TECHNICAL REPORTS OF THE METEOROLOGICAL RESEARCH INSTITUTE No.6

OBSERVATIONS OF THE ATMOSPHERIC CONSTITUENTS RELATED TO THE STRATOSPHERIC **OZO**NE DEPLETION AND THE ULTRAVIOLET RADIATION

By

UPPER ATMOSPHERE PHYSICS RESEARCH DIVISION MRI

気象研究所技術報告

第6号

成層圏オゾンの破壊につながる大気成分

および紫外日射の観測

気象研究所高層物理研究部

気象研究所

METEOROLOGICAL RESEARCH INSTITUTE, JAPAN NOVEMBER 1982

Meteorological Research Institute

Established in 1946

Director : Dr. S. Matsumoto

Forecast Research Division	Head:	Dr.	Α.	Katayama
Typhoon Research Division	Head:	Dr.	М.	Aihara
Physical Meteorology Research Division	Head:	Dr.	Τ.	0kabayashi
Applied Meteorology Research Division	Head:	Mr.	N.	Murayama
Meterological Satellite Research Division	Head:	Dr.	К.	Naito
Seismology and Volcanology Research Division	Head:	Dr.	н.	Watanabe
Oceanographical Research Division	Head:	Mr.	т.	Tada
Upper Atomoshpere Physical Research Division	Head:	Dr.	Μ.	Kano
Geochemical Research Division	Head:	Dr.	Μ.	Ōwada

1-1, Nagamine, Yatabe-Machi, Tsukuba-Gun, Ibaraki-Ken 305, Japan

Technical Reports of the Meteorological Research Institute

Editor-in-chief : Dr. T. Okabayashi

Editors :	Ms. T.	Akiyama	Mr.	J.	Shiino	Dr.	Υ.	Sasyo
	Dr. S.	Arakawa	Mr.	I.	Akita	Dr.	М.	Seino
	Dr. M.	Endo	Dr.	М.	Hirota	Dr.	Υ.	Sugimura

Managing Editors: K. Nishida, H. Nishimura

Technical Reports of the Meteorological Research Institute

has been issued at irregular intervals by the Meteorological Research Institute since 1978 as a medium for the publication of survey articles, technical reports, data reports and review articles on meteorology, oceanography, seismology and related geosciences, contributed by the members of the MRI. オゾン層は太陽からの有害な紫外線が地上に到達するのを阻止し,また気候の変動に重要な役 割を果している。近年人間活動の結果成層圏にクロロフルオロメタン,窒素酸化物などの汚染物 質が蓄積されつつありこのためオゾン層が破壊されて人間をはじめとする生物界の生存環境がそ こなわれ,また気候にも非可逆的な変化の起こることが懸念されている。

成層圏オゾンの破壊につながる物質についての観測は主として米国・ヨーロッパにおいて1970 年代中葉以後やっと本格化したものであり、オゾンの破壊に関連する物質すべてが観測されては いない。

このような状況のもとで気象研究所では高層物理研究部が中心となって,国立機関公害防止等 試験研究費により特別研究「成層圏オゾンの破壊につながる大気圏内のハロゲン化炭化水素等汚 染物質の分布と挙動に関する研究」を昭和52年~55年の4ヶ年実施した。

上記の研究の目的は対流圏・成層圏内における各種汚染物質の濃度を測定しその鉛直方向,水 平方向の分布と変動を把握し,さらにこれ等資料を用いて汚染物質がオゾン層に与える影響を明 らかにすることである。

本報告は上記特別研究とこれに関連をもつ経常研究の一部の研究成果をまとめたものである。

なお、オゾン層の破壊に関連する研究は重要かつ長期の観測が必要なため、昭和57年度から 4ヶ年計画で実施される特別研究「中層大気の研究」でこの成果をひきつぎ研究を発展させる計 画である。

昭和57年5月

気象研究所 高層物理研究部長 嘉納宗靖

成層圏オゾンの破壊につながる大気成分及び紫外日射の観測

目 次

序	
概要(和文)	1
アブストラクト(英文)	3
第1章 ガスクロマトグラフ法による対流圏および成層圏微量化学成分の分布の測定	
1.1 はじめに	5
1.2 実 験	5
1.2.1 空気の採集	5
1.2.1.1 飛行機による空気の採集	5
1.2.1.2 気球による空気の採集	7
1.2.2 ガスクロマトグラフ測定	17
1.2.3 参照用ガス	19
1.2.4 測定の比較	20
1.3 結果と議論	22
1.3.1 対流圏における CF ₂ Cl ₂ , CF Cl ₃ および N ₂ O の分布	22
1.3.2 成層圏における CF 2Cl 2, CF Cl 3 および N 2O の分布	33
1.4 まとめ	39
第2章 赤外分光法による微量成分の観測	

2	2.1	はじ	めに		43
2	2,2	装	置		43
	2.2	2.1	赤外分	光装置	43
	2.2	2.2	較	正	43
2	2.3	観	測		51
	2.3	3.1	航空機	観測	51
	2.3	3.2	測定ス	ペクトル	56
4	2.4	合瓦	戊ス.ペク	トル	59
	2.	4.1	Ray	Tracing	59
	2.	4.2	Line	by Line 計算 ······	64

	07
2.5 解析方法	67
2.6 結 果	71
2.7 むすび	72
第3章 エーロゾルの観測	
3.1 はじめに	75
3.2 対流圏エーロゾルの測定(航空機による観測)	75
3.2.1 測 定	75
3.2.2 7 km までの高度分布	78
3.2.3 圏界面付近のエーロゾル分布 ······	82
3.3 成層圏エーロゾルの測定(気球観測用小粒子ゾンデ)	87
3.3.1 測定器の概要	87
3.3.2 地上実験	87
3.3.3 飛揚実験	88
3.4 まとめ	91
第4章 成層圏と対流圏の交換過程の観測	
4.1 はじめに	93
4.2 測定要素・測定器	93
4.9 年前心容率1	04

4.3	観測資料	
4.4	解析例	

第5章	数値モデル
5.1	モデルの概要
5.2	基礎資料
5.3	基礎方程式
5.4	定常状態
5.4	1.1 方程式
5.4	1.2 境界条件
5.4	1.3 解き方 ·······189
5.4	1.4 計算フロー
5.4	1.5 計算式
5.4	l.6 結 果
5.4	1.7 我々の観測との比較

5.	5	E	Ē	変	化	••••	•••••	•••••	•••••	•••••	2	212
	5.	5.1	l	計	算式		•••••	•••••		••••	2	212
	5.	5.2	2	結	果		•••••	••••••		•••••		215
5.	6	オ	トソ	ドン	に対	\$	るフ	レオ	ンの景	影響	2	223

第6章 紫外日射の測定 229 6.1 はじめに 229 6.2 測 定 230 6.3 測定結果 231 6.4 むすび 242

成層圏オゾンの破壊につながる大気成分 及び紫外日射の観測

気象研究所高層物理研究部

概 要

人間活動の結果大気中に放出される窒素酸化物やクロロフルオロメタンの増加のため成層圏オゾ ンの破壊が懸念されている。これ等の物質は赤外放射による気温の変化をもたらすのみならず成層 圏オゾンを破壊する。成層圏オゾンの変動は地表に到達する太陽紫外線の強度の変動や成層圏内の 気温の変動により地表の気候の変動をひき起す可能性がある。

本報告は窒素酸化物,クロロフルオロメタン,紫外線等の大気中の分布を観測し,特に大気オゾ ンに与える影響を検討したものである。

地表から高度 28km までの CF_2Cl_2 , $CFCl_3$, N_2O の高度分布の観測を行った。対流圏内の観測 には航空機を用い容積 $0.3 \sim 1.0 \ell$ のステンレス製シリンダに空気試料を採取し実験室でガスクロマ トグラフにより分析を行った, 観測の範囲は東北, 関東, 関西地方である。成層圏については容積 約5 ℓ のステンレス容器を真空にし気球で上昇させ指定された高度で空気試料を採取し地上に落下 後回収しガスクロマトグラフによる分析を行った。観測は関東上空で夏期に実施した。

対流圏内の観測では、1980年12月から1981年3月までの期間の平均体積混合比は、 CF_2Cl_2 が0.294 ppbv、 $CFCl_3$ が0.184 ppbv、 N_2O が0.328 ppmvであった。経年変化をみると、1978年10月から1981 年3月までの期間に CF_2Cl_2 は4%、 $CFCl_3$ は14%増加し、 N_2O はだいたい一定値であった。

成層圏内の CF_2Cl_2 , $CFCl_3$, N_2O の高度分布の観測値は、光化学理論によるモデル計算とだいた い一致してそれ等の混合比が高度とともに減少しているという結果が得られた。

成層圏内の CF₂Cl₂, CFCl₃, HNO₃, N₂O, CH₄ の鉛直積分量を太陽を光源とする赤外線吸収ス ペクトルの測定から求めた。それには赤外干渉分光装置を航空機に搭載し日没または日出時の太陽 赤外スペクトル測定を利用した。太陽赤外スペクトルの解析には赤外吸収帯をもつ気体成分の高度 分布を含むモデル大気に対する ray-tracing 法による line-by-line の計算を行ない測定されたスペ クトルと照合し光路中の CF₂Cl₂, CFCl₃ 等の混合比を決定した。

測定結果の一例をあげると高度 7.6km から測定された CF_2Cl_2 , $CFCl_3$ の対流圏上部一成層圏下 部の平均体積混合比はそれぞれ 0.280ppbv 及び 0.183ppbv であった。 HNO_3 は高度 18km から 28 km の間で混合比が一定とすると 9.06ppbv が得られた。 N_2O 及び CH_4 の測定には波数それぞれ 2570cm⁻¹及び 6004cm⁻¹の吸収帯が解折に有効であることが分った。

- 1 -

成層圏の光化学に与えるエーロゾルの効果を明らかにすることと,成層圏一対流圏間の物質の交換過程を明らかにする目的で対流圏から成層圏に到るエーロゾルの分布の観測を行った。

対流圏下部ではミー粒子とフレオンの分布の相関,対流圏上部一成層圏下部では圏界面との関連 について解析を行った。エイトケン粒子の分布を測定するためのゾンデの開発と飛揚実験を行ない 高度約8km までの粒子濃度の分布が得られた。

対流圏と成層圏の間での物質の交換過程を明らかにするため極前面及びこれにともなうジェット 流の近傍でのオゾン,水蒸気, CF_2Cl_2 , $CFCl_3$ 等の分布の観測を行った。ジェット流の近傍ではそ の軸の北側(低気圧側)から南側(高気圧側)へ軸の下を通って成層圏から対流園へ流入するうす い層(安定層)が存在し,その層内ではオゾン濃度が大きく,水蒸気, CF_2Cl_2 , $CFCl_3$ の濃度は小 さい。この層は一般に5km くらいの高度までははっきり認められるが,高度2km くらいで認め られる例があった。

鉛直1次元光化学拡散モデルを作りオゾンに関連する微量成分およびオゾンの日変化,高度分布の計算を行った。

モデルの計算は 35°N,春分という条件で行った。現在までに報告されている諸成分の高度分布と モデル計算によるものを比較してみて、両者の間の一致の良いものとしては、 O_3 , N_2O , CH_4 , NO, HNO_3 , CF_2Cl_2 , $CFCl_3$ 等であった。両者の一致がやや悪いものとしては、 $O(^3P)$, NO_2 , HO等が あり、一致の良くないものは、HCl, ClO, Cl, CO等であった。

成層圏オゾンに対する CF₂Cl₂, CFCl₃ の影響はオゾン全量に対して,現在0.6%の減少を与えて おりまた影響の最も大きい高度は約43km でオゾン濃度の減少は約6%であるという計算結果が得 られた。

地上に到達する太陽紫外日射の直達成分,天空散乱成分および全天日射を測定するため回折格子 と石英プリズムを組合せた複式分光器による日射計を作製し観測を行った。

オゾン全量の観測を参考にして直達日射成分に対する消散係数のオゾン成分とエーロゾル成分を 分離して求められることが分った。また紫外域における天空散乱成分の全天日射に対する割合は非 常に大きく,紫外日射量の長期監視のためには直達成分の測定だけでは不十分で全天日射の測定が 必要であることが分った。

- 2 -

Obsevation of the Atmospheric Constituents Related to the Stratospheric Ozone Depletion and the Ultraviolet Radiation

Upper Atmosphere Physics Research Division Meteorological Reserach Institute

Abstract

There is a potential threat to the ozone shield for the solar ultraviolet radiation due to anthropogenic emissions of nitrogen oxides and chlorofluoromethanes. Changes in the stratospheric ozone concentration can affect the ultraviolet radiation at the ground and the temperature in the lower stratosphere with corresponding changes in the earth' s weather and climate. The purpose of the present study is to make measurements of the relevant species and the ultraviolet radiation to make clear the effects of anthropogenic emissions on the atmosphere.

Air samples were collected over Japan, and analysed for CF_2Cl_2 , $CFCl_3$ and N_2O by a GC -ECD method. Mean mixing ratios in the troposphere were 0.29₄ ppbv for CF_2Cl_2 , 0.18₄ ppbv for $CFCl_3$, and 0.32₈ ppmv for N_2O between December 1980 and March 1981. It was also observed that the mean mixing ratios of CF_2Cl_2 and $CFCl_3$ increased by 4% and 14% respectively from October 1978 to March 1981. The mixing ratios of CF_2Cl_2 , $CFCl_3$ and N_2O in the stratosphere decreased with increasing altitude in accordance with the photochemical theory.

The atmospheric absorption spectra of CF_2Cl_2 , $CFCl_3$, HNO_3 , N_2O and CH_4 were observed since October 1979, using the air-borne Fourier transform infrared spectrometer. The measurements of black-body radiation were used to obtain an instrumental calibration function and to correct the spectra. The synthetic spectra were obtained from ray-tracing through the model atmosphere and the line-by-line calculations to compare with the observed spectra.

The mean mixing ratios were 0.280 ppbv for CF_2Cl_2 and 0.183 ppbv for $CFCl_3$ assuming the uniform mixing along the optical path. Assuming the uniform mixing between the altitudes of 18 km and 28 km, the mixing ratio of HNO₃ was estimated to be 9.06 ppbv. The measured transmittances at 2570 cm⁻¹(N₂O) and 6004 cm⁻¹(CH₄) absorption bands were also analysed using the model distributions of N₂O and CH₄.

Aerosol obseravations were made to make clear the role of aerosols for the stratospheric

photochemistry and the mass exchange processes between the stratosphere and the troposphere. Some results concerning the relations between the Mie particles and chlorofluoromethanes in the lower troposphere and the relation between Mie particles and the tropopauses in the upper troposphere were obtained. The aerosol sonde to observe the vertical distribution of Aitken particles was developed and the preliminary profile was obtained.

The spatial distributions of ozone and other constituents were observed around the tropopause gap and the frontal boundaries. The intrusion of the stratospheric air into the troposphere occurred in a thin layer under the jet axis from the cyclonic side to the anticyclonic side of the jet axis. This layer was associated with the high ozone concentration and the low concentration of CF_2Cl_2 , $CFCl_3$ and water vapor.

One-dimentional model dealing with the vertical distributions of 34 species in the stratosphere was developed. The mixing ratios of CF_2Cl_2 , $CFCl_3$, CH_4 , N_2O and water vapor that we observed were used as the lower boundary values. The estimation shows that the total amount of ozone has been decreased by about 0.6% by CF_2Cl_2 and $CFCl_3$, and the maximum decrease (about 6%) of the ozone concentration has occurred at the altitude of 43 km.

The ultraviolet solar radiation in the wavelength region from 300 to 400 nm was measured by using the spectro pyrheliometer and spectro pyranometer. To get the effects of aerosols, the direct, global and diffuse components were measured separately.

The direct component gives the wavelength distribution of the extinction coefficient of the atmosphere. With the aid of the measurements in the visible region using the spectro pyrheliometer and the data of total amount of ozone from the Aerological Observatory, the extinction coefficient was separated into ozone and aerosol component, respectively.

Diffuse component showed a large part of the global ultraviolet solar radiation in the region considered, so the measurement of this component is essential in the problem.

- 4 -

第1章 ガスクロマトグラフ法による対流圏お よび成層圏微量化学成分の分布の測定

広田道夫*村松久史*牧野行雄* 外山芳男**佐~木 徹*

1.1 はじめに

大気中のハロゲン化炭化水素(本研究では主に CF_2Cl_2 、 $CFCl_3$)や N_2O は、成層圏オゾンと直 接反応する Cl、ClO、NO、 NO_2 などの主要な源である。従って、これら不安定化学種の高度分布 を求め、最終的にオゾン層の消長を予測する場合には、 CF_2Cl_2 や $CFCl_3$ 、 N_2O などの高度分布や その経年変化を精度よく測定することが必要になってくる。幸い、これらの化合物は、強い太陽紫 外線や励起酸素原子の作用がなければ大気中で極めて安定なので、空気を適当な容器に採集して来 て、ガスクロマトグラフ法で測定することによって、その分布を求めることができる。特にハロゲ ン化炭化水素の測定には電子捕獲型検出器が極めて特異的高感度な検出器として知られており、最 近では N_2O も、検出器を高温にすることによって感度が上昇し、濃縮せずに簡単に測定できるよ うになってきている。

本章では、大気中の CF_2Cl_2 、 $CFCl_3$ および N_2O の測定法および測定結果について報告する。対 流圏(高度 8km まで)の空気は飛行機によって、また成層圏(高度 30km まで)の空気は気球に よって、それぞれステンレススチール製の容器に採集し、電子捕獲型検出器付ガスクロマトグラフ (GC-ECD) によって分析を行った。

1.2 実験

1.2.1 空気の採集

1.2.1.1 飛行機による空気の採 集

飛行機による空気採集の模式図を 図1.1 に示す。また各飛行ごとに使用 した飛行機の機種、飛行コース、試料 数などを表1.1 に示す。夏期は気球に よる成層圏空気の採集を行ったため、 飛行機による空気採集の仕事は年度の 後半に行った。

図1.1 飛行機による試料空気の採集 プラスチック袋を使用しなくなってからは2 台のエアポンプ間のコックは取り外した。

**元高層物理研究部 · 1981 年 4 月退職

- 5 ---

空気取入口は、上翼の飛行機では胴体の下側に、その他の飛行機では主に胴体の上側に取り付けた。リャジェット24Dを使用した際には、機内が密閉されているため空調用配管(ジェットエンジンの中段から圧縮空気を取り出している)から空気を採集したが、流路の途中にある冷却装置から CF₂Cl₂ や CFCl₃ の汚染があり、これらの化合物については良好な測定値が得られなかった。

空気取入れ口からポンプまでの管は、低温に耐える材質のものとして、長さ約1mのシリコン ゴム管かタイロン(Tylon)チューブ(共に内径8mm)を使用した。1981年3月の飛行に際しては、 管として金属ホース(SS-4HO-6-L4、Crawford Fitting)を使用した。エアポンプは、UP-2型(日 本理化学器械)とAP-220型(入江製作所)を直列に連結して使用した。高度3km以下の飛行では UP-2型だけを使用した。1981年3月の飛行に際しては、DOA-101型(GAST)を使用した。管およ

年月日	航空機	コース	最高高度 (km)	試 CECL	料 CFCL	数 *
1978 - 2 - 2	エーロコマンダー 685	調布⇒相模湾	7.0	012012	01 01	3 3
3-3	"	〃 ≓三宅島	7.0	4	4	3
10-26	<i>"</i>	<i>" </i>	7.0	4	7	15
12-7	パイパーセネカ	〃 ≓御蔵島	1.6	8	8	7
12-12	エーロコマンダー 685	〃 ≓大島	7.0	9	9	9
1979 - 1 - 19	"	〃 ≓柏崎	7.0	12	12	12
2 - 2	パイパーセネカ	〃 ≓八丈島	3.0	12	12	12
2-9	エーロコマンダー 685	〃 ⇄大島⇄鳥羽	2.6	12	12	12
2-16	"	〃 ≓御蔵島	7.2	19	18	18
3 - 23	セスナ 404	・〃 ≓いわき市	7.4	12	12	12
10-30	リヤジェット24 D	仙台컱盛岡	11.6			8
10-31	"	〃 →東京→秋田→仙台	13.4			18
11-1	"	〃 ⇄札幌	13.6			13
11 - 1	<i>//</i>	〃 ≓いわき	13.6			7
12-11	パイパーセネカ	調布祥大島	3. 0	8	8	8
12-16	セスナ 404	〃 →野島崎→日光→羽田	7.6	7	7	7
1980 - 2 - 1	エーロコマンダー 680 F L	〃 ≓郡山	4.6	3	2	7
2 - 2	"	〃 ≓中ノ条	5. 9	4	2	8
2 - 4	パイパーセネカ	〃 ≓豊橋	1.5	4	2	7
2 - 7	"	〃 ≓新島	3.0	2	4	5
12-22	セスナ 404	羽田컱房総沖	7.9	5	5	5
1981 - 2 - 18	パイパーアズテック	調布⇄八丈島	3.4	9	9	5
2-22	"	″ ⇄ ″	3.0	6	6	4
3 - 8	セスナ 404	八尾≓能登半島沖	8.8	12		
3 - 10	"	〃 ≓土佐沖	8.9	16		13
3-10	"	〃 ≓紀伊半島	9.0	15		8
3 - 14	"	〃 →隠岐→足褶岬→八尾	9.3	9		9
3 - 15	"	〃 ≓若狭湾	8.8	4		1

表 1.1 試料採集用飛行一覧表

* 信頼しうるデータが得られた試料のみ

- 6 -

びエアポンプから CF₂Cl₂ や CFCl₈ の汚染があるかどうかを確めるため、参照用ガス(1.2.3を参 照)を直接ガスクロマトグラフのカラムに導入した場合と、管およびエアポンプを通してカラムに 導入した場合のピーク高を比較してみたが、繰り返し誤差以上の差は認められなかった。ただし、 DOA-101型ポンプではフィルター(ポリウレタン製)に由来すると思われる CFCl₈ の汚染が認め られたが、フィルターをよく洗浄することによって除去することができた。

試料採集容器としては、当初プラスチック製の袋を使用したが、のちにはステンレススチール製 のシリンダーに交換した。プラスチック袋としては、すでに使用例(田沢他、1967)のあるサラン (旭ダウ)とほぼ同質で熱加工が可能なサラネックス(旭ダウ)を利用したが、手製では強度が野 外観測には不適当であるため、結局市販のテドラー(Tedlar)バッグ($(-CH_2CHF)$)およびアフ ロン(Aflon)バッグ($(-CF_2CF_2-CH_2CH_2)$)を使用することにした。しかし、主にバッグの口に 使用されているテフロンから滲み出す汚染(巻出他、1981)のため、1ヶ月以上も空気を保存して おくと、CF₂Cl₂ や CFCl₃の濃度が、時には数倍も増加することがあり、最終的にステンレススチー ル製のシリンダー(0.31、0.51、1.01、Whitey)を試料採集容器として使用することにした。

シリンダーのバルブには、シャットオフバルブ(SS-14DKM4S4 および SS-16DKM4F4、Whitey) を使用したが、軸先端部分の Kel-F 樹脂($(-CClFCF_2)_n$)から CFCl₃の汚染が、最大 20~30ppt/ 月程度認められたので、3年目以降は先端部分もステンレススチール製の SS-4JB1 バルプ(Nupro)を使用した。どちらのバルブを使用しても CF₂Cl₂ の濃度は1ヶ月以上変化がなかった。

シリンダーは使用前に、油回転真空ポンプで減圧しながら200℃で約3時間加熱処理を行った。この処理の際、当初表面処理剤として ${(CH_3)_3Si}_2NH$ を添加したが(Schmeltekopf 他、1976)、添加しなくても測定に差し支えないことが分かったので、以後添加せずに処理を行った。

飛行機で採集を行う場合、シリンダーは最大15本までまとめて1つの台に取り付けた。シリンダー はあらかじめ真空にしておき、所定の高度または地点に来ると、エアポンプを on にして、シリン ダーのバルブを開く。約30秒空気を流してから出口側のバルブを閉め、さらに10~20秒後、差圧3.5 ~4.0 kg cm⁻²まで空気が充塡されたら入口側のバルブも閉め、エアポンプを off にして1つの 試料採集が完了する。

1.2.1.2 気球による空気の採集

成層圏の空気を採集するための「試料採集ゾンデ」を図1.2.a、b および図1.3.a、b に示す。 1978年夏にはプラスチック袋を採集容器として使用したが、1979年以降はステンレススチール製の 缶を使用した。

プラスチック袋の形状は図1.2.aに示すもので、マイラー(ポリエチレンテレフタレートフィルム、厚さ50µm)を両面接着テープ(ソニーケミカル)で貼り合わせて作った。内容積は約250ℓである。ロは内側に両面接着テープを貼って、ゾンデがあらかじめ設定した気圧高度に達すると、バネ仕掛けでまず下側のロが閉じ、数十秒後には上側のロも閉じるように製作した。前述の通り、プ

- 7 -

図1.2 試料採集ゾンデーI 1978年に使用した。 a)マイラー製の採集容器 内容積は 250 ℓ, 保護用の輪は 籐製である。

b)ゾンデの構成

試料採集が完了すると、大型パラシュートの上にある気圧スイッ チが作動してナイロンロープを焼き切り、採集容器は降下する。 レーウィンを追跡することによって落下地点は大体分かるが、回 収は通報によって行った。

ſ

2 m

20 m

5 m

図 1.3 試料採集ゾンデーⅡ 1979~81年に使用した。 a)ステンレススチール製の採集容器 内容積は5ℓ。

Rawin -

低高度で試料採集を行う場合、すぐ降下を始めるとゾンデが西風 で海側に流されるので、ナイロンロープの焼き切りは、ゾンデが さらに上昇し、成層圏の東風で内陸に戻ってきた時点で行った。

ラスチック袋では CF₂Cl₂ や CFCl₃ が滲み出 す恐れがあるので、実際に使用した袋に超高 純度 N₂ (99.9995%)を約100ℓ充填し、そこ に含まれる CF₂Cl₂、CFCl₃ の経時変化を調べ た。結果を 図1.4 に示す。CFCl₃ の平均増加 率は 0.9ppt d⁻¹ であったが、CF₂Cl₂ は12日 目にも検出されなかった。同時に調べたカプ トン (ポリイミドフィルム、東レ)製の袋で も、ほぼ同様の結果が得られた。ゾンデ飛揚 後、数日以内に容器を回収し分析を行えば、 プラスチック袋からの汚染は少ないと考えら れるが、実際には例えば高度 20km で 250ℓ の空気を採集しても、地上では約15ℓ に減少 してしまうので汚染の割合はもっと大きくな

図 1.4 マイラー(ポリエステル)袋中の CFCl₃ 濃度 1978 年8月 29日に飛揚し,翌日回収した袋 を使用した。超高純度 N₂ は,100 e 充塡した が,精製を行わなかったため、初めから 3 ppt の CFCl₃ が測定された。測定値の縦棒は繰 り返し誤差を示す。

る筈であり、さらにプラスチック袋は地上に降下する際に破損することがあったので、翌年からは ステンレススチール製の容器を使用することにした。

ステンレススチール製の容器 (図1.3.a、橋本製作所) は内容積 5 ℓ で、空気採取用にトグル式ベ ローズバルブ (SS-4BKT、Nupro)を、またガスクロマトグラフ接続用に SS-4JB バルブ (Nupro) を取付けた。容器はシリンダーと同様、200°C で減圧加熱処理を約 3 時間行った。飛揚前、容器は 10⁻⁵ mmHg 程度に減圧しておき、あらかじめ設定した気圧高度に達するとバネ仕掛けでトグルバルブが 開き、約30秒後には閉じるようになっている。トグルバルブの軸の先端にはシャットオフバルブ同 様 Kel-F 樹脂が使用されており、1980年夏以降の実験では CFCl₃ の汚染が認められた。CF₂Cl₂ の 濃度は10日以上不変であった。

ゾンデの飛揚時期は、容器の回収が可能な、従って西風が弱く、成層圏では東風が吹いている夏 期に限られる。各年ごとに、ゾンデ飛揚の月日、試料採集高度等を分析結果と共に 表1.2~1.5 に 示す。またゾンデの航跡図を 図1.5~1.22 に示す。図1.23 には、試料採集ゾンデの飛行経過の1 例を示す。飛揚地点は高層気象台の放球場であるが、1978年9月には、すでに西風が吹き始めてい たので、飛揚を埼玉県上尾市にあるトーテックス株式会社のグラウンドから行った。なお、表1.2~1. 5 中の体積混合比の単位 ppb は 10⁻⁹、ppm は 10⁻⁶ を表わす。また ppt は 10⁻¹² を表わす。よって 1ppm=1000ppb、1ppb=1000ppt である。

- 9 -

Na	飛場月日	時刻	試料採集 高度(km)気圧(mb)気温(c	落下地点	発見月日	測 CF2Cl2(ppb)	定 結 CFCl ₃ (ppt	果 o) N ₂ O(ppm) ^{††}
1	7,月29日	11:19	40(予定)	埼玉県比企郡幾川村田中	7月29日	採集	袋破損	
2	8月4日	10:50	15.9 119 -67.8	茨城県那珂湊市部田野 宮後	8月4日	0.272	0.11,	0.2 6 8
3	8月11日	15:12	40(予定)	埼玉県比企郡滑川村	_	—	_	·
4	8月22日	11:06	予定高度以下で気球破裂	茨城県鹿島郡大野村青塚 の沖3km				-
5	8月29日	11:44	レーウィンの発振停止で不明 30(予定)	茨城県真壁郡真壁町北椎尾	8月29日	採集	長破損	
6	同上	15:24	2 3.4 3 4 - 5 3.0	茨城県新治郡千代田村高倉	8月29日	0.187	0.108	<u>አ</u> ታ
7†	8月30日	12 :03	2 3.7 3 2 -5 2.0	茨城県那珂湊市の南東沖 約 15 km	8月30日	ゴム袋からの	汚染が大きく,	また海水が入っていた。
8☆	9月4日	14:01	23(予定)	茨城県鹿島郡大野村青塚	9月4日	採集	具袋破損	
9☆	9月19日	14 : 10	26.6 20.3 -44.	茨城県東茨城郡御前山村 秋田	9月19日	. ###	0.1 2 4	ት ት

表 1.2 成層圏における CF₂ Cl₂, CFCl₃, N₂Oの体積混合比(1978年7~9月)

