.2 \times 10^{-12} \exp (-1400 \times T)$
R 59	$H + H_2O_2 \rightarrow HO + H_2O$	$5.2 \times 10^{-12} \exp(-1400 \times T)$
R 60	$H + NO_2 \rightarrow NO + HO$	$5.8 \times 10^{-10} \exp(-450 \times T)$
R 61	$H_2 + O \rightarrow H + HO$	$1.6 \times 10^{-11} \exp (-4750 / T)$
R 62	$H_2 + O (^1D) \rightarrow H + HO$	$9.9 \times 10^{-11} \exp ((0 \pm 50) \angle T)$
R63	$H_2 + HO \rightarrow H + H_2O$	$1.2 \times 10^{-11} \exp (-2200 \times T)^{-11}$
R64	$CH_4 + O \rightarrow CH_3 + HO$	$3.5 \times 10^{-11} \exp (-4550 / T)$
R 65	$CH_4 + O(^1D) \rightarrow CH_3 + HO$	$1.3 \times 10^{-10} \exp ((0 \pm 50) \angle T)$
R 66	$CH_4 + O (^1D) \rightarrow CH_2O + H_2$	$1.4 \times 10^{-11} \exp ((0 \pm 50) / T)$
R67	$CH_4 + O_3 \rightarrow CH_3 + HO + O_2$	Neglected
R68	$CH_4 + HO \rightarrow CH_3 + H_2O$	$24 \times 10^{-12} \exp(-1710 / T)$
R 69	$\mathrm{C}\mathrm{H}_3 \ + \ \mathrm{O}_2 \ + \ \mathrm{M} \ \rightarrow \ \mathrm{C}\mathrm{H}_3\mathrm{O}_2 \ + \ \mathrm{M}$	$2.2 \times 10^{-31} (T \swarrow 300)^{-2.2}$
R 70	$CH_3 + O_2 \rightarrow CH_2O + HO$	$2.9 \times 10^{-13} \exp(-940 \checkmark T)$
R71	$CH_3O_2 + NO \rightarrow CH_3O+ NO_2$	$7 \ge 10^{-12}$
R72	$CH_3O_2 + HO_2 \rightarrow CH_3OOH+O_2$	$6 \ge 10^{-12}$

— 158 —

反応式 反応速度定数 $1.6 \ge 10^{-13}$ R73 $CH_3O_2 + CH_3O_2 \rightarrow 2CH_3O + O_2$ R74 $CH_3O_2 + CH_3O_2 \rightarrow CH_3OOH + CH_2O_2$ Neglected R75 $CH_3O + O_2 \rightarrow CH_2O + HO_2$ 5×10^{-13} exp (-2000/T) R76 $CH_3O + NO \rightarrow CH_3ONO$ Neglected $R77 \quad CH_3O + NO_2 \rightarrow CH_3ONO_2$ Neglected R78 $CH_2O + O \rightarrow CHO + HO$ $3.2 \times 10^{-11} \exp(-1550 \angle T)$ $1.0 \ge 10^{-11}$ R79 $CH_2O + HO \rightarrow CHO + H_2O$ $1.7 \ge 10^{-12} \exp(-4000 \angle T)$ R80 $CH_2O + HO_2 \rightarrow CHO + H_2O_2$ R81 CHO + $O_2 \rightarrow CO + HO_2$ $5.1 \ge 10^{-12}$ R82 $CO + O + M \rightarrow CO_2 + M$ $6.5 \times 10^{-33} \exp(-2180 \times T)$ 1.35×10^{-13} R83 $CO + HO \rightarrow CO_2 + H$ $(1 + P_{atm})$ $6.6 \ge 10^{-12}$ R83a HO + HNO₂ \rightarrow H₂O + NO₂ $2.7 \times 10^{-11} \exp(-257 \angle T)$ $Cl + O_3 \rightarrow ClO + O_2$ R 84 $7.7 \times 10^{-11} \exp(-130 / T)$ R 85 $ClO + O \rightarrow Cl + O_2$ $7.8 \times 10^{-12} \exp(250 \angle T)$ $C1O + NO \rightarrow C1 + NO_2$ R 86 $9.9 \times 10^{-12} \exp(-1359 \angle T)$ R87 C1+ CH₄ \rightarrow HC1+ CH₃ $3.5 \times 10^{-11} \exp(-2290 \times T)$ R88 $C1 + H_2 \rightarrow HC1 + H$ $4.5 \ge 10^{-11}$ R89 $C1 + HO_2 \rightarrow HC1 + O_2$ $2.8 \times 10^{-12} \exp(-425 \swarrow T)$ R90 HC1 + HO \rightarrow C1+ H₂O $1.14 \times 10^{-11} \exp(-3370 / T)$ R91 HC1 + O \rightarrow C1 + HO $1.6 \times 10^{-31} (T \swarrow 300)^{-3.4}$ R92 NO₂ + C1O + M \rightarrow C1ONO₂ + M R93 $C1ONO_2 + O \rightarrow C1O + NO_3$ Neglected $1.4 \times 10^{-10} \exp((0 \pm 50) / T)$ R94 $CF_2Cl_2 + O(^1D) \rightarrow CF_2Cl + ClO$ $22 \times 10^{-10} \exp((0 \pm 50) / T)$ R95 $CFCl_3 + O(^1D) \rightarrow CFCl_2 + C1O$ $2.2 \times 10^{-12} \exp(-1142 \angle T)$ R96 $CH_3C1 + HO \rightarrow CH_2C1 + H_2O$ R97 $CH_3Cl + O(^1D) \rightarrow CH_2Cl + HO$ Neglected R98 $CCl_4 + O(^1D) \rightarrow CCl_3 + ClO$ Neglected

(脚注)

反応速度定数の単位は \sec^{-1} (単分子反応), $cm^3 \sec^{-1}$ (2分子反応), $cm^6 \sec^{-1}$ (3分子反応)で ある。T(°K)は絶体温度を示す。Mは空気分子を示す。Reference を示していないものは Hampson(1980)から採用した。

表5.3a 大気外太陽放射 (800-1300Å)

No.	Wavelength (Å)	Identification	Solar Irradiation Flux (10 ⁹ ph cm ⁻² s ⁻¹)
1	800-830	H cont.	0.7 8
2	835 group	ОШ, ОЦ 835.3, 835.1, 834.5	0.5 2
3	830-860	H cont.	1.5
4	860-890	H cont.	2.7
5	904 group	CIL	0.1 3
6	890-911	H cont.	3.2
7	926.2	ΗLyη	0.2 5
8	930.7	HLyξ	0.2 5
9	933.4	S VI	0.2 5
10	937.8	HLyε	0.3 4
11	944.5	S VI	0.2 2
12	949.7	НЦуδ	0.5 1
13	9 7 2.5	HLyr	0.9 2
14	977.0	СШ	4.5
15	990 group	N III 989.8, 991.5	0.7 2
16	1 0 2 5.7	HLy β	3.6
17	1031.9	OVI	2.6
18	1037.6	ОЧ, СП	2.0
19	1085 group	NI	0.8 5
20	1 1 2 2.5	Si N	0.4 8
21	1 1 2 8.3	Si N	0.5 3
22	1175 group	СШ	2.4
23	1 2 0 6.5	Si 🏛	3.8
24	1 2 1 5.7	ΗLyα	300
25	1 2 3 8.8	NV	0.6 9
26	1242.8	N V	0.4 5
27	1260.7	Si II	0.4 9
28	1265.0	Si II	0.7 2
29	1 3 0 2.2	0 I	0.8 0
30	1 3 0 4.9 - 1 3 0 6.0	ΟI	1.25
	1027-1310	unresolved	0.0

(脚注)

(注1) 太陽放射強度は Hinteregger (1970) による。

(注2) 911-1027ÅiC unresolved flux, 1.21×10⁹ ph cm⁻² s⁻¹が存在するが、これを Na 7-Na16に等記分した。

(注3) 1027-1310Åに unresolved flux, 3.7×10⁹ ph cm⁻² s⁻¹ が存在するが、これを Na17-Na30に等配分した。

			Solar In	diation El.	1)		
No	Wavelength	Solar irradiation $Flux$					
1406	(Å)	<u> </u>		s)			
	1200 1205	Case A	Case B	Case C	Case D		
٥1 مم		6.65 + 9	6.65+9	2.1 0 + 9	1.07 + 10		
32	1325 -1350	8.10+9	8.10 + 9	2.4 3 + 9	1.16+10		
33	1350 - 1375	8.85 + 9	8.85+9	2.83+9	4.95+9		
34	1375 -1400	9.10 + 9	9.10+9	3.3 3 + 9	7.75+9		
35	1400 -1425	1.15 + 10	1.15+10	3.7 8 + 9	7.85+9		
36	1425 -1450	1.6 0 + 1 0	1.60+10	5.5 0 + 9	7.55+9		
37	1450 -1475	2.26 + 10	2.04 + 10	7.68 + 9	1.0.05 + 10		
38	1475 -1500	3.15 + 10	2.78+10	9.5 3 + 9	1.37 + 10		
39	1500 -1525	4.35 + 10	3.60+10	1.14+10	1.70 + 10		
40	1525 -1550	5.88 + 10	4.33 + 10	1.37 + 10	3.13 + 10		
41	1550 -1575	8.20+10	5.33 + 10	1.63 + 10	3.38+10		
42	1575 -1600	1.14 + 11	7.00+10	1.92+10	2.98+10		
43	1600 -1625	1.49 + 11	9.08 + 10	2.26 + 10	3.75+10		
44	1625 -1650	1.88 + 11	1.14 + 11	2.63 + 10	5.30 + 10		
45	1650 -1675	2.44+11	1.31+11	3.83 + 10	8.13 + 10		
46	1675 -1700	3.15+11	1.82+11	5.93+10	1.16+11		
47	1700 -1725	3.95 + 11	2.55+11	8.50+10	1.77+11		
48	1725 -1751.8	5.20 + 11	3.56+11	1.29 + 11	2.24 + 11		
49	1751.84 - 1774.92	5.66+11	3.86+11	1.46+11	2.18+11		
50	1774.92-1792.61	5.31 + 11	3.47 + 11	1.31 + 11	2.2 3 + 1 1		
51	1792.61-1803.79	3.81 + 11	2.40+11	9.29 + 10	1.59 + 11		
52	1803.79-1816.50	4.83+11	2.97 + 11	1.16 + 11	2.16 + 11		
53	1816.50-1830.76	5.99 + 11	3.7 2 + 1 1	1.44 + 11	2.70+11		
54	1830.76-1846.51	7.51+11	4.5 2 + 1 1	1.80 + 11	2.90+11		
55	$1846.51\!-\!1863.72$	9.46 + 11	5.40+11	2.20 + 11	3.42 + 11		
56	1863.72-1882.43	1.22 + 12	6.49 + 11	2.66 + 11	4.74 + 11		
57	1882.43-1902.54	1.52+12	7.98 + 11	3.24+11	5.83 + 11		
58	1902.54-1924.19	1.84 + 12	1.00+12	4.08 + 11	6.95+11		
59	1924.19-1947.33	2.2 2 + 1 2	1.33 + 12	5.15 + 11	7.98 + 11		
60	1947.33-1971.97	2.76+12	1.85 + 12	6.72 + 11	1.15 + 12		
61	1971.97-1998.17	3.41 + 12	2.56 + 12	8.78 + 11	1.38 + 12		
62	1998.17-2026.01	4.23 + 12	3.31 + 12	1.17 ± 12	2.02 + 12		
63	2026.01-2055.15	5.32 + 12	4.37 + 12	1.60 + 12	2.70+12		

表5.3b 大気外太陽放射 (1300-8000Å)

	Wavelength	Solar Irradiation Flux					
No.	· · · · · · · · · · · · · · · · · · ·	$(ph cm^{-2} s^{-1})$					
	(A)	Case A	Case B	Case C	Case D		
64	2055.15-2075	4.34 + 12	3.82 + 12	1.44+12	2.12 + 12		
65	2075-2100	6.93 + 12	→	2.35 + 12	4.70 + 12		
66	2100 - 2125	9.03 + 12	·→ ·	3.05 + 12	8.15 + 12		
67	2125-2150	1.17 + 13		4.03+12	9.48 + 12		
68	2150 - 2175	1.41 + 13	\rightarrow	5.33 + 12	9.73 + 12		
69	2175 - 2200	1.62 + 13	\rightarrow	7.1 3 + 1 2	1.22 + 13		
70	2200 - 2225	1.79+13	→	9.20 + 12	1.26 + 13		
71	2225 - 2250	1.91 + 13	\rightarrow	1.11 + 13	1.68 + 13		
72	2250 - 2275	2.01 + 13	\rightarrow	1.29 + 13	1.32 + 13		
73	2275 - 2300	2.06 + 13	\rightarrow	1.45 + 13	1.41 + 13		
74	2300 - 2325	2.04 + 13	→	1.55 + 13	1.56 + 13		
75	2325-2350	1.94 + 13	\rightarrow	1.60+13	1.33 + 13		
76	2350 - 2375	1.94 + 13	\rightarrow	1.64 + 13	1.58 + 13		
77	2375 - 2400	2.02+13	→	1.72+13	1.39 + 1 3		
78	2400 - 2425	2.14+13	\rightarrow	1.82 + 13	1.61 + 13		
79	2425-2450	2.32+13	\rightarrow	→ `	2.02 + 13		
80	2450 - 2475	2.40+13	→	→	1.66 + 13		
81	2475 — 2500		2.40 + 13		1.66+13		
82	2500 - 2525		2.69+13	•	1.62 + 13		
83	2525 - 2550		3.29 + 13		1.77 ± 13		
84	2550-2575		3.84 + 13		3.35+13		
85	2575 - 2600		4.34 + 1.3		4.13 + 13		
86	2600 - 2625		4.58 + 13		3.50 + 13		
87	2625 - 2650	1	5.5 0 + 1 3		6.78 + 13		
88	2650-2675		6.33 + 13		9.08 + 13		
89	2675-2700		7.08 + 13		8.78 + 13		
90	2700 - 2725		7.33 + 13		8.65 + 13		
91	2725 - 2750		7.05 + 13		6.18 + 13		
92	2750 - 2775		8.05 + 13				
93	2775 - 2800	7.25 + 13 5.28					
94	2800 - 2825	8.28 + 13 7.05 +					
95	2825 - 2850	1.01 + 14 1.04 +					
96	2850 - 2875		1.23 + 14		9.38 + 13		
97	2875 - 2900		1.53+14	1.38 + 14			

<u>— 162</u> <u>—</u>

気象研究所技術報告	第6号	1982

	Wavelength	Solar Irradiation Flux					
No.		$(ph \ cm^{-2} \ s^{-1})$					
	(A)	Case A, B, C	Case D				
98	2900 - 2925	1.78 + 14	2.20+14				
99	2925 - 2950	1.98 + 14	1.97 + 14				
100	2950 - 2975	2.09 + 14	1,95+14				
101	2975 - 3000	2.10 + 14	1.7 5 + 1 4				
102	3000 - 3025	2.15 + 14	1.66 + 14				
103	3025 - 3050	2.23 + 14	2.27 + 14				
104	3050 - 3075	2.34 + 14	2.28+14				
105	3075 - 3100	2.49 + 14	2.21 + 14				
106	3100 - 3125	2.6 5 + 1 4	2.46 + 14				
107	3125 - 3150	2.83 + 14	2.76 + 14				
108	3150-3175	2.88 + 14	2.77+14				
109	3175 - 3200	2.93 + 14	3.02 + 14				
110	3200 - 3225	3.18 + 14	3.02 + 14				
111	3225 - 3250	3.50 + 14	3.48 + 14				
112	3250 - 3275	3.88 + 14	3.49 + 14				
113	3275 - 3300	4.13 + 14	4.24 + 14				
114	3300 - 3325	4.33 + 14	4.25 + 14				
115	3325 - 3350	4.3 0 + 1 4	3.46 + 14				
116	3350 - 3375	4.28 + 14	3.46 + 14				
117	3375 - 3400	4.25 ± 14	4.06+14				
118	3400 - 3425	4.28 + 14	4.07 + 14				
119	3425-3450	4.33 + 14	3.92 + 14				
120	3450 - 3475	4.43 + 14	3.92 + 14				
121	3475 - 3500	4.53 + 14	4.15+14				
122	3500 - 3525	4.53 + 14	4.16 + 14				
123	3525-3550	4.50 + 14	4.66 + 14				
124	3550 - 3575	4.50 + 14	4.67 + 14				
125	3575-3600	4.4 5 + 1 4	4.23+14				
126	3600 - 3625	4.65 + 14	4.24 + 14				
127	3625 - 3650	5.05 + 14	5.30 + 14				
128	3650 - 3675	5.30 + 14	5.30 + 14				
129	3675-3700	5.35 + 14	5.50 + 14				
130	3700 - 3725	5.38 + 14	5.50 + 14				
131	3725 - 3750	5.33+14	4.78 + 14				

<u>-163</u> -

	Wavelength	Solar Irradiation Flux					
No.	°,	$(ph \ cm^{-2} \ s^{-1})$					
	(A)	Case A, B, C	Case D				
132	3750 - 3775	5.30 + 14	4.79 + 14				
133	3775 - 3800	5.30 + 14	5.70 + 14				
134	3800-3825	5.23 + 14	5.70+14				
135	3825 - 3850	5.15 + 14	4.31 + 14				
136	3850-3875	5.18 + 14	4.3 2 + 1 4				
137	3875 - 3900	5.33 + 14	5.75+14				
138	3900-3925	5.5 0 + 1 4	5.7 5 + 1 4				
139	3925 - 3950	5.88 + 14	4.78 + 14				
140	3950 - 3975	6.48 + 14	4.79 + 14				
141	3975-4000	7.35 + 14	8.50 + 14				
142	4000 - 4050	1.68 + 15	1.7 0 + 1 5				
143	4050 - 4100	1.85 ± 15	1.74 ± 15				
144	4100-4150	1.93 + 15	1.83 + 15				
145	4150 - 4200	1.96 + 15	1.86 + 15				
146	4200 - 4250	1.92 + 15	1.82 + 15				
147	4250 - 4300	1.85 + 15	1.73 + 15				
148	4300 - 4350	1.87 + 15	1.85 + 15				
149	4350 - 4400	2.02 + 15	2.02 + 15				
150	4400 - 4450	2.1 8 + 1 5	2.1 0 + 1 5				
151	4450 - 4500	2.30 + 15	2.28 + 15				
152	4500-4600	4.81 + 15	4.65+15				
153	4600 - 4700	4.87 + 15	4.70+15				
154	4700 - 4800	5.05 + 15	4.82+15				
155	4800 - 4900	4.83 + 15	4.72 + 15				
156	4900 - 5000	4.98 + 15	4.90+15				
157	5000 - 5100	5.00 + 15	4.90 + 15				
158	5100 - 5200	4.95 + 15	4.79 + 15				
159	5200 - 5300	4.98 + 15	4.96 + 15				
160	5300 - 5400	5.13 + 15	5.15 + 15				
161	5400 - 5500	5.18 + 15	5.1 2 + 1 5				
162	5500 - 5600	5.18 + 15	5.15 + 15				
163	5600-5700	5.24 + 15	5.20 + 15				
164	5700 - 5800	5.40 + 15	5.33 + 15				
165	5800-5900	5.47 + 15	5.23 + 15				

No.	Wavelength	Solar Irradiation Flux (ph cm ⁻² s ⁻¹)				
i	(Å)	Case A, B, C	Case D			
166	5900 - 6000	5.43 + 15	5.27 + 15			
167	6000 - 6100	5.44 + 15	5.32 + 15			
168	6100-6200	5.42 + 15	5,28 + 15			
169	6200 - 6300	5.38 + 15	5.26 + 15			
170	6300 - 6400	5.39 + 15	5.26 + 15			
171	6400 - 6500	5.33 + 15	5.27 + 15			
172	6500 - 6600	5.23 + 15	5.15 + 15			
173	6600 - 6700	5.26 + 15	5.16 + 15			
174	6700 - 6800	5.35 + 15	5.19 + 15			
175	6800 - 6900	5.28 + 15	5.13 + 15			
176	6900 - 7000	5.24 + 15	5.07 + 15			
177	7000 - 7100	5.20 + 15	5.02 + 15			
178	7100 - 7200	5.08 + 15	4.96 + 15			
179	7200 - 7300	5.04 + 15	4.90 + 15			
180	7300-7400	4.98 + 15	4.98 + 15			
181	7400-7500	4.92 + 15	4.92+15			
182	7500 - 7600	4.91 + 15	4.91 + 15			
183	7600 - 7700	4.82 ± 15	4.82+15			
184	7700 - 7800	4.74 + 15	4.74 + 15			
185	7800-7900	4.74 + 15	4.74 + 15			
186	7900 - 8000	4.70 + 15	4.74 + 15			

気象研究所技術報告 第6号 1982

```
(脚注)
```

```
1) Case A~ Case D で採用した値は次の如し、 X(Å) は波長を表わす。
 ① Case A:
      1300 \le \lambda < 2600 : Detwiler et al. (1961)
      2600 \le \lambda
                 : Arvesen et al. (1969)
 ⊘ Case A:
      1300 \le \lambda < 1450 : Detwiler et al. (1961)
      1450 \le \lambda < 2075 : Widing et al. (1970)
      2075 \le \lambda < 2600 : Detwiler et al. (1961)
      2600 \le \lambda
                     : Arvesen et al. (1969)
 ③ Case C:
    1300 \le \lambda < 1425 : Extrapolation
      1425 \le \lambda < 1875 : Parkinson and Reeves (1969)
      1875 \le \lambda < 2050 : Interpolation
      2050 \le \lambda < 2425 : Brewer and Wilson (1965)
      2425 \le \lambda
                   Arvesen et al. (1969)
 ④ Case D:
     1300 \leq \lambda < 7300 : Brasseur and Simon (1981)
      7300 \leq \lambda : Arvesen et al. (1969)
(注1) →印は左の欄の値と同じ値であることを示す。
(注2) 6.65+9は 6.65×10<sup>9</sup>を示す。
```

	absor	ption cross section	0	2)		N ₂ ³⁾	O ₃ ⁴⁾	CO ₂ ⁵⁾	H ₂ O ⁶⁾
No.	wavelength	identification	σ	σj⁄σ	σί⁄σ		<i>x</i>		
	(Å)		10^{-18} cm^2	· · ·		10^{-18} cm^2	10^{-18} cm^2	10^{-18} cm^2	$10^{-18} \mathrm{cm}^2$
1	800-830	H cont.	3 6.9	0.7 6	0.2 4	< 1 3.4 >			
2	835 group	ОШ 835.3, ОП 835.1,834.5	2 0.1	0.7 9	0.2 1	1 8.4			
3	830 - 860	H cont.	1 7.9	0.7 2	0.28	< 9.2 6 >			
4	860 - 890	H cont.	1 2.6	0.58	0.42	< 8.6 7 >			
5	904 group	СП	1 1.5	0.5 2	0.48	0.5 5 8			
6	890 - 911	H cont.	1 2.6	0.4 9	0.5 1	< 6.0 3 >			
7	926.2	HLy η	1 0.6	0.6 0	0.4 0	1.8 6			
8	930.7	HLyξ	17.1	0.22	0.7 8	1.86			
9	933.4	S VI	1 7.8	0.5 6	0.44	0.5 2 0			· .
10	937.8	HLy ¢	1 8.6	0.44	0.5 6	3 7.2			
11	944.5	S VI	5.7 6	0.1 9	0.81	0.9 2 9	-		
12	949.7	HLy δ	9.2 9	0.6 0	0.40	0.1 5 0			
13	972.5	HLy r	48.3	0.69	0.3 1	7 4.4			
14	977.0	Сш	16.0	0.8 7	0.1 3	1.86			
15	990 group	NII 989.8,991.5	7.1 7	0.7 9	0.2 1	0.0			
16	1 0 2 5.7	HLyβ	2.16	0.4 0	0.60	·	6.5 ×		
17	1 0 3 1.9	OVI	2.6 ++	1.0	0.0		7.0 \times		

表 5.4 a 吸収断面積¹⁾ (800-1300Å)

- 166 --

気象研究所技術報告 第6号 1982

	ab	sorption cross section	02	2)		N ₂ ³⁾	0 ₃ ⁴⁾	CO ₂ ⁵⁾	$H_2 O^{6}$
No.	wavelength	identification	σ	σj⁄σ	σί⁄σ				
	(Å)		10^{-18} cm^2			10^{-18} cm^2	10^{-18} cm^2	10^{-18} cm^2	10^{-18} cm ²
18	1 0 3 7.6	OVI, CI	3.0 ++	1.0	0.0		7.0 [×]		
19	1085 group	ΝΠ	1.8	1.0	0.0		8.0		
20	1 1 2 2.5	Si N	1.0 △	1.0	0.0		1 3.0	170	
21	1 1 2 8.3	Si IV	0.044△	1.0	0.0		1 0.0	90	
22	1175 group	Сш	1.2 5 +	1.0	0.0		7.2	0.1 8 6	
23	1 2 0 6.5	Si II	8.4 +	1.0	0.0		1 4.0	0.0 4 5	
24	1 2 1 5.7	HLyα	0.0 1 0 0 +	1.0	0.0		2 0.0	0.058	1 5.0
25	1238.8	NV	0.34+	1.0	0.0		1 3.0	0.1 0 4	
26	1 2 4 2.8	NV	1 7.5 +	1.0	0.0		1 0.0	0.1 1 7	
27	1 2 6 0.7	Si II	0.4 3 +	1.0	0.0		6.0	0.1 8 0	
28	1265.0	Si II	0.2 0 +	1.0	0.0		5.5	0.2 0 0	
29	1 3 0 2.2	OI	0.42+	1.0	0.0		9.0	0.4 5	
30	1 3 0 4.9 - 1 3 0 6:0	OI	0.4 2 +	1.0	0.0		9.0	0.4 6	

167 -

(脚注)

1) :吸収断面積 σ(cm²/粒子)は,次式で定義される値を示す。

 $I = I_0 \exp(-\sigma \cdot N)$ ただし I_0 は減衰されていない光の強度、 I は吸収を受けて減衰した光の強度、 Nは光路中の吸収物質の粒子数 (粒子/cm²)を示す。

2): Cook and Metzger (1964) による。σj/σ及びσj/σはそれぞれ解離及びイオン化する割合。ただし, +は Ackerman (1971), #は Huffmann

et al. (1964), △は Watanabe (1958) による。

3): Cook and Metzger (1964)による。< >は平均値を示す。

4), 6) : Watanabe (1958) による。×印は外挿値。

5) : Inn et al. (1953) による。

	Wavelength		Abso	orption Cro	oss Section	(cm ²)	:
NO.	(Å)	O ₂ ¹⁾	O ₃ ²⁾	CO ₂ ³⁾	H ₂ O ⁴⁾	N ₂ O ⁵⁾	HC1 ⁶⁾
31	1300-1325	3.7-197)	1.48-17	5.00-19	6.1-18		
32	1325-1350	2.20-18	1.55 - 17	6.5-19	4.2-18		
33	1350 - 1375	9.0-18	1.29-17	7.2-19	2.5-18		
34	1375-1400	1.35-17	7.31-18	6.6-19	1.2-18		. · ·
35	1400 - 1425	1.48-17	6.71 - 18	6.4-19	6.3-19		2.30-18
36	1425 - 1450	1.46-17	5.59-18	7.0-19	4.8-19		2.67-18
37 .	1450 - 1475	1.36-17	4.83-1.8	6.7-19	6.0-19		3.00-18
38	1475-1500	1.19-17	4.08-18	6.1-19	9.4-19		3.3 0-18
39	1500-1525	1.05-17	3.14-18	5.1-19	1.34-18	6.0 0-1 9	3.6 0-18
40	1525-1550	8.9-18	2.32-18	4.2-19	1.90-18	2.25-19	3.7 5-18
41	1550 - 1575	7.1-18	1.79-18	3.1-19	2.50-18	6.3-20	3.6 5-18
42	1575-1600	5.4-18	1.34-18	2.2-19	3.10-18	3.9-20	3.45-18
43	1600-1625	3.9-18	1.04-18	1.4-19	3.80-18	3.8-20	3.1 0-18
44	1625-1650	2.65-18	8.85-19	8.3-20	4.4-18	4.8-20	2.66-18
45	1650 - 1675	1.75-18	8.12-19	4.8-20	4.6-18	6.5-20	2.24-18
46	1675-1700	1.07-18	8.85-19	2.8-20	4.2-18	8.6-20	1.80-18
47	1700 - 1725	6.7-19	8.19-19	1.6-20	3.7-18	1.03-19	1.46-18
48	1725 — 1751.8	3.9-19	8.22-19	9.4-21	3.0-18	1.19-19	1.20-18

表5.4b 吸収断面積 (1300-1751.8Å)(cm²/粒子)

(注)

1) O_2 : 1300-1650Å, Watanabe (1958); 1650-1751.8Å, Watanabe et al. (1953)

- 2) O₃: Watanabe (1958)
- 3) CO_2 : Inn, et al. (1953)
- 4) H_2O : Watanabe (1958)
- 5) N_2O : Zelikoff et al. (1953)
- 6) HCl: Watson (1977)
- 7) 3.9-19は 3.9×10⁻¹⁹を示す。

No.	Wavelength Å	O ₂ Continut	1) 1m/Bands	O ₃ ²⁾	CO ₂ ³⁾	H ₂ O ⁴⁾	N ₂ O ⁵⁾	NO ₂ ⁶⁾	HNO ₃ ⁷⁾	H ₂ O ₂ ⁸⁾	HO ₂ ⁹⁾	CF_2Cl^{10}	C F C 1 ^{11)}
49	1751.84 - 1774.92	3.60-20	1.65-19	8.00-19	5.3-21	2.2-18	1.31-19						
50	1774.92 - 1792.61	1.20-21	1.14-19	7.82-19	2.9 - 21	1.3-18	1.41-19						
51	1792.61 - 1803.79	3.40-22	7.33-20	7.63-19	2.1-21	8.1-19	1.44-19						
52	1803.79 - 1816.50	1.30-22	5.21-20	7.37-19	1.50-21	4.6-19	1.48-19				3.3-18		N.
53	1816.50 - 1830.76	5.00-23	3.3 4 - 2 0	7.07-19	1.03-21	2.20-19	1.51-19				3.4-18		-
54	1830.76 - 1846.51	2.50-23	2.08-20	6.77-19	6.9-22	1.05-19	1.52-19				3.6-18		
55	1846.51 - 1863.72	1.6 6-23	1.21-20	6.48-19	4.5-22	4.0 5-20	1.50-19	2.60-19			3.7-18		
56	1863.72 - 1882.43	1.37→23	5.99-21	6.07-19	2.8-22	1.7 4-2 0	1.42-19	2.66-19			3.8-18	9.0-19	2.5 4-18
57	1882.43 - 1902.54	1.30-23	2.78-21	5.47-19	1.5-22	7.5-21	1.29-19	2.90-19	1.43-17		3.9-18	6.8-19	1.90-18
58	1902.54 - 1924.19	1.30-23	1.1 2 - 2 1	4.91-19	7.8-23	3.1-21	1.13-19	2.74-19	1.17-17	6.8-19	4.0-18	5.0-19	1.59-18
59	1924.19 - 1947.33	1.32-23	4.0 2 - 2 2	4.32-19	2.6-23	1.1-21	9.30-20	2.5 5-19	9.9-18	6.0-19	4.2-18	3.3-19	1.28-18
60	1947.33 — 1971.97	1.29-23	1.07-22	3.91-19	4.4-24	3.7-22	7.3-20	2.36-19	7.8-18	5.4-19	4.4-18	2.05-19	1.00-18
61	1971.97 - 1998.17	1.18-23	3.15-23	3.31-19		1.20-22	5.1-20	2.47-19	6.1 - 1 8	5.0-19	4.5-18	1.20-19	7.7-19
62	1998.17 - 2026.01	1.08-23	5.77-24	3.01-19		3.7-23	3.4-20	2.80-19	4.3 5-18	4.6-19	4.6-18	6.5-20	5.5-19
63	2 0 2 6.0 1 - 2 0 5 5.1 5	1.0 0-2 3	6.29-25	3.24-19		1.3-23	2.10-20	3.41-19	3.0 0-1 8	4.3-19	4.7-18	3.3-20	3.9-19

表5.4 c 吸収断面積 (Schumann-Runge Bands (1750-2055Å))

-169

気象研究所技術報告 号9 篤 1982

(脚注)

1) O₂: Continuum; 1750-1900Å; Hudson and Mahle (1972), 250°Kの値 1900-2000Å; Jarmain and Nicholls (1967)の値×0.916

> 2000Å以上 ; Ditchburn and Young (1962)とShardanand and Rao (1977)の平均 Bands ; 1750-2050Å; Muramatsu (1975) Table 4, Case A

2) O_3 : $\lambda < 2000 \text{ Å}$; Watanabe (1958)

 $\lambda \ge 2000 \text{ \AA}$; Handbook of Geophysics (1960)

3) CO_2 : $\lambda < 1850 \text{ \AA}$; Inn et al. (1953), $\lambda \ge 1850 \text{ \AA}$; Thompson et al. (1963)

4) H_2O : $\lambda < 1850 \text{ Å}$; Watanabe (1958), $\lambda \ge 1850 \text{ Å}$; Thompson et al. (1963)

5) N_2O : Bates and Hays (1967)

6) NO₂: Bass et al. (1976)

7) HNO₃: Hampson (1980)

170

8) H₂O₂: Hampson (1972)

9) HO₂: Hampson (1973)

10) $CF_2 Cl_2$: Hudson (1977)

11) $CFCl_3$: Hudson (1977)

	_			
÷.	5	1	А	
$\overline{\mathbf{v}}$		4		

吸収断面積 (Schumann-Runge Bands. (1750-2055Å)(cm²/粒子)