↑ 採集袋としてゴム気球(600g)を改造したものを使用。

☆ 上尾市上野(トーテックスのグラウンド)から飛場。

†† 濃縮法による。

☆☆ 試料の量が少なく分析できなかった。

表 1.3	成層圏におけるCF	$_{2}Cl_{2}$, ($CFCl_3$,	N_2O	の体積混合比	(1979年7,8月)	
-------	-----------	------------------	------------	--------	--------	-------------	--

Na	飛場月日	時刻	試 高度(km)	料 採 気圧(mt	集)) 気温(℃)	落	下	地	点	発 月	見 日	CF2C12(測 ppb)	定 CFCl3	結 (ppb)	果 N ₂ O(ppm)
1	7月23日	15 : 13	2 0.9	51	-61.2	茨城県行	方郡」	麻生	订小高	7月2	3日	0.137	_	0.098		☆
2	7月31日	14 : 53	2 3.9	32	-5 0.5†	千葉県東	葛飾	郡沼南	 南町	7月3	18	0.071		0.020		☆
3	8月1日	11; 11	1 7.7	86	−69.5 [†]	茨城県稲	敷郡	阿見師	盯追原	10月	6日	0.167		0.0 7 ₆		0.177
4	8月2日	13 : 59	2 6.6	21	−4 4.5 [†]	茨城県鹿	島郡	鉾田町	盯借宿	8月3	3日	0.082		0.0 1 ₀		☆
5	8月8日	13 : 48	2 8.9	15	4 6.5	茨城県取	手市	下高	ŧ.	8月8	8日	採集	容器	汝 障		
6	8月21日	14 : 00	2 6.7	21	−4 5.0 [†]	茨城県鹿	島郡	鉾田	町下富田	8月2	21日	0.074		0.0 1 7		☆
7	8月22日	14:15	2 8.0	17	-45.0†	千葉県印	旛郡	栄町:	北辺田	8月2	2日	0.0 5 9		0.0 3 ₃		ት

† 外挿値

☆ 希釈用 N₂ 中の N₂O を十分に除去できなかった。

No.	飛 場 月 日	時 刻	試 高度(km)	料 採)気圧(ml	集 o)気温(℃)	落下地点	発 見 月 日	測定結果 N₂O(ppm)
1	8月6日	12 : 13	2 6.4	22	-43.8	茨城県筑波郡谷和原村樛木	8月6日	0.0 4 5
2	8月7日	11:49	2 2.0	43	-54.5	茨城県岩井市半谷	8月15日	0.3 5 7 th
3	8月8日	11 : 48	1 7.9	82	-63.5	千葉県印旛郡印旛村岩戸	12月5日	0.3 4 7
4	8月9日	12:02	2 2.9	37	-53.5	茨城県下妻市比毛川原	8月9日	0.1 1 6
5	8月11日	13 : 35	2 7.7	18	-47.2*	茨城県岩井市半谷	10月9日	0.074
6	8月12日	13 : 30	2 4.5	29	-52.5	茨城県西茨城郡岩瀬町猿田	12月31日	0.02以下
7	8月13日	13 : 28	1 9.8	61	-63.0	茨城県竜ケ崎市上町	8月13日	0.2 3 ₀
8	8月14日	13 : 26	2 4.3	30	-51.0	茨城県行方郡玉造町上山	11月25日	0.0 2 9 [‡]
9	9月16日	13 : 31	27.2	19	-47.3	茨城県鹿島郡大洋村の沖	9月20日	0,17 🛱

表1.4 成層圏における N₂ Oの体積混合比(1980年8,9月)

* 過去5年間の平均値(高層気象台)

+ テーリングの大きなピークに重なって、読み取り誤差が大きい。

☆ 測定値が大きいのは、Na 2 の場合、回収後のバルブのゆるみ、Na 9 の場合希釈用 N₂ 中の N₂O の除去が不十分であった可能性もある。

表 1.5 成層圏における CF₂ Cl₂, N₂O の体積混合比(1981 年 8 月)

									· · · · · · · · · · · · · · · · · · ·
No.	飛 場 月 日	時 刻	試 高度(km)	科 採 気圧(mb	集)気温(℃)	落下地点	発 見 月 日	測定約 CF2Cl2(ppb	告果 ›)N₂O(ppm)
1	8月10日	13 : 24		31(予)	定)	茨城県鹿島郡 神栖町田畑	8月10日	採集容器 古	汝 障
2	8月11日	11 : 30	2 5.6	2 4.5	-49.0	茨城県行方郡 北浦村小貫	8月11日	0.0 8 ₈	0.1 01
3 .	8月13日	11 : 22	2 1.0	50	- 5 4.0	茨城県那珂郡 那珂町福田	8月13日	0.1 37	0.196
4	8月13日	14 : 26	2 7.2	1 9.5	-43.5	茨城県勝田市 津田	8月13日	0.044	0.090
5	8月14日	11 : 16	1 7.6 [·]	87	-65.3	茨城県那珂郡 緒川村吉丸	1月1日*	· · ·	
6	8月14日	14 : 21	1 5.2	129	-70.3				
			+			• · · · · ·		1	

* 1982年

 図 1.5 試料採集ゾンデの航跡図(1978年) 飛揚;8月4日,29日,9月19日。
 いずれも回収後試料の分析を行った。
 航跡にそって5 kmごとに高度を示してある(図 1.6~1.22も同じ)。
 +;試料採集地点を示すが,採集直後に気球を切り離した(図 1.6 も同じ)。

図 1.6 試料採集ゾンデの航跡図(1978 年) 飛揚:7月29日,8月11日,22日, 30日,9月4日。いずれも試料回収 に失敗。

図1.9 試料採集ゾンデの航跡図(1979年) 飛揚;8月8日,21日。8日の試料 採集は失敗。

図 1.10 試料採集ゾンデの航跡図(1979年) 飛揚;8月22日。

図 1.11 試料採集ゾンデの航跡図(1980年) 飛揚;8月6日。 一〇一,一×一;試料採集地点お よび気球切り離し地点を示す(図 1. 12-1.22も同じ)。

図 1.12 試料採集ゾンデの航跡図(1980年) 飛揚;8月7日。

図 1.13 試料採集ゾンデの航跡図(1980年) 飛揚;8月8日。

図 1.14 試料採集ゾンデの航跡図(1980年) 飛揚;8月9日。

図 1.15 試料採集ゾンデの航跡図(1980年) 飛揚;8月11日。

図 1.16 試料採集ゾンデの航跡図(1980年) 飛揚; 8月12日。

飛揚; 8月13日。

図 1.17 試料採集ゾンデの航跡図(1980 年) 図 1.18 試料採集ゾンデの航跡図(1980 年) 飛揚; 8月14日。

図 1.20 試料採集ゾンデの航跡図(1981年) 飛揚;8月10日,11日。10日の試 料採集は失敗。

図 1.21 試料採集ゾンデの航跡図(1981年) 飛揚;8月13日(2回)

図 1.22 試料採集ゾンデの航跡図(1981年) 飛揚;8月14日(2回)。IIは未発見。

飛揚; 1979年7月23日15時13分。気球; 3kg ゴム気球, 純浮 力3.2 kg(ゾンデの重量4.8 kg)。試料採集高度; 20.9 km(→)。 気球切り離し高度; 24.6 km。試料採集高度および試料温度はB, C曲線から求めた。

1.2.2 ガスクロマトグラフ測定

分析には電子捕獲型検出器 (ECD) (⁶³Ni 10mci、EDC-4M) を装着した島津ガスクロマトグラフ GC-6AM を使用した。飛行機によって採集してきた空気は、ガスサンプラー (MGS-4、島津製作 所) に常圧のまま充塡し、六方コックの切り換えによってカラムに導入した。CF₂Cl₂、CFCl₃ およ び N₂O の分析条件を表1.6 に示す。ただし1978年2、3月および10月の1部の試料については、標 準状態で 20ℓ以上の空気をテドラーバッグまたはアフロンバッグに採集し、濃縮法(Hirota、1978) によって N₂O の測定を行った。N₂O の感度は ECD の温度が高い程高くなることが知られており、 また CF₂Cl₂ や CFCl₃ の分析に際しても他の化学物質の吸着などによる汚染を避けるため ECD は 高温で使用した。検出器部分の温度制御は±2.5℃の範囲で行われているが、検出器が汚染されてい ない限りこの効果は記録紙上に現れなかった。

1978年3月の試料では CFCl₃ の分析もモレキュラーシーブ5Aカラムで行ったが、ピークが拡っている上に、O₂ の大きなピークの裾に重なるため読み取り誤差が大きく、同年10月以後に採集した

-17 -

	化学	種	$C F_2 C I_2$	CFC1 ₃	N ₂ O
カ	ラ	4	ガラス	カラム 3m×3mmi,d.	-
	充 塡	剤	モレキュラージーブ5 A (30~60 メッシュ)	20% シリコンオイル DC 200, クロモソルブ WAW(60~80メッシュ)	モレキュラーシーブ5 A (30~60 メッシュ)
	温	度	90°C	60 °C	245°C
++	・リヤー:	ガス	乾燥管 (モレキュラー: 超高級	シーブ 5 A, 1/16″ペレット)を通した 転度 N2 (99.9995%)	ć
	流	量		40 mℓ min ⁻¹	
検	出 パル 温	器 ス 度	ECD 巾 : 8 µs, 高さ	⁶³ Ni 10 mci :40V, 周期:2.5kHz 320℃	
試	料	量	2 m l	1 m <i>l</i>	2 m l

表1.6 ガスクロマトグラフによる $CF_2 Cl_2$, $CF Cl_3$ および $N_2 O$ の分析条件

試料ではシリコンオイル DC-200カラムを使用した。このカラムを使用すると地表の空気を分析す る場合には、CFCl₃のピークに H₂O による裾の長いピークが重なるので、シリンダーとガスサン プラーの間に無水硫酸カルシウムを充塡したU字管を挿入した。しかし上空の試料では H₂O によ るピークはほとんど現れなかったので、1978年12月以後無水硫酸カルシウムの使用は中止した。

試料空気中の各成分の混合比は、参照用ガスと試料とのピーク高の比から求めた。

気球によって採集した試料は、気圧が低くそのままでは一定容積を採って測定にかけても SN 比 のよい信号は得られない。濃縮操作を簡単に行えるよう、まず超高純度 N₂ をそれぞれ活性炭 $(30~60 \times y \to z)$ とモレキュラーシーブ 5 A (1/16'')を充塡したU字管 (ドライアイスーエタ ノール浴で冷却、-72℃)に通して精製し、それを5ℓ容器に移して内圧をほぼ1気圧にした。次に

化学種	CF_2Cl_2	CFC13	N ₂ O
検出限界	1 ₅ ppt	4 ppt	1 ₀ ppb
参照用ガスの混合比	43 ₄ ppt	41 ₄ ppt	1.0 pp m
参照用ガスの測定の繰り返 し誤差 (変動係数)	1.9%	0.6%	0.9%
参照用ガス間のバラツキ (変 動 係 数)	2. 3 %	3. 2 %	1.8%
試料の平均測定誤差	± 1.0 %	± 0.9%	± 2.0 %

表1.7 飛行機で採集してきた試料空気に対 するガスクロマトグラフ測定上の誤差

- 18 -

5 ℓ 容器を 図1.24 に示すようにガスクロマトグラフと連結し、六方コックを実線の位置にして、 試料を液体 N_2 で冷却したステンレススチール製の計量管に濃縮した。試料の使用量は容器内圧の 減少分から求めた。濃縮し終ると、液体 N_2 の容器を外し計量管を室温に戻してから、六方コック を点線の位置に回して試料をガスクロマトグラフに導入した。

濃縮操作の前に加える超高純度 N₂ は、残り少なくなった古いものでは N₂O の濃度が高くなっていて(最高約10ppm)、U字管に充填したモレキュラーシーブ5Aでは十分除去できず、このため 1979年の多くの試料で N₂O が大変大きな測定値を与えてしまった。また、濃縮時に一緒に捕集される H₂O の影響で、CFCl₃ では記録紙上の読み取り誤差が大きくなる場合があった(表1.3 の No. 3 と No.7)。

濃縮法による測定誤差を CF₂Cl₂ について調べてみた。濃縮時の流量を 0.3ℓ min⁻¹ として、回 収率は95%、繰り返し誤差は 3%であった。しかし流量をさらに大きくすると、繰り返し誤差はた ちまち15~20%に増加することも分かった。高々度の試料ではチャート上の SN 比も低下するが、 全体の測定誤差としては平均±15%程度と考えられる。それ以上の誤差が予想される試料について は本文および表の脚注に述べてある。

1.2.3 参照用ガス

 CF_2Cl_2 および CFCl₃ の混合比を求めるための参照用ガスは、約20ppm の CF₂Cl₂ および CFCl₃ を含む三種混合ガス (分析誤差±5%、ベースガスは N₂、日本酸素)を超高純度 N₂ で希釈し約 400ppt にして使用した。図1.25 に示すように、三種混合ガスは、N₂ を流しながらシリコンゴムの 管を通してガス用シリンジ (GAN-0.5、Terumo)から注入した。このシリンジのプランジャーの 先端はテフロン製で、高濃度の CF₂Cl₂ および CFCl₃ を扱うとこれらのガスを吸収してしまい、以 後低濃度のガスには使用できないので、この目的以外には使用しなかった。図1.26 に示すように、 混合比とピーク高との間には 400ppt 以下で直線関係が成立している。

 CF_2Cl_2 は 表1.6 に示す分析条件では 図1.27のように O_2 より先に溶出するので問題はないが、

- 19 -

CFCl_a のピークは 図1.28 のように O₂ のピークの裾に重なる。本実験では、この O₂ ピークとの重なりは小さく、従ってこれによる ECD の感度の変化は小さく無視し得ると考えた。

試料の分析に際して、測定は1)参照用ガス、2)試料ガス、3)試料ガス、4)参照用ガス、 5、6)次の試料ガス…の順序で行い、1)と4)のピーク高の平均値と、2)と3)のピーク高 の平均値との比から試料空気中の CF₂Cl₂ および CFCl₃ の混合比を求めた。参照用ガスの繰り返し 測定誤差、参照用ガス間のバラッキ、試料を2回続けて測定する際の前後の平均誤差および検出限 界を表1.7 に示す。参照用ガスは測定日ごとに作った。特に CFCl₃ の場合数日で測定誤差以上に

図 1.25 CF₂Cl₂ およびCFCl₃ 測定用参照ガスの製造 CF₂Cl₂ 21.7 ppm, CFCl₃ 20.7 ppmを 含む標準ガス 200 μℓ を超高純度 N₂ で 10 ℓ に希釈する。活性炭は使用前に 350 °C で約1 時間減圧加熱を行う。

参照用ガスの濃度が増加すること が認められたからである。

N₂O の混合比を求めるための 参照用ガスは、N₂O (純度98%以 上、昭和電工)を精製空気で希釈 し 1ppm にして使用した。精製空 気は、それぞれシリカゲル、無水 硫酸カルシウム、ソーダアスベス トおよびモレキュラーシーブ5A (0°)を充塡したU字管を通し

図 1.26 CF₂Cl₂ および CF Cl₃ の検量線 横軸は1が, CF₂Cl₂の場合 43₄ ppt, CFCl₃の場合 41₄pptに相 当し、その時のピーク高を1とする。

て、20 ℓ のテドラーバック中に作った。 N₂O は10~20 $\mu\ell$ をガス用シリンジ(100A-RN-GSG、SGE)から 注入した(図 1.25を参照、(Muramatsu 他、1982))。図 1.29に示すように N₂O量とピーク高との 間には、N₂Oが2 ng 以下で直線関係が成立している。測定順序および混合比の求め方は、 CF ₂Cl₂、 CFCl₃の場合と同じである。測定上の誤差等は表 1.7 に示してある。参照用ガスはテドラーバッグ中 で 1 週間以上安定であった。

1.2.4 測定の比較

国際比較のためRasmussen (Oregon Graduate Center、U.S. A.)から送られてきた試料(容器はステンレススチール製、バルブは真鍮製(B-4H4、Nupro))の分析結果を表1.8に示す。N₂Oについては、3回目まで ECDが汚染されていたために低い値になっていたことが分かったので、そ

— 20 —

の補正を行った値を()内に示した。4、5回目の分析値は Rasmussen 他の値とよく一致している。 CF_2Cl_2 については3回目の値以外は一様に低く出た。3回目の値も、この計画に参加した約20ヶ所の研究所で測定した平均値は我々の値よりも高く、全般的に我々の値は低く出るようである。この傾向は CFCl₃ についても同様であった (Rasmussen and Khalil、1981)。

		体積涯	1 合 比			
試料Na	N	2 O	C F 2 C	C 1 2	CFCl ₃	
	((ppb)	((ppt)	(ppt)	
	R*	S**	R	S	R	S
0 5 0	334	30 ₁	295	27 ₇	174	164
	335	(31 ₈)	294		174	
3 2 9	335	30 ₉	298	27 ₀	176	15 ₀
	335	(32 ₆)	299		173	
B 3 0 5	221	15 ₀	100	104	64 [·]	⁴ 6
	226	(18 ₅)	1 0 0	•	65	
5 1 2	335	33 ₂	298	27 ₇	176	148
	334		298		175	
3 5 4	336	32 ₉	330	30 ₂	28 ₉	248
	332		324		288	

表1.8 研究室間の比較

* Rasmussen 他の測定値, 発送前(上),返送後(下)。

** 我々の測定値。()内の値は修正値。

1.3 結果と議論

1.3.1 対流圏における CF₂Cl₂、CFCl₃ および N₂O の分布

飛行機によって採集した試料の測定結果を年度ごとに 表1.9~1.11 に示す。図1.30 には1980年 度の CF_2Cl_2 の高度分布を示してある。飛行場が大都市近郊に位置するため、0.5km 以下では高い 混合比が測定されたが、1km 以上 9km まではほぼ一定の混合比を示した。図1.31 には1979年度 および1980年度の CFCl₃ の高度分布を示してある。やはり高度 2.5km 以上 9km までほぼ一定の 混合比を示した。上述のように CF_2Cl_2 および CFCl₃ は、大起模発生源である大都市の上空を除け ば対流圏内ではよく混合されていることが分かる。

経年変化をみるために CF₂Cl₂ および CFCl₃ について年度ごとの平均値および標準偏差値を 表 1.12 に示す。発生源からの直接汚染を避けるため高度 2km 以下の測定値を除いた平均値を比較し てみると、2年間で CF₂Cl₂ は約4%、CFCl₃ は約14%増加していることが分かる。ただし CF₂Cl₂ については、1981年3月に多数の試料採集を行ったが、成層圏から対流圏に侵入してきたばかりの O₃ 混合比の高い空気も試料の中に含まれているので、1980年度の平均値は若干低くなっていること が予想され、2年間の平均増加率は4%以上かもしれない。

比較のために対流圏内の最近の測定結果を列挙してみると 表1.13 および 図1.32 のようになる。 1975年以後数年の間に、 CF_2Cl_2 も $CFCl_3$ もともに増加していることが分かるが、同じ1979年の日本での測定値――地上で気象条件を選んで測定したバックグラウンド値(Makide 他、1980)――と

-22 -

月日	高度	気 圧	時 刻	場		所	容 器*	体利	体積混合比	
	k m	mb						CF_2Cl_2	CFCl ₃	N ₂ O
						·		ppt	ppt	ppb
1978年										
2月2日	7	405	14:09	相	模	湾	テドラーバッグ50ℓ			322
		×	~14:13				-			
	4	610	14:38	相	模	湾	アフロンバッグ301			34 ₂
			~14:48							
	2	789	14:56	相	模	湾	アフロンバッグ30ℓ			293
			~15:02							
3月3日	5	545	11:43	葉		Ш	A-1	310	150	
	7	418	11:59	葉		山	テドラーバッグ50ℓ			32 ₀
			~12:09							
	7	418	12:11	葉		山	A – 2	365	140	
	5	545	13:07	三	宅	島	A-3	256	9 ₉	
	4	620	13:16	三	宅	島	テドラーバッグ50ℓ			34 ₀
			~13:23							
	2	806	13:41	新		島	A-4	236	19 ₂	- - -
	1	909	13:55	大島	-	初島	テドラーバッグ50ℓ			302
			~13:58							-
10月26日		905	13:11	横	浜.	港	B-1	323	188	31 ₂
	2	803	13:15	横	須	賀	B – 2	299	167	32 ₃
	3	704	13:19	武		山 	B – 3	300	167	296
	4	622	13:24	21	/	島	B-4	299	169	34 ₅
	6	474	14:31	江	/	岛	A-2		167	32 ₂
	7	425	14:37	大一	-	礎	A – 3		160	299
	6.5	447	14:57		乇	島	A-4		157	30 ₈
	4	613	15:17	新		島	テドラーバッグ 5 ℓ			.333
	3	707	15:21	大		局	アフロンバッグ301			302
	3	707	15:25			<u>.</u>	テドラーバッグ5ℓ			351
	2	795	15:30	城	ケ	島	テドラーバッグちし			331
	1	905	15:38	~~		4	テドラーバッグちゃ			335
	1	904	15:39	紅	/	島	アフロンバッグ30ℓ			324
	0.6	946	15:49				テドラーバッグ5ℓ			326
	0.3	986	15:54	調		币	テドラーバッグ 5ℓ			335
	0 -		141.00							0.5
12月7日	0.5		14:00	r Þ		4	A-1	1047	481	358
	0.5		14:15	城	ケ	局	A-2	415	246	
	0.5		14:31				A - 3	370	217	318

表1.9 飛行機で採集してきた試料の測定結果(1978年2月~1979年3月)

*A0.5 l, B1.0 l, C0.3 l

(表 1.9	続)				· .			
月日	高 度	気 圧	時刻	場 所	容器	体利	責 混 ィ	合 比
	k m	mb				CF_2Cl_2	CFCl₃	N ₂ O
		-				ppt	ppt	ppb
	0.5		14:46	三宅島の北東	A - 4	30,	185	326
	0.5		15:01	八丈島の北	A – 5	30 ₈	175	30 ₃
	1.5		15:17	三宅島の東	B → 2	31 0	163	315
	1.6		15:31		B – 3	29 ₂	15,	320
	1.4		15:51	城ケ島	B – 4	30 ₂	164	
12月12日	0.5	977	12:12	藤沢	A-6	534	288	311
	1	917	12:15	藤沢	A - 7	394	210	30 ₇
	2	814	12:19	藤沢	A – 8	294	161	326
	3 ·	714	12:24	藤沢	A – 9	313	15 ₂	33 ₈
	4	628	12:27	藤沢	A - 10	305	157	324
	5	550	12:31	藤沢	A-11	296	16 ₂	320
	6	482	12:35	藤沢	A -12	298	164	33 ₆
	7	420	12:39	藤沢	A - 13	286	155	322
	7	420	12:51	大島の東	A – 14	297	148	30,
	0	1025	13:46	調布	B – 1	53,	305	331
1979年	a de la composition de la comp							
1月8日	9.4	295	18:56	大阪	テドラーバッグ 5ℓ			33 ₆
	0		19:38	羽田	テドラーバッグ5ℓ			354
1月19日	1	894	12:14	入間	A – 2	30,	191	290
	3 .	698	12:20	東 松 山	A – 3	317	191	288
	5	542	12:27	藤岡	A-4	30,	201	301
	7	412	12:38	榛 名 山	A – 6	29 ₃	226	28 ₉
1	7	404	13:11	柏崎	A – 7	289	164	29 ₈
	6	467	13:16	柏崎	A – 8	30 ₆	171	290
	5	531	13:21	柏崎	A – 9	288	165	310
	4	617	13:26	柏崎	A - 10	291	16 ₆	307
	3	708	13:30	長岡	A-11	28 ₂	174	298
	2	802	13:35	長岡	A - 12	285	172	30 ₃
	3	696 ·	13:55	榛名山の東	A -14	28 ₃	17 ₃	30 ₆
	2	790	14:03	行田	A-13	284	163	287
2月2日	3	691	12:47	江ノ島	A – 1	279	157	298
	3	692	12:59	大島	A – 2	273	150	301
	3	690	13:11	三宅島の北	A – 3	26 ₆	146	304
	3	699	13:21	御蔵島	A – 4	27 ₀	152	304
	.3	695	13:31	御蔵島の南	A - 6	258	149	317
		725	13:40	八丈島の北	A - 7	257	153	322

(表 1.9 続)

月日	高 度	気 圧	時 刻	場 所	容 器	体积	 責 混 1	 合 比
	'k m	mb				CF ₂ Cl ₂	CFCl ₃	N ₂ O
						ppt	ppt	ppb
	1	899	13:50	八丈島の北	A – 8	270	155	31,9
	1	890	14:05	御蔵島	A – 9	280	15 ₇	327
	1	896	14:16	三宅島	A-10	282	166	31 ₃
	1	898	14:30	大島の南	A-11	280	158	304
	1	892	14:56	大島の東80km	A-12	271	159	3 ⁰ 5
	1	900	15:22	鎌倉	A-13	30,	17 ₃	317
2月9日	2.6	754	12:11	江ノ島	A – 1	286	$1\ 7\ _1$	289
	2.6	751	12:22	大 島	A – 2	291	17 ₀	29 ₉
	2.6	753	12:33	下田	A – 3	297.	·15 ₉	29 ₀
	2.6	751	12:44	御前崎	A – 4	276	159	280
	2.6	752	12:55	浜名湖の南	A – 5	266	148	295
	2.6	749	13:08	鳥羽	C – 1	27 ₃	154	29 ₈
	0.8	930	13:20	鳥 羽	C – 2	290	15 ₈	30 ₁
	0.8	934	13:34	浜名湖の南	C – 3	330	188	30 ₃
	0.8	934	13:45	御前崎	C – 4	325	20 0	307
ļ	0.8	935	13:55	石廊崎	C — 5	341	216	29 ₇
	0.8	935	14:05	大島	C — 6	31,	184	317
	0.8	934	14:18	江ノ島	C - 7	384	226	30 ₃
2月16日	1.3	870	12:35	在 田	A – 6	458	37 ₈	30 ₆
	2.1	788	12:39	横浜	A – 7	270	17,9	31 ₁
	3.1	697	12:42	江ノ島	A – 8	276	171	299
	4.1	610	12:46	三 浦	A – 9	27.0	171	311
	5.2	530	12:50	大島の北	A -10	264	182	29 ₉
!	6.2	465	12:55	大島	B – 1	268	190	310
	7.2	405	13:00	利島の東	B – 2	259	181	30 ₂
	6.1	470	13:06	三宅島の北	B – 3	262	179	30,9
	5.1	535	13:11	三名島	B – 4	268		
	4.1	610	13:16	御蔵島	A−11	279	170	296
	3.1	696	13:22	三名島	A - 12	282	181	305
	2.1	792	13:29	三宅島の西	A - 13	272	162	29 ₃
	2.1	791	13:37		A-14	274	180	311
	1.1	893	13:42	御蔵島の南	C - 8	277	176	310
	1.0	902	13:50	三名島	C – 9	294	175	29,9
	1.0	901	14:00	新島の東	C -10	294	180	314
	1.1	898	14:09	大島の北	C-11	308	177	30,9
		894	14:24	江ノ島	C-12	299	174	311
·· <u>···</u> ·······························	1.1	888	14:32	在田	C -13	281	256	312

1 ==	-	\mathbf{a}	6 tr \
1 - + +		u	4
144		0	11/11/2

月日	高周	度	気	圧	時	刻	場		所	容	器	体利	責混(合 比
	k m		mł)								CF_2Cl_2	CFCl ₃	N ₂ O
												ppt	ppt	ррЪ
3 月23日	1		89	2	15	35	国	分	,寺	A	A — 5	514	328	318
	2		78	6	15	: 40	川		越	A	A – 4	293	17 ₈	327
	3		6.8	7	15	:44	大		宮	A	√ − 3	264	158	314
	4		59	7	15	: 49	菖		蒲	A	A - 2	288	157	318
	5		52	1	15	:54	古		河	. A	A — 1	245	160	31,
	6		46	0	16	:00	上	君	Ħ		C - 1	283	158	31,
	7.4		38	4	16:	54	い	わ	き	0	2 - 2	277	16 ₃	321
	7		43	2	16	58	屹	兎 屋	山		C — 3	276	13,	330
	6		48	0	17:	02	入	遠	野	C	C – 4	257	137	330
	5	l	54	9	17	:07	関	河	内	0	C — 5	267	137	308
	4		62	4	17:	12	蒲	須	坂	с	C − 6	266	155	313
	3		68	8	17	16	飯		野	C C	2 - 7	276	144	315

表 1.10 飛行機で採集してきた試料の測定結果(1979年10月~1980年2月)

月日	高 度	気 圧	時刻	場	所	容器	体利	責 混 台	} 比
	k m	mb					CF ₂ Cl ₂	CFCl ₃	N ₂ O
							pp t	ppt	ppb
1979年									
10月30日	4.0		16:53	141.20°E	3 8.3 2° N	A - 1			356
	9. 1		17:00	141.29°E	39.09° N	A – 2			344
	11.4		17:08	1 4 1.3 3° E	40.07°N	A – 3			334
	11.6		17:17	141.22° E	3 9.5 0° N	A – 4			33 ₂
	9.6		17:24	141.14° E	3 8.7 5° N	A – 5			337
	7.2		17:29	141.09°E	3 8.3 5° N	C-1			33,,
	5.6		17:32	141.16°E	3 7.9 6° N	C – 2			338
	3. 7		17:35	141.35°E	3 7.9 2° N	C – 3			328
]		
10月31日	3. 7		10:48	140.92°E	3 7.9 2° N	A - 6			333
	7.2		10:53	140.74°E	$37.52^{\circ}N$	A – 7			351
	9.1		10:58	140.52°E	3 7.0 5° N	A – 8			324
	9.1	5	11:03	140.33°E	36.60° N	A – 9			335
	9.1		11:08	140.17°E	36.17° N	A - 10			330
	9. 1		11:13	140.03°E	3 5.7 0° N	C -31			334
	9.1		11:17	139.88°E	3 5,3 2° N	C-30			334
	10.2		11:21	139.82°E	$35.44^{\circ}N$	C - 29			315
	11.7		11:26	$139.97^{\circ}E$	$36.02^{\circ}N$	C – 5			348

(表 1.10 続)