No.	Wavelength (Å)	CH ₃ Cl ¹⁾	HC1 ²⁾	$CCl_4^{3)}$	4) C1ONO ₂	5) C1NO ₂	cino ⁶⁾
49	1751.84-1774.92	1.14-18	9.3-19	9.9-18			
50	1774.92-1792.61	9.7-19	7.2-19	8.7-18		-	
51	1792.61-1803.79	8.3-19	6.1-19	7.8-18			•
52	1803.79-181650	7.2-19	5.1-19	6.7-18			
53	1816.50-1830.76	6.0-19	4.4-19	5.5-18			
54	1830.76 - 1846.51	4.9-19	3.6-19	4.5-18			
55	1846.51-1863.72	3.8-19	2.9-19	3.4-18		-	
56	1863.72-1882.43	2.85-19	2.25-19	2.45-18	8.7-18		
57	1882.43-1902.54	2.00-19	1.65-19	1.65-18	7.4-18		
58	1902.54-1924.19	1.38-19	1.17-19	1.10-18	6.3-18	2.1-19	5.8-17
59	1924.19-1947.33	8.9-20	7.2-20	8.4-19	5.5-18	1.45-19	6.3-17
60	1947.33-1971.97	5.6-20	5.1-20	6.8-19	4.7-18	9.1-18	6.8-17
61	1971.97-1998.17	3.10-20	3.3 0-2 0	6.6-19	4.1-18	5.9-18	7.0-17
62	1998.17 - 2026.01	1.75-20	2.05-20	6.3-19	3.7-18	4.4-18	6.5-17
63	2026.01 - 2055.15	9.2-21	1.16-20	6.0-19	3.5-18	4.1-18	5.3-17

(注)

1) CH_3Cl : Robbins (1976)

2) HC1 : Watson (1977)

3) CCl₄ : Hampson (1980)

4) ClONO₂: Hudson (1977)

5) C1NO₂ : Hudson (1977)

6) C1NO : Hudson (1977)

表 5.4 e 吸 収 断 面 積 (2055~8000Å)

No.	Wavelength	O ₂ ¹⁾	O ₃ ²⁾	$N_2 O^{3}$	NO2 4)	$N_2 O_5^{5}$	NO ₃ ⁶⁾	HNO ₃ ⁷⁾	HNO ₂ ⁸⁾	$H_2 O_2^{9}$	HO ₂ ¹⁰⁾	HCHO ¹¹)	HCH	$\frac{10^{12}}{10^{12}}$
			0.7.0.10		0.5.5.4.0						1 7 1 0		Y 1	¥ ₂
64	2055.15 - 2075	9.4-24	3.76-19	1.30-20	3.5 5-19	8.0-18		1.95-18	2.15-18	4.0-19	4.7-18			
65	2075-2100	8.8-24	4.73-19	7.3-21	4.17-19	5.0-18		1.25-18	2.63-18	3.8-19	4.7-18		-	
66	2100 - 2125	8.1-24	6.14-19	3.4-21	4.25-19	4.5-18		7.00-19	3.3-18	3.5-19	4.6-18			
67	2125-2150	7.4-24	8.41-19	1.85-21	4.53-19	3.4-18		4.50-19	4.1-18	3.3-19	4.4-18			
68	2150-2175	6.6-24	1.13-18	1.12-21	4.57-19	2.65-18		2.7 5-1 9	3.5-18	3.0-19	4.2-18			
69	2175-2200	5.8-24	1.50-18	7.1-22	4.23-19	2.1 3-1 8		1.83-19	2.20-18	2.8-19	3.9-18			
70	2200 - 2225	4.9-24	1.98-18	4.5-22	4.5 0-19	1.73-18		1.24-19	1.67-18	2.55-19	3.7-18			
71	2225 - 2250	4.1-24	2.5 5-1 8	2.5-22	3.61-19	1.43-18		9.1-20	1.47-18	2.35-19	3.4-18			
72	2250-2275	3.5-24	3.25-18	1.50-22	3.9 0-1 9	1.17-18		7.1-20	1.3 0-1 8	2.15-19	3.1-18			
73	2275-2300	3.3-24	4.04-18	9.5-23	2.6 5-1 9	1.02-18		5.8-20	1.1 2-1 8	2.00-19	2.7-18			
74	2300 - 2325	2.8 5-24	4.89-18	6.3-23	2.77-19	8.7-19		4.6-20	9.3-19	1.80-19	2.4-18			i
75	2325 - 2350	2.40-24	5.75-18	4.1-23	4.7 5-1 9	7.6-19		3.9-20	7.3-19	1.66-19	2.1-18			L
76	2350 - 2375	1.75-24	6.73-18	2.8 0-2 3	1.62-19	6.6-19		3.1-20	5.9-19	1.50-19	1.78-18			1
77	2375 - 2400	1.3 2-2 4	7.54-18	2.1 0 - 2 3	1.1 3-1 9	5.8-19		2.6-20	4.7-19	1.38-19	1.54-18			
78	2400-2425	8.8-25	8.51-18	1.5 5-23	5.10-20	5.1-19		2.25-20	3.7-19	1.26-19	1.26-18			-
79	2425-2450		9.51-18	1.16-23	5.0 4-2 0	4.6-19		2.10-20	3.1-19	1.15-19	1.07-18			I
80	2450 - 2475		1.07-17	9.0-24	2.62-20	4.1-19		1.95-20	2.5 0-1 9	1.02-19	9.0-19			
81	2475-2500		1.08-17	7.2-24	2.24-20	3.65-19		1.93-20	2.00-19	9.5-20	7.6-19			1

-172 -

気象研究所技術報告 第6号

(cm²/粒)

1982

No	Wavelength	0		NO	NO	NO	NO	LINO.	HNO	шо	IIO		нс	СНО
NO.	(Å)	O_2	O_3	N ₂ O	NO ₂	N ₂ O ₅	NO ₃	HNO3	HNO ₂	п202		нсно	Y ₁	Y ₂
82	2500-2525		1.11-17	6.0-24	1.38-20	3.25-19		1.90-20	1.57-19	8.5-20	6.5-19			
83	2525 - 2550		1.13-17	5.2-24	1.53-20	2.95-19		1.90-20	1.23-19	7.5-20	5.6-19			
84	2550 - 2575		1.13-17	4.7-24	1.46-20	2.60-19		1.90-20	1.00-19	6.6-20	4.9-19			
85	2575 - 2600		1.1 1 - 1 7	4.5-24	1.68-20	2.34-19		1.89-20	8.5-20	6.0-20	4.1-19			
86	2600 - 2625		1.06-17	4.4-24	1.73-20	2.10-19		1.87-20	6.5-20	5.3-20	3.5-19			
87	2625 - 2650		9.99-18	4.4-24	2.08-20	1.9 2-1 9		1.82-20	4.6-20	4.7-20	3.0 - 1 9.			
88	2650-2675		9.18-18	4.6-24	2.3 3-2 0	1.73-19		1.7 5-20	3.4-20	4.2-20	2.6-19			
89	2675 - 2700		8.23-18	5.1-24	2.7 4 - 2 0	1.60-19		1.67-20	2.30-20	3.7-20	2.1-19			
90	2700-2725	_	7.22-18	5.3-24	3.03-20	1.44-19		1.56-20	1.60-20	3.3-20	1.7-19			
91	2725 - 2750		6.14-18	5.4-24	3.75-20	1.32-19		1.46-20		2.9-20				
92	2750 - 2775		5.19-18	5.4-24	4.13-20	1.17-19		1.33-20		2.53-20				
93	2775 - 2800		4.30-18	5.4-24	4.96-20	1.05-19		1.20-20		2.23-20				
94	2800 - 2825		3.39-18	5.4-24	5.49-20	9.5-20		1.04-20		1.94-20		2.5-20	0.6 5	0.3 5
95	2825 - 2850		2.7 5-18	5.3-24	6.24-20	8.5-20		9.3-21		1.70-20		2.7-20	0.67	0.3 3
96	2850 - 2875		2.08-18	5.1-24	7.33-20	7.5-20		8.1-21		1.47-20		3.0-20	0.69	0.3 1
97	2875 - 2900		1.56-18	4.9-24	7.72-20	6.6-20		6.9-21		1.28-20		3.1-20	0.7 1	0.2 9
98	2900 - 2925		1.15-18	4.8-24	9.28-20	5.7-20		5.7-21		1.12-20		3.4-20	0.7 3	0.2 7
99	2925 - 2950		8.56-19	4.8-24	9.61-20	5.0-20		4.8-21		9.9-21	:	3.4-20	0.7 4	0.26
100	2950-2975		6.18-19	4.8-24	1.06-19	4.2-20		3.9-21		8.6-21		3.4-20	0.7 6	0.24

- 173 --

No	Wavelength	0		NO	NO	NO	NO	UNO	UNO		110	UCUO	HC	НО
Nu	(Å)	O_2	O_3	N ₂ O	NO ₂	N ₂ O ₅	NO ₃	HNU3	HNO ₂	$H_2 O_2$	HO ₂	нсно	Y ₁	Y ₂
101	2975-3000		4.39-19	4.8-24	1.24-19	3.5-20		3.1-21		7.6-21		3.4-20	0.7 8	0.2 2
102	3000-3025		3.21-19	4.8-24	1.28-19	2.85-20		2.40-21		6.6-21		3.4-20	0.78	0.22
103	3025 - 3050		2.3 3-1 9	4.6-24	1.53-19	2.40-20		1.85-21		5.8-21		3.3-20	0.7 8	0.2 2
104	3050 - 3075		1.64-19	4.1-24	1.57-19	1.95-20		1.3 6-2 1		5.1-21		3.3-20	0.7 7	0.2 3
105	3075 - 3100		1.23-19	3.3-24	1.7 5-1 9	1.63-20		1.00-21	1 1	4.4-21		3.2-20	0.7 6	0.2 4
106	3100-3125		8.93-20	2.4-24	1.93-19	1.34-20		7.0-22		3.9-21		3.0-20	0.7 5	0.2 5
107	3125 - 3150		6.40-20	1.4-24	2.04-19	1.1 3-2 0		4.9-22	3.80-21	3.4-21		2.8-20	0.7 2	0.28
108	3150 - 3175		4.28-20		2.19-19	9.2-21		3.00-22	7.5-21	2.9 5-2 1		2.7-20	0.6 9	0.3 1
109	3175 - 3200		2.98-20		2.40-19	7.7-21		2.30-22	1.50-20	2.60-21		25-20	0.6 5	0.35
110	3200-3225		231-20		2.59-19	6.5-21		1.60-22	2.50-20	2.25 - 21	_	2.4-20	0.6 0	0.4 0
111	3225 - 3250		1.7 1-20		2.69-19	5.7-21		1.1 5-2 2	3.50-20	2.00-21		2.4-20	0.5 3	0.4 7
112	3250 - 3275		1.14-20		2.92-19	4.8-21			4.7-20	1.80-21		2.4-20	0.4 5	0.5 4
113	3275 - 3300		7.4 4-21		2.99-19	4.3-21			6.3-20	1.60-21		2.4-20	0.3 6	0.6 1
114	3300 - 3325		6.10-21		3.08-19	3.7-21			7.0-20	1.40-21	1	2.3-20	0.2 8	.6 6
115	3325 - 3350		4.35-21		3.37-19	3.3-21			6.6-20	1.23-21		2.3-20	0.19	0.7 0
116	3350 - 3375		2.83-21		3.44-19	3.00-21			7.4-20	1.07 - 21		2.2-20	0.1 1	0.7 1
117	3375 - 3400		1.94-21		3.71-19	2.70-21			9.5-20	9.6-22		2.1-20	0.03	0.69
118	3400 - 3425		1.19-21		3.97-19	2.43-21			9.8-20	8.4-22		1.85-20	0.0	0.6 4
119	3425 - 3450		7.44-22		3.82-19	2.25-21			8.9-20	7.2-22		1.60-20	0.0	0.5 7

- 174 -

No	Wavelength	0	0	NO	NO	NO	NO	HNO	IINO		ПО	исио	нс	НО
nu	(Å)	O_2	O_3	N ₂ O	NO ₂	N ₂ O ₅	NO ₃	HNO ₃	HNO_2	$H_{2}O_{2}$	HO_2	нсно	Y ₁	Y ₂
120	3450 - 3475		4.76-22		4.26-19	2.05-21			8.0-20	6.2-22		1.24-20	0.0	0.5 0
121	3475 - 3500		3.13-22		4.5 2-1 9	1.90-21			7.1-20	5.4-22		9.0-21	0.0	0.4 3
122	3500 - 3525		2.16-22		4.4 0-1 9	1.63-21			9.5-20			6.8-21	0.0	0.3 7
123	3525 - 3550		1.34-22		4.74-19	1.4 4-2 1			1.80-19			5.0-21	0.0	0.3 0
124	3550 - 3575		8.19-23		4.99-19	1.24-21			1.75-19		1	3.3-21	0.0	0.23
125	3575 - 3600		5.77-23		4.84-19	1.08-21			9.3-20			2.2-21	0.0	0.1 7
126	3600 - 3625				5.05-19	9.3-22			8.4-20			1.4-21	0.0	0.1 0
127	3625-3650				5.13-19	8.0-22			1.17-19					
128	3650 — 3675				5.4 4-1 9	6.6-22			1.27-19					
129	3675 - 3700				5.31-19	5.4-22			1.21-19					
130	3700 - 3725				5.48-19	4.1-22	i e		7.5-20					
131	3725 - 3750				5.28-19	3.1 - 2 2			3.8-20			-		
132	3750 - 3775				5.89-19	2.05-22		,	3.7-20					
133	3775 - 3800				5.51-19	1.40-22			6.1-20					
134	3800 - 3825				5.7 0-1 9				1.00-19					
135	3825 - 3850				5.68-19				1.6 0-1 9					
136	3850 - 3875	, Tarih			5.7 4-1 9				8.3-20					
137	3875-3900				5.92-19				1.90-20					
138	3900-3925				6.08-19									

- 175 --

	Wavelength	0					210				110	нено	HCI	HO
NQ.	(Å)	02	03	N ₂ O	NO ₂	N ₂ O ₅	NO ₃	HNO ₃	HNO_2	H_2O_2	HO ₂	нсно	Y ₁	Y ₂
139	3925 - 3950				5.54-19									
140	3950 - 3975				5.84-19									
141	3975-4000				6.15-19									
142	4000 - 4050				6.50-19									
143	4050-4100				6.43-19									
144	4100 - 4150				6.34-19									
145	4150 - 4200				6.27-19									
146	4200-4250				6.14-19									
147	4250 - 4300				5.97-19									
148	4300-4350				5.80-19									
149	4350 - 4400				5.63-19									
150	4400 - 4450				5.47-19									
151	4450 - 4500				5.30-19									
152	4500 - 4600				4.84-19									
153	4600 - 4700				4.27-19									
154	4700 - 4800				3.78-19									
155	4800-4900				3.27-19									
156	4900 - 5000				2.85-19									
157	5000 - 5100				2.45-19		1.14-18							

- 176 --

1

No	Wavelength		0	NO	NO	NO	NO	UNO	UNO		110	ноно	нс	НО
NO.	(Å)		03	N ₂ O	NO ₂	N ₂ O ₅	NO ₃	HNO ₃	HNO ₂	$H_2 O_2$	HO ₂	нсно	Y ₁	Y ₂
158	5100-5200				2.17-19		1.37-18							
159	5200 - 5300				1.88-19		1.77-18							i.
160	5300 - 5400				1.6 0-1 9		1.95 - 18							
161	5400-5500				1.31-19		2.03-18							
162	5500-5600				1.09-19		2.74-18							
163	5600 - 5700				9.1-20		2.88-18							
164	5700 - 5800				7.3-20		2.76-18							
165	5800 - 5900				6.2-20		4.33-18							
166	5900-6000				4.9-20		4.06-18							
167	6000-6100				4.18-20		1.90-18							
168	6100 - 6200				3.43-20		1.91-18							
169	6200 - 6300				2.7 0-2 0		4.4 4-18							
170	6300 - 6400				2.25-20		3.70-18							
171	6400 - 6500				1.83-20		6.5-19							
172	6500 - 6600				1.5 5-2 0		2.7 2-18							
173	6600 - 6700	:			1.23-20		2.94-18							
174	6700-6800			-	9.8-21		6.2-19							
175	6800-6900				8.5-21									
176	6900 - 7000			-	7.3-21									

177

No	Wavelength	0	0	NO	NO	NO	NO	HNO	нио	чо	ЧО	нсно	HC	HO
nu	(Å)	02	O_3	N ₂ O	NO ₂	N ₂ O ₅	NO ₃	HNO ₃	HNO_2	H ₂ O ₂	п02	пено	Y ₁	Y 2
177	$7\ 0\ 0\ 0 - 7\ 1\ 0\ 0$													
178	7100 - 7200													
179	7200 - 7300	-												
180	7300 - 7400					·			•					
181	7400 - 7500													
182	7500 - 7600													
183	7600 - 7700													
184	7700-7800													
185	7800 - 7900						. *							
186	7900 - 8000													

(脚 注)

1) O₂ , 2) O₃ , 3) N₂O:表5.4c と同じ 4) NO₂ : λ≤4100Å; Bass et al. (1976) 4100Å<λ; Leighton (1961)

- 5) $N_2 O_5$, 6) NO_3 , 7) HNO_3 : Hampson (1980) 8) HNO_2 : 2055Å $\leq \lambda \leq 2725$ Å; Hudson (1977) $3125 \text{ \AA} \le \lambda \le 3900 \text{ \AA}$; Hampson (1980)
- 9) H₂O₂ Hampson (1980)
- 10) HO₂ Hampson (1973)
- 11) HCHO Hampson (1980)

12) Y_1 , Y_2 はそれぞれ $CH_2O \rightarrow H + CHO$ 及び $CH_2O \rightarrow H_2 + CO$ の量子収率を示す。Hampson(1980)