気象研究所技術報告 第6号 1982

月日	高度	気 圧	時 刻		所	容 器	体	椿 混	
	k m	mb			· · · ·	'	CF_C1_	CFCL	N ₀ O
					·		ppt	ppt	ppb
10月31日	12.7		11:31	140.03°E	36.58° N	C - 4			327
	13.0		11:35	140.04° E	3 7.0 6° N	C — 6			314
	13.2		11:43	$140.07^{\circ}\mathrm{E}$	$37.84^{\circ}N$	C - 7			326
	13.4		11:49	140.04° E	38.44° N	C — 8		[32,
	13.4		11:54	140.03°E	.39.09° N	C — 9			31,9
	12.7		12:02	140.27° _. E	39.91° N	C-10		1	324
	9.1	· · ·	12:09	140.68°E	3 9.2 2° N	C -16		Į	333
	3. 8		12:21	1 4 1.2 5° E	38.00° N	C-19		ļ	32,
	1.9		12:24			C -20			350
11月1日	8.1		10:32	141.82°E	38.33° N	C-23			336
1	8.1		10:38	141.12°E	3 8.9 6° N	C-15			316
	8.1		10:46	141.28°E	39.74°N	C-32			344
	8.1		10:53	1 4 1.4 4° E	40.45° N	C -14			31,8
	8.1		11:01	141.65°E	4 1.3 5° N	C - 27		· ·	313
	8.1		11:09	141.79°E	4 2. 1 5° N	A-13			308
	11.1	1	11:21	142.08°E	43.42°N	A-14			31 ₃
	13.2		11:35	141.90°E	4 2.0 0° N	A-11			315
	13.6 13.6		11:41	$141.89^{\circ}E$	$41.35^{\circ}N$	A - 12			318
	13.0		11.50	141.79E	40.33 N	C = 20			24
	11.0		12:04	1/1/5°F	3805°N	C = 11			546 24
	5.0		12:04	141.45 E	38.44° N	C = 33		1	343
· .	0.0		12.00	141.10 1	00.4411	0 22			525
11月1日	8.0		15:03	140.79°E	37.54° N	C - 26	1		33.
2	8.0		15:06	140.68°E	3 7.1 4° N	C -34			335
	11.0		15:12	140.42°E	36.97°N	C - 12			351
	13.6		15:23	141.10°E	3 8.2 8° N	C -13			33.
	11.0		15:30	141.58°E	38.93°N	C - 17			33.
	8.0		15:33	141.60°E	38.72° N	C −24			33.
	5.0		15:39	141.10°E	3 8.3 6° N	C – 25			335
12月11日	3	700	11:35			A-3	285	174	311
ļ	3	701	11:36	大島	の 東	A 4	284	177	312
	1		11:58			Á – 5	296	181	32,9
	1	908	12:05	大島の)北東	A — 6	308	210	310
	1	898	12:11			A – 7	291	179	320
	1	900	12:18			A – 2	303	188	32,9
	1	906	12:24			C − 1	305	18,	326
	1	910	12:30			C – 2	31,9	197	317

(表 1.10 続)										
月日	高度	気 圧	時 刻	場	所	容器	体利	責混(
	k m	mb					CF_2Cl_2	CFCl ₃	N ₂ O	
							ppt	ppt	ppb	
12月16日	8		16:43			C - 3	291	17_2	314	
	7		16:46			C - 4	278	176	32 0	
	6	488	16:52			C — 5	279	18 ₃	350	
	5	560	16:56			C – 7	285	18 ₃	325	
	4	631	17:02			C-11	284	18 ₈	317	
	3	720	17:05			A – 1	294	18 ₂	30,	
	2	814	17:10			C – 12	324	21_1	307	
1980年		-								
2月1日	1.6	830	11:20			C - 7			308	
	2.2	775	11:27	浦	和	C — 6	363	229	320	
	3.1	685	11:32			C – 5			30 ₀	
	4.1	602	11:40			C – 4	362			
	4.3	589	11:58	白	河	C – 3			312	
	4.6	560	12:06			A-1			308	
	3.2	680	12:36			A – 2			331	
	1.9	798	12:48	大	宮	C - 27	313	184	320	
2日2日	20	795	11.13	+	守	A - 12	27		2.1	
2)] 2 Li	2.0	695	11:58	~	占	A = 12	571		20	
	4.2	595	12:06	ùt:	11	A = 13			32 ₀	
	5.8	480	12:16	前	/i 栝	C = 12			30-	
	5.9	474	12:36	う 大	宜	C = 21			305	
	5.9	472	12:49	二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二	н	C = 29	27.		32	
	4 1	605	13:12	 東京湾λ	п	C = 32	31-	16-	31.	
	1.0	895	13:34	本小马八 構 須	智	C = 33	31.	18.	32.	
	1.0		10 01		я				021	
2月4日	1.5	836	12:50	澅ノ	п	A - 5			33.	
	1.5	838	13:05	真鶴半	島	A - 6			325	
	1.5	836	13:17	沼	~ 津	A - 7	34。		34.	
	1.5	836	13:40	掛	Ш	A – 8	33.		347	
	1.5	840	13:55	浜名	湖	A - 9	342	18.	347	
	0.5	950	14:25	焼	津	C-1	0 1 3	109	314	
	0.5	950	14:54	大	船	C-2	571	38.	347	
2月7日	3	700	11:40			A – 4		18.	34 -	
	3	701	11:58	大	島	A – 3			335	
	3	702	12:11	新	島	C-8	331	185	343	
,	1	904	12:25	大島の	東	C - 9		179	33∡	
	1	904	12:43	江ノ	島	C 10	372	210	342	

- 28 -

月日	高 度	気 圧	時亥	1	場	所	容		体積混合		合 比
	k m	mb							CF ₂ Cl ₂	CFCl ₃	N ₂ O
				4					ppt	ppt	ppb
1980年											
12月22日	7.9		16:2)	勝	浦	A-	5	300	181	321
	7.0		16:3	3	茂	原	A –	6	312	180	3.13
	6.0		16:4	5			A -	7	312	161	315
	5.0		16:5	3			A – 8	8.	313	166	316
	4.0		17:0				A-	9	316	17 ₂	31,
1981年											
2月18日	2.5		11:0		江。	ノ島	C –	1	303	188	
i	2.5		11:2		利島	の 東	C – 2	2	300	186	
	2.5		11:5	3			C – 3	3	301	190	310
	1.0	·	12:0	3			C – 4	4	304	180	313
	1.0		12:3		三宅	島の東	С —	5	306	186	315
	1.0		i 2:4	5	大島	の 東	C – (6	30 ₃	191	30 ₃
	1.0		13:0	2	鎌	倉	C —	7	315	187	
	3.4	I ,	13:1	2			C – 8	8 .	30 ₃	191	
	0.6		13:3		保	谷	C - 9	9	587	324	31 ₂
2月22日	2.5		10:4	3	江	ノ島	C – 1	0	298	193	
	2.5		11:1	2	三	宅 島	C – 1	1	306	20 ₆	30 5
	2.5		11:3)	八	丈 島	C −1	12	307	18,9	30 ₂
	1.0		11:54		八丈人	島の北	C -1	3	313	191	314
	0.9		12:2	2	三宅!	島の東	C - 2	21	301	19_5	
	0.9		12:4	'	城	ケ島	С —з	36	31,9	19 ₈	31 ₀
3月8日	8.8	320	13:3	3			C -1	4	307		
	8.8	317	13:4	5			C -1	5	294		
	8.8	320	13:5	1			C - 1	6	292		
-	7.7	372	14:0	2			C - 1	7	290		
	7.1	408	14:08	3			C-1	.8	29 ₂		
	7.1	407	14:22				C−1	9	301		
	7.1	408	14:3	2			C-2	20	287		
	4.5	578	15:0	2			C-2	24	293		
	3.4	665	15:0	3			A –	1	298		
	2.5	740	15:1	1			A – 1	2	297		
	1.5	842	15:4	5 1 3 9	5.87°E	3 5.0 6°N	A –	3	301		
	0.4	980	15:5	4 1 3 (6.64°E	34.80° N	A – -	4	565		

表1.11 飛行機で採集してきた試料の測定結果(1980年12月~1981年3月)

- 29 -

(表 1.11 続)

月日	高度	気 圧	時 刻	場		容器	体積混合比		
	k m	mb					CF ₂ Cl ₂	CFCl ₃	N ₂ O
							ppt	ppt	ppb
3月10日	3. 9	628	8:42	135.05°E	34.10°N	C - 25	304		326
1	5.0	544	8:54	134.84°E	3 3.70°N	C - 26	293		351
	5.0	543	9:16	134.46°E	3 2.9 6° N	C 27	29,		33 ₂
	5.0	540	10:03	133.64°E	$31.31^{\circ}N$	C-28	291		340
	7.1	406	10:23	133.64°E	30.85°N	C - 29	291	1	338
	7.1	405	10:43	133.50°E	31.68°N	C - 30	291	-	330
	7.1	405	10:47	133.47°E	3 1.8 4°N	C -31	293		337
	7.1	405	10:53	133.44°E	3 2.1 0° N	C -32	290		
·	7.1	407	11:04	133.55°E	3 2.6 2°N	C -33	287		341
ĺ	8.2	348	11:17	133.75°E	33.16°N	C - 34	290		
	8.7	322	11:28	133.90°E	3 2. 8 7° N	A - 5	291		337
	8.9	314	11:38	134.05°E	3 2.5 2°N	A - 6	291		335
1	8.1	352	11:46	134.35°E	3 2.8 1°N	A - 7	290	-	
:	7.1	400	11:53	134.53°E	3 3.1 9°N	A – 8	295		328
i	5.0	537	12:08	134.94°E	3 3.9 5°N	A - 9	284		333
	1.0	902	12:24	135.28°E	33.48°N	C -35	310		330
i									
3月10日	7.1	408	14:58	135.05°E	3 3.0 7°N	C -37	300		34 ₂
2	7.1	408	15:17	134.94°E	$33.75^{\circ}N$	C - 38	293		
	7.1	408	15:54	134.82°E	3 4.9 7°N	C - 39	291		34 ₃
	8.0	360	16:06	135.04°E	3 4.8 5°N	C -40	29 ₃		
	8.9	313	16:19	135.31°E	3 4.2 2°N	C -41	284		33 ₈
	9.0	309	16:27	135.50°E	3 3.8 5°N	C -49	283		33,
	8.3	340	16:36	135.58°E	3 3.4 9°N	C -47	284		33 ₃
	7.7	375	16:40	135.45°E	$33.52^{\circ}N$	C-48	28 ₂		
	6.8	425	16:44	1 3 5.3 2°E	3 3.5 5°N	A - 10	284		33 ₈
	5.9	478	16:49	135.17°E	3 3.64°N	A 11	281		33 ₇
	5.2	525	16:52	135.11°E	3 3.7 3° N	C -42	281		
	4.5	575	16:55	135.03°E	3 3. 7 9°N	C-43	285		34 ₀
	3.8	630	16:58	134.94°E	3 3.8 5°N	C -44	29 ₃		
	2.0	790	17:07	134.89°E	3 4.1 8°N	C-46	297		
	1.0	894	17:19	135.42°E	34.48°N	C - 50	296		
3月14日	1.5	846	14:58	134.51°E	34.67°N	C -51	30,		32 ₃
	4.7	568	15:27	134.38°E	3 4.9 2°N	C - 52	30 ₃		328
	7.7	390	15:42	134.99°E	3 5.3 2°N	C - 53	298		32 ₃
	8.5	340	15:53	132.97°E	3 5.75°N	C - 54	301		336
	9. 2	309	16:21	1 3 2.9 5°E	34.89°N	C-55	30 ₅		33 ₂
	9. 3	302	16:34	132.95°E	34.48°N	C - 56	30 ₂		33 ₃

- 30 -
| (表 | 1.11 | 続) |
|---------|------|------|
| · · · · | | 1242 |

月日	高 度	気 圧	時 刻	場	所	容器	体	唐 混 台	う 比
	k m	mb					CF ₂ Cl ₂	CFCl ₃	N ₂ O
							ppt	ppt	ppb
	9.3	304	16:47	132.95°E	3 4.0 3° N	C — 57	298		330
	8.1	362	17:34	132.73°E	3 3.8 5°N	C -58	304		327
	7.3	402	17:59	1 3 2.4 9°E	35.13°N	C - 60	29 ₉		32 ₆
3月15日	7.1	406	10:08	134.84°E	3 6.5 3°N	C -61	26 ₃		
	7.1	406	10:34	135.13°E	3 5.5 9° N	C – 8	271		
	8.8	320	11:58	135.31°E	3 5.1 2°N	C -63	278		
	4.6	571	12:26	135.86°E	3 4.75°N	C -62	292		326

Vertical Distribution of CF₂Cl₂

図 1.30 対流圏における CF₂Cl₂の高度分布 1980 年 12 月から 1981 年 3 月までの期間,飛 行機によって採集した試料の測定結果。矢印 (↑) は高度 1 km 以上の平均値。横棒(上)は測 定の繰り返し誤差,横棒(下)はそれに参照用 ガス間のバラツキを加えた測定誤差である。

図 1.31 対流圏における CFCl₃ の高度分布 1979 年 12 月から 1981 年 2 月までの期間, 飛 行機によって採集した試料の測定結果。短い 矢印(↓) は左が 1979 年度, 右が 1980 年度の 高度 2.5 km 以上の平均値。長い矢印は両年 度を併せた平均値。横棒については図 1.30と 同じ。

年度	採取期間	高度範囲 (km)	試料数 CF2Cl2	CFCl₃	平均値(CF2Cl2	ppt)* CFCl ₃	標準偏差 CF ₂ Cl ₂	É値 (ppt)☆ CFCl₃
1978 1979 1980	1978 - 10~1979-2 1979 - 12~1980-2 1980 -12~1981-3	がか 0 - 7.4 0.5- 7.6 0.4- 9.3	** 93 (51) 29 (13) 76 (62)	** 95 (53) 25 (11) 20 (12)	$\begin{array}{c} 30_9 & (28_2 \) \\ 32_3 & (29_9 \) \\ 30_4 & (29_4 \) \end{array}$	18 ₀ (16 ₂) 19 ₅ (17 ₉) 19 _{.3} (18 ₄)	$\begin{array}{c}2_{1}\\2_{6}\\1_{0}\end{array}$	1 ₉ 7 1 ₃

表 1.12 対流圏における CF₂Cl₂, CFCl₃の体積混合比

* ()内の数字は高度2 km 以下の測定値を除いたもの。

☆ 高度2km 以下の測定値は計算から除いた。

** 1978年3月の4試料を含む。

☆☆ 調布飛行場における1例。

表 1.13 対流圏における CF₂Cl₂, CFCl₃の測定例

	方法	体積混合 CF ₂ Cl ₂	比(ppt) CFCl ₃	時期、場所、高度など
W.J.Williams 他 1976	IR [*] (気球)	185	165	1975-9, New Mexico, 8~11km 2回の測定の平均値
M. D. Bortoli 他 1976	GC	330	210	1975-10~1976-3, Italy 北部
H.B.Singh 他 1977	GC	190(12) ^{XX}	106(6) ^{XX}	1975 – 5, 11, 12 California
E.Robinson他 1977	GC(飛行機)	220	120	1975-5, Alaska,上部対流圈
D.R.Cronn 他 1977	GC (飛行機)	228(7)	130(50)	1975 - 3 北西太平洋
F. J. Sandalls 他 1977	GC(飛行機)	236	167	1975 - 3~1976 - 2, British Isles 0 ~ 7 km
W. Seiler 他 1978	GC (飛行機)	170 ~ 340	130 ~ 240	1976 −11,12, Europe 50 − 60°N ~ 12.5 km
P.Fabian 他 1979	GC (飛行機)	240	130	1977 — 6,9, France,上部対流圈
Y. Makide 他 1980	GC	301 (12)	175(7)	1979-夏,日本

* IR = 太陽光を光源とする赤外線吸収法。

** ()内は標準偏差値。

我々の測定値はよく一致していると考えられる。

より古い測定の1例として、中部電力の研究資料から CF_2Cl_2 の測定結果を 表1.14 に示す。も し日本を代表するバックグラウンド値として1967年は 15_0ppt 、1978年は 28_2ppt であったとすると、 平均して年ごとに 1_2ppt 増加したことになる。これを我々の測定結果と比較してみると最近の CF_2 Cl_2 の増加率は低下しているようである。

図1.33 には N₂O の高度分布の 1 例を示す。仙台空港からリヤジェット24D を使用して採集した 試料の分析値であるが、地表から下部成層圏までよく混合されていることが分かる。調布や八尾を 空港として使用した場合にも、N₂O は地表から高度 7~8km まで高度別平均値にほとんど差がな く、CF₂Cl₂ や CFCl₃ に比較して発生源が広く一様に分布していることがわかる。

 N_2O の年度ごとの平均値および標準偏差値を表1.15 に示す。1979年度にはリャジェット24D を 使用した飛行に、1980年度にはセスナ404を使用した1981年3月の飛行に試料が集中しているので、 これを除いた残りの試料についても平均値および標準偏差値を示してある。さらに1978年に行った 袋による試料採集および濃縮による分析の結果は、8 試料に対して平均値が31 $_{s}$ ppb、標準偏差値が 1_{s} ppb であった。これらの結果および N_2O の測定誤差から考えて、この3年間 N_2O の混合比はほ ぼ一定であったと考えられる。

比較のために、対流圏内の最近の測定結果を 表1.16 に列挙した。GC-ECD 法による N₂O の測 定値は大体 $0.31\sim 0.34$ ppm の間に収まっている。

発生源との関連で、低高度での CF_2Cl_2 、 $CFCl_3$ および N_2O の水平分布の 1 例を 図1.34 に示す。 東京上空から伊豆七島方面へ南下するに従い、 CF_2Cl_2 および $CFCl_3$ の混合比は急に減少して対流 圏のバックグラウンド値に近づくのに対し、 N_2O はどこでもほぼ一定の値であった。 CF_2Cl_2 およ び $CFCl_3$ の水平分布は風向・風速によってかなり変化する。

1.3.2 成層圏における CF₂Cl₂、CFCl₃ および N₂O の分布

気球によって採集した試料の測定結果は表1.2~1.5 にすでに示した。図1.35 は CF₂Cl₂ の高度 分布である。成層圏における光分解のため、採集高度が高くなるにつれて混合比は急激に減少して いることが分かる(第5章参照)。1978年の測定結果は少し大きく出ているが、これは試料をプラス チック袋に採集したせいかもしれない。1980年の試料にはバルブから汚染がありいい結果は得られ なかった。1979年と1981年の結果を見る限り、顕著な経年変化は見出だされなかった。なお高度 10 km 以下の所に斜線で示してあるのは、飛行機で採集した試料の測定値の範囲である。

図1.36 は CFCl₃ の高度分布であるが、CFCl₃ は CF₂Cl₂ より長波長側で光吸収係数が大きいた め高々度での減少率がより大きくなっている。CF₂Cl₂ の場合と同じ理由で、1979年の高度分布しか 得られなかった。

図1.37 は N₂O の高度分布である。1980年(▲)の高度 25km あたりの 2 つの測定値は、ガスク ロマトグラフ上に未知の大きなピークが重なってしまい、記録紙上の読み取り誤差を100%近く見込

- 33 -

まざるを得なかった。また高度 27km と 22km の大きな測定値は、容器回収後に加えた超高純度 N_2 の精製が不十分で N_2O が若干混入した可能性も考えられる。

比較のために、Ehhalt (1979) がまとめた CF₂Cl₂ および CFCl₃ の高度分布を 図1.38.a、b に、 また Goldan 他 (1980) および Fabian 他 (1979) が測定した N₂O の高度分布を 図1.39.a、b に 示す。我々の CF₂Cl₂ の測定結果は、1978年の結果を除けば他の多くの測定例のバラツキの範囲内 によく収まっていることが分かる。CFCl₃ の測定結果は、No.1 と No.7、そのうち特に後者の結 果が大きいように思われるが、それでも他の多くの測定例のバラツキの範囲内に収まっている。N₂O の測定結果も、他の測定例と大体一致しているが、すでに述べた 4 例は平均的な分布からのズレ が目立つ、特に1980年の 22km における値は大きい。

成層圏における高度分布については、我々の観測が夏期に限られていることも含めて、第5章に おいて一次元モデルと比較しながら議論する。

 図 1.32 上部対流圏における CF₂Cl₂, CFCl₃ および N₂O の 混 合 比 の経年変化 (Goldan 他, 1980) 直線は最小自乗法によって引いた 増加傾向。ただし、CF₂Cl₂ およ び CFCl₃ については北半球(一), 南半球(・・・)に分けて引いてある。

Volume Mixing Ratio of N₂O /ppm

図 1.33 対流圏および下部成層圏における N₂O の高度分布
1979 年 10 月末から 11月初めにかけてリヤジェット24
D で採集した試料の測定結果。矢印(↑)は全試料の平均値。横棒は測定誤差
(Muramatsu他, 1982)。

表 1.14 CF₂ Cl₂ のバックグランド測定例

(昭和42年5月29日捕集)

地点	時刻	検出濃度(ppb)
六番町変電所	10:05~10:25	0. 14
	10:45~10:55	0. 16
中川変電所	10:15~10:28	0. 19
	10:45~10:58	0. 15
昭和町変電所	10:00~10:15	0.20
加木屋	10:10~10:20	0. 17
	11:00~11:10	0. 30

★ 中部電力 研究資料 第39号 P89 (1967)

これは名古屋周辺地域での測定値であって、すでにこの様なバックグラウンド値が 測定される以上 CF2Cl2 は拡散実験のトレーサーには不適当であるとされている。

年 度	採集期間	高度範囲(km)	試料数 [☆]	平均値(ppb)	標準偏差(ppb)
1978	$1978 - 10 \sim 1979 - 3$	0 ^{☆☆} 7.4	90	31 0	14
1979 (197	1979-10~1980-2 9-10,11の試料を除く)	0.5 - 13.6	88	32 ₈	1 3
	$1979 - 12 \sim 1980 - 2$		42	32 4	1 4
1980	$1980 - 12 \sim 1981 - 3$	1.0 - 9.3	45	32 8	1 2
(198	1-3 の試料を除く)				
	1980-12~1981-2	1.0 - 7.9	14	31 4	6

表1.15 対流圏におけるN2Oの体積混合比

☆ ステンレススチールシリンダーに採集したもののみ

☆☆ 調布における1例

	方法	体積混合比(ppb)	時期,場所,高度など
D. Pierotti 他 (1977)	GC-ECD	332 (9) [*] 328 (3) 320 (6)	1976-3,北東太平洋 1976-6~9, Pullman 1976-6~9, New Zeelend Aleska
		330(0)	$1970 - 6 \sim 7$, New Zearand - Alaska $0.3 \sim 13.1 \text{ km}$
H.B.Singh 他 (1977)	GC-ECD	313.4(17.8) 311.6(18.2)	1976 – 4, 5, Los Angeles 1976 – 5, Yosemite
P. D. Goldan 他 (1978)	GC-ECD	322.2 (5.9)	$1976 - 10 \sim 1977 - 4$, Boulder
R.J.Cicerone 他 (1978)	GC-ECD	329.5 (3.3)	1976 - 8 ~ 1977 - 9, Ann Arbor
C.R.Roy (1979)	GC-ECD	338 (3) 335 (9)	1977 — 6 ~ 1978 — 5, Aspendale 1977, Australia, 0 — 12 km
花井 他(1979)	GC-MS	250 (230 - 270) 210 (200 - 240)	1977 — 8 — 5,6, 横浜 1977 — 8 — 19 ~ 25, 父島
平木 他(1980) R.F.Weiss (1981)	GC-ECD GC ^{××}	319 (11) 300. 2 (0. 6) ^{XX}	1980 — 3 ~ 7, 神戸 1976 — 9 ~ 1980 — 5, Mauna Loa

表1.16 対流圏における N₂O の測定例

- 36 -

- 37 -

Volume Mixing Ratio / ppm

1.4 まとめ

本章では、ガスクロマトグラフによる大気中の CF_2Cl_2 、 $CFCl_3$ および N_2O の測定法を詳述し、 測定結果を漏れなく記載した。

4年にわたる観測から、日本上空または少しく拡大して北半球中緯度地帯ではという条件付きで、 おおよそ次のことが言えるのではないかと思う。

- 1 CF_2Cl_2 、 $CFCl_3$ および N_2O は対流圏では極めて均一に混合している。ただし、 CF_2Cl_2 や $CFCl_3$ は完全な工業製品であって、人口密集地の上空 2 ~ 3 km までは高い混合比が観測され ることもある。
- 2 CF₂Cl₂ や CFCl₃ は、最近まで生産が急激に増加しており、対流圏内の混合比もまだ増加傾向にあると予想される。1978年度から1980年度にかけて CFCl₃ は約14%増加していることが分かった。また測定誤差の範囲内ではあるが、CF₂Cl₂ も4%程度増加しているようである。大気中の N₂O も、窒素肥料の使用量が増加するにつれて増加するのではないかと予測されているが、明瞭な経年変化は見出だされなかった。
- 3 成層圏では、CF₂Cl₂、CFCl₃ および N₂O は、共に採集高度が増すとともに混合比が急激に 減少していた。CF₂Cl₂ より CFCl₃の減少率が大きいことからも、これが主に太陽紫外線によ る光化学分解によるものであることが分かる。第5章においては、他の測定例も含めてモデル 計算(一次元モデル)との比較を試みる。

— 39 —

謝 辞

飛行機による試料採集に際し、共立航空撮影株式会社(以下 KK)、日本フライングサービス KK、 エアロジェットリサーチ KK、昭和航空 KK の方々のご協力を載きました。特に昭和航空 KK の 北原国治氏からは技術的に多くの助言を載きました。深く感謝します。

また「試料採集ゾンデ」の飛揚に際しては高層気象台に色々ご面倒をお掛けしました。特に竹内 亘前課長、榎本盛泰課長を初め観測二課の方々には全面的なご協力を載き、深く感謝します。

最後に、比較測定用の試料を提供して下さった Oregon Graduate Center の R. A. Rasmussen 教授、および仲介の労を取って下さった日本フロンガス協会の高田定司に感謝します。

文 献

- Bortoli, M., and E. Pecchio, 1976, "Measurements of some halogenated compounds in air over europe", Atmos. Environ., **10** 921.
- Cicerone, R.J., J.D. Shetter, D.H. Stedman, T.J. Kelly, and S.C. Liu, 1978, "Atmospheric N₂O : Measurements to determine its sources, sinks, and variations", J. Geophys. Res., 83 3042.
- Cronn, D. R., R. A. Rasmussen, E. Robinson, A. E. Harsch, 1977, "Halogenated compound identification and measurement in the troposphere and lower stratosphere", J. Geophys. Res., 82 5935.
- Ehhalt, D. H., 1978, "In-situ measurements of stratospheric trace constituents" Rev. Geophys. Space Phys., 16 217.
- Fabian, P., R. Borchers, K. H. Weiler, U. Schmidt, A. Volz, D. H. Ehhalt, W. Seiler, and F. Müller, 1979, "Simultaneously measured vertical profiles of H₂, CH₄, CO, N₂O, CFCl₃ and CF₂Cl₂ in the mid-latitude stratosphere and troposphere", J. Geophys. Res., 84 3149.
- Goldan, P. D., Y. A. Bush, F. C. Fehsenfeld, D. L. Albritton, P. J. Crutzen, A. L. Schmeltekopf, and E. E. Ferguson, 1978, "Tropospheric N₂O mixing ratio measurements, J. Geophys. Res., 83 935.
- Goldan, P. D., W. C. Kuster, D. L. Albritton, and A. L. Schmeltekopf, 1980, "Stratospheric CFCl₃, CF₂Cl₂, and N₂O height profile measurements at several latitudes", J. Geophys. Res., **85** 413.
- Hirota, M. 1978, "Gas-chromatographic measurements of nitrous oxide (N₂O) in air using a molecular sieve trap", Bull. Chem. Soc. Jpn., **51** 3075.
- Makide, Y., Y. Kanai, and T. Tominaga, 1980, "Background atmospheric concentrations of halogenated hydrocarbons in Japan", Bull. Chem. Soc. Jpn., **53** 2681.

- Muramatsu, H., M. Hirota, and Y. Makino, 1982, "Gas-chromatographic measurements of dinitrogen oxide in air", Bull. Chem. Soc. Jpn., 55 117.
- Pierotti, D., and R. A. Rasmussen, 1977, "The atmospheric distribution of nitrous oxide", J. Geophys. Res., 82 5823.
- Rasmussen, R. A., and M. A. K. Khalil, 1981, "Interlaboratory comparison of fluorocarbons-11, -12, methylchloroform and nitrous oxide measurements", Atmos. Environ., **15** 1559.
- Robinson, E., R. A. Rasmussen, J. Kransec, D. Pierotti, and M. Jakubovic, 1977, "Halocarbon measurements in the alaskan troposphere and lower stratosphere", Atmos. Environ., 11 215.
- Roy, C. R., 1979, "Atmospheric nitrous oxide in the mid-latitudes of the southern hemisphere", J. Geophys. Res., 84 3711.
- Sandalls, F. J., and D. B. Hatton, 1977, "Measurements of atmospheric concentrations of trichlorofluoromethane, dichlorodifluoromethane and carbon tetrachloride by aircraft sampling over the british isles", Atmos. Environ., 11 321.
- Schmeltekopf, A. L., P. D. Goldan, W. J. Harrop, T. L. Thompson, D. L. Albritton, M. MacFarland, A. E. Sapp, and W. R. Henderson, 1976, "Balloon-borne stratospheric grab -sampling system", Rev. Sci. Instrum., 47 1479.
- Seiler, W., F. Müller, and H. Oeser, 1978, "Vertical distribution of chlorofluoromethanes in the upper troposphere and lower stratosphere", Pure Appl. Geophys., **116** 554.
- Singh, H. B., L. S. Shigeishi, and A. Crawford, 1977, "Urban-nonurban relationships of halocarbons, SF₆, N₂O, and other atmospheric trace constituents", Atmos. Environ., **11** 819.
- Weiss, R. F., 1981, "The temporal and spatial distribution of tropospheric nitrous oxide", J. Geophys. Res., **86** 7185.
- Williams, W. J., J.J. Kosters, A. Goldman, and D. G. Murcray, 1976, "Measurements of stratospheric halocarbon distributions using infrared techniques", Geophys. Res. Lett., **3** 379.
- 花井義道、加藤龍夫、荒井隆則、1979、"大気中亜酸化窒素の GC-MS による測定"、横浜国立大学 環境科学研究センター紀要、5 35.
- 平木隆年、玉置元則、渡辺弘、1980、"都市大気中 N₂O 濃度におよぼす自動車排ガスの影響"、兵庫県公害研究所研究報告、No.12、p1.