気象研究所技術報告 号9篤 1982

表 5.4 f 吸収断面積 (2055~8000Å)

	表 5	0.41 吸収断	面積(205	$5 \sim 8000 \text{ A}$		(cm ² /粒)
$F_2 Cl_2^{(1)}$	CFC1 ₃ ²⁾	CH ₃ C1 ³⁾	HC1 4)	CCl ₄ ⁵⁾	$C1ONO_2^{6}$	CINO ₂ ⁷
85-20	2.65-19	5.6-21	7.5-21	5.5-19	3.5-18	3.7-18

No.	Wavelength (Å)	$CF_2Cl_2^{1}$	CFC1 ₃ ²⁾	CH ₃ Cl ³⁾	HC1 4)	CC14 5)	$C1ONO_2^{6}$	$C1NO_2^{7}$	CINO ⁸⁾
64	2055.15-2075	1.85-20	2.65-19	5.6-21	7.5-21	5.5-19	3.5-18	3.7-18	4.3-17
65	2075 - 2100	1.05-20	1.83-19	3.1-21	4.8-21	4.9-19	3.5-18	3.5-18	3.5-17
66	2100-2125	5.6-21	1.23-19	1.58-21	3.00-21	4.2-19	3.6-18	3.4-18	2.70-17
67	2125 - 2150	2.9-21	7.9-20	7.9-22	1.80-21	3.4-19	3.7-18	3.4-18	2.15-17
68	2150 - 2175	1.66-21	4.9-20	2.6 0-2 2	1.05 - 21	2.65-19	3.7-18	3.4-18	1.65-17
69	2175 - 2200	8.9-22	3.0 0-2 0		6.3-22	2.00-19	3.7-18	3.4-18	1.28-17
70	2200 - 2225	4.5-22	1.90-20			1.40-19	3.5-18	3.3-18	9.5-18
71	2225-2250		1.1 5-2 0			9.8-20	3.2-18	3.0-18	7.7-18
72	2250 - 2275		7.7-21			7.0-20	2.85-18	2.7-18	5.7-18
73	2275 - 2300					4.9-20	2.5-18	2.45-18	4.5-18
74	2300 - 2325					3.3-20	2.1-18	2.2-18	3.3-18
75	2325-2350					2.20-20	1.74-18	1.95-18	2.6-18
76	2350 - 2375					1.45-20	1.46-18	1.70-18	1.95-18
77	2375 - 2400						1.25-18	1.50-18	1.53-18
78	2400 - 2425						1.07-18	1.34-18	1.03-18
79	2425 - 2450						9.2-19	1.23-18	7.5-19
80	2450 - 2475						8.0-19	1.12-18	5.4-19
81	2475 - 2500						7.0-19	1.02-18	4.2-1.9

- 179 --

No.	Wavelength (Å)	C F ₂ C l ₂	CFCl ₃	CH₃C1	HC1	CCl4	C1ONO ₂	C1NO ₂	CINO
82	2500-2525						6.2-19	9.2-19	3.2-19
83	2525 - 2550						5.4-19	8.2-19	2.6-19
84	2550-2575						4.8-19	7.4-19	2.17-19
85	2575 - 2600			 			4.4-19	6.6-19	1.90-19
86	2600-2625						3.8-19	5.9-19	1.63-19
87	2625 - 2650						3.5-19	5.1-19	1.50 - 19
88	2650 - 2675						3.1-19	4.5-19	1.37-19
89	2675-2700						2.7-19	3.9-19	1.27-19
90	2700 - 2725					·	2.4-19	3.5-19	1.20-19
91	2725 - 2750						2.15-19	3.1 - 1 9	1.13-19
92	2750 - 2775						1.85-19	2.7-19	1.08-19
93	2775 - 2800						1.58-19	2.4-19	1.04 - 19
94	2800 - 2825						1:32-19	2.2-19	1.01-19
95	2825 - 2850			•	· · · ·		1.12-19	2.1-19	9.9-20
96	2850 - 2875						9.4-20	1.95-19	9.7 - 20
97	2875 - 2900						7.9-20	1.83-19	9.5-20
98	2900 - 2925			4.			6.6-20	1.75-19	9.4-20
99	2925 - 2950						5.6-20	1.70-19	9.4-20
100	2950 - 2975						4.8-20	1.63-19	9.3-20

- 180 --

No.	Wavelength (Å)	CF ₂ Cl ₂	CFC1 ₃	CH ₃ C1	HC1	CCl4	C1ONO ₂	C1NO ₂	CINO
101	2975-3000						4.2-20	1.57-19	9.4-20
102	3000 - 3025			· ·			3.6-20	1.50-19	9.4-20
103	3025-3050						3.0-20	1.45-19	9.5-20
104	3050-3075						2.55-20	1.40-19	9.7-20
105	3075 - 3100						2.20-20	1.36-19	1.0 0-1 9
106	3100 - 3125						1.85-20	1.28-19	1.03-19
107	3125 - 3150						1.57 - 20	1.20-19	1.07-19
108	3150 - 3175						1.35-20	1.1 3-1 9	1.14-19
109	3175-3200					i	1.17 - 20	1.05-19	1.19-19
110	3200-3225						1.00-20	9.8-20	1.21-19
111	3225-3250						8.4-21	8.9-20	1.24-19
112	3250 - 3275						7.3-21	8.1-20	1.27-19
113	3275-3300						6.4-21	7.4-20	1.30-19
114	3300-3325						5.7-21	6.8-20	1.31-19
115	3325 - 3350						5.0-21	6.2-20	1.32-19
116	3350 - 3375						4.5-21	5.5-20	1.3 3-1 9
117	3375 - 3400				, ,		4.0-21	5.0-20	1.34-19
118	3400-3425						3.7-21	4.5-20	1.33-19
119	3425 - 3450						3.5-21	4.1-20	1.33-19

- 181 --

No.	Wavelength (Å)	CF_2Cl_2	CFCl ₃	CH ₃ C1	HC1	CC1	CIONO ₂	C1NO ₂	CINO
120	3450-3475						3.2-21	3.6-20	1.32-19
121	3475-3500						3.00-21	3.2-20	1.31-19
122	3500 - 3525						2.8-21	2.85-20	1.30-19
123	3525 - 3550						2.6 5-2 1	2.5-20	1.27-19
124	3550 - 3575						2.5-21	2.2-20	1.24-19
125	3575 - 3600						2.3 5-2 1	1.93-20	1.22-19
126	3600 - 3625						2.2-21	1.72-20	1.18-19
127	3625 - 3650						2.1 2-2 1	1.50-20	1.15-19
128	3650 - 3675						2.02-21	1.31-20	1.10-19
129	3675-3700						1.93-21	1.14-20	1.05-19
130	3700 - 3725						1.83-21	1.00-20	1.00-19
131	3725 - 3750						1.73-21	8.7-21	9.5-20
132	3750 - 3775						1.63-21	7.6-21	9.0-20
133	3775-3800			· · ·			1.53-21	6.6-21	8.5-20
134	3800-3825						1.43-21	5.9-21	8.0-20
135	3825-3850						1.33-21	5.1-21	7.5-20
136	3850 - 3875						1.23-21	4.6-21	7.1-20
137	3875 - 3900						1.13-21	4.1-21	6.7-20
138	3900-3925						1.06-21	3.5-21	6.2-20

No.	Wavelength (Å)	CF ₂ Cl ₂	CFCl ₃	CH ₃ C1	HC1	C C 1 ₄	CIONO ₂	C1NO ₂	CINO
139	3925 - 3950					5	9.9-22	3.1-21	5.9-20
140	3950 — 3975						9.3-22	2.6-21	5.5 - 20
141	3975-4000						8.8-22	2.25-21	5.2-20
142	4000-4050						7.8-22		
143	4050-4100						6.5-22		
144	4100-4150						5.4-22		
145	4150 - 4200						4.5-22		
146	4200-4250						3.8-22		
147	4250 - 4300					-	3.1-22		
148	4300 - 4350						2.5-22		
149	4350-4400						2.05-22		
150	4400 - 4450						1.71-22		
151	4450-4500		· · · · ·				1.42-22		
152	4500-4600					-	1.0 2 - 2 2		
153	4600 - 4700								
154	4700 - 4800								
155	4800 - 4900								
156	4900-5000								
157	5000-5100								

- 183 -

No.	Wavelength (Å)	C F 2 C 12	CFCl3	CH3C1	HC1	CCl4	C1ONO ₂	C1NO ₂	CINO
158	5100-5200								
159	5200-5300								
160	5300 - 5400								
161	5400 - 5500								
162	5500 - 5600								
163	5600-5700								
164	5700 - 5800								
165	5800-5900								

(脚 注)

1),2):表5.4cと同じ

3)~8):表5.4dと同じ

気象研究所技術報告 第6号 1982

表 5.5 モデル大気

高度	空気密度 ¹⁾	空気積分量2)	気 温 ³⁾	スケールレイト4)	オゾン密度 ⁵⁾	オゾン積分量 ⁶⁾	J no ⁷⁾
km	(粒子/cm ³)	(粒子∕cm²)	(°k)	(km)	(粒子/cm ³)	(粒子/cm ²)	(1/s)
60	0.6439+16	0.4672+22	247.021	7.3678	0.130+11	0.3500+16	0.130 - 5
59	0.7288+16	0.5449+22	249.769	7.4474	0.154+11	0.4920+16	0.118-5
58	0.8239+16	0.6226+22	252.518	7.5 2 7 0	0.182+11	0.6600+16	0.106-5
57	0.9302 + 16	0.7103+22	255.268	7.6066	0.215+11	0.8585+16	0.972-6
56	$0.1\ 0\ 4\ 9+1\ 7$	0.8092+22	258.019	7.6862	0.254+11	0.1093+17	0.876-6
55	0.1181+17	0.9207+22	260.771	7.7658	0.300+11	0.1370+17	0.787-6
54	0.1329+17	0.1046+23	$2\ 6\ 3.5\ 2\ 4$	7.8453	0.365+11	0.1702+17	0.698-6
53	0.1493+17	0.1187+23	266.277	7.9248	0.440+11	0.2105+17	0.617-6
52	0.1675+17	0.1346+23	269.031	8.0043	0.540+11	0.2595+17	0.542 - 6
51	0.1866+17	0.1524+23	270.650	8.0499	0.657+11	0.3193+17	0.474 - 6
50	0.2135+17	0.1725+23	270.650	8.0474	0.800+11	0.3922+17	0.412 - 6
49	0.2418 + 17	0.1952+23	270.650	8.0449	0.997+11	0.4820+17	0.355 - 6
48	0.2738+17	0.2210+23	270.650	8.0 4 2 4	0.124+12	0.5939+17	0.304-6
47	0.3111+17	0.2503+23	269.684	8.0112	0.155+12	0.7334+17	0.259 - 6
46	0.3564+17	0.2836 ± 23	266.925	7.9267	0.193+12	0.9074+17	0.219-6
45	0.4088+17	0.3219+23	$2\ 6\ 4.1\ 6\ 4$	7.8423	0.240+12	0.1124+18	0.184-6
44	0.4696 + 17	0.3658+23	$2\ 6\ 1.4\ 0\ 3$	7.7579	0.291+12	0.1389+18	0.153-6
43	0.5403+17	0.4 1 6 3 + 2 3	258.641	7.6735	0.353+12	0.1711+18	0.126 - 6
42	0.6 2 2 7 + 1 7	0.4745 ± 23	255.878	7.5892	0.428+12	0.2102+18	0.103-6
41	0.7186+17	0.5415+23	253.114	7.5049	0.519+12	0.2575+18	0.836 - 7
40	0.8308+17	0.6190+23	250.350	7.4206	0.630+12	0.3150+18	0.670-7
39	0.9620+17	0.7086 ± 23	247.584	7.3363	0.750+12	0.3840+18	0.512-7
38	0.1116+18	0.8 1 2 5 + 2 3	244.818	7.2 5 2 1	0.894+12	0.4662+18	0.385-7
37	0.1296+18	0.9331+23	$2\ 4\ 2.0\ 5\ 0$	7.1678	0.106+13	0.5639+18	0.286-7
36	0.1509+18	0.1073+24	239,282	7.0837	0.1 2 7 + 1 3	0.6804+18	0.208-7
35	0.1760+18	0.1 2 3 7 + 2 4	236.513	6.9995	0.1 5 1 + 1 3	0.8194+18	0.149-7
34	0.2056+18	$0.1\ 4\ 2\ 8\ +\ 2\ 4$	$2\ 3\ 3.7\ 4\ 3$	6.9154	0.180+13	0.9849+18	0.963-8
33	0.2406+18	0.1651+24	230.974	6.8312	0.215+13	0.1182+19	0.605-8
32	0.2818+18	0.1912 + 24	$2\ 2\ 8.4\ 9\ 0$	6.7557	0.245+13	0.1 4 1 2 + 1 9	0.370-8
31	0.3283+18	0.2 2 1 7 + 2 4	227.500	6.7243	0.280+13	0.1675+19	0.219-8
30	0.3828+18	0.2573 + 24	$2\ 2\ 6.5\ 0\ 9$	6.6929	0.310+13	0.1970+19	0.125-8
29	$0.4466\!+\!18$	0.2987 + 24	225.518	6.6616	0.335+13	0.2292+19	0.596-9
28	0.5 2 1 4 + 1 8	0.3471+24	$2\ 2\ 4.5\ 2\ 7$	6.6302	0.360+13	0.2640+19	0.269-9
27	0.6092+18	0.4037 + 24	2 2 3.5 3 6	6.5989	0.370+13	0.3005+19	0.115-9
26	0.7122+18	0.4697+24	$2\ 2\ 2.5\ 4\ 4$	6.5675	0.375+13	0.3377+19	0.458 - 10
25	$0.8\;3\;34\!+\!1\;8$	0.5470+24	$2\ 2\ 1.5\ 5\ 2$	6.5362	0.370+13	0.3750+19	0.170-10

·								
高	度	空気密度 ¹⁾	空気積分量 ²⁾	気 温 ³⁾	スケールV1ト ⁴⁾	オゾン密度5)	オゾン積分量 ⁶⁾	J no ⁷⁾
k	m	(粒子/cm ³)	(粒子/cm ²)	(° k)	(km)	(粒子/cm ³)	(粒子/cm ²)	(1/s)
	24	0.9759+18	0.6375+24	220.560	6.5049	0.360 + 13	0.4115+19	0.498 - 10
	23	0.1144+19	0.7434+24	219.567	6.4736	0.340 + 13	0.4465 ± 19	0.132 - 11
	22	0.1341+19	0.8677+24	218.574	6.4423	0.320+13	0.4795+19	0.307 - 12
	21	0.1574+19	0.1013+25	217.581	6.4110	0.300+13	0.5105+19	0.623 - 13
	20	0.1849+19	0.1185+25	216.650	6.3816	0.280+13	0.5395+19	0.108-13
	19	0.2162+19	0.1385+25	216.650	6.3796	0.255+13	0.5662+19	
	18	0.2529+19	0.1620+25	216.650	6.3776	0.233+13	0.5906+19	
	17	0.2959+19	0.1894+25	216.650	6.3756	0.215+13	0.6130+19	
	16	0.3461+19	0.2215+25	216.650	6.3736	0.190+13	0.6333+19	
	15	0.4049+19	0.2591+25	216.650	6.3716	0.170+13	0.6513+19	
	14	0.4737+19	0.3030+25	216.650	6.3696	0.158+13	0.6677+19	- h
	13	0.5 5 4 3 + 1 9	0.3544+25	216.650	6.3676	0.1 4 5 + 1 3	0.6828+19	
	12	0.6486+19	0.4145 + 25	216.650	6.3656	0.132+13	0.6967+19	
	11	0.7585+19	0.4849+25	216.650	6.3672	0.119+13	0.7092+19	
	10	0.8598+19	0.5658+25	2 2 3.2 5 2	6.5 5 5 4	0.104+13	0.7204+19	
	9	0.9711+19	0.6573+25	229.733	6.7436	0.980+12	0.7305+19	
	8	0.1093+20	0.7606+25	236.215	6.9317	0.920+12	0.7400+19	
	7	0.1 2 2 7 + 2 0	0.8766+25	$2\ 4\ 2.7\ 0\ 0$	7.1198	0.870+12	0.7489+19	
	6	0.1372+20	0.1066+26	249.187	7,3078	0.830+12	0.7574+19	
	5	0.1531+20	0.1 1 5 2 + 2 6	255.676	7.4957	0.800+12	0.7656+19	
	4	0.1704+20	0.1 3 1 3 + 2 6	262.166	7.6836	0.770+12	0.7734+19	
	3	0.1890+20	0.1493 + 26	268.659	7.8714	0.740+12	0.7810+19	
	2	0.2093+20	0.1692+26	275.154	8.0 5 9 2	0.710+12	0.7882+19	
	1	0.2311+20	0.1912+26	281.651	8.2465	0.690+12	0.7952+19	
	0	0.2547+20	0.2155+26	288.150	8.4345	0.670+12	0.8020+19	
_		l						

(脚注)

1) ~ 4) : US Standard Atmosphere 1976

5), 6): 中緯度の平均オゾン分布. 初期値とする.

7): NOの解離率, Frederick and Hudson (1979)による。太陽天頂角60°の場合

— 187 —

5.3 基礎方程式

ある成分の濃度 n_i(i=1、…)の一次元光化学モデルにおける連続方程式は

$$\frac{\partial n_i}{\partial t} = Q_i(n_j) - L_i(n_j) n_i - \frac{\partial}{\partial z} (\phi_i)$$
(5.1)

と書ける。ただし $Q_i(n_j)$ は光化学的生成項、 $L_i(n_j) n_i$ は光化学的消滅項、 ϕ_i は渦動拡散フラックス(上向き)を表わす。

 ϕ_i は

$$\phi_{i} = -K_{z} \left\{ \frac{\partial n_{i}}{\partial z} + \left(\frac{\partial T}{\partial t} + \frac{1}{H} \right) n_{i} \right\}$$
(5.2)

と表わすことができる。ただし K_z は渦動拡散係数、Tは気温、Hはスケールハイトを表わす。 (5.1) 式を差分方程式に書き換えると(Shimazaki and Ogawa, 1974)、

$$\frac{n_{i}(z, t+4t) - n_{i}(z, t)}{4t} = Q_{i}(z, t) - L_{i}(z, t) n_{i}(z, t+4t) + \frac{1}{(4z)^{2}} \left[K_{z}(z)n_{i}(z+4z, t+4t) - \left\{ \gamma(z)K_{z}(z) + K_{z}(z-4z) \right\} n_{i}(z, t+4t) + \gamma(z-4z)K_{z}(z-4z)n_{i}(z-4z, t+4t) \right]$$
(5.3)

と書ける。ただし $\gamma(z)$ は

$$\boldsymbol{\gamma}(z) = 2 - \frac{T(z + \Delta z)}{T(z)} - \frac{\Delta z}{H}$$
(5.4)

を表わしまた ϕ_i は

$$\phi_{i} = -\frac{K_{Z}(z)}{\varDelta z} \left\{ n_{i}(z + \varDelta z, t + \varDelta t) - \gamma(z) n_{i}(z, t + \varDelta t) \right\}$$
(5.5)

と表わされる。

(5.3) 式は整理すると次の様に書ける、

 $-A n_i(z + \Delta z, t + \Delta t) + B n_i(z, t + \Delta t) - C n_i(z - \Delta z, t + \Delta t) = D$ (5.6) $t_i t_i L$

$$A = K_{z}(z, t) \Delta t / (\Delta z)^{2}$$

$$B = 1 + L_{i}(z, t) \Delta t + \{\gamma(z) \ K_{z}(z) + K_{z}(z - \Delta z)\} \cdot \Delta t / (\Delta z)^{2}$$

$$C = \gamma(z - \Delta z) \ K_{z}(z - \Delta z) \ \Delta t / (\Delta z)^{2}$$

$$D = n_{i}(z, t) + Q_{i}(z, t)$$

5.4 定常状態

5.4.1 方程式

定常状態での n_i は (5.1) 式で $\frac{\partial n_i}{\partial t} = 0$ として得られる。この場合 (5.6)、(5.7) 式は $-An_i(z+\Delta z)+Bn_i(z)+Cn_i(z-\Delta z)=D$ (5.8) $A=K_z(z)/(\Delta z)^2$ $B=L_i(z)+ \{\gamma(z) K_z(z)+K_z(z-\Delta z)/(\Delta z)^2$ $C=\gamma(z-\Delta z) K_z(z-\Delta z)/(\Delta z)^2$ (5.9)

 $D = Q_i(z)$

となる。

5.4.2 境界条件

(5.8) 式を用いて n_i の高度分布 $n_i(z)$ 、i = 1、2、……を求めるとき上部及び下部の境界条件 を必要とするがその与え方には3種類を考えた。

即ち

(a)粒子濃度

これは観測によってその濃度が分っている成分に対する粒子濃度を与える。

(b)光化学平衡

光化学反応過程が拡散過程に比べて速く拡散の効果が無視できるような成分に適用できる。

(5.1) 式で $\frac{\partial \mathbf{n}_i}{\partial t} = 0$, $\frac{\partial \phi_i}{\partial z} = 0$ として $\mathbf{n}_i = \mathbf{Q}_i (\mathbf{n}_j / \mathbf{L}_i (\mathbf{n}_j))$

で与えられる。

(c)フラックス

(1)境界でのフラックスが与えられる場合と

(2)上部境界において境界より上方に生成源をもたない成分の場合がある。

後者の場合はたとえば CH4、CFCl3 等では

 $\phi_i(\mathbf{z}) = \mathbf{L}_i(\mathbf{z}) \mathbf{n}_i \mathbf{H}_i$

(5.11)

(5.10)

で与えられる。ただし $L_i(z) n_i$ は境界での光化学的消滅率、 H_i は i 成分のスケールハイト を表わす。

5.4.3 解き方

計算しようとする高度をK個の層に分け下から1、2、…k、…、Kとする。i番目の成分の第 k層での濃度を、suffix i を省略して n_k と書く。A、B、C、Dの第k層の値を A_k 、 B_k 、 C_k 、 D_k とすると (5.8) 式は

$$-A_{k}n_{k+1}+B_{k}n_{k}-C_{k}n_{k-1}=D_{k}$$
(5.12)

と書ける。

境界条件として下部(k = 1)及び上部(k = K)での濃度がそれぞれ n_{10} 、 n_{ko} と与えられる場合を考える、

$$n_1 = n_{10}, n_k = n_{k0}$$
 (5.13)

次に

$$n_k = a_k + b_k \cdot n_2, \quad k = 1, 2, \dots, K$$
 (5.14)

とおく。

(5.14) 式を(5.12) 式に代入して、

$$\mathbf{n}_{k} = \frac{\mathbf{B}_{k-1}a_{k-1} - \mathbf{C}_{k-1}a_{k-2} - \mathbf{D}_{k-1}}{\mathbf{A}_{k-1}} + \frac{\mathbf{B}_{k-1}\mathbf{b}_{k-1} - \mathbf{C}_{k-1}\mathbf{b}_{k-2}}{\mathbf{A}_{k-1}} \cdot \mathbf{n}_{2}$$
(5.15)

が得られる。(5.15)と(5.14)を比較して

$$\left. \begin{array}{c} a_{k} = \frac{B_{k-1}a_{k-1} - C_{k-1}a_{k-1} - D_{k-1}}{A_{k-1}} \\ b_{k} = \frac{B_{k-1}b_{k-1} - C_{k-1}b_{k-2}}{A_{k-1}} \end{array} \right\}$$
(5. 16)

が得られる、

(5.14) 式で k = 1、2 として

$$a_1 = n_{10}, b_1 = 0.0$$

$$a_2 = 0.0, b_2 = 1.0$$

(5.17) を (5.16) に代入すると

$$a_3, a_4, \dots, a_K$$

 b_3, b_4, \dots, b_K

$$n_2 = (a_{K_0} - a_K) / b_K \tag{5.18}$$

となり、 n_k (k = 1、2、……、K) が求められる。

境界条件として上部の境界では粒子濃度、下部の境界ではフラックス $\phi(1)$ が与えられている場合には(5.17)式のかわりに

$$a_{1} = \frac{\phi(1) \Delta z}{\gamma(1) \cdot K_{z}(1)}, b_{1} = \frac{1}{\gamma(1)}$$

$$a_{2} = 0.0, \quad b_{2} = 1.0$$

とする。ただし、 $\gamma(1)$ 、 $K_z(1)$ は第1層の値とする。

また下部境界で粒子濃度、上部境界でフラックスが(5.11)式で与えられる場合には、(5.18)式 のかわりに

(5.19)
$$n_{2} = \frac{d_{K}a_{K-1} - a_{K}}{b_{K} - d_{K}b_{K-1}}$$
(5. 20)
$$d_{K} = \frac{\gamma(K)}{1 + \frac{L(K) H(K) Az}{K_{Z}(z)}}$$
(5. 21)

とする。

5.4.4 計算フロー

 N_2 、 O_2 、 H_2 、 CO_2 以外の成分を5つのグループに分けて取扱った。すなわち酸素グループ (O_3 、 $O(^3P)$ 、 $O(^1D)$)、窒素グループ(N_2O 、N、NO、NO₂、 NO_3 、 N_2O_5 、 HNO_3)、水素グループ (H_2O 、H、HO、HO₂、 H_2O_2)、メタングループ(CH_4 、 CH_3 、 CH_3O_2 、 CH_3O 、 CH_2O 、CHO、CO)、 塩素グループ(CF_2Cl_2 、 $CFCl_3$ 、 CCl_4 、 CH_3Cl 、Cl、ClO、 $ClONO_2$ 、HCl)である。各グループの中 で光化学反応による交換が速い成分はまと

めて光化学平衡を仮定する。

計算のフローチャートを 図5.2 に示す。 酸素グループについては O_3 、 $O({}^3P)$ 、 $O({}^1D)$ の間で光化学平衡を仮定して 3 成分間の相 対濃度を計算する。次に $Ox = O_3 + O({}^3P)$ + $O({}^1D)$ とすると Oxの寿命は長くなり その高度分布を(5.8)、(5.9)式で計算する。 Oxが決定されると O_3 、 $O({}^3P)$ 、 $O({}^1D)$ は 決定される。 O_2 の励起状態の成分 $O_2({}^1\Sigma)$ 、 $O_2({}^1\Delta g)$ はOx に含めず O_3 、 $O({}^3P)$ 、 $O({}^1D)$ を求めたのち計算する。

窒素グループについては N、NO、NO₂ 等の源となる N₂O の分布をまず計算す る。次に

 $[Total N] = [N] + [NO] + [NO_2] +$ $[NO_3] + 2 [N_2O_5] + [HNO_3]$

として [Total N] の高度分布を計算する。 但し、[] は粒子濃度 (particles/cm³) を示す。

N、NO、NO₂、NO₃、N₂O₅、HNO₃の間 の光化学平衡を仮定して各成分の分布を計 算する。

図 5.2 計算フローチャート(定常状態)

水素グループについては、H、HO 等の源となる H₂O の分布をまず計算し、次に H、HO、HO₂、 H₂O₂ の間の光化学平衡から各成分の濃度を計算する。

メタングループに関しては、CH₄ の酸化過程は CH₄→CH₃→CH₃O₂→CH₃O→CH₂O→CHO→ CO→CO₂ である。まず CH₄ の高度分布を計算する。次に CH₃、CH₃O₂、CH₃O、CH₂O、CHO の間で光化学平衡を仮定して各成分の濃度を計算する。CO は比較的寿命が長いので別に計算する。 CO₂ の混合比は一定、[CO₂]/[M]=0.000314 とした。但し [M] は空気分子の濃度を示す。

塩素グループについては、Cl、ClO 等の源となる CF_2Cl_2 、CFCl₃、CCl₄、CH₃Cl の分布を各々 独立に計算し次に Cl、ClO、ClONO₂、HCl 間の光化学平衡から各成分の濃度を決める。

図5.2 に示すごとく O_3 以外の成分を計算した後、 O_3 の濃度を計算し、以前の O_3 との差が一定 値以下になるまで計算をくり返す。

5.4.5 計算式

表5.1 の光解離反応 J1、J2、……、J31 の太陽光線による解離率を J_i(i = 1-31) とする。考 慮する波長域(800-8000Å)を186個の波長区間に分ける。第j番目の波長区間に対する解離率 J_i の成分を J(i、j) とすると

$$\begin{split} J_{i} &= \sum_{j=1}^{186} J(i, j) \\ J(i, j) &= Y(i, j). \sigma(i, j) T(j) F_{\infty}(j) \end{split}$$

で表わされる。ただし Y(i、j) 及び σ (i、j) は第 i 番目の光解離の第 j 番目の波長区間の量子収率 及び吸収断面積(表5.4a—5.4f)を示す。 T(j) 及び F_∞(j) は第 j 番目の波長区間における透過関 数及び大気外太陽放射強度(表5.3a—5.3b)を示す。

透過関数は太陽光線が大気外から考えている高度まで到達するとき光路中の酸素分子とオゾンの 吸収のために減衰を受けることを考慮して次式で表わされる、

 $T(j) = \exp \{-\sigma(O_2, j) N(O_2) - \sigma(O_3, j) N(O_3)\}$

ただし $\sigma(O_2, j), \sigma(O_3, j)$ は第 j 番目の波長区間での O_2 及び O_3 の吸収断面積を示し、また $N(O_2)$ 及び $N(O_3)$ は光路中の O_2 及び O_3 の粒子濃度の積分値(particles/cm²)を示す。

T (j) の計算で、酸素分子の Schumann-Runge Bands (1750-2055Å、j=49-63) では上記の 計算式は修正しなくてはならないが本報告では Muramatsu (1975) の方法を用いた。

表5.2 の反応式とそれに対する反応速度定数 $R_1 R_2 \cdots R_{98}$ 及び上述の解離率を用いて各グループ内の成分の濃度の計算は次のように表わされる。ただし[A]は成分Aの粒子濃度 $(particles/cm^3)$ を示す。

(1) 酸素グループ

O₃、O(³P)、O(¹D)の間の光化学平衡を仮定し [O₃]> [O(³P)]>> [O(¹D)] を考慮し、O₃、

- 192 -

O(³P)の光化学平衡時の値を O_{3e}、O_e とすると

$$[O_{3e}] = \frac{-D + \sqrt{D^2 + 4R_2R_3[O_2][M](2J_3^* + A)(2J_2^*[O_2] + P)}}{2R_3(2J_3^* + A)}$$
$$[O_e] = \frac{[J_3^* + A)[O_{3e}]}{R_2[O_2][M] - R_3[O_{3e}]}$$

ただし

$$\begin{split} J_2^* &= J_1 + J_2 \\ J_3^* &= J_3 + J_4 + J_5 + J_6 + J_7 \\ D &= 2 J_2^* R_3 \ [O_2] + R_2 \ [O_2] \ [M] \ A + J_3^* B + AB \\ A &= R_{20} \ [NO] + R_{24} \ [NO_2] + R_{41} \ [H] + R_{44} \ [HO] \\ &+ R_{48} \ [HO_2] + R_{84} \ [Cl] \\ B &= R_{21} \ [NO] \ [M] + R_{23} \ [NO_2] + R_{25} \ [NO_2] \ [M] \\ &+ R_{28} \ [N] \ [M] + R_{33} \ [HNO_3] + R_{43} \ [HO] + R_{47} \ [HO_2] \\ &+ \ (R_{51} + R_{52}) \ [H_2O_2] + R_{61} \ [H_2] + R_{82} \ [CO] \ [M] \\ &+ R_{85} \ [ClO] + R_{91} \ [HCl] \\ P &= J_8 \ [N_2O] + J_{10} \ [NO_2] + J_{20} \ [HO_2] + J_{25} \ [CO_2] \\ &+ \ (J_{15} + J_{16}) \ [NO_2] + J_{20} \ [HO_2] + J_{25} \ [CO_2] \\ &+ R_{29} \ [N] \ [O_2] + R_{31} \ [N] \ [NO] + R_{45} \ [HO]^2 + R_{54} \ [H] \ [HO] \end{split}$$

である。

 $G= [O_e]/[O_{3e}]$

[O_x] = [O₃] + [O (³P)] + [O (¹D)] = [O₃] + [O (³P)] とおくと [O_x] の分布を求める方 程式

$$\frac{\partial [O_X]}{\partial t} = Q - L \cdot [O_X] - \frac{\partial \phi_X}{\partial z}$$

のQ、Lは次のごとくなる。 ϕ_x は $[O_x]$ のフラックス。

$$Q=2J_{2}^{*} [O_{2}]+P$$

$$L \cdot [O_{x}]=2R_{1} [O]^{2} [M]+2R_{3} [O] [O_{3}]+A [O_{3}]+B [O]$$

$$=\frac{1}{1+G} \left\{ \frac{2G(R_{1}G[M]+R_{3})[O_{x}]}{1+G} + A+BG \right\} [O_{x}]$$

 $O(^{1}D)$ 、 $O_{2}(^{1}\Sigma g)$ 、 $O_{2}(^{1}\Delta g)$ は O_{3} 、 $O(^{3}P)$ と光化学平衡にあるとして次のように求められる。

$$\frac{[O(^{1}D)]}{[O_{3}]} = \frac{J_{4} + J_{5} + J_{6} + J_{7}}{R_{4}[O_{2}] + R_{5}[N_{2}]}$$
(5.22)

$$\frac{[O_2({}^{1}\Sigma_g)]}{[O_3]} = \frac{J_5 + J_7 + R_4[O_2][O({}^{1}D)] / [O_3]}{R_8[O_3] + R_9[O_2] + R_{10}[N_2] + R_{17}}$$
(5.23)
$$\frac{[O_2({}^{1}A_g)]}{[O_3]} = \frac{J_4 + J_6}{R_{11}[O_3] + R_{12}[O_2] + R_{13}[N_2] + R_{15}}$$
(5.24)

ただし(5.22)式では J₆、J₇ で生成される O(1 S) はすみやかに O(1 D) に変換されると仮定している。

(2) 窒素グループ

N、NO、…等の源となる N_2O の分布を次式で計算し高度分布を求める、

$$\frac{\partial [N_2 O]}{\partial t} = -\left\{J_8 + J_9 + (R_{18} + R_{19})[O(^1D)]\right\}[N_2 O] - \frac{\partial \phi}{\partial z}$$