巻出義紘、金井豊、富永健、1981、"大気中のハロカーボン類の超微量分析"、日化、133. 田沢三郎、久保幸雄、熊崎脩、牧原正泰、山崎勇、1967、"ハロゲン化合物をトレーサ物質とする排 ガス拡散測定手法に関する研究"、中部電力研究資料、No.39、p89.

第2章 赤外分光法による微量成分の観測

牧野行雄*村松久史*広田道夫*

2.1 はじめに

大気中微量成分を観測する目的で、太陽光を光源とする吸光法による測定方法を開発し観測を行 なった。この章では、装置およびその較正、観測、モデル計算について述べる。

観測対象とした微量成分は、CFCl₃、CF₂Cl₂、CCl₄、HNO₃、N₂O,CH₄で、これらの分子は赤外 波数域の 6000-800cm⁻¹(波長:1.6 -13μ m)に、振動・回転帯をもっている。主な測定スペクト ルを 表2.1 に示す。これらの物質は、大気中では微量でしか存在していないので、光の吸収が弱い。 そこで、吸収測定の精度をあげるために、太陽光の大気中での光路が充分長い太陽天頂角が90°に近 いところで太陽光赤外域スペクトルを測定し、これらの物質による吸収量を求めることができる。 ただし、ほとんど全波数域にわたって 表2.1 で示したもののほかに H₂O 吸収スペクトルが存在し ていて、その影響を小さくするため、観測に際しては航空機を用い、高度 7 - 8 km から測定を行っ た。

2.2 装 置

2.2.1 赤外分光装置

赤外分光装置として、米国 Idealab 社製の赤外干渉分光計 IF-3 を使用した(図2.1)。装置の主

気体成分	波数 (cm ⁻¹)	波 長 (µm)	振動モード
CCl ₄	795	1 2.6	ν_3
CFCl ₃	847	11.8	ν_4
HNO3	897	1 1. 2	2ν ₉
$CF_2 Cl_2$	923	10.8	ν_6
O ₃	1042	9.6	ν_3
CO ₂	2326	4.3	ν_3
N ₂ O	2570	3. 9	$2 \nu_1$
CH_4	6004	1.67	2 v ₃
CO_2	6231	1.60	$\nu_3 + 4 \nu_2 + \nu_1$
CO_2	6351	1.57	$\nu_3 + 2 \nu_2 + 2 \nu_1$

表 2.1 主な測定スペクトル(H₂Oを除く)

*高層物理研究部

図 2.1 赤外分光装置(IF-3)の写真

図 2.2 赤外分光装置の構成(ブロック図)

表2.2 赤外分光装置の主な仕様

測定波数(波長)域	$10,000 - 670 \text{ cm}^{-1}$ (1.0 - 15 μ m)	6	$\begin{cases} \text{HgCdTe} : 5.5 - 15 \ \mu\text{m} \\ \text{InSb} : 1 - 5.5 \ \text{m} \end{cases}$
分解能	$0.5 - 10 \text{ cm}^{-1}$	サンプリング信号	(11130 · 1 — 5.5 µm He — Ne レーザ光干渉計
波数精度	0.1 cm ⁻¹	データ処理	
最大光路差	2.0 cm	オンライン	CPU、補助メチリによりスペクトル
干涉光束直径	1.0 inch		計算、XYプロッタに出力
走査間隔	1秒-10分(連続くり返し)	オフライン	野外観測の場合、磁気テープ装置にイ
ビームスプリッター	KBr (Ge 蒸着)		ンタフェログラムを記録し、実験客で
検出器	Dual Sandwich 型		スペクトル計算をする。

な仕様を表2.2 に、全体の構成を図2.2 に、それぞれ示す。

マイケルソン干渉計に入射した光は、ビームスプリッタ(BS)により、固定ミラーと移動ミラー へと分割され、反射光が再び合成され検出器へ集められる。こうして得られた干渉光信号は、増幅 器、アクティブフィルター、AD変換器を含むインタフェイスを経由し、CPUへ送られる。CPUは、 コントローラを介して移動ミラーを制御し、測定信号系と平行して送られてくる He-Ne レーザ光 の干渉信号により、サンプリング点を、また白色光干渉信号によりその起点をきめる。デジタル化 された干渉図形(インタフェログラム)は、CPUによって、補助メモリを使い、FFT(高速フーリ エ変換)処理され、XY プロッタにスペクトルを出力する。

野外観測の場合には、補助メモリや XY プロッタは使用せず、インタフェログラムのみを磁気 テープ装置に記録し、実験室に持ち帰っ

たあと、再生しスペクトル計算を行なう。 図2.3 にデータ処理の流れを、図2.4 に航空機上(高度7.6km)で太陽天頂角 が89.5°~91.6°の間に観測した59回の スキャンを重ねたインタフェログラム と、得られたスペクトル(外縁をトレー スしたもの)とを示す。

検出器は、2000cm⁻¹ 以下の波数では HgCdTe、それ以上の波数では InSb を 用い、いずれも液体窒素冷却下(77°K) で使用する。HgCdTe(MCT と略す) と InSb の切り換えは、各素子の信号増 幅器からアクティブフィルターへの回線 を切り換えて行なう。図2.5 に各検出器 のピーク値に相対的な波長感度曲線を示 す。Detectivity D* のピーク値は、MCT \hbar^{5} , $1.23 \times 10^{10} \text{ cm} \cdot \text{Hz}^{1/2} \cdot \text{w}^{-1}$ (10kHz), InSb $\hbar 1.47 \times 10^{11} \text{ cm} \cdot \text{Hz}^{1/2} \cdot \text{w}^{-1} (1 \text{ kHz}^{-1})$)となっている。MCT 検出器が 5.6μm より短い波長で感度が無くなるのは、 InSb 素子が MCT 素子の前に重なって いる dual sandwitch 型検出器のためで、 InSb による吸収が起るためである。

— 45 —

図 2.3 データ処理の流れ図(Emission は Single Beam, Absorption は Double Beam 処理)

- 46 -

図 2.5 赤外検出器の感度特性

2.2.2 較正

太陽光が分光器の検出器に達するまでに、分光学的に影響を受けるものとしては、径路内の気体 分子のほかに、太陽自動追跡装置の金蒸着反射鏡2枚、分光器の窓材(KRS-5)、KBrのビームス プリッタとその Ge 蒸着膜、Al 蒸着の反射鏡と集光鏡各1枚、検出器ユニットの KRS-5 窓材があ る。さらに検出器自体に感度特性があり、得られたスペクトルは光線の放射エネルギー分布を正確 に表わしたものではない。従って、正しいスペクトルを得るために、あらかじめ放射スペクトルが 分っている光源を用いて、分光装置の特性関数を調べておき、それを用いて較正する必要がある。

今、標準黒体炉の温度が T° K の時に、黒体炉から分光器へ入射するエネルギーの強度を $R(T, \nu)$ (w•(cm⁻¹)⁻¹)、分光装置で得られるその測定結果を $I(T, \nu)$ とする。ただし、 ν は波数(cm⁻¹) を表わす。この時、次の関係が成立する。

 $I \quad (T, v) = C \quad (v) \quad [E \quad (v) \quad R \quad (T, v) + B \quad (v)] \quad \dots \dots \quad (2 \cdot 1)$

C(*v*):装置特性関数

 $E(\nu)$: 黒体炉の emissivity (≒1.0)

B(v):分光器内の壁、窓材やその他の背景放射 である。R(T, v)は、Planckの放射式を用いて、

- 47 -

$$R(T,\nu) = \frac{C_1\nu^3}{\exp(C_2\nu/T) - 1} \cdot A\mathcal{Q}\cdots(2 \cdot 2)$$

と表現される。ただし、 C_1 =1.1911×10⁻¹²w・cm⁻²・sr⁻¹・(cm⁻¹)⁻⁴、 C_2 =1.439 K・(cm⁻¹)⁻¹、 A:分光器の入射孔面積(cm²)、 Ω :黒体炉開口の分光器からみた立体角(sr)である。

黒体炉の温度が、 T_1 および T_2 ($T_2 > T_1$) に設定された時に、それぞれ式 (2.1) の関係が成 立するので $H(\nu)$ 、 $B(\nu)$ は次の様になる。すなわち、

$$C(\nu) = \frac{I(T_{2},\nu) - I(T_{1},\nu)}{E(\nu) \{R(T_{2},\nu) - R(T_{1},\nu)\}} \quad \dots (2 \cdot 3)$$
$$B(\nu) = \frac{E(\nu) \{I(T_{1},\nu)R(T_{2},\nu) - I(T_{2},\nu)R(T_{1},\nu)\}}{I(T_{2},\nu) - I(T_{1},\nu)} \quad \dots (2 \cdot 4)$$

となる。こうして求めた装置特性関数 $C(\nu)$ を、MCT 検出器(600-1500cm⁻¹)の場合について 示したものを 表2.3 および 図2.6 に掲げた。ピークは 720cm⁻¹(13.9 μ m)にあり、ピークを 1 と している。1100 K の黒体炉(黒体炉窓直径は 25.4mm、分光器までの距離は 52cm)の放射に対す る $B(\nu)$ の相対値は、800cm⁻¹ で0.06、900cm⁻¹ で0.04、1000cm⁻¹ で0.03であった。黒体炉放

図 2.6 分光装置特性関数

射 (1100 K) から直接得られたスペクトルと、これを600—1500cm⁻¹の範囲で $C(\nu)$ および $B(\nu)$ を用いて較正したスペクトルとの比較を 図2.7 に示した。

- 48 -

ν (cm ⁻¹)	C (V)	$\nu (\mathrm{cm}^{-1})$	C (V)
600	0.405	880	0.881
610	0.480	885	0.858
620	0.578	890	0.877
630	0.684	900	0.945
640	0.734	910	0.907
650	0.793	920	0.942
660	0.863	930	0.913
670	0.917	940	0.909
680	0.944	945	0.918
690	0.983	950	0.919
700	0.939	960	0.893
705	0.907	970	0. 881
710	0.931	975	0.868
720	1.000	980	0.856
730	0.926	985	0.843
735	0.875	990	0.845
740	0.877	1000	0.807
750	0.891	1005	0.774
760	0.864	1010	0.727
770	0.878	1020	0.636
775	0.831	1025	0.618
780	0.843	1030	0.621
790	0.722	1040	0.662
800	0.653	1050	0.654
810	0.735	1060	0.674
815	0.765	1070	0.640
820	0.768	1080	0.621
825	0.789	1085	0.598
830	0.845	1090	0.614
840	0.902	1095	0.617
850	0.862	1100	0.608
860	0.866	1110	0.596
870	0.886	1115	0.605
875	0.913	1120	0.639

表 2.3 分光装置の特性関数

— 49 —

ν (cm ⁻¹)	C (v)	ν (cm ⁻¹)	C (V)
1125	0.643	(注2) 1310	0.583
1130	0.627	1320	0.579
1135	0.643	1330	0.581
1140	0.652	1340	0.566
1150	0.646	1350	0.563
1155	0.631	1360	0.569
1160	0.628	1370	0.561
1165	0.643	1380	0.552
1170	0.658	1390	0.544
1175	0.631	1400	0.541
1180	0.634	1410	0.543
1190	0.658	1420	0.535
1200	0.623	1430	0.527
1205	0.621	1440	0.519
1210	0.635	1450	0.516
1220	0.624	1460	0.513
1230	0.619	1470	0.511
1240	0.637	1480	0.503
1250	0.560	1490	0.496
1 2 5 5	0.530	1500	0.494
1260	0.522		
1270	0.590	(注1) 変化の大き	い所は5cm ⁻¹ 毎に,
1280	0.591	その他は100	cm ⁻¹ 毎に計算した。
1290	0.570	(注2) 1310cm	1 以上は水蒸気吸収
1295	0.573	の影響があり	,細かい変化は求めら
1300	0.587	れない。	

- 50 -

2.3 観 測

2.3.1 航空機観測

地表付近に多い H_2O の吸収線の影響を避け、微量成分の光路を充分長くとるために、分光器を 航空機(Cessna 404、図2.8 参照)に搭載し、高度7~8 km で、日出没時の観測を行なった。

太陽光の追尾は、初め手動で行 なった(図2.9 参照)。しかし、スキャ ンを重ねる間に光軸がすれることも あり、後には太陽自動追跡装置(図 2.10 参照)を使用して、追尾が正確 かつ容易になった。太陽自動追跡装 置の主な仕様を表2.4 に掲げた。

航空機上の環境は、低圧(~1/3 気 圧)、低温(~0℃前後)でかつ振動

表 2.4 太陽自動追跡装置の主な仕様

	項	目		性	能
1	7 —	平滑	・度	0.1 µm 以上	
×	"	,	+	金メッキ	
追	尾	範	囲	{ 高度角−10°〜 { 方位角±90°レ	+20°以上 l内
追	尾	精	度	31 以内	
追	尾	速	度	両軸とも6 0°/1	5秒

が存在するので、実験室に比べて厳 しい条件である。特に、測定に最も 影響を与えるものは振動であると考 えられる。観測に使用した航空機の 振動の大きさを示すと 表2.5 のよ うになる。観測は、高度7km 以上 の水平飛行で行なうので、加速度 0.05g程度を受けていると考えられ る。

Bell (1972) によれば、IF-3 は 0.2g の加速度まで正常に作動する とされているので、空気のみだれ等 により航空機が特別大きく揺れない かぎり装置は正常に作動する。

観測のための飛行は、テスト飛行 を入れると1979年10月から1981年1 月までの間に、主として冬期に合計 10回以上行なった。それらの飛行記 録を表2.6にまとめた。飛行コース 例を 図2.11、2.12 に示す。これら の観測中に行なったスキャンの数と 内容、太陽光導入の正否などを表2. 7 にまとめた。

図 2.8 使用した航空機(Cessna 404, 昭 和航空)

図 2.9 干渉計を回転および仰角変化の可能 な台の上に乗せた時の写真

図 2.10 太陽自動追跡装置の航空機内写真

高 度	速度		上	下 振	動	左不	5 振	動
km.	kt	飛行状態	周波数	加速度	全振巾	周波数	加速度	全振巾
	_		Hz	g	. mm	Hz	g	mm
0		滑送離陸	70	0. 15	0. 015	70	0.15	0. 015
2.0	128	上 昇	72	0.13	0.012	72	0.09	0.009
7.12	135	水平	62	0.05	0.006	-62	0.05	0. 005
2.0	150	下降	80	0. 15	0.012	62	0.06	0.008
0		着地滑送	35	0. 20	0. 081	. 50	0. 13	0. 026

表 2.5 航空機の振動(CESSNA 404)

図 2.12 飛行コース(1981年1月)

表 2.6 飛行記録

(注)()のついたものは内又は外挿値

日付	時 刻 (日本標準時)	経度(東経)	緯度(北緯)	高度(km)	太陽天頂角
1979. 10. 20	16:00:00	138°45′00″	3 5°30.5′	6.95	78.2°
	16:10:00	138°44′36″	35°42.5′	7.44	80.2°
	16:20:00	138°43′42″	35°59.5′	7.44	82.2°
	16:30:00	138°43′24″	36°20.5′	7.44	84.2°
1979. 10. 21	15:50: 0 0	138°51′36″	35°51′30″	7.86	76.8°
	16:00:00	138°51′18″	36°03′00″	7.86	78.8°
	16:05:00	138°51′00″	36°19′18″	7.89	79.8°
	16:10:00	138°49′18″	36°45′36″	7.97	81.0°
	16:15:00	138°53′24″	37°02′00″	7.97	82.0°
	16:20:00	138°57′42″	37°28′00 ′	8.06	83.1°
1979. 10. 22	16:00:00	136°10′00″	33°54′00″	7.74	76.2°
	16:10:00	136°08′00″	34°17′00″	7.74	78.2°
	16:20:00	136°06′00″	34°45′00″	7.74	80.2°
	16:30:00	135°59′00″	35°16′00″	7.71	82.3°
	16:40:00	135°56′00″	35°44′00″	7.62	84.3°
	16:50:00	135°55′00″	36°10′00″	7.59	86.3°
÷	17:00:00	135°53′00″	36°38′00″	7.62	88.4°
	17:05:00	135°50′00 ′	36°49′00″	7.62	89.4°
1979. 10. 23	16:25:00	135°44′00″	33°26′00″	7.45	80.7°
	16:35:00	135°43′00″	33°57′00″	7.70	82.8°
	16:45:00	135°42′00″	34°27′00″	7.70	84.9°
	16:55:00	135°42′00″	34°57′00″	7.71	87.0°
	17:05:00	135°42′00″	35°28′00″	7.71	89.1°
	17:15:00	135°42′00″	35°58′00″	7.71	91.2°
1979. 12. 16	15:45:00	139°59'36″	34°49′28″	7.62	82.9°
	15:55:00	139°51′26 ′	35°12′23″	7.62	84.8°
	16:05:00	139°44′34″	35°36′41″	7.62	86.6°
	16:15:00	139°39′10″	35°59′00″	7.62	88.5°
	16:25:00	139°32′00″	36°21′00″	7.62	90.3°
	16:35:00	139~27'10"	36°42′30″	7.62	92.2°
	16:40:00	139~25110"	36°51′30″	7.62	93.1°

— 54 —

日付	時 刻 (日本標準時)	経度(東経)	緯度(北緯)	高度(km)	太陽天頂角
1979. 12. 17	15:40:00	140°05′13″	34°43′54″	7.62	82.0°
	15:50:00	139°55′56 ″	35°08′11″	7.62	83.9°
	16:00:00	139°36′05″	35°13′41″	8.20	85.4°
	16:10:00	139°27′49″	35°31′16″	8.20	87.2°
	16:20:00	139°23′20″	35°54′30″	(8.20)	89.1°
	16:30:00	139°21′15″	36°19′25″	(8.20)	91.0°
	16:39:00	139°16′37″	3.6°41′10″	(8.20)	92.7°
1980. 12. 28	6:58:00	133°36′37″	34°31′35″	7.96	93.2°
	7:05:00	133°42′30″	34°12′29″	8.00	91.7°
	7:11:00	133°49′04″	33°58′06″	8.05	90.4 [°]
	7:16:00	133°55′33 ″	33°46′24″	8.11	89.3°
	7:18:00	133°58′00″	33°41′45″	8.11	88.9°
	7:25:00	134°05′30″	33°25′50″	8.11	87.4°
	7:30:00	134°10′47″	33°14′30″	8.11	86.3°
	7:38:00	134°19′35″	32°55′59″	8.11	84.6°
1981. 1. 7	15:53:00	138°57′13″	34°29′56″	7.86	80.9°
	16:10:00	138°51′35″	35°07′00″	7.80	84.1°
	16:20:00	138°48′23″	35°29′07″	7.80	86.0°
	16:30:00	138°46′45″	35°49′31″	7.80	87.9°
	16:40:00	138°44′42″	36°09′42″	7.80	89.8°
	16:43:00	138° 4 4′37″	36°16'′09″	7.80	90.4°
	16:48:00	138°44′45″	36°26'17'	7.80	91.3°
	16:53:00	138°45′32″	36°35′38″	7.77	92.3°
1981. 1. 8	16:12:00	139°01′40″	34°32′15″	7.53	84.1°
	16:20:00	138°57′40″	34°48′25″	7.53	85.6°
	16:30:00	138°52′04″	35°09′17″	7.53	87.5°
	16:40:00	138° 48′ 38″	35°32′04″	7.53	89.4°
	16:50:00	138~45′51″	35 54 00"	7.47	91.3°
	10.28:00	138 43 48	36-12.07"	7.44	92.9°

- 55 -

気象研究所技術報告 第6号 1982

日付	時 刻 (日本標準時)	経	度(東経)	緯 度(北緯)	高度(km)	太陽天頂角
1981. 1. 9	16:05:00 16:08:00 16:19:00 16:22:00 16:33:00 16:43:00 16:49:00	139 139 139 (139 (139 (139	9°04′02′ 9°03′25′ 9°01′58′ 9°01′17″ 8°58′47″) 8°56′30′) 8°55′08′)	34°39'40" 34°45'25" 35°07'35' 35°14'12" (35°38'28") (36°00'31") (36°13'45")	7.89 7.92 7.96 7.80 7.83 7.83 7.80 7.80	8 2. 8 ° 8 3. 4 ° 8 5. 4 ° 8 6. 0 ° 8 8. 1 ° 9 0. 1 ° 9 1. 2 °

表2.7 測定インタフェログラム内訳

日付	太陽追尾法	検出器	全スキャン数	有効スキャン数	背景光スキャン数
1979.10.20	手動	мст*	57	0	57
10.21		"	100	29	71
10.22	"	"	181	148	33
10.23	"	"	168	16	152
1979.12.16	自動	"	122	110	12
12.17	"	"	217	181 ^{××}	36
1980. 12. 28	"	МСТ	97	97	0
		InSb	94	4 0	54
1981. 1. 7	"	InSb	183	183	· 0
		MCT	167	150	17
1. 8	"	InSb	247	247	0
1. 9	"	MCT	250	250	0
		1	1		

注) 有効スキャンは太陽光に対して光軸が合っていると見なせるもの,背景光スキャンは 日没後又は,太陽光入射がないものを示す。

* : 1979年度は、検出器は Dual Sandwich 型ではなく MCT 単一素子型を用いた。
**: インタフェログラム全体が波打つ長周期ノイズが入っている。

2.3.2 測定スペクトル

図2.13 に測定スペクトル例を示す。検出器は MCT で(a)から(c)へと時刻を追って示している。 (d)は同じ日の日没後の空へ分光器を向けて測定した時のスペクトルである。いずれも縦軸は適当に 縮尺されていて、600-1500 cm⁻¹の間は較正 (2.2.2参照) されたものである。(a)~(c)は太陽光に分

光器内部の壁や窓材からの放射と大気からの放射が加わったもので、(d)は壁、窓材および大気からの放射のみによるものである。

大気からの放射スペクトルの LOWTRAN 5 プログラム (Selby and McClatchey、1975) による計算例を 図2.14 に示す。大体 $10^{-6} \sim 10^{-7}$ w・cm⁻²・ster⁻¹・ (cm⁻¹) ⁻¹ のオーダーである。一方、 太陽を完全黒体と考えて計算した時の放射スペクトル計算値を 図2.15 に示した。大体 10^{-3} w・ cm⁻²・ster⁻¹・ (cm⁻¹) ⁻¹ のオーダーである。分光器の視野角 θ は

 $\theta = \tan \theta = h/2F$ (2.5)

ここで、h:検出器の大きさ(2mm)

F: 集光鏡の焦点距離(約50mm)

で表わされる(Bell、1972)。太陽の視直径が約32′なので、全視野中に太陽が占める立体角の割合 は約5%程度である。従って大気放射の影響は、太陽放射に比べて 10⁻²~10⁻³のオーダーであり測 定スペクトルの中では無視できる大きさである。

図2.16 に太陽光測定スペクトル(1)と、日没後の背景光スペクトル(2)とを適当に縮尺し、700cm⁻¹ で一致するように描き直したものを示した。700cm⁻¹ 以下の CO₂ 吸収帯 (15µm 帯)、1010~1030 cm⁻¹ の O₃ 吸収帯 (9.6µm 帯)、1270~1300cm⁻¹ のH₂O および N₂O、CH₄ 吸収帯で、2つのス ペクトルは、ノイズレベルの範囲でよく一致している。すなわち、これらの吸収帯において、大気 透過率はほとんど零であり、(2)のスペクトルは、分光器の壁あるいは窓材からの放射スペクトルを 表わしていると考えられる。それは2.4のモデル計算でも確かめられる。従って、解析にあたって は、得られた太陽スペクトル(1)から(2)を差し引いた残りのスペクトルで大気透過率を計算しなけれ ばならないことが分る。

図2.17 に InSb 検出器を用いて測定したスペストルの一部を示した。この場合には、太陽光スペ クトルに比べて、背景光はほとんど無視できる。

— 57 —

- 5

NORMALIZED UNIT

図 2.17 InSb 検出器で測定した太陽光スペクトルの一部。

2.4 合成スペクトル

使用した分光装置の最高分解能は 0.5cm⁻¹ であり、測定スペクトル中には、数多くの吸収線や吸 収帯がみられるが、これらの吸収スペクトルを作る大気成分を同定し、観測対象成分による吸収と 分離しなければならない。そのため、モデル大気によって透過率のモデル計算を行なった。

まず最初に、太陽光が地球大気中でどのような光路をたどるか、光路中に気体分子個数がどれく

らいあるかを計算する(ray tracing)。次に、考えている波 数に影響する吸収線のすべてに ついてその効果を計算し重ね合 わせる(line by line 単色光計 算)。さらに、一定の分解能とス リット関数をもつ分光器で測定 された場合に得られるであろう スペクトルの計算を行なう(コ ンボリューション計算)。次にそ れぞれについて、もう少し詳し く述べよう。

図 2.18 Ray Tracing の方法;(a) θ ≤ 90°の場合

2.4.1 Ray Tracing

光路中の気体分子個数を解析的に求める式は Generalized Chapman Function と呼ばれ、Green and Griggs (1963) や Fitjmaurice (1964) によって示されている。しかし、これは非屈折大気に ついてであり現実の観測には不充分である。一方、Selby and McClatchey (1975) が作った LOW-

— 59 —

TRAN プログラムでは、成層大気における屈折率の変化を考案した数値計算による光路の計算法 が示されている。しかし、彼らの計算スキームは、3つのタイプの問題を扱っているのみである。 すなわち、ある高度(H1)から出発した光が、(1)水平方向へ進む場合、(2)別の高度(H2)まで進 む場合、(3)無限の彼方へ進む場合であり、いずれも出発点での天頂角(θ)が与えられている。我々 の観測においては、屈折がない場合には、入射天頂角(θ)は、天文学的に時刻と位置(緯度・経度) から求められるが、屈折してきて入射する太陽光天頂角(θ)は分かっていないので Selby と Mclatcheyの計算スキームは使えない。そこで、ray tracingのプログラムを我々の観測に適合 するように作った(図2.18参照)。すなわち、天頂角 θ で H_0 点を出発した光が層毎に屈折をして、 大気外縁 $H_{\rm T}$ に達した時にもつ天頂角 $\theta_{\rm f}$ がそこで天文学的に計算される太陽天頂角 γ と等しくな るまで θ を変化させるというものである。図2.18において、高度 $Z(i) \sim Z(i+1)$ の間の層内 では屈折率が一定と考えると、層の上端面での屈折角 α_i と下端面での入射角 θ_i の間には

 $\sin \alpha_{i} = (R_{0} + Z_{i}) \sin \theta_{i} / (R_{0} + Z_{i+1}) \cdots (2.6)$

の関係がある。ここで R_{0} は地球半径である。一方、高度 Z (i+1) における Snell の法則は

 $n_{i}\sin\alpha_{i} = n_{i+1}\sin\theta_{i+1} \quad \dots \quad (2.7)$

と表わされる。ここで n_i 、 n_{i+1} はそれぞれ i 番目の層(Z(i)~Z(i+1))と i+1 番目の層(Z

-60 -

(i+1) ~ Z (i+2))の中の屈折率、 θ_{i+1} は高度 Z (i+1) での入射角を表わす。

(2.6) と (2.7) 式から

 $n_i (R_0 + Z (i)) \sin \theta_i = n_{i+1} (R_0 + Z (i+1)) \sin \theta_{i+1} \dots (2.8)$

となる。同様の関係は、連続した層の間に成立するので(2.8)式は不変量である。従って

 $\sin\theta_{i} = n_{0} \ (R_{0} + H_{0}) \ \sin\theta / n_{1} \ (R_{0} + Z \ (i))$ $\sin\alpha_{i} = n_{0} \ (R_{0} + H_{0}) \ \sin\theta / n_{1} \ (R_{0} + Z \ (i+1))$

..... (2 • 9)

となる。ここで H_0 、 n_0 、 θ は、それぞれ、観測点高度、観測点の含まれる層の屈折率、観測点での入射天頂角を表わす。

光線がZ(i)とZ(i+1)を通過する点が、地球の中心に対してなす角を β_i とすれば、

 $\beta_i = \theta_i - \alpha_i$

である。地球大気上端(高度 $H_{\rm T}$)から観測点までの光路が地球中心に対して張る角 eta は (2.9) を用いて

$$\beta = \sum_{i=1}^{m} \beta_{i}$$

$$= \sum_{i=1}^{m-1} \left[\sin^{-1} \left\{ A / n_i \left(R_0 + Z(i) \right) \right\} - \sin^{-1} \left\{ A / n_i \left(R_0 + Z(i+1) \right) \right\} \right] \cdots (2 \cdot 10)$$

と表わされる。ここで

 $A = n_0 (R_0 + H_0) \sin\theta$

である。

大気中屈折率は

 $(n-1) \times 10^6 = (77.46 + 0.459/\lambda^2) \frac{P}{T} - \frac{P_{H20}}{1013} (43.49 - 0.347/\lambda^2)$

で与えた。ここでn、 λ 、P、T、 P_{H20} はそれぞれ屈折率、光の波長 (μ m)、気圧 (mb)、気温 (*K)、水蒸気圧 (mb) を表わす。 i 層内の屈折率 n_1 は上記nを層内で平均したものを用いる。

大気上端 H_T では、入射天頂角 θ_T は (2.9) 式より求まる。一方

 $\gamma = \theta_0 - \beta$

であり、 $(\gamma - \theta_{\rm T})$ が一定値以下(大体10⁻⁶程度)になるまで θ を変化させ、その時の θ を観測時の入射天頂角とする。

入射天頂角が90°以上の時は、光線が途中で水平面に接する高度がある。この前後の層境界(Z(ℓ +1))で屈折が大きくなり、全反射を起す可能性があり、その時($\gamma - \theta_{T}$)は収束が困難となる。 このため、 $\theta > 90°$ の場合には、最下層を含む前後の層を、さらに 1/1000 づつ細分化して計算しな ければならなかった。しかし、境界面と接する場合にはやはり収束しなかったので、境界面をずら して計算した。細分化層の厚さは、我々のプログラムでは1m をとった。

図2.19、図2.20、図2.21 および 図2.22 に、高度 7.6km から太陽赤外光を見た時に入射天頂角

-61 -

が大気の屈折を受けて変化する様子、接水平面高度 Hmin、光路中の大気分子個数、およびその屈 折の効果を示した。光路中の分子個数は、太陽天頂角が80°以下の時は、ほとんど屈折効果はないが、 91°になると約10%に達することが分かる。

ray tracing で求めた各層内の光路から、モデル大気 (表2.8) について、全光路の気体分子数、 気温と気圧の荷重平均値を計算したものを 表2.9 に示す。モデル大気は U. S. Standard Atmosphere、1976を用いた。

表2.8 大気モデル:(注)(x)は10*を略したもの

高度(km)	気圧(mb)	気温(℃)	大気分子密度 (cm^{-3})	$H_2O(cm^{-3})$	$CO_2(cm^{-3})$	O ₃ (cm ⁻³)	$N_2O(cm^{-3})$	CO (cm ⁻³)	CH_4 (cm ⁻³)	$O_2 (cm^{-3})$
0	1.013(+3)	288.2	2.547 (+19)	1.92 (+17)	8.20 (+15)	1.0 (+12)	6.88 (+12)	4.8 (+12)	3.8 (+13)	5.335 (+18)
1	8.988 (+2)	281.7	2.311 (+19)	1.37 (+17)	7.44 (+15)	8.4 (+11)	6.24 (+12)	3.0 (+12)	3.5 (+13)	4.841 (+18)
2	7.950 (+ 2)	275, 2	2.093 (+19)	9.56 (+16)	6.74 (+15)	6.8 (+11)	5.65(+12)	2.7(+12)	3.1 (+13)	4.384 (+18)
3	7.012 (+ 2)	268.7	1.891 (+19)	6.25(+16)	6.09(+15)	6.3 (+11)	5. 11 (+12)	2.5 (+12)	2.8 (+13)	3.961 (+18)
4	6.166 (+ 2)	262.2	1.704 (+19)	3.47 (+16)	5.49 (+15)	5.8 (+11)	4.60(+12)	2.2(+12)	2.6(+13)	3.569 (+18)
5	5.405 (+ 2)	255. 7	1.531 (+19)	2.24 (+16)	4.93 (+15)	5.8 (+11)	4. 13 (+12)	2.0(+12)	2.3 (+13)	3.207 (+18)
6	4.722 (+ 2)	249. 2	1.373 (+19)	1.22 (+16)	4.42 (+15)	5.7 (+11)	3.71 (+12)	1.8(+12)	2.1 (+13)	2.876 (+18)
7	4.111 (+ 2)	242. 7	1. 227 (+19)	7.59(+15)	3.95 (+15)	6.1 (+11)	3.31(+12)	1.6(+12)	1.8 (+13)	2.570 (+18)
8	3.565 (+ 2)	236.2	1.093 (+19)	3.79(+15)	3.52 (+15)	6.5 (+11)	2.95 (+12)	1.4(+12)	1.6 (+13)	2.290 (+18)
9	3.080 (+ 2)	229. 7	9.711 (+18)	2.03(+15)	3.13 (+15)	8.9 (+11)	2.62(+12)	1.3(+12)	1.5 (+13)	2.034 (+18)
10	2.650 (+ 2)	223. 3	8.598 (+18)	5.97 (+14)	2.77 (+15)	1. 13 (+12)	2. 32 (+12)	1.1 (+12)	1.3 (+13)	1.801 (+18)
11	2.270 (+ 2)	216.8	7.585 (+18)	3.33(+14)	2.43 (+15)	1.58 (+12)	1.99(+12)	3.0(+11)	1.1(+13)	1.589 (+18)
12	1.940 (+ 2)	216.7	6.486 (+18)	1. 18 (+14)	2.08 (+15)	2.02(+12)	1.67(+12)	2.6 (+11)	9.5 (+12)	1.359 (+18)
13	1.658 (+ 2)	216.7	5.543 (+18)	6.5 (+13)	1.78 (+15)	2.19(+12)	1.39(+12)	2.2(+11)	8.0(+12)	1.161 (+18)
14	1.417 (+ 2)	216.7	4.738 (+18)	2.5 (+13)	1.52 (+15)	2.35 (+12)	1.04(+12)	1.9(+11)	6.7 (+12)	9.925 (+17)
15	1.211 (+ 2)	216. 7	4.049 (+18)	2.1 (+13)	1.30 (+15)	2.65(+12)	7.7 (+11)	1.6(+11)	5.7 (+12)	8.482 (+17)
20	5.529 (+ 1)	216.7	1.849 (+18)	1.3 (+13)	5.94 (+14)	4.77 (+12)	1.7 (+11)	7.4(+10)	2.4 (+12)	3.873 (+17)
25	2.549 (+ 1)	221.6	8.334 (+17)	2.0 (+13)	2.68 (+14)	4.29 (+12)	6.2 (+10)	3.5 (+10)	9.2(+11)	1.746 (+17)
30	1.197 (+ 1)	226.5	3.828 (+17)	1.1 (+13)	1.23 (+14)	2.52(+12)	2.2 (+10)	1.7(+10)	3.4 (+11)	8.019 (+16)
35	5.746(0)	236.5	1.760 (+17)	4.4 (+12)	5.65 (+13)	1.40(+12)	6.8 (+9)	8.1(+9)	1.3(+11)	3.687 (+16)
40	2.871 (0)	250.4	8.308 (+16)	1.6 (+12)	2.67(+13)	6.07 (+11)	1.7 (+9)	4.0(+9)	5.0(+10)	1.740 (+16)
50	7.978(-1)	270.7	2.135 (+16)	2.6 (+11)	6.85 (+12)	6.64(+10)	0	1.1(+9)	5.3(+9)	4. 472 (+15)
60	2.196 (-1)	247.0	6. 439 (+15)	3.9 (+10)	2.07 (+12)	7.33(+9)	0	3.6(+8)	0	1.349 (+15)
70	5.221 (-2)	219.6	1.722 (+15)	3.9 (+9)	5.53(+11)	5.4 (+8)	0	1.0 (+ 8)	0	3.607 (+14)
80	1.052 (-2)	198.6	3.838 (+14)	4 (+8)	1.23(+11)	4.0 (+7)	0	2.3(+7)	0	8. 040 (+13)
100	3.201 (-4)	195. 1	1. 189 (+13)	0	3.82(+9)	7.0 (+6)	0	7.1 (+5)	0	2. 491 (+12)
9999.	0	199. 0	0	0	0	0	0	0	Ó	0

63

気象研究所技術報告 第6号 1982

太陽天頂角	H ₂ O		O ₂ ,	CO ₂	O ₃		
$\theta_{\circ}(^{\circ})$	p _e (mb)	<i>T</i> _e (°K)	⊅ _e (mb)	$T_{e}(^{\circ}\mathrm{K})$	p _e (mb)	T_{e} (°K)	
89.2	312	231	223	224	81.4	222	
90.0	325	232	248	226	90.7	222	
90.4	3 3 5 [.]	234	262	. 227	94.6	222	
90.6	346	235	275	228	98.2	223	
91.0	361	237	295	231	104	223	

表 2.9	高度 7.8 kmから θ 方向を見た時の大気成分分布に
	よる有効気圧(🌶)および有効気温(T e)

N ₂ C)	C	0	CH4		
⊅ e(mb)	$T_{e}(^{\circ}K)$	p _e (mb)	$T_{e}(^{\circ}K)$	p _e (mb)	T _e (°K)	
248	224	268	227	230	224	
269	226	288	229	253	226	
281	228	300	230	267	227	
293	229	312	231	279	229	
312	231	329	233	299	231	

2.4.2 Line by Line 計算

大気中気体分子の吸収線についてのデータは、磁気テープに編集されたものが利用できる。Mc-Clatchey et al. (1973)は、7気体成分、すなわち H₂O, CO₂、O₃、N₂O、CO、CH₄、O₂ について 波長 1 μ m から遠赤外の間の100,000本以上の遷移線について、共鳴中心波数 ν_0 (cm⁻¹)、吸収線強 度 S (cm⁻¹/molecule-cm⁻²: 296°K)、Lorentz 半値幅 α_0 (cm⁻¹•atm: 296°K)、遷移準位のうち 低い方のエネルギー E'' (cm⁻¹) の4つの基本的パラメータをデータとして編集した磁気テープを 作っている。我々は、このテープを利用した。

吸収線の形は、一般的には、Lorentz 型と Doppler 型を結合した Voigt 型が望ましいが、我々の観測高度では、Lorentz 型で近似しても結果を大きく変えない。図2.23 に、地上0km でのLorentz 半値幅(LHW)を1とした時の各気体成分のLorentz半値幅と Doppler 半値幅(DHW)の高度による変化を示した。但し、H₂O は 900cm⁻¹,CO₂ は 2300cm⁻¹、O₃ は1000cm⁻¹、N₂O は 2570cm⁻¹、CO は 2300cm⁻¹、CH₄ は 6000cm⁻¹、O₂ は 6300cm⁻¹ 付近で考えたものを示している。このように Lorentz 型を仮定すると吸収係数は、

$$K(\nu) = \frac{3\gamma_{\rm L}}{\pi \left\{ (\nu - \nu_0)^2 + \gamma_{\rm L}^2 \right\}} \qquad (2 \cdot 11)$$

で表わされ

 $S = f K (\nu) d\nu, \gamma_{\rm L} = \gamma_{\rm LO} p$

である。線強度は、Boltzman 係数と分配関数を通して温度 T (°K) に依存している。すなわち、

$$S(T) = \frac{S(Ts)Qv(Ts)Qr(Ts)}{Qv(T)Qr(T)} \exp\left\{\frac{1.439E^{''}(T-Ts)}{TTs}\right\} \dots (2 \cdot 12)$$

で計算される。ここで $Q_v(T)$ 、 $Q_r(T)$ は、気温 T での振動および回転の分配関係(状態和) である(Herzberg、1945)。回転分配関数比 $Q_r(T)/Q_r(T_s)$ は $(T/T_s)^i$ で与えられる。j および $Q_v(T)$ は McClatchey et al、(1973)の中の Table 2 で与えられている。なお $T_s =$ 296°K である。H₂O や低い J での遷移の場合に問題があることも指摘されているが、半値幅 γ_{L0} の 温度依存性は、 $\gamma_{L0}(T)/\gamma_{L0}(T_s) = (T/T_s)^{-0.5}$ として計算する。

以上のような方法で合成した大気中での透過スペクトルを 図2.24 および 図2.25 に示す。図2. 24 の(1)と(2)は、それぞれ 図2.13 の(b)と(c)に対応した条件で計算したものである。図2.25 は 図2. 17 に対応している。用いた大気モデル(表2.8)は、主に U. S. Standard Atmosphere、1976を参 考にし、O₃ の 80km 以上の分布は、J. Heicklen (1976)、N₂O は一次元光化学拡散モデル(第5 章)の結果、CO は Ehhalt et al. (1975) および Shimazaki and Cadle (1973) を参考にした。な お、H₂O continuum とエーロゾルの影響について、LOWTRAN 5 で計算した例を 図2.26 に示 す。これらの影響は0.5%以下で無視できるものとした。

図 2.23 地上(0 km)の Lorentz 半値幅に対する各大気成分の Doppler 半 値幅(DHW)および Lorentz 半値幅(LHW)の高度変化。

図 2.24 合成スペクトル例(1)

図 2.25 合成スペクトル例(2); 斜線部(N₂O)は N₂O 吸収のみの効果を示す。

図 2.26 H₂O Continuum とエーロゾルによる透過率の変化。

2.5 解析方法

較正された測定スペクトルから大気微量成分の量を求めるためには、(1)測定スペクトル中の太陽 光スペクトル分の計算、すなわち $B(\nu)$ ((2.4)式)の除去、(2)吸収帯中心での透過率の算出、(3) 測定対象以外の物質による透過率への影響の除去、(4)測定対象物質量への変換の過程を必要とする。 以下(2)~(4)について述べる。

基準線の引き方;測定スペクトル(図2.13 参照)の中で地球大気外での太陽スペクトルの線(透 過率T=1.0の線)がどこにあるか図からは直接は分からない。そこで図2.27を参考にして測定対 象吸収帯(ν_0)での透過率を求める。太陽放射を完全黒体と見なすと図2.15のようになる。T=1.0の場合821cm⁻¹で太陽放射(相対値)は、0.492、891cm⁻¹で0.575、961cm⁻¹で0.663とな り、821cm⁻¹と961cm⁻¹を直線で近似すると中心(891cm⁻¹)でのずれは0.4%にすぎない。従っ てT=const.の線は、すべて直線から成っていると考える(図2.27の破線)。

今、測定対象物質の吸収バンドの存在しない波数 u_1 、 u_2 での透過率を、それぞれ T_1 、 T_2 とし、 スペクトル図上の零レベルからの縦軸の長さを、それぞれ ℓ_1 、 ℓ_2 とすれば、この 2 点を結ぶ直線 (1)を表わす式は

 $\ell_i = (a\nu_i + b) T_i \cdots (2 \cdot 13)$

となる。ここでa、bは定数で、 ℓ_i は波数 ν_i での縦軸の長さで、 T_i は ℓ_i の表わす透過率である。(2.13)式は、波数 ν_1 、 ν_2 で

$$\begin{cases} l_1 = (a\nu_1 + b)T_1 \\ l_2 = (a\nu_2 + b)T_2 \end{cases}$$
であり、これを解くと

$$a = \frac{l_2/T_2 - l_1/T_1}{\nu_2 - \nu_1}$$

$$b = \frac{(l_1/T_1)\nu_2 - (l_2/T_2)\nu_1}{\nu_2 - \nu_1}$$
.....(2・14)

が求まる。ここで(2.14)式右辺は既知量であり*a、 b*が求められる。

透過率を求めるべき波数 vo で(2.13) 式は

 $\ell_{o} = (a\nu_{o} + b) T_{o}$ ……… (2・15) であり、一方、求める透過率*T*は

 $T = T_{\rm o} l / l_{\rm o} \quad \dots \dots \quad (2 \cdot 16)$

で表わされる。ここでℓは吸収帯の図上での縦軸の 長さである。(2.15)と(2.16)式から

 $T = \ell \swarrow (a\nu_0 + b) \quad \dots \quad (2 \cdot 17)$

が求まる。従って、波数 ν_0 での図上の縦軸の長さ ℓ が分れば、その透過率Tが計算される。

図 2.27 透過率の求め方

波数 v_0 で測定対象以外の物質による透過率が T_a であったとすれば、対象物質による透過率は $T' = T / T_a$ で補正されなければならない。 T_1 、 T_2 、 T_a は、前節で述べた理論的計算の結果を用いる。

Statistical Spectral Band Model: 微量成分による吸収の結果の大気透過率 T' から、その物質 量を求めるために Statistical Spectral Band Model を用いる (Goody、1964)。

一般に random に分布している吸収線の集まりに対して、一定区間(中心の波数 ν)の平均透過率は、

 $\overline{T} = \exp(-\overline{W}/d) \quad \dots \quad (2 \cdot 18)$

で与えられる。ここで d(cm⁻¹)は吸収線間隔の平均値、 \overline{W} (cm⁻¹)は各吸収線を完全吸収で表わした時の等価幅の平均値で、

 $\overline{W} = \int_{-\infty}^{\infty} \int_{0}^{\infty} P(\mathcal{S}) \{ 1 - \exp(-k(\nu')a) \} \, dsd\nu' \qquad (2 \cdot 19)$

で表わされる。ここで P(S)は線強度が、

 $S \ge S + dS$ の間にある確率、aは吸収物質量、 $k(\nu')$ は吸収係数である。

k (ν) はLorentz 型が仮定できるので(2.11)式を用いる(2.4.2節参照)。P (S) は、指数分 布を仮定して

$$P(S) = \frac{1}{\bar{S}} \exp(-S/\bar{S})$$

- 68 -

とおく。ここで万は線強度のSの平均値である。

(2.19) 式を計算し(2.18) 式に代入すると、

となる。

(2.20) 式には、 \overline{S} 、d、 γ_L という未知のパラメータがあるが、室内実験との対応から(2.20) 式が計算できるようにパラメータの変換を行なう。まず、 \overline{S} 、 γ_L のかわりに、単位圧力での平均線強度 S_0 (cm⁻²atm⁻¹)、同じく平均半値幅 γ_{L0} (cm⁻¹atm⁻¹)を使う。すなわち

 $S_0 = Sa / pl, \ \gamma_{L0} = \gamma_L / p$

とする。ここで ℓ は吸収気体の光路長である。さらに2つの基本的パラメータ、 α (cm⁻¹) と β° (atm⁻¹) として

 $\alpha = S_0 / 2\pi \gamma_{\rm L0} \qquad \cdots \cdots \qquad (2 \cdot 21)$

 $\beta^{\circ} = 2\pi \gamma_{\text{Lo}} / d$ (2 • 22)

を定義し、(2.20) 式を表わすと

$$\overline{T}(\nu) = \exp\left\{-\frac{\alpha(\nu)\beta^{o}(\nu)pl}{[1+2\alpha(\nu)l]^{1/2}}\right\} \qquad (2.23)$$

となる。但し、 \overline{T} 、lpha、 eta° は区間を適当にきめて、ずらすことにより波数 u の関数になるので \overline{T} (
u)、lpha (
u)、 eta° (
u) と表わした。

 α (ν) および β° (ν) は室内実験から求められる。従って透過率 T (ν) が測定されれば、標準 状態 (p=1atm) での気体柱の長さ ℓ (cm) が求まり、気体分子数も計算することができる。

解析にあたっては、CFCl₃はGoldman et al. (1976a)の実験値

 α (847cm⁻¹)=1.71×10⁻²cm⁻¹

 β° (847cm⁻¹)=6.17×10³atm⁻¹

を用いた。HNO₃ については、Goldman et al. (1971)の実験値

 α (897.5cm⁻¹)=1.152×10⁻²cm⁻¹

 β° (897.5cm⁻¹)=1.063×10³atm⁻¹

を用いた。 $\operatorname{CF_2Cl_2}$ については、文献中に α (u)、 β° (u)が見当らなかったが、 S_0 (u)/d (u) は 求められる。吸収は、まだ弱く、 2α (u) $\ell << 1$ なので(2.21)、(2.22)を用いて

$$\bar{T}(\nu) \cong \exp\left\{-\frac{S_o(\nu)}{d(\nu)}pl\right\} \dots (2 \cdot 24)$$

と書き換えて計算した。 $S_0(\nu) / d(\nu)$ は、Goldman et al. (1976b)より

 $S_0/d(923 \text{ cm}^{-1}) = 5.2 \times 10 \text{ atm}^{-1} \text{ cm}^{-1}$

を用いた。なお Goldman et al.(1976b)の Fig.2 とFig.4 より読み取った数値から見積もると、

 α (923cm⁻¹) ~2.55×10⁻²cm⁻¹

 β° (923cm⁻¹) ~2.04×10³atm⁻¹

が求まる。一方、太陽光観測では、T (923cm⁻¹)~0.82程度であり、 ℓ ~0.004cm となり、(2.24) 式の近似が成立することが確認される。

Synthetic Spectrum: 微量成分による大気透過率から、その物質量を求める方法としては、前述 の Statistical Spectral Band Model を用いる方法のほかに Synthetic Spectrum と実測スペクトル とを比較し、それらの best fit から物質量をきめる方法がある。前者では吸収線の重なりが大きく、 一本毎の線が分離されていないスペクトルの場合に有効であるが、吸収線が分離されている場合や、 吸収線が重なっていても、一本毎の線についての充分な情報が分かっている場合には後者の方法が 適用される。

大気中の成分については、 H_2O 、 CO_2 , O_3 、 N_2O , CO、 CH_4 , O_2 の各吸収線パラメータが、McClatchey et. al. (1973) の編集したテープに収められていて利用することができる。

解析では、 N_2O の 2570cm⁻¹、CH₄ の 6004cm⁻¹ において best fit を求めた。

測定値の精度について:測定されたスペクトルの S/N 比は10程度であるが、得られる混合比に 対する誤差を Statistical Spectral Model の場合について求めてみる。体積混合比rは

 $r = Al/(22.4 \times 10^{3} \int_{Ho}^{\infty} n(h) dh)$

で与えられる。ここで、Aは Avogadro 数、 ℓ は微量成分の標準状態での気柱長(cm)、 H_o は考 えている大気の最下層の高度、n(h) は高度hの大気分子数密度を表わす。吸収が少い場合には(2. 24) 式の近似が成り立つので、

 $l \approx \frac{\ln(1/T')}{\alpha\beta^{o}}$ となり、従って r=kln(ゾ)

である。ここで kは、観測条件と吸収帯により決まる定数である。従って誤差△r は

$$\Delta r = -k \frac{\Delta T}{T'}$$

で表わされ、

 $\Delta r/r = (\Delta T'/T')/ln (1/T')$

となる。

図2.14(c)の場合に、CFCl₃ について求めてみると $k=6.11\times10^{-10}$ 、T'=0.738、 $\Delta T'=\pm0.05$ より r=186pptv、 $\Delta r=\pm42$ pptv、 $\Delta r/r=\pm0.23$ となる。CF₂Cl₂では $k=1.25\times10^{-9}$ 、T'=0.815、

2.6 結 果

以上述べてきた装置による観測結果から、大気透過率として求めたものを、図2.28~2.31 に示す。 図はそれぞれ、847cm⁻¹ (CFCl₃)、923cm⁻¹ (CF₂Cl₂)、897cm⁻¹ (HNO₃)、2570cm⁻¹ (N₂O) にお ける大気透過率の太陽天頂角 θ_0 に対する変化を示していて、いずれも θ_0 が大きくなるにつれ減少 しているのが明瞭である。CFCl₃、CF₂Cl₂、HNO₃ については、1981年1月9日、N₂O については、 同1月8日に測定したものである。

この透過率から得られた CFCl₃、CF₂Cl₂、HNO₃、N₂O、CH₄の大気中濃度を表2.10 に示す。 すなわち、高度 7.8km から太陽赤外吸光法によって測定した結果は、大気中混合比が一定と仮定 すると、CFCl₃ が 183pptv (標準偏差 16pptv)、CF₂Cl₂ が 280pptv (同 16pptv) となり、第1章 で報告した対流圏上部から成層圏下部で採集した大気のガスクロマトグラフ分析値と近い値が得ら れた。HNO₃ については、高度 18-28km にのみ混合比が一定で存在していると仮定すると 9.06 ppbv (標準偏差 1.83ppbv) という値が得られた。これは Murcray et al. (1973) や Lazrus and Gandrud (1974) の観測した値に比べると大きい値となるが、第5章に示した HNO₃ の理論的計算 値とはよく合っている。

(1981年1月9日)。

図 2.31 2570 cm⁻¹(N₂O)の透過率変化(観 測とモデル計算)。

D.ate	T ime (JST)	Constituent	Volume mix. ratio	No. of sample
9 Jan.1981	$ \begin{array}{c} 16:25\\ \widetilde{16:48} \end{array} $	CFC ℓ_3 (847 cm ⁻¹) CF ₂ C ℓ_2 (923 cm ⁻¹) HNO ₃ (897 cm ⁻¹)	183±16 ppt 280±16 ppt 9,06±1.83 ppb	1 0 1 4 1 5
8 Jan. 1981	$16:18$ $\widetilde{16:53}$	$N_{2}O$ (2570 cm ⁻¹) CH ₄ (6004 cm ⁻¹)	~ 310 ppb ~ 1.5 ppm	2 1 1

表2.10 赤外吸光法によって得られた微量成分濃度

2.7 むすび

このように赤外吸収法による微量成分の測定法は、一応確立できたといえる。しかし、まだ問題 点もあり、特に測定スペクトルの雑音レベルが高く、 S/N 比が10程度である点が解析にあたって 困難な作業をもたらすことになる。これは、ノイズ部分に細かい吸収線構造が重なっている場合が 多く分離が難しく、また、単純に"ならす"こともできないからである。従って、今後は検出器と 増幅回路を含む信号系を中心とした S/N 比向上が望まれる。すなわち、光量をもっと増加させ、 検出器からのノイズの増幅を抑える必要がある。データ処理系についても、コアメモリを始めとし てトラブルの原因となる箇所も多く、しかもその場合致命的な場合が多く、従って安定かつ小型で 消費電力の少ないものが望まれる。

-72 -

レーザ光電源が気圧の低い(300~400mb)所で何度か故障したが、これは放電防止対策によって 解決した。

太陽吸光法による微量成分の測定は、サンプリング法(第1章)に比べて、高度分解能が悪い、 晴天を必要とする、水蒸気の影響があるなどの欠点がある。しかし、観測点以上の高度の全量が分 かる、年間を通して晴天であれば可能である、同時に多くの成分が測定できる、サンプリングで測 定していないものも測定できるという特徴もあり、サンプリング法と相補的関係にある。また、半 ばルーチン的に観測することも、より分解能を落して小型で安価な装置により可能であると考えられ る。その場合にも、水蒸気の影響の計算とその除去は課題のひとつである。

謝 辞

装置調整で日本インダストリアル㈱の、また航空機観測で昭和航空㈱の協力を得たことを記し感 謝します。また LOWTRAN 5 の使用にあたり、高層物理研究部主任研究官浅野正二氏から便宜を 頂いたことを感謝します。

References

- Bell, R. J., 1972 : Introductory Fourier Transform Spectroscopy, Academic Press, New York, 382p.
- Ehhalt, D. H., Heidt, L. E., Lueb, R. H., and Martell, E. A., 1975 : Concentrations of CH₄, CO, CO₂, H₂, H₂O, and N₂O in the Upper Stratosphere, J. Atm. Sci., **32**, 163-169.
- Fitzmaurice, J. A., 1964 : Simplification of Chapman Function for Amospheric Attention, Appl. Optics, **3**, 640.
- Goldman, A., Kyle, T. G., and Bonomo, F. S., 1971 : Statistical Band Model Parameters and Integrated Intensities for the 5.9-μ, 7.5-μ, and 11.3-μ Bands of HNO₃ Vapor, Appl. Optics, 10, 65-73.
- Goldman, A., Bonomo, F. S., and Murcray, D. G., 1976a : Statistical band model analysis and integrated intensity for the 11.8-μ band of CFCl₃, Appl. Optics, **15**, 2305-2307.
- Goldman, A., Bonomo, F. S., and Murcray, D. G., 1976b : Statistical-Band-Model Analysis and Integrated Intensity for the 10.8μm Band of CF₂Cl₂, Geophys. Res. Letters, **3**, 309-312.
- Goody, R. M., 1964 Atmospheric Radiation-I, Theoretical Basis, Clarendon Press, Oxford, p122.
- Green, A. E. S. and Griggs, M., 1963 : Infrared Transmission through the Atmosphere, Appl. Optics, 2, 561-570.

Heicklen, J., 1976 : Atmospheric Chemistry, Academic Press, New York, 406p.

Herzberg, G., 1945 Molecular Spectra and Molecular Structure II. Infrared and Raman

— 73 —

Spectra of Polyatomic Molecules, Van Nostrand Reinhold, New York, 632p.

- Lazrus, A. L. and Gandrud, B. W., 1974 : Progress Report on Distribution of Stratospheric Nitric Acid, Proceedings of the 3rd Conference on CIAP, U. S. Dep. Transp., Washington, D. C., 161-167.
- McClatchey, R. A. et al., 1973 : AFCRL Atmospheric Absorption Line Parameters Compilation, AFCRL-TR-73-0096, Air Force Cambridge Research Laboratories (present name : Air Force Geophysics Laboratory), Hanscom Air Force Base, Massachusetts, 78p.
- Murcray, D. G. et al., 1973 : Nitric Acid Distribution in the Stratosphere, J. Geophys., Res, **78**, 7033–7038.
- Selby, J. E. A. and McClatchey, R. A., 1975 Atmospheric Transmittance from 0.25 to 28.5 µm : Computer Code LOWTRAN 3, AFCRL-TR-75-0025, 109p.
- Shimazaki, T. and Cadle, R. D., 1973 : Theoretical Model of Vertical Distributions of CO and CH₄ in the Mesosphere and Upper Stratosphere, J. Geophys. Res., **78**, 5352-5361.
- U. S. Committee on Extension to the Standard Atmosphere(COESA), 1976 : U. S. Standard Atmosphere, 1976, U. S. Government Printiong Office, Washington, D. C., 227p.