ただし ϕ は N₂O の上向きフラックス。

$$[NO] = r_{1} [NO_{2}]$$

$$[HNO_{3}] = r_{2} [NO_{2}]$$

$$[N] = r_{3} [NO_{2}] / (r_{4} + r_{5} [NO_{2}])$$

$$[NO_{3}] = r_{7} [NO_{2}] / (r_{8} + r_{9} [NO_{2}])$$

$$[NO_{3}] = r_{6} [NO_{2}] [NO_{3}]$$

$$[Total N] = [N] + [NO] + [NO_{2}] + [NO_{3}]$$

$$+ 2 [N_{2}O_{5}] + [HNO_{3}]$$

$$= r_{3} [NO_{2}] / (r_{4} + r_{5} [NO_{2}]) + r_{1} [NO_{2}] + NO_{2}$$

$$+ (1 + 2r_{6} [NO_{2}]) r_{7} [NO_{2}] / (r_{8} + r_{9} [NO_{2}])$$

$$+ r_{2} [NO_{2}]$$

ただし

 $Q=2J_{9} [N_{2}O]+2R_{18} [N_{2}O] [O(^{1}D)]-2R_{31} [N] [NO]$

 ϕ は Total N の上向きフラックス

である。ただし今回は J₉=0.0 とおいた。

[ΣN] が求められると、[N]、[NO]、……に関する上述の式から [NO₂] が次の式から計算される、

$$a_1 [NO_2]^3 + a_2 [NO_2]^2 + a_3 [NO] + a_4 = 0.0$$

ただし

```
a_1 = 2r_5r_6r_7 + r_5r_9r_{10}
```

```
a_2 = r_5 r_7 + 2r_4 r_6 r_7 + r_3 r_9 + r_4 r_9 r_{10} + r_5 r_8 r_{10} - [\Sigma N] r_5 r_9
```

 $a_3 = r_4 r_7 + r_3 r_8 + r_4 r_8 r_{10} - [\Sigma N] (r_4 r_9 + r_5 r_8)$

 $a_4 = - [\Sigma N] r_4 r_8$

$$r_{10} = 1 + r_1 + r_2$$

 $[NO_2]$ が計算されると、[NO]、…… $[N_2O_5]$ が上述の式から計算される。

(3) 水素グループ

まず H₂O の分布を次式で決定する、

$$\frac{\partial [H_2 O]}{\partial t} = Q - L[H_2 O] - \frac{\partial \phi}{\partial z}$$

$$Q = (R_{49} [HO_2] + R_{63} [H_2] + R_{53} [H_2O_2]$$

$$+ R_{68} [CH_4] + R_{45} [HO]) [HO]$$

$$L = R_{40} [O(^1D)]$$

$$\phi \ \text{は} \ H_2 O \ \mathcal{O} \bot 向 \ge 7 = \sqrt{2} \times \mathbb{C} \& \mathbb{Z}_{0}$$

次に H、HO、HO₂、H₂O₂の光化学平衡からこれ等の成分の比を求める、

$$P_{1} = \frac{[H]}{[HO]} = \frac{R_{43}[O] + R_{83}[CO]}{R_{41}[O_{3}] + R_{42}[M][O_{2}]}$$

$$P_{2} = \frac{[HO_{2}]}{[HO]} = \frac{R_{42}[O_{2}][M]P_{1} + R_{44}[O_{3}]}{J_{20} + R_{35}[NO] + R_{47}[O] + R_{48}[O_{3}]}$$

$$P_{3} = \frac{[H_{2}O_{2}]}{[HO]} = \frac{(R_{46}[N] + R_{50}P_{2}^{2})[HO]}{R_{33}[HO] + J_{21}}$$

また

$$[\Sigma H] = [H] + [HO] + [HO_2] + 2 [H_2O_2]$$

の分布は次式で計算する。

$$\frac{\partial [\Sigma H]}{\partial t} = Q - L[\Sigma H] - \frac{\partial \phi}{\partial z}$$

ただし

$$\begin{split} & Q = 2J_{19} \ [H_2O] + 2J_{23} \ [CH_2O] + J_{18} \ [HNO_3] + J_{30} \ [HCl] \\ & + (2R_{40} \ [H_2O] + R_{62} \ [H_2] + R_{65} \ [CH_4] + R_{97} \ [CH_3Cl]) \ [O(^1D)] \\ & + (2R_{61} \ [H_2] + R_{64} \ [CH_4] + R_{78} \ [CH_2O] + R_{33} \ [HNO_3] + R_{91} \ [HCl]) \ [O(^3P)] \\ & + (R_{70} \ [CH_3] + R_{75} \ [CH_3O] + R_{81} \ [CHO]) \ [O_2] \\ & + R_{67} \ [CH_4] \ [O_3] + R_{88} \ [H_2] \ [Cl] \end{split}$$

$$\begin{split} L = q_2 \ [\Sigma H] + q_1 \\ q_2 = \ & \{ 2R_{45} + 2R_{50}P_2{}^2 + 2R_{49}P_2 + R_{53}P_3 + 2(R_{54} + R_{55} \ [M])P_1 \\ & + 2R_{56}P_1P_2 + 2 \ (R_{58} + R_{59})P_1P_3 \} / P_0^2 \\ q_1 = \ & \{ R_{68} \ [CH_4] + R_{79} \ [CH_2O] + R_{34} \ [HNO_3] + R_{38} \ [M] \ [NO_2] \\ & + R_{90} \ [HCl] + R_{96} \ [CH_3Cl] \\ & + (R_{72} \ [CH_3O_2] + R_{37} \ [M] \ [NO] + R_{89} \ [Cl] \ P_2 + 2R_{52} \ [O] \ P_3 \} / P_0 \end{split}$$

 $P_0 = 1 + P_1 + P_2 + 2P_3 \sigma \delta \delta$

[**Σ**H] が求められると、[HO] は

A $[HO]^2 + B [HO] - C = O$

から求められる。ただし

 $A \!=\! 2(R_{46} \ [M] \!+\! R_{50}P_2^2) \!+\! (1 \!+\! P_1 \!+\! P_2)R_{53}$

 $B \!=\! (1\!+\!P_1\!+\!P_2)J_{21}\!- \ [\Sigma H] R_{53}$

 $C = [\Sigma H] J_{21}$

である。[HO] が分ると [H]、[HO₂]、[H₂O₂] は上述の P₁、P₂、P₃ から計算される。 (4) メタングループ

CH4、CO は次の連続方程式から高度分布を計算する。

$$\begin{aligned} \frac{\partial [CH_4]}{\partial t} &= -\left\{ J_{22} + R_{64} [O] + (R_{65} + R_{66}) [O(^1D)] \\ &+ R_{67} [O_3] + R_{68} [HO] \right\} [CH_4] - \frac{\partial \phi}{\partial z} \\ \frac{\partial [CO]}{\partial t} &= J_{24} [CH_2O] + J_{25} [CO_2] + R_{81} [C_2] [CHO] \\ &- \left\{ R_{82} [O] [M] + R_{83} [HO] \right\} [CO] - \frac{\partial \phi}{\partial z} \end{aligned}$$

ただし ϕ は各々 CH₄、CO の上向きフラックスである。

CH₄の酸化過程の生成物、CH₃、CH₃O₂、CH₃O、CH₂O、CHO は光化学平衡を仮定して次の如

— 196 —

く求められる、

$$[CH_{3}] = \frac{J_{22} + R_{64}[O] + R_{65}[O(^{1}D] + R_{67}[O_{3}] + R_{68}[HO]}{R_{69}[O_{2}][M] + R_{70}[O_{2}]} \cdot [CH_{4}]$$

$$[CH_{3}O_{2}] = \left\{ \sqrt{(R_{71}[NO] + R_{72}[HO_{2}])^{2} + 4R_{69}(R_{73} + R_{74})[O_{2}][M][CH_{3}]} - (R_{71}[NO] + R_{72}[HO_{2}]) \right\} / 2(R_{73} + R_{74})$$

$$[CH_{2}O] = \frac{R_{66}[O(^{1}D)[CH_{4}] + R_{70}[O_{2}][CH_{3}] + R_{75}[O_{2}][CH_{3}O]}{J_{23} + J_{24} + R_{78}[O] + R_{79}[HO] + R_{80}[HO_{2}]}$$
$$[CH_{3}O] = \frac{R_{71}[NO][CH_{3}O_{2}] + 2R_{73}[CH_{3}O_{2}]^{2}}{R_{75}[O_{2}] + R_{76}[NO] + R_{77}[NO_{2}]}$$
$$[CHO] = \frac{J_{23} + R_{78}[O] + R_{79}[HO] + R_{80}[HO_{2}]}{R_{81}[O_{2}]} \circ [CH_{2}O]$$

(5) 塩素グループ

まず、CF₂Cl₂、CFCl₃、CH₃Cl、CCl₄の高度分布を次の諸式から計算する、

$$\frac{\partial [CF_2Cl_2]}{\partial t} = -(J_{26} + R_{94}[O(^1D)])[CF_2Cl_2] - \frac{\partial \phi}{\partial z}$$
$$\frac{\partial [CH_3Cl]}{\partial t} = -(J_{28} + R_{96}[HO] + R_{97}[O(^1D)])[CH_3Cl] \frac{\partial \phi}{\partial z}$$
$$\frac{\partial [CFCl_3]}{\partial t} = -(J_{27} + R_{95}[O(^1D)])[CFCl_3] - \frac{\partial \phi}{\partial z}$$
$$\frac{\partial [CCl_4]}{\partial t} = -(J_{29} + R_{98}[O(^1D)])[CCl_4] - \frac{\partial \phi}{\partial z}$$

次に [ΣCl] = [Cl] + [ClO] + [ClONO₂] + [HCl] とし、[ΣCl] を次式で計算する。

$$\frac{\partial [\sum C1]}{\partial t} = Q - \frac{\partial \phi}{\partial z}$$

ただし

 $Q = (J_{26} + R_{94} [O(^{1}D)]) [CF_{2}Cl_{2}] + (J_{27} + R_{95} [O(^{1}D)]) [CFCl_{3}]$

+ $(J_{28}+R_{96} [HO]+R_{97} [O(^{1}D)]) [CH_{3}Cl]+(J_{29}+R_{98} [O(^{1}D)]) [CCl_{4}]$ ϕ は [Σ Cl] の上向きフラックスである。

Cl、ClO、ClONO₂、HClの間の光化学平衡を仮定し、これ等の成分の比を求め、更に今計算した [ΣCl]とから、各成分の濃度が次の諸式から計算される。

 $r_{1} = \frac{[C1]}{[HC1]} = \frac{J_{30} + R_{90}[HO]}{R_{87}[CH_{4}] + R_{88}[H_{2}]}$

$$r_{4} = \frac{[C10]}{[HC1]} = \frac{r_{1}R_{84}[O_{3}]}{R_{85}[O] + R_{86}[NO]}$$
$$r_{5} = \frac{[C10NO_{2}]}{[HC1]} = \frac{r_{4}R_{92}[NO_{2}][M]}{R_{93}[O] + J_{31}}$$

 $[\Sigma Cl] = [HCl] (1+r_1+r_4+r_5)$

5.4.6 結果

(1) 境界条件

5.4.2節で述べた境界条件の具体的な値を表5.6 に示す。 O_x については下部の境界で計算された 濃度が観測値に一致するようにフラックスを決めた(粒子濃度を与えたのと同等とみなせる)。 N_2O 、 CH_4 、 CF_2Cl_2 、 $CFCl_3$ の下部境界値は我々の観測値を用いた(第1章参照)。 H_2O の下部境 界値は Muramatsu (1981)のまとめたものを参考にした。上部境界値は観測値が不確実であるので 4.83-13.0ppmv の間の値を仮定した。Total N (Σ N)、CO、 CH_3Cl 、 CCl_4 、Total Cl (Σ Cl)の下 部境界の濃度は NAS 1979 レポートから採用した。

上部境界条件としてフラックスを与える場合(5.11)式のスケールハイトは 5.0km とした。ただし Total Cl についてはフラックスをゼロとした。

(2) 拡散係数

高度分布の観測が正確に行なわれ、また光化学反応がよく分っている成分についてのモデル計算 値と観測値が一致するように拡散係数の高度分布を決めるのが一般的方法である。今回の報告では N₂O、CH₄の高度分布の観測値を参考にして拡散係数をきめた。図5.3 にこのようにして求めた拡 散係数の高度分布を示す。図中には Crutzen et al.(1978)、NAS1979の値も示してある。NAS1979 と比べると 25km 付近を除いて、我々の値は NAS1979 より小さい。Crutzen et al. (1978)の値 と比べてみると 40km 以上で我々の値は大きくまた 40km 以下では小さい。高度 15-20km に拡 散係数の値の小さい層の存在することが我々の分布の特徴である。この高度分布 (Case F) は次式 で与えられる、

$K_z = a \exp(-0.2608Z + 11.513)$	$0 \leq Z \leq 15$	
$=a 2.0 \times 10^{3}$	$15 \leq Z \leq 20$	
$= a \exp(0.3219(Z-20) + 7.601)$	$20\!\leq\!Z\!<\!35$	(5. 25)
$=a \exp(0.06579(Z-25)+9.210)$)) 35≦Z≦60 -	

ただし、Kz は拡散係数 (cm²sec⁻¹)、Z は高度 (km) である。今回は a=1.5 とした。この場合に ついて図中には Case F (a=1.5) と表わしてある。

(3) 太陽放射その他の条件

これから述べる結果は、大気外太陽放射として Case D、(最も新しい観測結果を含む分布)、緯度 は35°N、時期は春分、拡散係数は Case F (a=1.5)の場合についてである。

(4) 分布

窒素グループ N、NO、NO₂、NO₃、N₂O₅、HNO₃ 及び Total N の分布を 図5.4a に示す。成 層圏上部では NO、下部では HNO₃ が最も多い。中部では NO、NO₂、HNO₃ が同程度に存在す ることが分る。成層圏下部では窒素グループの最終生成物は HNO₃ で最も多く存在することが分 る。

水素グループ H、HO、HO₂、H₂O₂、 Σ H=H+HO+HO₂+H₂O₂ の高度分布を 図5.4b に示す。 高度 50km 以上では HO と HO₂ が最も多く 50km 以下では H₂O₂ が最も多い。前の図で示した HNO₃ は主として NO₂+HO+M→HNO₃+M の反応で生成されるので、窒素グループと水素グ ループの両者の最終生成物とみなせる。前述のごとく下部成層圏では HNO₃ が両グループを通じて 最も濃度が大きい。

図5.4c にメタンの酸化過程で生成される成分の高度分布を示す。CO が最も多く次は CH_2O (ホ ルムアルデヒド)が多いということが分る。酸化の最終生成物は CO_2 である。

図5.4d に塩素グループの分布を示す。最終生成物 HCl は上部・下部成層圏では最も多いが、中部成層圏では CIO、CIONO₂ と同程度の濃度である。

次に個々の成分の高度分布について計算値と観測値の比較を行う。

図5.5a	はオゾン濃度	(粒子/cm ³)	の高度な	分布を示す。	CAL	は計算値を示す。	OBS	は	U.	S
			表5.6	境界条件						

	下部境界	上部境界
1JX 7J	(14 km)	(54 km)
Ох	f	р
N ₂ O	n ; 0.320 ppmv*	f
Total N	n;1.09 ppbv	n ; 9.8 0 ppbv
H ₂ O	n;4.83 ppmv*	n;4.83~13.0 ppmv
Total H	р	р
CH ₄	n; 1.70 ppmv*	f
СО	n;0.06 ppm v	р
CF ₂ Cl ₂	n;0.288 ppbv*	f
CFCl ₃	n;0.170 ppbv*	f
CH₃Cℓ	n ; 0.600 ppbv	f
CCl ₄	n ; 0.150 ppbv	f ·
Total Cl	n ; 0.150 ppbv	f (= 0)
	1	1

n:粒子濃度

p: 光化学平衡

f:フラックス

*は我々の観測値、その他の濃度はNAS1979による

- 199 -

図 5.4 d 塩素グループの高度分布 Σ Clは Cl+ClO+ClONO₂+HClを表わす。

気象研究所技術報告 第6号 1982

図 5.5 c N₂Oの高度分布 観測値:細い実線は Ehhalt(1978)の平均分布,破線は Fabian et al.(1979)の平均分布(44°N), 黒丸は筑 波での 1978-1981 の夏期の観測値。

図 5.5 d N₂Oの高度分布 観測値 A~I は Schmeltekopf et al. (1977) による。 A は Saskatchewan (Aug. 1975), C, Dは, Alaska (May. 1976), E-Hは Wyoming (May. 1976), I は Panama (April, 1976)の値。

図 5.5 e NOの高度分布

観測値: → は Ackerman et al. (1975)の May. 1974の値。△, ▲は Ridley et al. (1976)の16 July, 1974及び22 July, 1974の値。●は Drummond et al. (1977), 27 June 1976の値。○は Drummond and Jarnot (1978), 14 June 1975の値。

■一■は Ogawa et al. (1981), 29 May 1978, 40°Nの値。

— 204 —

気象研究所技術報告 第6号 1982

図 5.5 m CF₂Cl₂の高度分布 ハッチした部分は Ehhalt (1978) がまとめた観測値 (1974-1978年の間)の分布する範囲。

図 5.5 o ClO の高度分布 →→→ は Menzies (1979), 20 Sep. 1978 の観測値。 他は Anderson et al. (1980)の観測値。 △ (29 Luly 1076) ● (14 Luly 1077) ● (00 Cap. 107