第3章 エーロゾルの観測

三 崎 方 郎** 金 沢 五寿雄* 池 上 三和子*

3.1 はじめに

エーロゾル粒子は、その総質量、総個数ともに、大気の構成要素としては極めて微量であるが、 大気現象のさまざまな分野で無視し得ない役割を果している。特に成層圏化学を論じる場合、エー ロゾル粒子は液相(または固相)にあるので、成層圏内に多相化学反応が起る素地を提供している。 Cadle 等(Cadle、Crutzen and Ehhalt、1975、Cadle and Kiang、1977)は、或種の微量成分と成 層圏エーロゾルの間の反応、もしくはエーロゾルを触媒とする反応の重要性を示唆している。また、 成層圏エーロゾルを構成する物質は主に硫酸、および硫酸アンモニウムであることから、このよう な成層圏硫黄成分を供給する対流圏内の SO₂、COS、CS₂等、気体状物質の近年の急激な増加は、 成層圏エーロゾル粒子生成を左右する要素として重要である(Whitten et al., 1980)。このような 地球規模での汚染を考える場合に、特に除去機構の乏しい成層圏へのエーロゾル粒子の蓄積は、成 層圏内のオゾン化学反応機構に影響を与える一つの因子として無視することができない。

そこで本研究では、対流圏から成層圏にいたるエーロゾルの分布を明らかにするために、対流圏 エーロゾル測定に対しては航空機観測を、成層圏エーロゾル測定には、気球観測を目指して小粒子 (エイトケン粒子測定用)ゾンデの改良および飛場を行った。

エーロゾルはその粒径により、粒子生成、消滅機構も大気現象への影響の表われ方も異なること から、今回の観測においては、半径 0.1µm 以上のミー粒子***と 0.1µm 以下の小粒子(エイトケン粒子)に大別してエーロゾル濃度を求めた。

3.2 対流圏エーロゾルの測定(航空機による観測)

3.2.1 測定

対流圏におけるエーロゾルの高度分布、および3次元的特性を知るために、日本列島の中でも主要な汚染源である東京湾岸地域から南方洋上八丈島まで、また陸上郡山、中之条にいたる間の高度7km までのエーロゾル濃度の空間分布を測定した。観測は、1979年11月から1980年2月までの間に計4回、いずれも大陸からの吹き出しのある冬期に行った。また、対流圏と成層圏のエーロゾル交換過程を明らかにするために、対流園と成層圏の大気の主要な出入口と考えられる圏界面ギャッ

*高層物理研究部 **元高層物理研究部・1981年4月退職

^{***}半径 0.1 µm 以上の粒子は、Mie 散乱を効果的に起す粒径領域にあるので、本稿ではミー粒子と略称する。Jungeの命名にしたがえば、大粒子と巨大粒子を併せたものに相当する。

プにおけるエーロゾル測定を1979年秋に3回行った。

観測に用いた航空機はそれぞれの目的に合わせて、高度7km までの観測にはエアロコマンダ・ 680FL、成層圏(約14km)までの測定にはリア・ジェット24Dを使用した。

今回の航空機観測におけるエアロコマンダの場合の測定器の配置および試料空気の採取模式図を 図3.1 に示す。採取口は、図に見られるように内径 8 mm のアルミ管を航空機の天井より出し、こ れを直角に折り曲げ機首方向より外気を取り入れた。採取口は機体から約5.5cm 離れている。アル ミ管で導入した空気は、機内で内径(以下直径はすべて内径で表わす)10mm、長さ約80cm のビニー

ル・チューブに接続した。その後の空気取入れは、測定器へ動圧がかからないように、採取空気の 流れの中からその一部を測定系へ取り入れるように工夫した。即ち、まず、天井からのチューブに 直径8mmのチューブを十分に差し込んで接続し、天井の採取口から約1mの位置で分岐した。エ イトケン粒子用測定器へは、分岐点から直径6mm、長さ約40cmのビニール・チューブで供給した。 また、ミー粒子用測定器へは、分岐点の8mmのチューブへ、再び直径4mmのビニール・チュー ブを深く差し込み、天井からの長さが約1.5mとなる位置で測定器へ接続した。大粒子ゾンデはこの 方法で 300cc/minの流量が保てたが、Rich-100型凝結核モニターはこれでも動圧がかかりすぎたた めに、図のように測定器の取入口の手前にコックを置きさらに流量をしぼり、流量計を50ml/sec に 保つように調節すると同時に室内空気の取り込みがない様に注意した。なお両測定器とも排気は室 内に行った。

一方、リア・ジェットの場合には、機体の気密構造に影響するような工作が不可能なために、特殊な採取用配管ができなかった。試料空気は、約1気圧に圧縮された外気をジェットエンジンの中 段から取り入れ、口径約20mm、長さ約3mのチューブを用いて機内に導入し、さらに分岐管によ り各測定器へ供給した。したがって、この観測における各高度のエーロゾル濃度(個/cm³)は、必 然的にほぼ地上気圧への換算値と等しくなっている。

航空機に搭載する測定器は、応答速度が速く、かつ使用量が少ないこと、軽量であることが必要

- 76 -

である。そこで今回の観測には、ミー粒子測定用に当研究所で開発した大粒子ゾンデ(三崎・金沢・ 池上、1978)、エイトケン粒子測定用には、Environment-One 社製 Rich-100型凝結核モニターを用 いた。両測定器とも応答速度が数秒(約5秒)であるので、飛行中連続測定を行った。以下にこれ らの測定器について簡単に述べる。

a) 大粒子ゾンデ(ミー粒子測定用)

大粒子ゾンデは、原理的にはいわゆるロイコ型エーロゾル・カウンターとして知られている方 式(個々の粒子による散乱光パルスを検出計数するもの)をゾンデ用に改装したものである。

b) Rich-100型凝結核モニター(エイトケン粒子測定用)

この測定器の原理は、いわゆるポラック・カウンタと呼ばれるものと同一で、試料空気を霧箱 の中で水蒸気飽和にし、その後断熱膨脹を起させることで霧箱の内部に300%以上の過飽和状態を つくり、空気中の微粒子を核とした霧を生成するものである。この霧の量を透過光の減衰により求 め、核となったエーロゾル個数を知る方法である。本観測に用いた Rich-100型凝結核モニターは、 空気を採取中に加湿し、飽和した空気を霧箱へ送り込む方式をとることにより測定サイクルを短縮 (応答速度約5秒)した点に特徴を持つ。このような間接的手法による測定には、霧粒濃度の直接 計測との比較による指示値の較正が必要である。絶対濃度測定には古くからエイトケン・カウンター による方法が行われているが、今回の Rich-100型凝結核モニターの較正には、当研究所で開発され た気象型ポラック・カウンターを用いた。この測定器は、同時に開発された改良型の検定装置を用 いて検定が行われたものである。これらの測定器や検定装置の構造・動作については、伊藤(1978)

ターの検定曲線

ラック・カウンターと Rich-100型 凝結核モニターとの同時比較測定 の結果、即ち、Rich-100型凝結核 モニターの検定曲線を 図3.2 に 示す。

の詳細な記述がある。気象研型ポ

以上2種類のエーロゾル測定器 を用いて航空機観測を行ったが、 エイトケン粒子測定用 Rich-100 型モニターに関していくつかの問 題点がでた。地上での測定には検 定曲線にも見られるようにほぼ満 足できる測器であるが、航空機に 搭載した際に、流量調整、電圧変 動による障害等が起り、数次にわ

- 77 -

たって測定法の改良を重ねたが、終局的には、高度1~1.5km 以上、個数濃度約千個/cm³ 以下で は零レベルでの変動との識別が困難となり、測定器の検出限界以下であることが判明した。いずれ にしても対流圏上部でのエイトケン粒子濃度は数百個/cm³、下部成層圏で数十個/cm³であること から、今後航空機搭載用に、低濃度用のエイトケン粒子濃度測定器の開発が急がれる。上記の理由 から、本観測では、エイトケン粒子に対しては信頼できるデータが得られていないので、以下には ミー粒子(大粒子)についてのみ述べる。

3.2.2 7km までの高度分布

1978年3月3日と同年12月12日の測定;人間活動に伴うエーロゾルの汚染の著しい京浜工業地帯の上空と、新島から三宅島(東京の南 100~150km)において、高度7km までのエーロゾルの濃度分布を測定した。

1980年2月1日、2日の測定;汚染程度が比較的に低いと思われる場合の陸上大気中における エーロゾルの高度分布を知るために、関東地区上空のエーロゾル濃度分布の観測を行った。

これらの観測では、同時にフレオンの濃度が測定されている。自然発生の全くない人工気体であるフレオンは、対流圏内ではこれを壊す機構が殆んどなく、化学的に極めて安定であることから、

その濃度の空間分布は渦動拡散による希釈効 果だけを反映するので、空気の混合希釈の指 標として最適である。つまり、フレオンの濃 度分布とエーロゾル濃度分布を比較すること により、エーロゾルの見掛け上の減衰から拡 散による希釈の効果を消去できる。エーロゾ ルの大気中からの真の除去効率を評価するた めに、今回の観測では、エーロゾル濃度と合 わせてフレオン濃度の分布も示した。

各観測の飛行径路を図3.3 に示す。また、 各測定で得られた濃度の空間分布を図3.4、 3.5、3.6、3.7 に示す。図中、〇印の中およ び等濃度線上の数字は混合比(空気 1 mg 中 に含まれている粒子数)で表わしたミー粒子 濃度、〇印の中および破線上の数字は、フレ オン-11の混合比(pptv)値である。

図3.4 に示した1978年3月3日の観測によると、陸上から海上にわたって2~3km 高度に異常高濃度層が見られるようである(図

図3.3 対流圏エーロゾル測定の 飛行コース

- 78 -

3.4 の斜線領域)。層厚は 1000m 以内と思われるが、陸上でも海上でもその高度を通過する際に濃度の測定値が急激に数倍に増加した。この観測は初期に行われた測定のために、フレオンの測定がなく拡散による希釈の効果を見積ることができないが、この場合は、高度7km 以上では粒子混合比がほぼ一定となっていることがわかる。

図3.5 は、藤沢上空と新島沖でそれぞれ7km まで1km 高度毎に数分間レーベル・フライトを して測定した値である。この日の気象状況は、図3.8 の天気図で見られるように、中国大陸から本 州まで東西に拡がる高気圧におおわれていた。大気の拡散による希釈を表わすフレオンの混合比は、 高度2km 以上で約170pptv の値で一定となっているのに対して、ミー粒子の等混合比線は 50個/mg が大島まで、10個/mg が三宅島、5 個/mg が 300km 離れた八丈島近くまで張り出していることが 認められる。そして、ミー粒子が一定となるのは、高度で5 km 以上であることがわかる。鉛直・

水平両方向におけるエーロゾルとフレオンの分布特性の差が、エーロゾル自身の大気中での除去効 果を反映するものである。

図3.6 に関東地区の陸上大気のエーロゾル分布を、図3.7 は調布を中心としてほぼ南北方向に飛行し、中之条上空と館山上空にわたる高度分布を示した。気圧配置は両日共に、オホーツク海に発達した低気圧が停滞し、バイカル湖付近に中心をもつ優勢な高気圧が張り出した形となり強い冬型が続いていた。陸上で観測されたエーロゾルは極めて低濃度であり、図3.6 では、調布離陸後、郡山まで往路復路ともに、高度上昇に伴ない混合比が一様に減少する様子が見られ、約4km 以上では約1個/mgの一定値となる。図3.7 に示した中之条(榛名山の近く)上空の高度分布では、前図と同様に高度とともに混合比の減少が見られ、5km以上では約4個/mgの値で一定となるが、館

- 80 -

図 3.8 各測定日の天気図

古 庄	3 Mar	. 1978	12 Dec.	1978	1 Feb.1980	2 Feb.	1980
同 皮	海岸線	海上	海岸線	海上	内陸	内陸	海岸線
(m)	(横浜)	(三宅島)	(藤沢)	(新島)	(調布・郡山)	(中之条)	(館山)
0	202.3 ± 3.0		1 6 0.8±2 7.0	-	4.4±0.2	13.6±2.0	-
1000	29.8 ± 1.0	68.3 ± 2.1	$143.9\pm~0.1$	27.7 ± 9.3	6.5 ± 0.5	$1.5.1 \pm 0.4$	· _
2000	76.2 ± 2.2	201.2 ± 2.2	$2.9\pm$ 0.1	$3.5{\pm}0.1$	4.3 ± 0.5	$5.2{\pm}0.2$	$6.3{\pm}0.3$
3000	101.9 ± 1.4	69.9 ± 0.9	· 1.3± 0.3	1.4 ± 0.1	$2.4{\pm}0.4$	$5.9\!\pm\!0.4$	7.5 ± 1.3
4000	12.7 ± 0.7	12.6 ± 0.7	$0.6\pm$ 0.0	1.5 ± 0.1	0.9±0.0	9.1±0.5	8.8 ± 0.7
5000	10.2 ± 1.0	8.6 ± 0.3	$0.9\pm$ 0.1	1.0 ± 0.0	-	$7.9{\pm}0.5$	$15.9{\pm}2.8$
6000	2.3 ± 0.1	3.2 ± 0.2	$1.0\pm~0.1$	1.0 ± 0.0	-	3.7 ± 0.1	-4.4 ± 0.1
7000	1.7 ± 0.0	2.9 ± 0.1	0.8± 0.1	0.7 ± 0.1		—	

表 3.1 ミー粒子の高度別平均濃度(個/mg)

-81 -

山上空の観測では、3~5kmにエーロゾルの高濃度層が見られる。両日の天気を図3.8から比較 すると、観測した地域では2月2日より2月1日の方がいくらか気圧傾度が高く季節風が強いよう に思われる。一般に季節風が強い時ほど渦動拡散が大きく、地表近くまでエーロゾルは低濃度に薄 まっていることが考えられる。また、フレオン濃度は、両図とも高度・水平分布ともにはっきりし た勾配が認められないことが特徴的である。これはエーロゾルと異なり、大気中からの除去作用が ないために充分に攪拌され、混合比が一定に近づいていることを示す(両図ともにフレオンについ ては、等混合比線を画くことができないので、〇の中に数字で示した)。

以上、観測例が少ないために断定はできないが、ミー粒子の高度分布については一般的に次のこ とが推定される。

①、風が弱い気象条件の日には、1~2km 以下の下層大気中のエーロゾルは滞留が著しく、特に発生源付近では非常に高濃度である。また、高度上昇に伴うエーロゾル混合比の減衰率も日による差異が大きい。しかしながら、高度約5km以上では殆んどの場合に一定値(数個/mg)となる。

②、冬期、汚染源の風下側にあたる 伊豆諸島洋上には、北西季節風による エーロゾルの張り出しが洋上 100~200kmにまで及ぶことが認めら れる。

表3.1 に各観測におけるミー粒子の高 度別混合比濃度の平均値及び確率誤差 を示した。

3.2.3 圏界面付近のエーロゾル分布

対流圏と成層圏のエーロゾル交換の 主要な出入口と考えられる熱帯圏界面 と極圏界面付近における航空機観測を 行った。観測には小型ジェット機「リ ア・ジェット24D」を使用し、1979年10 月31日と翌11月1日の午前および午後 の計3回測定を行い、2回は熱帯圏界 面の上、1回はトロポポーズギャップ まで、いずれも約13.5km 高度までの エーロゾル濃度を観測した。

図3.9 に各測定に対する飛行コース を示した。また、図3.10、3.11、3.12

-82 -

に、それぞれ10月31日、11月1日午前および午後の測定時刻に対応させた航空機の高度と圏界面と の位置関係、およびその時のエーロゾル濃度*を示す。図中、実線は航空機の飛行高度、鎖線は圏 界面、白丸印はエーロゾル濃度である。図3.13、3.14、3.15 は、それぞれ 図3.10、3.11、3.12 に 対応した測定の子午面断面図である。図中、矢印付実線は飛行高度およびコース、鎖線は圏界面、 2000 はエーロゾル濃度 30~50個/cm³、 2000 *文中の「エーロゾル濃度」は地上気圧に換算した値、すなわち混合比と等価な値である (3.2.1 参照)。

— 83 —

気象研究所技術報告 第6号 1982

図 3.12 ミー粒子の濃度分布 (1979 年11月1日,午後)

図 3.13 ミー粒子濃度分布の子午 面断面図(1979 年10月31 日)

- 84 -

3.14 ミー粒子濃度分布の子午 面断面図(1979 年11月 1 日,午前)

図 3.15 ミー粒子濃度分布の子午 面断面図 (1979 年11月 1 日,午後)

I. Nov, 1979 (AM)

定日09時の高層気象データによる等風速線である。

図からもわかるように、3例とも圏界面の二重構造の中、あるいはその上の成層圏までの観測を 行っている。これに対してエーロゾル濃度は高度2~4km では約30~50個/cm³、5km 位までは 10~20個/cm³とかなり安定した値を示し、5km 以上では1個/cm³ないしそれ以下の値となり、 圏界面より下方では分布の形がほぼ一定しているように思われる。一方、圏界面付近でのエーロゾ ルの分布は、図3.13、3.14 のように極圏界面の下に高濃度の層が見られる例と、図3.15 のように 圏界面ギャップの存在にもかかわらず、その下面・中間・成層圏に入っても何の変化も見られない 例が得られた。各観測に関してもう少し詳しい高度別エーロゾル濃度分布を表3.2 に示した。なお、 10月31日の測定は最高飛行高度13.5km であり、表に挙げた値はトロポポーズ・ギャップにおける 濃度である。また、10月31日および11月1日(仙台・札幌)の測定では、図3.13、3.14 に見られる

高度	31 Oct	t.1979	(仙台,東)	京,秋田)	1 Nov.1979(仙台,札幌)				1 Nov. 1979(仙台周辺)			
(km)	平均	最大	最小	測定 回数	平均	最大	最小	測定 回数	平均	最大	最小	測定 回数
5	1 2.2	2 0.0	8.0	4	5.0	8.3	2.2	6	4.3	5.3	3.3	4
8	4.8	1 0.0	2.0	5	1.9	4.7	0.7	38	1.5	2.3	1.0	8
9~10	9.9	5 3.0	0.8	28	1 3.2	4 0.0	1.0	3	0.8	1.0	0.5	2
10~12	1 7.7	6 7.0	0.3	10	1 1.2	4 6.7	0.5	10	0.7	1.8	0.3	9
13~15	4.3	1 8.0	0.3	31	1.5	1 3.3	0.7	18	0.3	0.5	0.3	8
熱帯圏界面 高 度		14~15 km				13~15 km			12~14 km			
極 圏界 面 高 度		10~11	km		~11 km			~11 km				

表3.2 圏界面付近のミー粒子濃度分布(STP, cm-3)

ように、圏界面に沿ったエーロゾル分布が一様でないために、平均値が大きな値となっている。

11月1日午後(図3.15)を除いた2例に観測された極圏界面の下側のエーロゾル高濃度層は何を 意味するのか。地表面から拡散で上昇したエーロゾルが圏界面で抑えられたものと考えることは、 これがギャップ付近に限られた現象であることから困難である。また、この濃度は成層圏における 濃度より高いことを考えると、ギャップを通して下降してきた成層圏エーロゾルであるとも考え難 い。上述の圏界面ギャップ付近の高濃度は、いずれの場合も航空機が下降開始直後に測定されてい るので、殊によると今回の試料空気採取法に問題があるともみられようが、図3.15の場合には同一 条件の測定であるにもかかわらず、このような高濃度域が検出されなかったことを付記しておく。 いずれにしても以上の3例だけでは結論的なことは何も言えない。対流圏と成層圏エーロゾルの交換 過程の実態を知るためには、大気の他の成分の測定とも合わせて更に観測を重ねることが必要と思 われる。 3.3 成層圏エーロゾルの測定(気球観測用小粒子ゾンデ)

3.3.1 測定器の概要

高度 30km までのエーロゾル濃度の分布を測定するために、本研究では先に当所で開発した小粒 子(エイトケン粒子)用エーロゾル・ゾンデを用いて地上実験を重ね、いくつかの改良を行うとと もに飛揚実験を行った。この小粒子用ゾンデは、3.2.1 で述べたいわゆるポラック・カウンタ方式 の測定器であり、容器内に試料空気を導入しそれが水蒸気で飽和するまでの一定時間待機した後に、 断熱膨脹を行ってエイトケン粒子を核として霧粒子を生成させるものである。この断熱膨脹を気球 の上昇による圧力差を利用して行ない、大電力を必要とする真空ポンプの搭載を不要としたことと、 発生する霧量を検出する方法を従来の透過光測定法から霧粒による散乱光を測定することにより検 出の感度を高めた点に特徴をもつ。本器の詳細については、三崎・金沢・池上(1978)に述べられ ている。

3.3.2 地上実験

(1) 零レベルの引き下げ(改良点)

この測定器は、霧発生の前後の霧箱中の側方散乱光量を測定し、霧発生時の光量から前の光量を 差引いた値をその時の測定値とする方法である。つまり霧発生前の霧箱中の光量を測定値の零レベ ルとしている。既存(上記)のゾンデでは、このレベルが全測定巾の60~70%を占め、しかもかな り大きな変動が見られた。今回いくつかの条件で実験を繰り返えし次の改良を行った。戸外での測 定に際して零レベルが著しく不安定になることから、ゾンデに組み込まれている電子回路部を暗室 にし、また光学系においては、光源として用いたフラッシュバルブからの光束をしぼること、また 測定部の内面を黒くコーティングすることにより、測定系における余分な散乱光を殆んど除去する ことができた。このことは、霧濃度検出の分解能を大巾に引き上げ、かつ安定化することになり、 今回の改良の中でも画期的な成果であった。

(2) 測定時におけるフラッシュのタイミング

霧測定の際、連続光源であれば刻々その時点の霧の状態を知ることができるので問題はないが、 光源にフラッシュを用いた場合には、霧発生の何秒後にフラッシュを光らせるのが妥当かを知る必 要がある。霧濃度のピークは霧粒の生成・成長による増加と落下による減少とのかね合いできまる。 そこで、光源にハロゲン・ランプを用いて数万個/cm³から数百個/cm³の濃度に対する霧濃度最大 となるまでの時間を測定した。また、霧箱の寸法や光源からの光束の幅、そして高高度における測 定を考慮すると、霧粒の落下速度も無視できない。これらのことを考えて、フラッシュは霧箱内の 試料空気の膨脹後0.55秒に設定した。

(3) 電圧·粒子数特性

小粒子ゾンデの出力電圧とエイトケン粒子数濃度との対応曲線を前述した気象研型ポラック・カ -ウンタとの同時測定により求めた。その結果を図3.16に示す。また、試料空気を飽和にするため

に、従来は霧箱内を水蒸気で満したが、本ゾンデは高高度(低温)における測定であるので、凍結 を避けるために水の代りにメチル・アルコールを用いた。

3.3.3 飛揚実験

小粒子ゾンデの飛揚は、ゾンデの総重量が約7kgもあることから落下した場合の危険をさけるために、高度 30km からの落下地点が海上となるような風系の季節をえらび1981年11月5日に行った。

図 3.16 小粒子ゾンデの電圧・粒子数特性

図 3.17 小粒子ゾンデの外観

図 3.18 飛揚器材取り付け構成図

飛揚した小粒子ゾンデの外観を図3.17 に示す。上段は測定用霧箱と光学系、その下に電子回路、 そして下段に電源電池が入る点は従来の小粒子ゾンデと同じである。ゾンデ下段に収めた注水電池 は水もれのないようにアルミ箱に入れ、電池からの水蒸気はアルミ箱からビニール・チューブによっ て外気へ逃がした。このように組み上げたエーロゾル・ゾンデは、さらに内面を黒く塗った厚さ約 4 cm の発泡スチロールの断熱箱へ収納した。当日の測定では、南極型レーウィン・ゾンデの湿度セ ンサー部を温度測定に使いゾンデ内部の温度変化を測定した。これはエーロゾル・ゾンデの動作の 温度による影響を確認する意味で役に立った。

重量は小粒子ゾンデ 3.0kg、注水電池(水を含む)約 3.0kg、レーウィン・ゾンデ 0.35kg、ヒ モ・パラシュート他約 1.0kg で合計約 7.5kg である。飛揚には 3 kg の気球を 2 個用い、平均上昇 速度 400m/min を得るために純浮力を各気球に対して 2.3kg とした。飛揚時の気球、パラシュー ト、ゾンデの取りつけ構成図を 図3.18 に示す。また測定の記録例を 図3.19 に示す。気圧、外気 温、ゾンデ内温度の繰り返えしの中に、 2 分30秒毎に零レベルとエーロゾル測定からの信号とが、 交互に割り込んでいる。各測定要素を放球後の経過時間にしたがってプロットしたものが 図3.20、 これをエイトケン粒子の高度分布に直したものが 図3.21 である。図からもわかるように、エーロ ゾルは地上から約5 km までは予想されたような減少を見せているが、約6.5km と約8 km の測定 点で高濃度のエーロゾルが観測されている。これは当日飛揚時晴れてはいたが雲が多く、この高度 に存在した雲によるものと考えられる。しかしながら、9 km 以上の高度では濃度減少のために測 定不能となっている。この問題は未解決ではあるが、測定系の零点設定を再吟味することにより改 善が期待されている。以上のように今回の飛揚においては、成層圏内のデータは得られておらず、

図 3.19 小粒子ゾンデの測定記録例

- 89 -

図 3.20 小粒子数濃度,外気温,ゾンデ内温度および気 圧の測定結果

図 3.21 エイトケン粒子の高度分布

-90 -

本観測には至っていないが、本ゾンデによる成層圏のエイトケン粒子測定に対する見通しがついた ものと考える。

3.4 まとめ

人間が大気中に放出する汚染物質が、成層圏オゾンへ与える影響を明らかにすることを目的とし て、エーロゾル粒子濃度の対流圏から成層圏までの空間分布の測定を行った。成層圏では、高度約 20km に巾約10km のミー粒子高濃度層が存在し、これはユンデ層と呼ばれている。このエーロゾ ル層を形成するエーロゾル粒子は、対流圏起源のエイトケン粒子を核として生成するといわれる。 従ってエーロゾルを含む成層圏化学の研究にとって、エイトケン粒子及びミー粒子の対流圏および 成層圏内の分布の実測が強く望まれている。その中で特に、エイトケン粒子の鉛直分布の実測例は 諸外国においても少なく、高度分布は成層圏はもちろん、対流圏上部での分布もまだ充分に確立し た知識とはなっていない。

今回の観測では、対流圏内のミー粒子の分布しか得られず不充分なものであったが、本研究の結 果、特にエイトケン粒子測定に関して、以下に述べるいくつかの問題点が明らかになった。

(1) 対流圏エイトケン粒子測定のために、高々度、低濃度まで測定可能な航空機搭載用測器の開 発が急務である。

(2) 成層圏エイトケン粒子測定では、今回用いた小粒子ゾンデに関して、次の改良点があげられる。①、霧濃度測定時の精度を得るために、光源を現在のフラッシュからランプによる連続光源にかえること。②、測定のサイクルを速め、測定数を増す方法、下降時の測定の可能性の検討を行うこと。

以上のような問題点に対する改良を行い、今後成層圏のミー粒子測定も加え、さらにエーロゾル の物質を合せ調べることにより、この種の研究の一層の発展が期待される。

〈謝辞〉

本研究において、航空機観測では、日本フライング・サービス株式会社、エアロジェット・リサー チ株式会社、共立航空撮影株式会社の協力を、また小粒子ゾンデ改良に際しては、ダン産業株式会 社の協力を得た、併せてここに謝意を表したい。

文 献

Cadle, R. D., P. Crutzen and D. Ehhalt, 1975 : Heterogeneous chemical reaction in the stratosphere, J. Geophys. Res., **80**, 3381-3385.

Cadle, R. D. and C. S. Kiang, 1977 : Stratospheric aitken particles, Reviews of Geophys. Space Phys., 15, 195–202.

— 91 —

Whitten, R. C., O. B. Toon and R. P. Turco, 1980 : The stratospheric sulfate aerosol layer : processes, models, observation, and simulations, Pageoph, **118**, 86-127.

- 伊藤朋之、1978:地上設置型低濃度エーロゾル測定装置の開発、気象研究所技術報告、第1号、 35-55.
- 三崎方郎、金沢五寿雄、池上三和子、1978:エーロゾルゾンデの開発、気象研究所技術報告、第1 号、56-64.

第4章 成層圏と対流圏の交換過程の観測

村松久 史*外山芳男**広田道夫*

牧野行雄*佐々木 徹*

4.1 はじめに

地表付近で放出された気体物質は比較的短期間の間に対流圏内に拡散され化学的に安定な成分は 高度3km 以上ではほぼ一様に分布する。対流圏から成層圏への流入は主として低緯度の圏界面を 通して行われると考えられている。成層圏から対流圏への気体物質の輸送過程はいろいろ考えられ ているが、そのうちの一つに中緯度での圏界面のギャップ付近からの流入がある。また中緯度の圏 界面ギャップ付近では対流圏の物質が成層圏へ運ばれる可能性もある。

今回の報告ではつぎにあげるようないくつかの問題を解決する目的で観測を行った。

(1)中緯度において成層圏内の物質がどのような機構で対流圏へ輸送されるか。特にジェットスト リーム、上層での高・低気圧との関連はどうか。

(2)中緯度で成層圏から対流園への物質の輸送量はいくらか。これから成層圏内での物質の滞在時間が求められないか。

(3)成層圏から対流圏内へ輸送された物質は対流圏下部へはどのように運ばれるか。

(4)上記のいくつかの問題を解くために使うトレーサとしてはどのようなものが有効か。

4.2 測定要素・測定器

測定要素は気圧・気温・オゾン・水蒸気等でそれぞれの測定器とともに下に示す。

気圧 :空盒気圧計

気温 :サーミスタ

オゾン :オゾンゾンデ・DASIBI オゾン計

水蒸気 : カーボン湿度計・露点計

フレオン12:採取空気をガスクロマトグラフで分析

フレオン11:同 上

亜酸化窒素:同 上

気温測定に用いたサーミスタはビード型で金属ケースに収めダイナミック加熱を抑えるようにした。

*高層物理研究部	**元高層物理研究部	·1981年4月退職
----------	------------	------------

オゾンゾンデはルーチン観測に使用しているものと同じものであるが発振器の部分をはずし出力 電流を直接記録した。BASIBIオゾン計はオゾンの紫外線吸収を利用したもので、気温・気圧の変化 に対する補正は自動的に出来るようになっている。

カーボン湿度計は高層観測用ルーチンゾンデで使用されているものと同様のものである。露点計 は航空機観測用に作製されたもので鏡の冷却はアルコールとドライアスイで行った。(外山、1981) フレオン12 (CF₂Cl₂)、フレオン11 (CFCl₃)、亜酸化窒素 (N₂O)の測定については第1章に述べら れている。

高度は最寄りの高層観測資料を参照して決定した。

使用した航空機はエーロコマンダー685,同680FL、セスナ404、リヤジェット24Dの4種類であ る。リヤジェット24Dの機内は気密であり直接外気を測定器に導入することが困難なため機内の換 気用空気を用いた。その他の機種では機体の上部または下部に外気吸入用パイプを取り付け、テフ ロン・シリコン・ポリエチレンの管で測定器に外気を導入した。カーボン湿度計はサーミスタ温度 計とともに機体の外部に取り付けた(図4.1)。

4.3 観測資料

観測は1978年3月から1981年3月までの4年間のうちの秋から春にかけての時期に行った。これ は、成層圏から対流圏へのオゾンの流入は極前面に伴うジェットと関連しており、この時期が観測 に適するからである(Muramatsu、1980)。観測地域は東北・関東・関西の3地域に分けられる。

表4.1~表4.11 に観測資料を示す。各フライトの1分毎の高度・気圧等の値を示した。

図 4.1 サーミスタ・カーボン湿度計 機体上面に取付けた外気導入パイプにサーミス タ温度計(右につき出している)とカーボン湿 度計(上方)を取付けた。外気の導入にはテフ ロンチューブ(3本)を用いた。

表4.1-1

表4.1 1978年3月17日の観測資料

時刻	高 度	気 圧	経度	緯度	オゾン混合比		相対湿度
時 分	km	mb	°Е	°N	ppbv	°C	%
13:16	0.0 0	1010	1 3 9.5 4	3 5.7 1		1 3.3	42
17	0.35	970	1 3 9.5 5	3 5.7 3	16	1 3.2	42
18	0.6 5	945	1 3 9.5 6	3 5.7 6	42	1 2.5	41
19	0.9 0	920	1 3 9.5 7	3 5.7 8	42	9.8	49
13:20	1.0 0	909	1 3 9.5 8	3 5.8 1	49	6.8	57
21	1.0 0	902	1 3 9.6 0	3 5.8 3	—	4.3	71
22	1.2 3	879	1 3 9.6 1	3 5.8 5	_	2.5	65
23	1.48	854	1 3 9.6 2	3 5.8 8		3.0	71
24	1.7 5	.828	1 3 9.6 3	3 5.9 0	5 5	2.8	71
2 5	2.0 0	805	1 3 9.6 1	3 5.9 3	54	- 0.5	87
26	2.0 0	805	1 3 9.5 9	3 5.9 6	54	- 1.9	88
27	2.0 0	805	1 3 9.5 6	3 5.9 8	5 5	- 3.1	83
28	2.30	778	1 3 9.5 4	36.01	57	- 1.7	84
29	2.6 0	752	1 3 9.5 2	3 6.0 4	- 59	- 3.2	84
13:30	3.00	708	1 3 9.5 0	3 6.0 7	57	- 7.1	90
31	3.0 0	708	1 3 9.4 7	3 6.0 9	53	- 9.7	72
32	3.0 0	708	1 3 9.4 5	3 6.1 2	51	- 9.5	71
33	3.0 0	708	139.40	3 6.1 4	52	- 9.2	83
34	3.00	708	1 3 9.3 5	3 6.1 6	57	- 7.7	54
3 5	3.0 0	708	1 3 9.3 0	3 6.1 9	57	- 6.4	39
36	3.2 1	689	1 3 9.2 5	3 6.2 1	56	- 8.4	62
37	3.3 5	676	1 3 9.2 0	3 6.2 3	55	- 8.2	59
38	3.5 3	661	139.15	3 6.2 5	59	- 8.5	66
3 9	3.6 7	649	1 3 9.1 0	3 6.2 8	56	-10.7	71
13:40	3.8 2	636	1 3 9.0 5	3 6.3 0	57	-1 2.9	91
41	4.00	621	139.00	3 6.3 2	57	-15.3	72
42	4.0 0	621	1 3 8.9 7	36.35	60	-16.3	56
43	4.00	621	1 3 8.9 3	3 6.3 8	61	-1 5.2	49
44	4.27	600	1 3 8,9 0	3 6.4 2	62	-17.0	64
4 5	4.4 3	587	1 3 8.8 6	3 6.4 5	60	-17.4	68
46	4.5 8	576	1 3 8.8 3	3 6.4 8	59	-17.6	75
47	4.8 3	557	1 3 8.7 9	3 6.5 1	62	-18.2	5 5
48	5.00	545	1 3 8.7 6	3 6.5 4	65	-2 0.8	33
49	5.00	545	1 3 8.7 2	3 6.5 8	63	-21.1	36

-95 -

表4.	1	-2
-----	---	----

時 刻	高度	気圧	経度	緯度	オゾン混合比	気 温	相対湿度
時 分	km	mb	°Е	°N	ppbv	°C	%
13:50	5.0 0	545	1 3 8.6 9	3 6.6 1	62	-2 0.8	40
51	5.0 0	545	1 3 8.6 5	3 6.6 4	64	-2 0.9	39
5 2	5.0 0	545	1 3 8.6 2	3 6.6 7	67	-20.8	37
53	5.0 0	545	1 3 8.5 8	3 6.7 0	73	-20.0	41
54	5.0 0	545	1 3 8.5 5	3 6.7 4	74	-20.1	35
55	5.0 0	545	1 3 8.5 1	36.77	79	-1 8.5	32
56	5.0 0	545	138.48	3 6.8 0	68	-20.5	38
57	5.0 0	545	138.44	3 6.8 3	67	-20.5	38
58	5.0 0	545	1 3 8.4 1	3 6.8 6	67	-20.5	38
59	5.0 0	545	138.37	3 6.9 0	65	-20.3	38
14:00	5.00	545	138.34	3 6.9 3	67	-20.5	39
01	5.00	545	1 3 8.3 0	3 6.9 6	68	-20.1	38
02	5.0 0	545	1 3 8.2 7	3 6.9 9	64	-20.1	37
03	5.0 0	545	1 3 8.2 3	3 7.0 3	68	-20.3	37
04	4.7 2	565	1 3 8.1 5	37.05	70	-1 9.3	37
05	4.3 7	592	138.08	3 7.0 7	68	-17.7	37
06	4.0 0	621	1 3 8.0 0	37.09	63	-16.8	49
07	4.00	621	1 3 8.0 4	3 7.1 4	61	1 5.6	71
08	4.00	621	1 3 8.0 7	3 7.1 8	63	- 1 5.2	78
09	3.8 3	635	1 3 8.0 7	37.18	61	-15.1	66
14:10	3.6 3	652	1 3 8.0 7	3 7.1 8	55	-1 3.9	70
11	3.4 2	670	138.07	3 7.1 8	52	-12.5	69
12	3.2 3	687	1 3 8.0 7	3 7.1 8	53	-1 0.6	78
13	3.0 0	708	1 3 8.0 7	3 7.1 8	55	- 9.8	87
14	3.0 0	708	1 3 8.0 7	3 7.1 8	56	- 9.8	96
15	3.0 0	708	1 3 8.0 7	3 7.1 8	58	- 9.8	96
16	2.8 0	735	1 3 8.0 7	3 7.1 8	56	-11.2	82
17	2.6 3	750	1 3 8.0 7	3 7.1 8	57	-1 1.1	93
18	2.5 0	761	1 3 8.0 7	3 7.1 8	58	-10.7	100
19	2.3 3	776	1 3 8.0 7	3 7.1 8	57	- 9.2	91
14:20	2.1 7	790	138.07	3 7.1 8	56	- 7.9	83
21	2.0 0	805	1 3 8.0 7	3 7.1 8	55	- 7.8	100
22	2.0 0	805	1 3 8.0 7	3 7.1 8	55	- 6.9	
23	2.0 0	805	138.07	37.18	56	- 5.2	
24	1.8 7	817	138.07	37.18	55	- 5.2	

表4.1-3

時 刻	高度	気圧	経度	緯	オゾン混合比	気 温	相対湿度
時分	km	mb	°E	°N	ppbv	°C	%
14:25	1.7 3	830	1 3 8.1 5	3 7.2 1	56	- 5.2	
26	1.6 0	842	1 3 8.2 3	37.24	55	- 3.5	
27	1.42	860	1 3 8.3 1	37.27	54	- 1.6	-
28	1.3 2	870	1 3 8.3 9	3 7.3 0	54	- 1.3	
29	1.1 8	884	1 3 8.4 7	3 7.3 3	54	- 1.0	
14:30	1.0 7	895	1 3 8.5 5	3 7.3 6	53	- 0.5	
31	1.0 0	902	1 3 8.5 7	3 7.3 4	53	0.2	
32	1.0 7	895	1 3 8.6 0	3 7.3 1	54	1.2	
33	1.3 0	872	1 3 8.6 2	37.28	54	1.2	
34	1.47	855	138.65	3 7.2 5	54	- 1.5	
35	1.6 7	836	1 3 8.6 7	3 7.2 2	52	- 5.0	
36	1.8 4	820	1 3 8.6 9	37.19	50	- 6.9	
37	2.0 0	805	1 3 8.7 2	37.17	53	- 7.3	
38	2.0 0	805	138.74	3 7.1 4	55	- 6.2	
39	2.0 0	805	1 3 8.7 2	3 7.0 9	56	- 5.7	
14:40	2.0 0	805	138.71	3 7.0 4	5 5	- 6.4	
41	2.0 0	805	1 3 8.6 9	3 6.9 9	57	- 7.2	
42	2.0 0	805	1 3 8.6 7	3 6.9 4	58	- 6.2	-
43	2.0 0	805	1 3 8.6 5	3 6.9 0	59	- 6.3	
44	2.5 0	761	1 3 8.6 4	3 6.8 5	57	- 9.7	
4 5	3.0 0	708	1 3 8.6 2	36.80	59	-12.0	
46	3.00	708	1 3 8.6 6	3 6.7 7	58	-12.6	
47	3.0 0	708	1 3 8.7 0	3 6.7 3	58	-10.8	
48	3.0 0	708	1 3 8.7 3	3 6.7 0	58	-11.0	
49	3.0 0	708	1 3 8.7 7	3 6.6 6	57	- 8.1	
14:50	2.8 0	735	1 3 8.8 1	3 6.6 3	58	- 7.8	
51	2.6 0	752	1 3 8.8 5	3 6.5 9	60	- 6.8	
52	2.3 5	774	1 3 8.8 8	3 6.5 6	60	- 7.2	
53	2.1 5	792	1 3 8.9 2	3 6.5 2	60	- 4.9	
54	1.9 2	812	1 3 8.9 6	3 6.4 9	58	- 2.2	-
5 5	1.7 3	830	1 3 9.0 0	3 6.4 5	58	- 1.7	
56	1.5 0	852	1 3 9.0 4	3 6.4 2	57	1.7	73
57	1.28	874	1 3 9.0 7	3 6.3 8	59	3.2	71
58	1.0 0	902	139.12	3 6.3 5	58	4.3	71
59	1.0 0	902	139,17	3 6.3 2	59	5.5	69

- 97 -

表	4.	1	 4
		-	

時 刻	高度	気圧	経度	緯 度	オゾン混合比	気 温	相対湿度
時 分	km	mb	°E	°N	ppbv	°C	%
15:00	1.0 0	902	1 3 9.2 1	3 6.2 8	59	6.3	69
01	0.9 7	905	1 3 9.2 6	3 6.2 5	59	7.2	65
02	0.9 3	909	1 3 9.3 1	3 6.2 2	58	7.2	65
03	0.8 7	915	1 3 9.3 6	3 6.1 9	57	7.2	65
04	0.83	919	1 3 9.4 0	3 6.1 5	58		66
0 5	0.77	926	1 3 9.4 5	3 6.1 2	58	6.4	67
06	0.7 3	930	139.48	36.08	5 6	5.9	66
07	0.6 8	935	1 3 9.5 1	3 6.0 5	57	5.9	66
08	0.6 4	939	1 3 9.5 4	3 6.0 1	58	6.6	63
09	0.5 8	946	1 3 9.5 7	3 5.9 7	58	8.0	60
15:10	0.5 4	950	1 3 9.6 0	3 5.9 4	57	8.3	59
11	0.4 9	955	1 3 9.6 3	3 5.9 0	56	8.0	57
12	0.4 5	960	1 3 9.6 2	3 5.8 8	58	9.9	53
13	0.4 0	965	1 3 9.6 1	3 5.8 6	60	8.7	58
14	0.3 6	970	1 3 9.6 0	3 5.8 4	61	9.4	55
15	0.3 1	975	1 3 9.5 9	3 5.9 2	60	1 1.3	51
16	0.26	981	139.58	3 5.7 9	63	1 1.3	51
17	0.2 2	985	1 3 9.5 7	3 5.7 8	62	1 2.3	45
18	0.1 7	991	1 3 9.5 6	3 5.7 6	61	1 2.3	46
19	0.1 3	995	1 3 9.5 6	3 5.7 5	56	1 2.2	46
15:20	0.0 8	1001	1 3 9.5 5	3 5.7 3	51	1 2.5	4 5
21	0.0 3	1007	1 3 9.5 4	3 5.7 2	41	1 4.2	42
22	0.0 0	1010	1 3 9.5 4	3 5.7 1	13	1 4.2	51

(注)

(1) オゾンの測定はオゾンゾンデによる。

(2) 相対湿度は露点計による。

調布一直江津。エーロコマンダー685。

時 刻	高度	気圧	経度	緯度	オゾン混合比	気 温	水蒸気混合比	CF ₂ Cl ₂	CFC1 ₃	N ₂ O
時 分	km	mb	°Е	°N	ppbm	°C	10 ⁻⁵ g/g	pptv	pptv	ppbv
12:10	0.0 0	1009	1 3 9.5 4	3 5.7 1	2 3.3	6.2	167			
11	0.37	970	1 3 9.4 9	3 5.7 5	3 6.9	3.8	163			
12	0.7 8	920	1 3 9.4 4	3 5.7 8	4 2.9	- 0.9	106			
13	1.0 0	894	1 3 9.3 9	3 5.8 2	4 6.5	- 2.0	109			
14	1.00	894	1 3 9.3 9	3 5.8 5	48.2	- 2.5	115	309	191	290
15	1.0 0	894.	1 3 9.3 9	3 5.8 9	4 8.9	- 4.1	118		-	
16	1.36	855	1 3 9.3 9	3 5.9 2	47.7	- 7.7	145			
17	2.00	785	139.40	3 5.9 5	5 0.2	-1 2.0	137			
18	2.55	730	139.40	3 5.9 9	5 3.8	-1 3.7	6 3.9		ļ	
19	2.88	698	139.40	3 6.0 2	5 9.3	-18.3	7 6.2			
12:20	2.8 8	698	1 3 9.3 5	3 6.0 5	5 9.3	-1 9.2	7 4.1	317	195	288
21	2.88	698	1 3 9.3 1	3 6.0 8	6 0.3	-17.9	8 0.7			
22	3.28	660	139.26	36.11	5 9.5	-17.9	77.7		÷.	
23	3.67	625	139.22	36.14	59.4	-19.3	3 6.2			
2,4	4.08	590	139.17	3 6.1 7	6 1.5	-21.4	10.4			
25	4.58	550	1 3 9.1 3	36.20	64.8	$-2\dot{2}.1$	4.89			
26	-4.77	542	1 3 9.0 8	3 6.2 3	7 4.6	-2 2.5	2.01			
27	4.77	542	139.06	36.25	74.6	-22.1	1.86	309	201	301
12:28	4.77	542	139.03	3 6.2 8	8 3.2	-2 1.9	1.5 8		-01	
29	4.9 3	525	139.01	36.30	101	-2 2.5	1.4 0			
12:30	5.1 5	510	138.99	3 6.3 2	87.1	-23.1	1.4 0			
31	5.3 5	495	138.97	36.35	107	-23.5	1.54			
32	5.58	480	138.94	36.37	107	-24.1	1.30			
33	5.78	465	138.92	36.39	7 5.2	-25.9	1.9 9			
34	6.00	450	138.90	36.41	77.7	-27.6	356			÷ .
35	6.25	435	138.87	36.44	789	-28.3	3.7.8			
36	6.5 0	420	138.85	36.46	81.3	-298	292			
37	6.62	412	13884	3649	846	-307	230	ĺ		
38	6.62	412	13883	3651	846	-309	. 226	293	226	289
39	6.62	412	13882	3654	829	-309	412			200
12:40	662	412	13882	3656	829	-302	237			
41	661	413	13881	3659	895	-292	413			
42	662	412	13880	3662	945	-280	202			
43	662	412	13879	3664	977	-264	184			
44	662	412	13878	3667	977	-275	203			
45	664	411	13877	3670	980	-200	210			
	664	411	13976	2672	011	-202	2.1.5			
12:47	6.6 4	411	138.76	3675	794	-32.0	2.2.5	· ·		
48	6.6 6	410	13875	3677	865	-321	258			
49	6.66	410	13874	3680	90.1	-309	242			
12:50	6.6 6	410	138.73	36.83	88.5	-30.0	4.21			
51	6.6 6	410	13872	3685	85.3	-301	22.0	·		
52	6.68	409	138.71	36.88	90.8	-30.6	2.3 5			
53	6.68	409	138.70	36.90	102	-3 0.0	2.20	l	1	
54	6.68	409	13870	3693	108	-301	215			
55	6.7.0	408	13869	3696	113	-304	169			
								1	1	1

表4.2 1979年1月19日の観測資料

- 9.9 -

									,	
時 刻	高 度	気 圧	経度	緯度	オゾン混合比	気 温	水蒸気混合比	C F ₂ C I ₂	CFC13	N ₂ O
時 分	km	mb	°E	°N	ppbm	°C	10 ⁻⁵ g∕g	pptv	pptv	ppbv
5 6	6.7 0	408	1 3 8.6 8	3 6.9 8	143	-30.6	1.6 2			
57	6.7 0	408	1 3 8.6 7	3 7.0 1	149	-30.4	1.48	1		
58	6.7 0	408	1 3 8.6 6	3 7.0 4	153	-3 0.8	1.2 2			
59	6.7 1	407	1 3 8.6 5	3 7.0 6	148	-31.7	-			
13:00	6.7 1	407	1 3 8.6 4	3 7.0 9	132	-3 2.3	0.6 3 2			
01	6.7 1	407	1 3 8.6 4	3 7.1 1	152	-3 3.0	0.7 3 0			
02	6.7 3	406	1 3 8.6 3	37.14	113	-3 3.0	1.0 9			
03	6.73	406	1 3 8.6 2	37.17	107	-31.9	1.1 2			
04	6.7 3	406	1 3 8.6 1	3 7.1 9	107	-3 1.9	1.1 5			
0 5	6.7 3	406	1 3 8.6 0	3722	110	-3 1.7	1.16			
13:06	6.7 5	405	1 3 8.5 9	3 7.2 5	177	-3 2.0	1.1 6			
07	6.75	405	1 3 8.5 8	3 7.2 7	194	-3 3.8	1.15			
08	6.75	405	1 3 8.5 7	37.30	176	-3 5.6	1.2 3			
09	6.7 5	405	1 3 8.5 6	37.32	162	-37.1	1.5 8	[1	
13:10	6.7 7	404	1 3 8.5 5	37.35	151	-36.3	1.6 0		· .	
11	6.77	404	1 3 8.5 5	37.35	146	-36.1	1.87	289	164	298
12	6.64	411	1 3 8.5 5	3 7.3 5	161	-3 6.0	1.4 6			
13	6.3 3	430	1 3 8.5 5	37.35	109	-3 3.7	2.7 4			
14	5.9 4	455	1 3 8.5 5	3 7.3 5	7 2.1	-3 3.0	1.8 2			1.1
15	5.77	467	1 3 8.5 5	37.35	7 0.3	-3 2.4	5.4 0		-	
16	5.7 7	467	1 3 8.5 5	3 7.3 5	7 0.3	-3 2.0	5.4 0	306	171	290
17	5.71	470	1 3 8.5 5	37.35	6 9.8	-31.8	4.4 0			
18	5.32	497	1 3 8.5 5	37.35	68.7	-29.1	4.87			
19	5.0 2	518	1 3 8.5 5	37.35	6 7.2	-27.9	9.28			
13:20	4.85	531	1 3 8.5 5	3 7.3 5	6 6.8	-27.1	8.0 6	288	165	310
21	4.85	531	1 3 8.5 5	37.35	7 3.3	-27.0	1 0.6			
22	4.5 8	550	1 3 8.5 5	37.35	6 8.4	-2 5.7	1 2.8			
23	4.2 0	580	1 3 8.5 5	37.35	6 7.1	-24.5	18.6			
24	3.9 0	605	1 3 8.5 5	3 7.3 5	6 3.3	-24.2	1 8.2			
13:25	3.7 7	617	1 3 8.5 5	37.35	6 8.8	-2 3.9	9.6 7	Í		
26	3.7 7	617	1 3 8.6 3	3 7.3 8	6 8.8	-2 3.9	1 2.3	291	166	307
27	3.7 7	617	1 3 8.7 0	37.40	6 8.8	-2 4.2	1 1.4			
28	3.4 0	650	1 3 8.7 8	37.43	6 4.2	-2 2.5	9.7 7			
29	2.9 7	690	1 3 8.8 5	3 7.4 5	5 6.7	-2 1.9	1 6.4			
13:30	2.7 8	708	1 3 8.8 5	3 7.4 5	5 9.9	-2 2.6	106	282	174	298
31	2.45	740	1 3 8.8 5	3 7.4 5	6 4.0	-2 1.1	1 5.2			
32	2.2 3	762	1 3 8.8 5	37.45	6 2.0	-2 0.0	5 6.4	l l		
33	2.0 0	785	1 3 8.8 5	3 7.4 5	5 6.6	-17.8	3 9.1			
34	1.8 4	802	1 3 8.8 5	3 7.4 5	5 8.1	-1 6.5	7 9.5			
35	1.8 4	802	1 3 8.8 5	3 7.4 5	6 0.5	-1 5.0	7 9.5	285	172	303
36	2.2 3	763	1 3 8.8 5	3 7.4 5	6 1.9	-1 5.6	119			
37	2.5 5	730	1 3 8.8 5	3 7.4 5	6 4.7	-18.2	47.3			
38	2.8 5	700	1 3 8.8 5	3 7.4 5	6 1.5	-2 0.5	8 0.1			
39	3.2 3	665	138.85	3 7.4 5	6 4.8	-2 3.6	2 2.8			
13:40	3.5 6	635	1 3 8.8 5	37.45	6 6.8	-24.4	1 7.6			
41	3.8 0	613	1 3 8.8 5	37.45	6 9.2	-2 3.9	1 2.5			
42	3.8 0	613	1 3 8.8 6	3 7.3 8	6 5.7	-2 2.5	2 2.8			
43	3.80	613	1 3 8.8 7	37.31	6 4.6	-2 2.1	1 9.6			
				1	1				1	1

- 100 -

時 刻	高度	気圧	経度	緯度	オゾン混合比	気 温	水蒸気混合比	CF2Cl2	CFCl ₃	N ₂ O
時 分	km	mb	°Е	°N	ppbm	°c	10 ⁻⁵ g ∕g	pptv	pptv	ppbv
13:44	3.8 0	613	1 3 8.8 8	37.24	6 3.5	-2 1.9	1 9.6			
4 5	3.80	613	1 3 8.8 9	37.17	6 3.5	-2 1.5	1 8.8			
46	3.8 0	613	1 3 8.9 0	3 7.1 0	6 2.2	-2 1.5	1 8.3			
47	3.80	613	1 3 8.9 1	3 7.0 3	6 2.2	-2 1.5	1 9.1			
48	3.80	613	1 3 8.9 3	3 6.9 7	7 1.4	-2 2.1	1 2.5			
49	3.8 0	613	1 3 8.9 4	3 6.9 0	7 0.3	-2 2.8	1 1.4			
13:50	3.8 0	613	1 3 8.9 5	3 6.8 3	6 8.1	-1 9.3	2 0.2			
51	3.80	613	138.96	3 6.7 6	6 5.7	-1 9.3	1 3.8			
52	3.5 0	640	1 3 8.9 7	3 6.6 9	6 2.9	-19.3	1 4.8		· .	
5 3	3.3 0	660	1 3 8.9 8	3 6.6 2	6 3.0	-1 6.4	1 8.9]
54	3.1 2	675	1 3 8.9 9	36.55	6 4.6	-1 5.6	1 7.5			
55	2.9 0	696	1 3 9.0 0	3 6.4 8	6 5.7	-1 8.8	2 8.7			
56	2.90	696	1 3 9.0 7	3 6.4 3	6 3.8	-2 0.0	2 32	283	173	306
57	2.7 8	707	1 3 9.1 3	3 6.3 8	6 3.7	-18.2	2 4.4			
58	2.57	728	1 3 9.2 0	3 6.3 3	5 9.9	-1 9.4	3 3.7			1999 - A.
59	2.38	747	1 3 9.2 6	3 6.2 7	6 1.2	-17.1	3 0.9			
14:00	2.2 3	762	139.33	3 6.2 2	6 0.9	-1 5.4	5 5.7			
01	2.07	780	1 3 9.3 9	3 6.1 7	5 8.6	-1 5.0	6 0.5			
. 02	1.9 0	796	1 3 9.4 6	36.12	5 7.5	-1 2.8	9 5.5			
14:03	1.90	796	1 3 9.4 7	36.09	5 7.5	-1 2.0	9 5.5	284	163	287
04	1.90	796	1 3 9.4 7	36.06	5 9.1	-11.6	7 6.8			
0 5	1.8 3	805	1 3 9.4 8	3 6.0 3	6 0.3	- 9.8	7 3.1			
06	1.6 4	825	139.48	3 5.9 9	58.8	- 6.6	5 7.9			
07	1.4 0	850	1 3 9.4 9	3 5.9 6	5 6.1	- 5.1	4 4.9			
08	1.27	865	1 3 9.5 0	3 5.9 3	5 4.4	- 2.8	4 0.5			-
09	1.08	885	1 3 9.5 0	3 5.9 0	5 5.6	- 0.7	3 9.0			
14:10	0.92	905	1 3 9.5 1	3 5.8 7	5 4.4	1.9	3 4.1			
11	0.7 5	. 925	1 3 9.5 2	3 5.8 4	5 1.6	2.3	3 3.0			
12	0.5 3	950	1 3 9.5 2	3 5.8 0	4 8.1	2.0	2 9.8	(
13	0.38	970	1 3 9.5 3	3 5.7 7	46.3	2.4	2 8.4			
14	0.2 0	990	1 3 9.5 3	3 5.7 4	4 4.0	3.7	2 5.4			
15	0.00	1007	1 3 9.5 4	3 5.7 1	4 3.3	4.3	2 4.6			l

(注)

オゾンの測定はオゾンゾンデによる。 水蒸気の測定は露点計による。 調布一柏崎。エーロコマンダー685。

	高度	气 圧	经度	緯度	オゾン混合せ	気温	風向	風速	N ₂ O
h:m	km	mb	°E	°N	ppbv	°C	0	m∕sec	ppbv
10:45	0.91	914	140.97	38.08		+ 6		< 3	
4 6	1.83	818	140.94	38.02		+ 3	281	4	
47	2.86	720	140.93	37.97	_	0	284	7	
48	3.90	632	140.92	37.92	_	(-3)	278	8	333
49	5.00	550	140.89	37.85		- 8	279	13	
50	5.73	498	140.84	37.76	_	- 10	264	19	
5 1	6.40	457	140.80	37.65		- 17	263	25	
5 2	6.89	428	140.77	37.59	_				
5 3	7.44	395	140.74	37.52	_	-23	259	29	351
54	7.92	370	140.71	37.44					
5 5	8.41	345	140.67	37.35		- 30	262	33	
5 6	8.72	331	140.62	37.25	_				
5 7	9.10	313	140.57	37.15	29.0	- 37	259	38	
58	9.10	313	140.53	37.05	31.6				324
5 9	9.10	313	140.49	36.96	34.5				
11:00	9.10	313	140.44	36.86	38.1				
0 1	9.10	313	140.40	36.77	40.7				
0 2	9.10	313	140.36	36.67	40.7	- 38	241	46	
03	9.10	313	140.33	36.58	42.3				335
04	9.10	313	140.30	36.48	36.9				
0 5	9.10	313	140.27	36.39	42.3	- 38	253	47	
0 6	9.10	313	140.23	36.30	41.3				
07	9.10	313	140.20	36.21	40.7				
08	9.10	313	140.16	36.12	38.5				330
09	9.10	313	140.13	36.03	38.5			1. A.	
11:10	9.10	313	140.09	35.94	25.2	- 38	249	44	
1 1	9.10	313	140.07	35.86	38.5				
12	9.10	313	140.05	35.78	37.6				
13	9.10	313	140.03	35.70	38.5				334
14	9.10	313	140.01	35.60	38.5				
15	9.10	313	1 3 9. 9 9	35.50	42.7	- 36	250	43	
1 6	9.10	313	1 3 9. 9 4	35.41	41.3				
. 17	9.10	313	139.88	35.32	37.6				334
18	9.33	302	139.86	35.36	35.6				

表4.3 1979年10月31日の観測資料

時刻	高 度	気 圧	経 度	緯度	オゾン混合比	気 温	風	向	風速	N ₂ O
h : m	km	m b	°Е	°N	ppbv	°C		۰	m∕sec	p p b v
11:19	9.81	283	139.84	35.40	34.6					
11:20	10.06	275	139.82	35.44	36.8	-40	-	259	⁻ 47	
2 1	10.45	256	139.84	35.52	50.1					315
2 2	10.79	244	139.87	35.61	73.7					
23	11.03	236	139.89	35.69	89.6	-46		305	(73)	
24	11.28	227	139.87	35.77	93.5					
2 5	11.46	221	139.84	35.85	103.					
26	11.70	213	139.82	35.93	117.					348
27	11.95	204	139.79	36.01	115.	- 48		304	(74)	
28	12.25	195	139.84	36.12	102.					
29	12.37	191	139.89	36.24	76.4					
11:30	12.50	187	139.93	36.35	69.4					
31	12.65	183	139.98	36.47	6 7.0					324
32	12.86	178	1 4 0. 0 3	36.58	67.2	-49		273	59	
33	12.92	175	140.03	36.69	71.7					
34	12.98	174	140.04	36.81	80.8		}			
3 5	13.01	173	140.04	36.92	114.					314
36	13.05	172	140.04	37.04	135.					
37	13.08	171	140.05	37.15	150.					
38	13.11	170	140.05	37.27	159.					
39	13.14	169	140.06	37.38	178.					
11:40	13.17	168	140.06	37.50	193.			_		
4 1	13.20	168	140.06	37.61	176.					
42	13.23	167	140.07	37.73	181.					
43	13.26	166	140.07	37.84	182	-50		282	56	326
44	13.29	165	1,40.07	37.95	197.					
4 5	13.35	164	140.07	38.06	212.					
46	13.41	163	140.06	38.17	228.					
47	13.41	163	140.06	38.28	249.					
48	13.41	163	140.06	38.39	249.					
49	13.41	163	140.05	38.50	240.					329
11:50	1 3.4 1	163	140.05	38.62	240.					
5 1	. 13.41	163	140.05	38.73	247.					
5 2	13.41	163	140.05	38.84	220.					
53	13.41	163	140.04	38.95	253.					
時刻	高度	気 圧	経 度	緯 度	オゾン混合比	気 温	風向	風速	N 2 O	
-------	-------	-------	----------	-------	--------	--------	-----	-------	-------	
h : m	k m	mb	°Е	°N	ppbv	°C	o	m∕sec	ppbv	
11:54	13.41	. 163	140.04	39.06	279.				319	
5 5	13.41	163	140.04	39.17	269.	-47	277	50		
56	13.41	163	140.07	39.28	219.					
57	13.41	163	140.11	39.38	241.					
58	13.41	163	140.14	39.49	256.					
59	13.41	163	140.17	39.59	262.					
12:00	13.41	163	140.20	39.70	266.					
0.1	13.11	171	140.24	39.80	207.					
0 2	12.74	180	140.27	39.91	166.	- 50	261	46	324	
03	12.37	192	140.36	39.81	156.					
04	11.89	206	140.45	39.71	150.	(-47)	258	(53)		
0 5	11.28	227	140.53	39.58	126.	(-54)	260	(55)		
0 6	10.67	249	. 140.58	39.50	62.4			-		
07	10.12	270	140.62	39.42	50.0	(-48)	257	(57)		
08	9.57	291	140.65	39.32	52.1					
0 9	9.14	311	140.68	39.22	55.2	- '4 1	256	57	333	
12:10	9.14	311	140.71	39.11	51.6					
1 1	9.14	311	140.75	39.00	45.6					
12	9.14	311	140.78	38.88	44.1					
13	9.14	311	140.81	38.77	41.7	-39	253	56		
14	9.14	311	140.84	38.65	42.5					
1 5	9.14	311	140.88	38.53	42.5					
16	9.14	311	140.91	38.41	43.9	· ·				
17	9.14	311	140.94	38.29	44.4	-40	267	53		
18	8.90	323	140.99	38.18	44.9					
19	8.23	353	141.04	38.07	52.0	(-45)	270	46		
12:20	6.10	476	141.15	38.02	44.7	-25	268	(43)		
21	3.66	652	141.26	37.99	43.7	- 1 2	269	39	329	
22	2.68	737	• 141.23	38.00	46.3					
23	2.13	788	141.21	38.02	44.9					
24	1.77	817	141.18	38.03	43.5				350	
2 5	1.40	861	141.15	38.04	4 0.8					
2 6	1.16	886	141.12	38.06	40.1					
27	0.79	927	141.10	38.07	39.3					
28	0.55	955	141.07	38.08	38.5				-	