△(28 July 1976), ■ (14 July 1977), ● (20 Sep. 1977), ▲(25 Oct. 1977), □(2 Dec. 1977), ○(8 Dec. 1976)で ある。

図 5.5 p HC1の高度分布 ハッチした部分は Ehhalt (1978) がまとめた観測値 (1974-1976年 の間)の分布する範囲。

Standard Atmosphere、1976のもので中緯度の平均的分布である。高度 20-40km で計算値の方が 観測値より大きく、両者の違いは高度 30km で最も大きく約50%である。これ以外の高度では両者 はだいたい一致している。

図5.5b-図5.5p に他の成分についての計算値と観測値を示す。前述のごとく拡散係数の高度分布 を決める場合、N₂O と CH₄ の高度分布を参考にしたが、N₂O と CH₄ の両者ともに満足させるこ とは難しく今回は N₂O の方を優先させた。その理由は、N₂O の光化学反応は光解離と O(¹D) と の反応のみであるが、CH₄ は O(¹D)、O₃、HO との反応があり複雑なためである。N₂O の観測値 は Schmeltekopf et al. (1977) の Wyoming でのもの (図5.5d) と Fabian et al. (1979) のもの (図5.5c)を参考にした。CH₄ の高度分布(図5.5j)については 25km 以下では Fabian et al. (1979) の観測値に合うが、25km 以上では Cumming and Lowe (1973) の値に一致する。25km 以上でも Fabian et al. (1979) の値に一致させるよう拡散係数を選ぶと N₂O の分布について計算値と観測 値が一致しなくなる。

 O_3 、 N_2O 、 CH_4 以外で観測値と計算値がだいたい一致するものとしては、NO(図5.5e)、HNO₃ (図5.5i)、CFCl₃(図5.5l)、CF₂Cl₂(図5.5m)等である。HNO₃の計算値は Stone(1978)の観 測値とだいたい一致するが、Lazrus and Gandrud(1974)、NAS 1979の観測値より全体的に大きい。

CFCl。の計算の下部条件として採用した我々の観測値は1978年と1979年の平均値であるから、 Ehhalt (1978) のまとめた観測値 (1974—1978) より大きい。このため高度 14—20km で計算値が 観測値より大きくなっている。

CF₂Cl₂に対しても同様のことが言える。即ち下部境界値として1979年と1981年の観測の平均値を 採用したため Ehhalt (1978)のまとめた観測値 (1974—1978)より 14—16km で計算値が大きく なっている。

次に観測と計算の傾向の合っているものとして、O(³P)(図5.5b)、NO₂(図5.5f)、HO(図5.5 g)等がある。これ等に共通することは計算値が観測値より全体的に小さいことである。

さらに観測と計算の一致の悪いものとして HCl (図5.5p)、ClO (図5.5o)、Cl (図5.5n)、CO (図 5.5k) 等がある。

HCl は 25km 以下では一致はよいが、25km 以上では計算値が小さくなる。

CIO については観測値が大きくばらついてはいるが 40-30km で観測値が大きい。しかし 25km 位では両者は一致する傾向にある。

Cl は観測例が少なく高度分布を比較することはできないが 40km 付近については、観測値が計 算値より大きい。

CO は観測と計算が大きく異なる。観測値は同じ装置・時期による値が大きく異なる(図5.5k、 A、B曲線)ので問題があると言える。 5.4.7 我々の観測との比較

我々は1978~1981の夏期 N₂O、CFCl₃、CF₂Cl₂ 等の高度分布を観測している。前節の計算は春分 であるので本節では観測時期に合わせて夏至での分布の計算を行った。

前節と異なる条件は

(1)時 期:夏至

(2) 拡散係数: (5.26) 式

(3)緯 度:36°N

拡散係数は次式を最適として選んだ。

case H

$K_z = a \cdot exp(-0.2608Z + 11.513)$; $0 \leq Z \leq 15$)	
$=a \cdot 2 \times 10^3$; $15 \le Z < 20$		
$= a \cdot \exp(0.4605(Z - 20) + 7.601)$;20≦Z<25		(
$=a \cdot \exp(0.07737(Z-25)+9.903)$; 25≦Z	· J second second	

5.26)

ただし

 K_z は拡散係数 (cm^2sec^{-1})、Z は高度 (km) とし以下に述べる計算では a=1.7とした。

図5.6a に拡散係数の高度分布を示す。図中に NAS 1979 Report のものを比較のために示す。図 5.6b ~ 図5.6e に計算と観測の比較を示す。

 N_2O 、CFCl₃、CF₂Cl₂ に関しては Fabian et al. (1979)の観測値を比較のため示した。これは 44°N で1977年6月2回、9月2回の平均値である。 N_2O は我々の値よりやや大きい(図5.6b)、 CFCl₃、CF₂Cl₂ は我々の値より少し小さい(図5.6c、図5.6d)。

図5.6e はオゾンの高度分布を示す。舘野で観測されたオゾンゾンデの値、反転観測の値も示して あるが我々の計算値は 30km 以下ではオゾンゾンデの値に近く、30km 以上では反転観測より少し 小さい値を示す。

 N_2O 、CFCl₃、CF₂Cl₂、O₃の我々の観測値は図5.6aの拡散係数を用いて一次元モデルにより矛 盾なく説明できると言える。ここで採用した拡散係数の特徴は下部成層圏で他のモデルに比べて小 さい値をとるということである。これは夏期であることを考えれば当然と言える。

図 5.6 b N2Oの高度分布 Fabian et al (1979)の観測値は図 5.5 c の ものと同じ。•は我々の観測値である。

5.6 c CFCl₃ の高度分布 • は我々の観測値(筑波, 1978-1979, 夏期)。 Fabian et al. (1979)の値は44°Nで1977 年 6 月 2 回, 9 月 2 回の平均値である。

Fabian et al. (1979) については前の図と同じ。

5.5 日 変 化

各成分の日変化は長期間にわたる変化を計算するための参考資料として必要である。また各成分 に対する拡散の効果を見積ることが出来る。

5.5.1 計算式

(5.1) 式で div ϕ_i を無視すると

$$\frac{\partial n_i}{\partial t} = Q_i(n_j) - L_i(n_j), n_i$$

(5.27)

となる。これを差分方程式に書き換えると、

$$n_{i}(z, t+\Delta t) = \frac{n_{i}(z, t) + Q(z, t)\Delta t}{1 + L(z, t)\Delta t}$$
(5.28)

となる。各成分について Q(z, t)、L(z, t) は 表5.1、表5.2 を参照して次のようになる。

(1) 酸素グループ

 $O(^{3}P), O(^{1}D)$ をそれぞれ O, O^{*} とする。

 O_3 : $Q = R_2 [O_2] [M] [O]$

$$L = J_3^* + R_3 [O] + AT$$

O:
$$Q = 2J_2^* [O_2] + J_3^* [O_3] + PT$$

 $L = 2R_1 [M] [O] + R_2 [O_2] [M] + R_3 [O_3] + BT$

ただし

 $J_{3}^{*} = J_{3} + J_{4} + J_{5} + J_{6} + J_{7}$ $J_{2}^{*} = J_{1} + J_{2}$ $AT = R_{20} [NO] + R_{24} [NO_{2}] + R_{41} [H]$ $+ R_{44} [HO] + R_{48} [HO_{2}] + R_{84} [C]$ $BT = R_{21} [NO] [M] + (R_{23} + R_{25} [M]) [NO_{2}] + R_{28} [N] [M] + R_{33} [HNO_{3}] + R_{47} [HO_{2}] + (R_{51} + R_{52}) [H_{2}O_{2}] + R_{61} [H_{2}] + R_{82} [CO] [M] + R_{85} [CIO] + R_{91} [HC]$ $PT = J_{8} [N_{2}O] + J_{10} [N_{2}O_{5}] + J_{13} [NO_{3}] + J_{14} [NO]$ $+ (J_{15} + J_{16}) [NO_{2}] + J_{20} [HO_{2}] + J_{25} [CO_{2}]$ $+ (R_{29} [O_{2}] + R_{31} [NO]) [N] + (R_{45} [HO] + R_{54} [H]) [HO]$

O* は光化学平衡にあるとして

 $O^* = (J_4 + J_5 + J_6 + J_7) [O_3] / (R_4 [O_2] + R_5 [N_2])$

で計算する。

窒素グループ (2) $Q = J_{14}$ [NO] N : $L = R_{28}$ [O] [M] + R_{29} [O₂] + R_{30} [O₃] + R_{3} [NO] + R_{39} [HO] $Q = 2R_{18} [O^*] [N_2O] + (J_{15} + J_{16}) [NO_2] + R_{23} [NO_2] [O]$ NO : $+J_{12}$ [NO₃] + (R₂₈ [O] [M] + R₂₉ [O₂] + R₃₀ [O₃] + R₃₉ [HO]) [N] $L = J_{14} + R_{20} [O_3] + R_{21} [O] [M] + R_{22} [NO_3] + R_{31} [N]$ $+R_{35}$ [HO₂] $+R_{36}$ [HO] [M] $Q = (2J_{10} + J_{11}) [N_2O_5] + J_{13} [NO_3] + J_{18} [HNO_3] + R_{20} [NO] [O_3]$ NO_2 : $+R_{21}$ [NO] [O] [M] $+2R_{22}$ [NO] [NO₃] $+R_{27}$ [N₂O₅] [M] $+R_{35}$ [NO] [HO₂] $L = J_{15} + J_{16} + R_{23} [O] + R_{24} [O_3] + R_{25} [O] [M]$ $+R_{26}$ [NO₃] [M] $+R_{38}$ [HO] [M] $Q = J_{11}[N_2O_5] + (R_{24}[O_3] + R_{25} [O] [M]) [NO_2]$ NO_3 : $+R_{27}$ [N₂O₅] [M] + (R₃₃ [O] + R₃₄ [HO]) [HNO₃] $L = J_{12} + J_{13} + R_{22}$ [NO] + R_{26} [NO₂] [M] N_2O_5 : $Q = R_{26} [NO_3] [NO_2] [M]$ $L = J_{10} + J_{11} + R_{27} [M] + R_{32} [H_2O]$ HNO₃: $Q = 2R_{32} [N_2O_5] [H_2O] + R_{38} [NO_2] [HO] [M]$ $L = J_{18} + R_{33}$ [O] + R_{34} [HO]

- 213 ---

(3) 水園	長グループ
H	$Q = J_{19} [H_2O] + J_{23} [CH_2O] + (R_{43} [HO] + R_{61} [H_2]) [O]$
	$+R_{62} [H_2] [O^*] + (R_{63} [H_2] + R_{83} [CO] + R_{39} [N]) [HO]$
	$+ J_{30} [HCl] + R_{88} [H_2] [Cl]$
	$L = R_{41} [O_3] + R_{42} [O_2] [M] + R_{54} [HO] + R_{55} [HO] [M]$
	$+ (R_{56} + R_{57}) [HO_2] + (R_{58} + R_{59}) [H_2O_2] + R_{60} [NO_2]$
HO :	$Q = (R_{41} [O_3] + 2R_{56} [HO_2] + R_{59} [H_2O_2] + R_{60} [NO_2] [H]$
	$+ (R_{61} [O] + R_{62} [O^*]) [H_2] + (J_{19} + 2R_{40} [O^*]) [H_2O]$
	$+(J_{20}+R_{47} [O]+R_{48} [O_3]+R_{35} [NO]) [HO_2]$
	$+(J_{21}+R_{51} [O]) [H_2O_2]+(J_{18}+R_{33} [O]) [HNO_3]$
	$+(R_{64} [O]+R_{65} [O^*]+R_{67} [O_3]) [CH_4]$
	$+ R_{97} [CH_3Cl] [O^*] + R_{70} [CH_3] [O_2]$
	$+(R_{78} [CH_2O]+R_{91} [HCl]) [O]$
	$L = R_{43} [O] + R_{44} [O_3] + 2(R_{45} + R_{46} [M]) [HO]$
	$+R_{49} \ [HO_2]+R_{53} \ [H_2O_2]+(R_{54}+R_{55} \ [M]) \ [H]+R_{63} \ [H_2]$
	$+R_{34}$ [HNO ₃] $+R_{36}$ [NO] [M] $+R_{38}$ [NO ₂] [M] $+R_{39}$ [N]
	$+R_{68} [CH_4]+R_{79} [CH_2O]+R_{83} [CO]+R_{90} [HC1]+R_{96} [CH_3C1]$
HO_2 :	$Q = R_{42} [H] [O_2] [M] + R_{44} [HO] [O_3] + R_{51} [H_2O_2] [O] + R_{53} [H_2O_2] [HO]$
	$+R_{58}$ [H] $[H_2O_2]+R_{75}$ [CH ₃ O] $[O_2]+R_{81}$ [CHO] $[O_2]$
	$L = J_{20} + R_{47} [O] + R_{48} [O_3] + R_{49} [HO] + 2R_{50} [HO_2]$
	$+ (R_{56} + R_{57}) [H] + R_{72} [CH_{3}O_{2}] + R_{80} [CH_{2}O] + R_{89} [C1]$
	$+R_{35}$ [NO]
H_2O_2 :	$Q = R_{46} [HO]^{2} [M] + R_{50} [HO_{2}]^{2} + R_{80} [CH_{2}O] [HO_{2}]$
· .	$L = J_{21} + (R_{51} + R_{52}) [O] + R_{53} [HO] + (R_{58} + R_{59}) [H]$
(4)	
(4) × 2	$\times \mathcal{V}\mathcal{I}\mathcal{I}\mathcal{I} = \mathcal{I}$
CH_3 .	$Q = (R_{64} [O] + R_{65} [O^*] + R_{67} [O_3] + R_{68} [HO] + R_{87} [CI]) [CH_4]$
	$+ J_{28} [CH_3CI]$
CH O ·	$\mathbf{L} = \mathbf{R}_{69} \begin{bmatrix} \mathbf{O}_2 \end{bmatrix} \begin{bmatrix} \mathbf{M} \end{bmatrix} + \mathbf{R}_{70} \begin{bmatrix} \mathbf{O}_2 \end{bmatrix}$
$C\Pi_3 O_2$.	$Q = R_{69} [CH_3] [O_2] [M]$
СЦОУ	$\mathbf{L} - \mathbf{K}_{71} [\mathrm{NO}] + \mathbf{K}_{72} [\mathrm{HO}_2] + (\mathbf{K}_{73} + \mathbf{K}_{74}) [\mathrm{CH}_3\mathrm{O}_2]$
Сп₃О.	$\mathbf{Q} - \mathbf{K}_{71} \left[\mathbf{CH}_3 \mathbf{O}_2 \right] \left[\mathbf{NO} \right] + 2\mathbf{K}_{73} \left[\mathbf{CH}_3 \mathbf{O}_2 \right]^2$
	$L = K_{75} [O_2] + K_{76} [NO] + R_{77} [NO_2]$
	214

CH₂O: $Q = R_{66} [CH_4] [O^*] + R_{70} [CH_3] [O_2] + R_{75} [CH_3O] [O_2]$ $L = J_{23} + J_{24} + R_{78}$ [O] + R_{79} [HO] + R_{80} [HO₂] $\mathbf{Q}\!=\!(\mathbf{J_{23}}\!+\!\mathbf{R_{78}}\ [\mathbf{O}]\!+\!\mathbf{R_{79}}\ [\mathbf{HO}]\!+\!\mathbf{R_{80}}\ [\mathbf{HO_2}])\ [\mathbf{CH_2O}]$ CHO: $L = R_{81} [O_2]$ CO : $Q = J_{25} [CO_2] + J_{24} [CH_2O] + R_{81} [CHO] [O_2]$ $L = R_{82}$ [O] [M] + R_{83} [HO] 塩素グループ Cl : $Q = J_{26} [CF_2Cl_2] + J_{27} [CFCl_3] + J_{28} [CH_3Cl]$ $+J_{29}$ [CCl₄] $+J_{30}$ [HCl] $+R_{85}$ [ClO] [O] $+R_{86}$ [ClO] [NO] $+R_{90}$ [HCl] [HO] $+R_{91}$ [HCl] [O] $L = R_{84} [O_3] + R_{87} [CH_4] + R_{88} [H_2] + R_{89} [HO_2]$ CIO : $Q = R_{84}$ [Cl] [O₃] + R_{93} [ClONO₂] [O] + R_{98} [CCl₄] [O^{*}] $+R_{94}$ [CF₂Cl₂] [O^{*}] + R₉₅ [CFCl₃] [O^{*}] + J₃₁ [ClONO₂] $L = R_{85} [O] + R_{86} [NO] + R_{92} [NO_2] [M]$ $CIONO_2$: $Q = R_{92}$ [NO₂] [CIO] [M] $L = J_{31} + R_{93}$ [O] HCl : $Q = (R_{87} [CH_4] + R_{88} [H_2] + R_{89} [HO_2]) [Cl]$

 $L = J_{30} + R_{90}$ [HO] + R_{91} [O]

その他

上記以外の成分 O_2 、 N_2 、 N_2O 、 H_2O 、 CH_4 、 CO_2 、 CF_2Cl_2 、 $CFCl_3$ 、 CCl_4 、 CH_3Cl の濃度は一定とする。

5.5.2 結 果

図5.7a~図5.7wに3高度即ち成層圏下部(22km)、中部(38km)、上部(54km)での各成分の 35°N、春分での日変化を示す。

日変化は次の4つの型に分類できる。

(a) 夜間減少するもの

 $O(^{3}P)$, $O(^{1}D)$, N, NO, H, HO, HO₂, CH₃, CHO, Cl

CH₃O₂ (45km 以上)、CH₃O (45km 以上)、

CH2O (45km以下)、ClO (40km 以下)

(b) 夜間増加するもの

 NO_2 , NO_3 , N_2O_5 , $ClONO_2$,

- 215 -

O₃ (40km 以上)、HNO₃ (45km 以上)、CH₂O (55km 以上)、

ClO (45km 以上)

(c) 日没・日出時に減少するもの

CH₃O₂ (40km 以下)、CH₃O (40km 以下)

(d) ほとんど変化しないもの

CO, HCl

O₃ (30km 以下)、HNO₃ (40km 以下)、H₂O₂ (40km 以下)

各グループの最終生成物 HNO₃、HCl、CO 等は成層圏中部・下部では日変化がほとんどみられない。(メタングループの最終生成物は CO₂ であるがその前段階の CO も安定で最終生成物とみなしてもよい。O₃ についても同様のことが言える。)

次に拡散の効果がどの程度かを表5.7 に示した。光化学一拡散平衡にある状態から出発して、拡 散が無くなったと仮定して南中時から南中時の間の濃度変化を示している。

N、NO、NO₂、Cl、ClO、ClONO₂、HCl等は成層圏中部・下部でかなりの減少を示す。このこ とは、これ等の成分の源がより上層にあり拡散がなくなると急激に減少することを示している。 HO_2, H_2O_2 等は成層圏中部・下部で増加するがこのことは、これ等の源がこの層に存在することを 示す。

成層圏中部・下部で CH_3O_2 、 CH_3O が増加し CH_2O 、CHO が減少するのは、これ等の成分の濃度を決定する NO、 NO_2 、 HO_2 等の変化の影響による。

成層圏上部では NO_2 、 NO_3 、 N_2O_5 、 $CIONO_2$ 、HCl 等が増加しこれ等の源が存在することを示す。

図 5.7a オゾンの日変化

-216 -

-217 -

- 218 -

- 219 -

- 220 -

-221 -

` 表 5.7	拡散を無視したときの各成分の変化
---------	------------------

	ф Д	変	化 率 (%)	/日)
• •	и х Л	22 km	38 km	54 km
	N	- 32	- 20	
	NO	- 32	- 22	
	NO ₂	- 32	- 17	+ 6
	NO ₃			+ 10
	$N_2 O_5$			+ 38
	HNO3		- 34	
	Н		+ 7	+ 6
	HO ₂	+ 12	+ 7	
	H_2O_2	+ 36		
	CH ₃ O ₂	+ 35	+ 30	
	CH ₃ O	+ 83	+ 68	
	CH ₂ O	- 24		
	СНО	- 25		
	C1	- 41	- 49	
	CIO	- 14	- 43	
	CIO NO ₂	- 37	- 57	+ 7
	HCl		- 12	+ 51

変化率が±5%/日より大きいもののみを示した。

CFCl₃、CF₂Cl₂のオゾンに対する影響

表 5.8

5.6 オゾンに対するフレオン

の影響 ゾン減少率 (%) 度 5.4.5節の計算式と 5.4.6節 局 $CFCl_3, CF_2 Cl_2$ (km) CFCl₃のみ CF₂ Cl₂のみ で採用したのと同じ条件で 両者を含む CFCl₃ と CF₂Cl₂ とオゾン分布 55 - 0.34 - 0.59 - 0.93 に対する影響の見積りを行っ 51 - 0.67 -1.13- 1.76 た。 47 - 1.44 - 2. 32 - 3.68 結果を 表5.8 に示す。 高度 43 - 2.38 - 3.80 - 6.11 55-15km の範囲で CFCl_a と 39 - 1.81 - 2.71 - 4.43 CF₂Cl₂ のためにオゾン濃度が 35 - 0.70 - 0.93 - 1.63 どの程度変化しているかを示し 31 - 0.16 - 0.09 - 0.26 た。影響の最も大きい高度は43 27 - 0.07 +0.04- 0.04 km で約6%の減少を与える。 23 - 0.03 + 0.05+ 0.0323km 以下ではわずかながらオ ゾン濃度が増加している。この 19 + 0.09+ 0.15+0.23理由は上層のオゾンが減少した 15 +0.07+ 0.13+0.23ため下層ではオゾンを生成する 15km以下 0 0 0 太陽紫外線が増加したためであ 層 - 0.29 全 - 0.26 ~ 0.55 る。

15km 以下の対流圏での影響を無視すると、オゾン全量に対して約0.6%の減少をもたらしている ことが分る。この値は現時点でのオゾンの減少を示すもので将来どのようになるかは CFCl₃、CF₂ Cl₂ の大気中の濃度変化により決まる。

References

Ackerman, M., 1971 Ultraviolet solar radiation related to mesospheric processes, in Mesospheric Models and Related Experiments, G. Fiocco, ed., D. Reidel Publ. Co., 149-159.

Ackerman, M. and C. Muller, 1973 : Stratospheric methane and nitrogen dioxide from infrared spectra. Pure and Applied Geophysics, **106-108**, 1325-1335.

- Ackerman, M., J. C. Fontanella, D. Frimout, A. Girard, N. Louisnard and C. Muller, 1975 : Simultaneous measurements of NO and NO₂ in the stratosphere. Planet. Space Sci., 23, 651-660.
- Anderson, J. G., 1975 : The absolute concentration of O(³P) in the earht's atmosphere. Geophys. Res. Lett., **2**, 231-234.

- Anderson, J. G., J. J. Margitan and D. H. Stedman, 1977 Atomic chlorine and the chlorine monoxide radical in the stratosphere Three in situ observations. Science, **198**, 501-503.
- Anderson, J. G., H. J. Grassl, R. E. Shetter and J. J. Margitan, 1980 : Stratospheric free chlorine measured by balloon-borme in situ resonance fluorescence. J. Geophys. Res., 85, 2869 -2887.
- Anderson, L. G., 1976 : Atmospheric chemical data survey, Rev. Geophys. Space Phys. 14, 151 -171.
- Arvesen, J. C., R. N. Griffin, Jr. and B. D. Pearson, Jr., 1969 : Determination of extra terrestrial solar spectral irradiance from a research aircraft. Appl. Opt., 8, 2215-2232.
- Bass, A. M., A. E. Ledford and A. H. Laufer, 1976 : Extinction coefficients of NO_2 and N_2O_4 . J. Res. N. B. S., 80A, 143-166.
- Bates, D. R. and P. B. Hays, 1967 : Atmospheric nitrous oxide. Planet. Space Sci., 15, 189-197.
- Brasseur, G. and P. C. Simon, 1981 : Stratospheric chemical and thermal response to long-term variability in solar UV irradiance. J Geophys. Res., **86**, 7343-7368.
- Brewer, A. W. and A. W. Wilson, 1965 Measurements of solar ultraviolet radiation in the stratosphere. Quart. J. R. Met. Soc., 91, 452-461.
- Cook, G. R. and P. H. Metzger, 1964 : Photoionization and absorption cross sections of O_2 and N_2 in the 600-to 1000-Å region. J. Chem. Phys., 41, 321-336.
- Crutzen, P. J., I. A. Isaksen and J. R. McAfee, 1978 : The impact of the chloro-carbon industry on the ozone layer. J. Geophys. Res., 83, 345-363.
- Cumming, C. and R. P. Lowe, 1973 : Balloon-borne spectroscopic measurement of stratospheric methane. J. Geophys. Res., 78, 5259-5264.
- Detwiler, C. R., D. L. Garrett, J. D. Purcell and R. Tousey, 1961 : The intensity distribution in the ultraviolet solar spectrum. Ann. Géophys., 17, 263-272.
- Ditchburn, R. W. and P. A. Young, 1962 : The absorption of molecular oxygen between 1850 and 2500 Å. J. Atmos. Terr. Phys., 24, 127-139.
- Drummond, J. W., J. M. Rosen and D. J. Hofmann, 1977 : Balloon-borne chmiluminescent measurement of NO to 45 km. Nature, **265**, 319-320.
- Drummond, J. R. and R. F. Jarnot, 1978 : Infrared measurements of stratospheric composition II. Simultaneous NO and NO₂ measurements. Proc. R. Soc. London. A, **364**, 237-254.
- Ehhalt, D. H., 1978 : In situ measumements of stratospheric trace constituents. Rev. Geophys. Space Phys., 16, 217-224.

Ehhalt, D. H. and L. E. Heidt, 1973 : The concentration of molecular H_2 and CH_4 in the

stratosphere. Pure and Applied Geophysics, 106-108, 1352-1360.

- Fabian, P., R. Borchers, K. H. Weiler, U. Schmidt, A. Volz, D. H. Ehhalt, W. Seiler and F. Müller, 1979 : Simultaneously measured vertical profiles of H₂, CH₄, CO, N₂O, CFCl₃ and CF₂Cl₂ in the middle-latitude stratosphere and troposphere. J. Geophys. Res., 84, 3149 -3154.
- Fredrick, J. E. and R. D. Hudson, 1979 : Predissociation of nitric oxide in the mesosphere and stratosphere. J. Atmos. Sci., **36**, 737-745.
- Hampson, R. F. ed., 1972 : Chemical kinetics data survey II. Photochemical and rate data for fifteen gas phase reactions of interest for stratospheric chemistry. N. B. S. Report 10828, U. S. Department of Commerce.
- Hampson, R. F. ed., 1973 : Chemical kinetics data survey VI. Photochemical and rate data for twelve gas phase reactions of interest for atmospheric chemistry. NBSIR-73-207. N. B.
 S. Washington D. C.
- Hampson R. F., 1980 : Chemical kinetic and photochemical data sheets for atmospheric reactions. DOT-FA79WAI-005. U. S. Department of Transportation. Washington D. C.
- Handbook of Geophysics, U. S. Air Force Geophysics Diretorate. The Macmillan Co. N. Y. 1960.
- Hinteregger, H. E., 1970 : The extreme ultraviolet solar spectrum and its variation during a solar cycle. Ann. Geophys., 26, 547-554.
- Hudson, R. D. ed. 1977 : Chlorofluoromethanes and the stratosphere. Ref. Publ., 1010, NASA Goddard Space Flight Center, Greenbelt, Md.
- Hudson, R. D. and S. H. Mahle, 1972 : Photodissociation rates of molecular oxygen in the mesosphere and lower thermosphere. J. Geophys. Res., 77, 2902-2914.
- Huffman, R. E., J. C. Larrabee and Y. Tanaka, 1964 : Absorption coefficients of oxygen in 1060 -580 Å wavelength region. J. Chem. Phys., 40, 356-365.
- Hunt, B. G., 1966 : The need for a modified photochemical theory of the ozonosphere. J. Atmos. Sci., 23, 88-95.
- Inn, E. C. Y., K. Watanabe and M. Zelikoff, 1953 Absorption coefficients of gases in the vacuum ultraviolet, III. CO₂. J. Chem. Phys. 21, 1648-1650.
- Jarmain, W. R. and R. W. Nicholls, 1967 : A theoretical study of the v"=0,1,2 progressions of bands and adjoining photodissociation continua of the O₂ Herzberg I system. Proc. Phys. Soc., 90, 545-553.
- Jones, A. Vallance and R. L. Gattinger, 1963 : The seasonal variation and excitation mecha-

nisms of the $1.59\mu^{1}\Delta g^{-3}\Sigma_{\overline{g}}$ twilight airglow bands. Plant. Space Sci., 11, 961–974.

- Kerr, J. B. and C. T. McElroy, 1976 : Measurement of stratospheric nitrogen dioxide from AES stratospheric balloon program. Atmosphere, 14, 166–171.
- Lazrus, A. L. and B. W. Gandrud, 1974 : Progress report on distribution of stratospheric nitric acid. Proc. III Conference on CIAP. U. S. Department of Transportation, 161-167.

Leighton, P. A., 1961 : Photochemistry of Air Pollution, Academic Press, p. 54.

- Menzies, R. T., 1979 : Remote measurement of CIO in the stratosphere. Geophys. Res. Lett., 6, 151-154.
- Mihelcic, D., D. H. Ehhalt, J. Klomfab, G. F. Kulessa, U. Schmidt and M. Trainer, 1978a Measurements of free radicals in the atmosphere by matrix isolation and electron paramagnetic resonance. Ber. Bunsenges. Phys. Chem., 82, 16-19.
- Mihecic, D., D. H. Ehhalt, G. F. Kulessa, J. Klomfab, M. Trainer, U. Schmidt and H. Röhrs, 1978b : Measurements of free radicals in the atmosphere by matrix isolation and paramagnetic resonance. Pure and Applied Geophysics, 116, 530-536.
- Muramatsu, H., 1975 : Dissociation rates of oxygen and ozone molecules in the stratosphere and mesosphere. Pap. in Meteor. Geophys. 26, 219-264.
- Muramatsu, H., 1981 : Water vapor budget in the lower stratosphere over Japan. Pap. in Meteor. Geophys., **32**, 1-17.
- Murcray, D. G., A. Goldman, W. J. Williams, F. H. Murcray, J. N. Brooks, J. Van Allen, R. N. Stocker, J. J. Kosters, D. B. Barker and D. E. Snider, 1974 Recent results of strato-spheric trace-gas measurements from balloon-borne spectrometers. Proc. III CIAP Conference, U. S. Department of Trans-portation.
- NAS, 1979 : Stratospheric ozone depletion by halocarbons : Chemistry and Transport. National Academy of Science, Washington, D. C.
- Noxon, J. F. 1961 : Observation of $(b\Sigma_g^+-a^1\Delta_g)$ transition in O₂. Can. J. Phys. **39**, 1110–1119.
- Noxon, J. F., 1970 : Optical emission from O(¹D) and O₂(b¹Σ_g) in the ultraviolet photolysis of O₂ and CO₂. J. Chem. Phys., **52**, 1852–1873.
- Ogawa, T., K. Shibasaki and K. Suzuki, 1981 : Balloon observation of the stratospheric NO₂ profile by visble absorption spectroscopy. J. Met. Soc. Japan. **59**, 405-419.
- Parkinson, W.H. and E.M. Reeves, 1969 : Measurements in the solar spectrum between 1400 and 1875 Å with a rocket-borne spectrometer. Solar Phys. 10, 342-347.
- Ridley, B. A., J. T. Bruim, H. I. Schiff and J.C. McConnell, 1976 : Altitude profile and sunset decay measurements of stratospheric nitric oxide. Atmosphere, 14, 180-188.
- Robbins, D. F., 1977 : Photodissociation of methyl chloride and methyl bromide in the atmosphere. Geophys. Res. Lett., **3**, 213-216.
- Schmeltekopf, A. L., D. L. Albritton, P. J. Crutzen, P. D. Golden, W. J. Harrop, W. R. Henderson, J. R. McAfee, M. McFarland, H. I. Schiff, T. L. Thompson, D. J. Hofmann and N. T. Kjome, 1977 : Atmospheric nitrous oxdie altitude profiles at various latitudes. J. Atmos. Sci., 34, 729-736.
- Shardanand and A. D. P. Rao, 1977 Collision-induced absorption of O₂ in the Herzberg continuum. J. Quant. Spectrosc. Radiat. Transfer. 17, 433-439.
- Shimazaki, T. and T. Ogawa, 1974 : On the theoretical model of vertical distributions of minor neutral constituents concentrations in the stratosphere. Tech. Memc. ERL OD-20, NOAA, Boulder, Colo.
- Stone, N. W. B., 1978 Expanding field of infrared Fourier transform spectroscopy in the laboratory, industry, and the environment. Appl. Opt., 17, 1332-1341.
- Thompson, B. A., P. Harteck and R. R. Reeves, Jr., 1963 : Ultraviolet absorption coefficients of CO₂, CO, O₂, H₂O, N₂O, NH₃, NO, SO₂ and CH₄ between 1850 and 4000 Å. J. Geophys. Res.,68, 6431-6436.
- U. S. Standard Atmosphere, 1976 U. S. Govt. Printing Office, Washigton, DC.
- Watanabe, K., 1958 : Ultraviolet absorption processes in the upper atmosphere. Adv. in Geophys., **5**, 153-221.
- Watanabe, K., E. C. Y. Inn and M. Zelikoff, 1953 Absorption coefficients of oxygen in the vacuum ultraviolet. J. Chem. Phys., 21, 1026-1030.
- Watson, R. T., 1977 : Chemical kinetics data survey VIII. Rate constants of ClO_x of atmospheric interest. U. S. Dept. Commerce, NBSIR-74-516, 45pp.
- Widing, K. G., J. D. Purcell and G. D. Sanlin, 1970 : The uv continuum 1450-2100 Å and the problem of the solar temperature minimun. Solar Phys., **12**, 52-62.
- Zelikoff, M., K. Watanabe and E. C. Y. Inn, 1953 : Absorption coefficients of gases in the vacuum ultraviolet. Part II. Nitrous oxide. J. Chem. Phys., 21, 1643-1647.

-227 -