- 104 -

気象研究所技術報告 第6号 1982

時刻	高 度	気圧	経 度	緯 度	オゾン混合比	気 温	向	風速	N ₂ O
h : m	k m	m b	°Ε	°N	ppbv	°c	. 0	m/sec	ppbv
12:29	0.37	975	141.04	38.10	37.8				
12:30	0.091	1005	141.01	38.11	37.2				
31	0.061	1007	140.99	38.12	35.8				
3 2	0.03	1009	140.96	38.14	34.7				
33	0.00	1010	140.93	-38.15	34.2				

注()は精度に疑問のある値

オゾンの測定はオゾンゾンデによる

風向・風速は航空機による測定値

秋田一仙台一東京。リアジェット 24 D。

時 刻	高度	気圧	経度	緯度	オゾン混合比	気 温	風向	風速	N 2 O
h:m	k m	mb	°Е	°N	ppbv	°C	o	m∕sec	ppbv
10:22	0.00	1013	140.93	38.15					
23	0.73	935	140.99	38.09		+ 7			
24	1.77	823	140.98	38.01					
2 5	3.10	697	140.97	37.92	17.2	- 2	287	9	
26	4.15	612	140.95	37.87	17.2	-6	288	12	-
27	5.49	514	140.87	37.88	20.0	-10	281	18	
28	6.40	457	140.88	37.95	21.7	-16	273	22	
29	7.32	402	140.94	38.06	23.1	-23	279	28	
10:30	7.80	376	140.97	38.13	26.1				
31	8.08	360	140.99	38.20	32.8	- 31	278	30	
3 2	8.08	360	141.01	38.30	38.6				336
3 3	8.08	360	141.02	38.41	41.1				
34	8.08	360	141.04	38.51	38.6				
3 5	8.08	360	141.05	38.62	35.8				
3 6	8.08	360	141.07	38.72	35.8	- 30	281	31	
3 7	8.08	360	141.09	38.83	35.0				
38	8.08	360	141.11	38.93	33.6				316
39	8.08	360	141.12	39.04	32.8				
10:40	8.08	360	141.14	39.14	34.4				
41	8.08	360	141.16	39.25	34.4	- 31	289	33	
4 2	8.08	360	141.18	39.35	34.4				
4 3	8.08	360	141.21	39.45	34.4				
44	8.08	360	141.23	39.54	34.4			-	
4 5	8.08	360	141.26	39.64	34.4				
4 6	8.08	360	141.28	39.74	35.0	- 31 -	297	. 40	344
4 7	8.08	360	141.30	39.85	35.0				
48	8.08	360	141.32	39.95	35.0				
49	8.08	. 360	141.35	40.06	35.0				
10:50	8.08	360	141.37	40.16	35.3				
5 1	8.08	360	141.39	40.27	36.7	- 31	299	39	
5 2	8.08	360	141.41	40.37	36.7				
53	8.08	360	141.43	40.46	36.7		-		318
54	8.08	360	141.46	40.56	35.8				
5 5	8.08	360	141.48	40.65	37.2				

表4.4 1979年11月1日午前の観測資料

-106 -

時刻	高 度	気圧	経度	緯 度	オゾン混合比	気 温	風向	風速	N₂ O
h : m	k m	mb	°E	°N	ppbv	°c	0	m∕sec	ppbv
10:56	8.08	360	141.50	40.75	37.8	- 32	297	37	
5 7	8.08	360	141.52	40.85	37.8				
58	8.08	360	141.55	40.95	38.9				
5 9	8.08	360	141.57	41.06	38.9				
11:00	8.08	360	141.60	41.16	38.9				
01	8.08	360	141.62	41.26	40.3	-32	296	45	313
0 2	8.08	360	141.64	41.36	40.8				
03	8.08	360	141.66	41.47	41.7				
04	8.08	360	141.68	41.57	42.5				
0 5	8.08	360	141.70	41.68	43.3			-	
0 6	8.08	360	141.72	41.78	43.3	- 32	295	46	
0 7	8.08	360	141.74	41.89	43.3	- · ·			
08	8.08	360	141.77	42.00	43.3				
09	8.08	360	141.79	42.12	43.3				308
11:10	8.08	360	141.81	42.23	42.8				
11	8.08	360	141.84	42.34	41.1				
1 2	8.08	360	141.86	42.45	41.1	- 33	293	47	
1 3	8.08	360	141.88	42.54	40.0				
14	8.08	360	141.90	42.64	39.4	-	-		
15	8.08	360	141.92	42.73	41.4				
16	8.81	311	141.95	42.87	48.2	- 39	295	47	
17	9.54	287	141.98	42.95	· 58.9				
18	10.24	265	142.00	43.02	67.6	-45	299	51	
19	10.55	253	142.04	43.15	67.2				
11:20	10.91	240	142.07	43.27	89.6	-48	304	54	
21	11.09	233	142.05	43.23	117				313
2 2	11.28	2,27	142.02	43.18	112				
2 3	11.46	221	142.00	43.14	127				
24	11.64	215	141.97	43.09	145				
2 5	11.80	209	141.95	43.05	157	- 51	285	58	
26	11.95	205	141.95	42.95	154				
27	12.13	199	141.94	42.85	154				
2 8	12.31	193	141.94	42.75	180				
29	12.56	186	141.93	42.65	210				
11:30	12.50	182	141.93	4 2.5 5	239	- 49	275	55	

<u>-107</u> ---

	高 度	気圧	経度	緯度	オゾン混合比	気 温	風向	風速	N₂ O
h:m	k m	mb	°Е	°N	ppbv	°C	٥	m∕sec	ppbv
11:31	12.89	176	141.92	42.45	250				
32	12.98	176	141.92	42.35	272				
3 3	13.11	170	141.91	42.24	225				
34	13.23	167	141.90	42.14	193				:
3 5	13.32	165	141.90	42.04	186				315
36	12.86	176	141.89	41.94	237	(- 47)	274	53	
3 7	13.53	158	141.89	41.76	297	- 50	277	53	
38	13.53	158	141.88	41.66	315				
39	13.53	158	141.87	41.55	340	-49	275	51	
11:40	13.53	158	141.87	41.44	349				
41	13.53	158	141.88	41.33	307				318
4 2	13.53	158	141.88	41.22	284				
4 3	13.53	158	141.89	41.11	282				
44	13.53	158	141.89	41.00	284	- 5 1	273	48	
4 5	13.53	158	141.87	40.89	291				
4 6	13.53	158	141.86	40.78	319				
47	13.53	158	14 1.84	40.67	309				
48	13.53	158	141.83	40.56	272				
49	13.53	158	141.81	40.45	284	-51	275	49	
11:50	13.53	158	141.79	40.31	298				
5 1	13.53	158	141.77	40.18	305				
5 2	13.53	158	141.75	40.04	317				346
5 3	13.53	158	141.73	39.91	319				
54	13.53	158	141.71	39.77	350	-52	272	51	
5 5	13.53	158	141.71	39.73	373				
5 6	13.53	158	141.70	39.68	373				
5 7	13.41	163	141.69	39.64	375				
58	12.95	173	141.65	39.52	301				
59	12.71	182	141.62	39.40	173	(-56)	274	(54)	
12:00	12.31	194	141.58	39.28	135				
01	12.01	202	141.53	39.16	116	-54	271	55	
0 2	11.49	219	141.49	39.08	108				
03	10.97	235	141.45	38.99	103	-49	277.	52	
04	10.97	235	141.39	38.87	93.2				343
0 5	10.18	274	141.35	38.79	78.4	- 47	279	50	

-108 -

時 刻	高度	気 圧	経	度	緯	度	オゾン混合比	気温	風	向	風	速	N 2 O
h : m	k m	m b	° E			°N	ppbv	°c		0	m∕s	еc	ppbv
12:06	8.53	341	14	1.32		38.74	63.6	-43		275		49	
07	7.16	409	. 14	1.24		38.56	56.0	- 24		280		47	
08	5.73	498	14	1.19		38.50	53.0	-16		281		44	
09	5.00	550	14	1.17		38.47	5 2.9				-		325
12:10	4.27	600	14	1.15		38.44	51.0				j		
11	3.51	664	14	1.12		38.41	50.1						
12	2.87	719	14	1.10		38.38	54.0						
1 3	2.13	788	14	1.08		38.35	(52.0)						
14	1.43	861	14	1.06		38.32	(45.6)						
15	1.07	893	14	1.04		38.30	(44.0)						
16	0.79	928	14	1.02		38.27	(42.9)						
17	0.55	955	14	0.99		38.24	(41.7)				-		
18	0.30	983	14	10.97		38.21	(39.4)						
19	0.15	1000	14	10.95		38.18	(39.3)						
12:20	0.00	1013	.14	0.93		38.15	(38.8)						

(注)オゾンの測定はオゾンゾンデによる
 風向・風速は航空機による測定値
 ()の値は精度に疑問がある。
 仙台ー札幌。リアジェット 24D。

-109 -

時 刻	高度	気圧	経 度	緯度	オゾン混合比	気温	風向	風速	N 2 O
h : m	k m	m b	°E	°N	ppbv	°C	o	m∕sec	ppbv
14:52	0.00	1013	140.93	38.15	(36.7)				
53	0.46	965	140.93	38.12	(39.7)				
54	0.88	918	140.93	38.10	(42.8)		-		
5 5	1.22	882	140.94	38.07	(32.5)				
5 6	1.98	802	140.94	38.04	(31.5)	2		< 3	
57	2.50	753	140.92	37.97	(32.1)	0	317	4	
58	3.90	632	140.91	37.93	31.0	- 3	323	7	
5 9	5.24	532	140.89	37.86	30.8	- 8	326	.8	
15:00	6.10	476	140.85	37.75	30.9	-14	319	11	
0 1	7.01	422	140.82	37.64	3 1.5	- 25	289	14	
0 2	7.77	378	140.79	37.54	3 3.1				332
03	8.05	360	140.77	37.45	39.2				
04	8.05	360	140.74	37.36	41.9			l	
0 5	8.05	360	140.72	37.27	42.5	- 31	275	23	
0.6	8.05	360	140.70	37.21	43.6				335
07	8.23	353	140.68	37.14	41.9		1		
08	9.20	308	140.64	37.01	37.3	-34	261	29	
0 9	10.06	248	140.57	36.88	49.6	-40	262	37	
15:10	10.36	258	140.50	36.93	54.7				i
11	10.85	242	140.42	36.97	57.9	- 45	262	47	
12	10.97	238	140.49	37.07	63.0		-		351
13	11.16	231	140.56	37.16	57.6				
14	11.58	217	140.62	37.26	56.2				
15	11.95	203	140.69	37.35	56.2	- 49	267	67	
16	12.19	197	140.75	37.48	71.1				
17	12.50	188	140.80	37.61	51.1				
18	12.80	179	140.86	37.74	8 3.8	-52	270	66	
19	12.95	175	140.91	37.85	79.4				
15:20	13.11	171	140.96	37.96	108		-		
2 1	13.26	167	141.00	38.06	121				
2 2	13.41	163	141.05	38.17	113				
23	13.56	159	141.10	38.28	108	- 54	275	61	338
24	13.66	157	141.15	38.38	116				
2 5	13.47	160	141.19	38.47	138	- 53	278	59	

表4.5 1979年11月1日午後の観測資料

時刻	高度	気 圧	経度	·緯度	オゾン混合比	気 温	風	向	風速	N ₂ O
h : m	k m	m b	°Е	°N	ppbv	°C		0	m∕sec	ppbv
15:26	12.92	175	141.26	38.67	101	- 5 5		276	57	
27	12.44	189	141.30	38.76	105					
28	11.83	208	141.34	38.84	109	-52		273	(57)	
29	11.22	229	141.46	38.91	97.8					
15:30	10.97	236	141.55	38.97	91.1	-49		273	(59)	330
31	10.30	262	141.68	38.80	7 1.0	-47		277	48	<u>.</u>
3 2	9.14	311	141.67	38.76	59.8	- 4 4		276	46	
33	7.92	370	141.60	38.72	53.8	- 34		269	40	338
34	7.77	378	141.50	38.65	53.7					
3 5	7.62	387	141.39	38.58	50.6					
36	7.50	393	141.29	38.51	51.4					
37	7.38	399	141.18	38.44	5 3.1	-29		247	31	
38	6.40	457	141.14	38.39	53.0	-24		251	· 31	
3.9	5.12	545	141.10	38.36	48.4	-17		251	32	335
15:40	4.27	600	140.95	38.22	48.5	5		246	36	
4 1	3.51	664	140.95	38.17	53.9	0		247	31	
4 2	1.83	817	141.02	38.14	(49.4)	3		253	29	
43	1.40	861	141.20	38.14	(49.4)					
44	1.04	900	141.38	38.14	(46.9)					
4 5	0.73	935	141.57	38.15	(46.2)					
4 6	0.43	966	141.75	38.15	(41.8)					
47	0.00	1013	140.93	38.15	(35.8)					

 (注)オゾンの測定はオゾンゾンデによる 風向・風速は航空機による測定値
 ()の値は精度に疑問がある。 仙台ーいわき。リアジェット24D

-111 -

時 刻	高度	気圧	経度	緯度	オゾン混合比	気温	C F 2 C l 2	CFC1 ₃	N ₂ O
h : m	k m	m b	Ê	°N	ppbv	°c	pptv	pptv	ppbv
11:20	0.07	1006	139.54	35.	71 18.3				
21	0.28	980	1 3 9. 5 5	35.1	24.7				
22	0.57	945	139.56	35.1	31.2				
23	0.83	915	139.57	35.	33.0				
24	1.14	880	1 39.58	35.7	33.5				
2 5	1.44	847	139.59	35.	34.8		332	205	308
26	1.72	818	1 3 9. 6 0	35.0	33 36.1				
27	2.15	775	139.61	35.	35 38.1		363	229	320
28	2.40	750	139.62	35.	37 37.6				
29	2.61	730	1 3 9.63	35.	39 36.4	-17			
11:30	2.74	718	1 3 9.65	35.	37.0				
31	2.92	702	139.66	35.	36.8	-22			
3 2	3.11	685	139.68	36.0	37.8		353	201	300
3 3	3.28	670	139.69	36.0	38.5		-		
34	3.52	650	139.71	36.	4 39.0				
3 5	3.70	635	1 3 9. 7 2	36.	9 39.9	- 26			
36	3.92	617	139.75	36.3	41.1				
37	4.05	607	139.78	36.3	41.7			н. Н	
38	4.14	600	139.81	36.	42.2	-28			
39	4.14	600	139.82	36.3	42.2				
11:40	4.14	600	139.84	36.3	42.2		362		
41	4.14	600	139.85	36.4	4 4 1.9				
42	4.14	600	139.87	36.4	41.9			-	
4 3	4.14	600	139.88	36.	4 1.9	- 28			
4 4	4.16	598	139.90	36.9	42.1				
4 5	4.18	597	139.92	36.0	62 42.1				
4 6	4.19	596	139.95	36.0	42.2		· .		
47	4.20	595	139.97	36.0	42.3				
48	4.20	595	1 3 9.9 9	36.	42.3				
4 9	4.20	595	1 4 0. 0 1	36.	42.3		,		
11:50	4.21	594	140.03	36.8	42.3		1		
5 1	4.21	594	140.06	36.8	4 2.3				
5 2	4.21	594	140.08	36.8	41.1				
5 3	4.23	593	140.10	36.9	41.2				

表4.6 1980年2月1日の観測資料

- 112 -

時 刻	高度	気 圧	経 度	緯	度	オゾン混合比	気 温	CF ₂ Cl ₂	CFC13	N ₂ O
h : m	k m	m b	°E		°N	ppbv	°C	pptv	pptv	ppbv
11:54	4.23	593	140.12		36.96	42.4				
5 5	4.24	592	140.14		37.00	42.5				
5 6	4.24	592	140.17		37.03	43.4				
57	4.24	592	140.19		37.07	43.1				
58	4.25	591	140.21		37.11	43.2	-30	324	195	312
59	4.32	585	140.23		37.15	43.6				
12:00	4.39	580	140.26		37.19	44.0				
01	4.45	575	140.28		37.23	43.4				
0 2	4.55	567	140.31		37.28	44.0				
03	4.58	565	140.33		37.32	42.9				
04	4.59	564	140.36		37.36	43.0				
. 05	4.60	563	140.38		37.40	42.1	- 32			
0 6	4.64	560	140.38		37.40	42.3	- 32	298	187	308
07	4.61	562	140.38		37.38	42.2				
0 8	4.60	563	140.38		37.36	42.2				
0,9	4.59	564	140.38		37.33	42.0				
12:10	4.59	564	140.38		37.31	42.0	-			
11	4.58	565	140.38		37.29	42.0	-32			
12	4.58	565	140.35		37.25	41.0				
1 3	4.58	565	140.32		37.21	40.0				
14	4.58	565	140.29		37.18	42.0		-		
15	4.58	565	140.26		37.14	42.0				
16	4.56	566	140.23		37.10	4 2.0	-32			
17	4.56	566	140.21		37.08	42.0				
18	4.55	567	140.18		37.05	41.8				
19	4.55	567	140.16		37.03	41.8				
12:20	4.54	568	140.13		37.01	40.4				
2 1	4.54	568	140.11		36.98	41.7				
2 2	4.54	568	140.08		36.96	41.7	-32			
23	4.52	569	140.07		36.91	42.6		-		
24	4.52	569	140.05		36.87	42.6	- 32			
2 5	4.51	570	140.04		36.82	42.5				
26	4.49	572	140.03		36.77	42.4		· .		
27	4.42	577	140.01		36.73	43.0				
2 8	4.36	582	140.00		36.68	44.5	- 30			

-113 -

時刻	高 度	気圧	経 度	緯度	オゾン混合比	気 温	CF ₂ Cl ₂	CFC13	N ₂ O
h:m	k m	m b	°Е	°N	ppbv	°c	pptv	pptv	ppbv
12:29	4.32	585	139.98	36.63	44.2				
12:30	4.26	590	139.96	36.58	44.8				
3 1	4.18	597	139.94	36.53	44.2				
32	3.99	612	1 3 9. 9 2	36.49	44.4	- 27			
33	3.71	634	139.89	36.44	42.8				
34	3.52	650	139.87	36.39	42.6				
3 5	3.28	670	139.85	36.34	41.3		324	193	331
36	3.10	686	1 39.83	36.29	41.9	- 20			
37	2.85	708	1 3 9. 8 1	36.26	41.4				
38	2.58	733	139.79	36.24	41.7				
39	2.33	757	139.77	36.21	42.1				
12:40	2.12	778	139.75	36.18	41.6	-12		-	
4 1	1.99	791	139.74	36.14	40.3				
4 2	1.90	800	139.72	36.10	40.5	-11			
43	1.90	800	139.71	36.06	38.2				
44	1.90	800	139.70	36.01	39.8				
4 5	1.90	800	139.69	35.97	40.5				
4 6	1.90	800	139.67	35.93	40.5				
47	1.90	800	1 39.66	35.89	40.5	-11			
48	1.80	810	139.65	35.88	40.0		313	184	320
49	1.63	828	139.64	35.86	39.8				
12:50	1.42	850	139.63	35.85	40.0		-		
5 1	1.14	880	1 3 9.62	35.83	39.3	-			
5 2	0.91	906	139.61	35.82	38.1				
5 3	0.66	935	139.60	35.80	37.0				
54	0.51	952	139.59	35.79	36.3				
5 5	0.36	970	139.58	35.77	33.2				
5 6	0.30	977	139.57	35.76	34.1				
57	0.22	987	139.56	35.74	34.6				
58	0.14	997	139.55	3 5.73	37.2			i	
. 59	0.08	1005	139.54	35.71	19.8	+ 9			

(注)オゾンの測定はオゾンゾンデによる

1)航空機付属の温度計による 調布一郡山。エーロコマンダー 680FL

表4.7 1980年2月2日の観測資料

時刻	高度	気圧	経度	緯度	オゾン混合比	気 温	気温2)	相対湿度	CF ₂ Cl ₂	CFCl ₃	N ₂ O
h : m	km	mb	°E	°N	ppbv	°C	°C	%	pptv	pptv	ppbv
11:34	0.05	1009	1 3 9.5 4	3 5.7 1	1 7.6	(10)	6.7	25	1.1		
35	0.36	970	1 3 9.5 5	3 5.7 3	2 9.8	+ 3	4.6	27			
36	0.7 4	925	1 3 9.5 6	3 5.7 6	3 4.4	0	- 1.5	32			
37	1.28	865	1 3 9.5 7	3 5.7 8	4 0.1	- 4	- 4.4	28			
38	1.61	830	1 3 9.5 9	3 5.8 0	4 3.0	- 6	- 7.2	28			
39	1.95	795	1 3 9.6 0	3 5.8 2	4 4.4	- 8	- 7.7	22			
11:40	1.95	795	1 3 9.6 1	3 5.8 5	4 4.4		- 8.1	26			
41	1.95	795	1 3 9.6 2	3 5.8 7	4 4.4		- 8.4	26		-	
42	1.95	795	1 3 9.6 3	3 5.8 9	4 4.4	- 8	- 8.2	26			
43	1.95	795	1 3 9.6 1	3 5.9 1	4 3.6		- 8.5	24	371	-	317
44	1.9 5	795	1 3 9.5 8	3 5.9 4	4 4.8		- 8.1	24			
4 5	1.95	795	1 3 9.5 6	3 5.9 6	4 4.8		- 8.4	24			
46	1.95	795	1 3 9.5 4	3 5.9 8	4 4.8		- 8.2	24			
47	1.95	795	1 3 9.5 2	3 6.0 1	4 4.8		- 8.4	24			
48	1.95	795	139.49	3 6.0 3	4 4.8		8.5	25			
49	1.95	795	139.47	3 6.0 5	4 4.8		- 8.5	26			
	1.95	795	139.45	3 6.0 7	4 4.8		- 8.2	25			·····
51 11:52	1.95	795	13942	36.10	44.8	_ 0	- 9.4	33			
53	198	792	13935	3615	44.0	5	- 07	21			
54	202	788	13930	3617	44.5	-10	-121	32			
55	240	750	13025	2620	40.2	-12	-12.1	32			
56	2.40	700	13920	3622	40.0	-12	-120	23			
57	298	696	13917	3625	40.0	15	-128	24			
58	2.98	696	13915	3628	478		-153	23	331	. 234	320
59	300	695	13912	3631	479		-158	32	551	234	320
12:00	3.0 0	695	139.10	36.34	47.6		-15.6	28	· · · · · · · · · · · · · · · · · · ·		
01	3.0 0	695	139.07	36.37	47.6	-14	-143	26			
. 02	3.01	694	139.05	36.39	47.7	-14	-147	28			
03	3.2.2	675	139.03	36.41	49.0		-14.9	27	•.		
04	3.5 2	650	139.01	36.43	48.9	15	-16.1	23			
05	3.8 2	625	138.99	36.45	5 0.1	-16	-18.0	26			
06	4.1 4	600	138.97	3 6.4 7	5 0.0	-18	-19.7	26	339	237	312
07	4.4 0	580	138.96	36.48	5 0.9		-21.7	26			
08	4.5 7	568	138.94	36.50	5 0.9	-21	-23.6	33			
09	4.8 2	550	1 3 8.9 2	3 6.5 2	5 1.6		-24.9	29.			
12:10	4.96	540	1 3 8,9 0	3 6.5 4	5 0.2	-25	-26.3	-30			
12:11	5.08	527	1 3 8.8 8	3 6.5 6	49.3		-2 7.9	29			
12	5.2 5	515	1 3 8.8 6	3 6.5 8	5 1.7	-27	-27.7	20			
13	5.4 2	503	1 3 8.8 6	3 6.5 8	4 9.3		-28.3	12			
. 14	5.6 1	490	1 3 8.8 6	3 6.5 8	5 0.6	-28	-28.8	10			
15	5.68	485	1 3 8.9 4	3 6.5 2	5 3.8		-28.5	9			
16	5.7 6	480	1 3 9.0 1	3 6.4 5	47.1		-2 9.0	9	330	179	305
17	5.8 3	475	1 3 9.0 9	3 6.3 9	4 6.1	-28	2 9.6	8			
18	5.9 1	470	1 3 9.1 5	3 6.3 5	47.7		-29.0	9			
19	5.9 1	470	1 3 9.2 0	3 6.3 1	5 3.8		-29.8	9			
12:20	5.9 1	470	1 3 9.2 6	3 6.2 6	5 5.1	•	-29.0	10			

時刻	高度	気圧	経度	緯 摩	オゾン混合比	気 潟	気温	相対湿度	CFaCla	CFCI	N ₂ O
h : m	km	mb	°E	°N	ppbv	°c	°C	%	pptv	pptv	ppbv
21	5.9 1	470	1 3 9.3 1	36.22	5 6.2	-28	-28.6	11			
22	5.90	471	1 3 9.3 7	36.18	5 7.5		-28.7	12			
23	5.9 0	471	139.42	36.14	5 6.1	-27	-28.6	13			
24	5.90	471	1 3 9.4 4	36.12	5 3.7		-27.5	16			
25	5.90	471	139.46	36.10	5 3.7		-27.9	20			
26	5.9 0	471	139.48	3 6.0 8	5 3.7		-27.7	20		-	
27	5.88	472	139.50	3 6.0 6	5 3.6		-27.9	20			
28	5.88	472	1 3 9.5 2	36.04	5 3.6		-27.5	21			
29	5.88	472	1 3 9.5 4	3 6.0 2	5 3.6		-27.3	19			
12:30	5.88	472	1 3 9.5 6	3 6.0 0	5 3.6	}	-27.1	19			
31	5.86	473	1 3 9.5 8	3 5.9 8	5 3.5		-27.5	19			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
32	5.86	473	1 3 9.6 0	3 5.9 6	5 2.0		-27.5	19			ļ
33	5.86	473	1 3 9.6 2	3 5.9 4	5 1.0		-27.1	20			
34	5.86	473	139.64	3 5.9 2	5 1.0		-27.5	21			
35	5.86	473	139.66	3 5.9 0	5 2.0	-27	-26.9	21			
36	5.86	473	1 3 9.6 5	3 5.8 7	5 2.0		-27.3	21	281		328
37	5.86	473	1 3 9.6 4	3 5.8 4	5 2.0		-27.9	21			
38	5.86	473	139.64	3 5.8 2	5 2.0		-27.6	21			
39	5.86	473	13963	3 5.7 9	52.0		-27.5	21			
12:40	5.86	473	1 3 9.6 2	3 5.7 6	5 2.0		-27.5	2.0			
41	5.8 6	473	139.61	3 5.7 3	520		-256	15			
42	5.86	473	139.60	35.70	55.4		-258	13			
43	5.86	473	139.60	35.68	543		(-264)	14			
44	5.8 6	473	139.59	35.65	505		-267	15			
45	5.86	473	139.58	3562	505	-26	-267	10			
46	5.8 6	473	139.57	3557	50.5		-267	20			
47	5.86	473	139.56	3552	50.5		-275	20			
48	5.86	473	13955	3547	505	-27	21.5	20			
12:49	5.86	473	1 3 9.5 4	3 5.4 5	5 0.5	21	-2 7.0	20	273	- 1	325
12:50	5.86	473	1 3 9.5 4	3 5.4 2	5 0.5		-27.3	20			
51	5.8 6	473	1 3 9.5 3	3 5.4 0	5 0.5		-26.9	20			
52	5.86	473	1 3 9.5 3	3 5.3 8	5 0.5		-27.0	20			
53	5.86	473	1 3 9.5 2	3 5.3 6	5 0.5		-2 7.0	20			
54	5.86	473	1 3 9.5 2	3 5.3 3	5 0.5	-27	-27.5	20			
55	5.86	473	1 3 9.5 1	3 5.3 1	49.3	•	-27.5	21	ĺ		ĺ
56	5.9 1	470	1 3 9.5 9	3 5.2 8	49.6		-27.5	21			
57	5.9 4	468	1 3 9.6 7	3 5.2 5	4 9.8	-26	-27.6	20			
58	6.0 2	463	1 3 9.6 5	3 5.1 9	5 0.3	·	-28.5	20			
59	6.07	460	1 3 9.6 2	3 5.1 3	5 0.7	-28	-28.7	20			
13:00	6.0 7	460	1 3 9.6 3	3 5.1 1	4 9.1	1	-28.6	20			
01	6.0 7	460	1 3 9.6 3	3 5.0 8	5 2.0	-28	-28.2	20			
02	5.9 6	467	1 3 9.6 4	3 5.0 6	5 1.2		-2 6.7	19			
03	5.8 3	475	1 3 9.6 5	3 5.0 3	5 0.3	-25	-25.0	16			
04	5.6,5	487	139.65	3 5.0 1	5 0.1		-23.8	17			
05	5.56	493	1 3 9.6 6	3 4.9 8	4 9.5	-22	-21.4	17			
. 06	5.3 2	510	1 3 9.6 7	3 4.9 6	4 9.0		-20.4	19			
07	5.1 1	525	1 3 9.6 7	3 4.9 4	4 8.6	-20	-195	17			
13:08	4.8 1	547	139.68	3 4.9 1	486	-10	-194	1.5		1	
09	4.6 4	560	1 3 9.6 9	34.89	51.6		-180	10			
13:10	4.4 5	575	1 3 9.6 9	3 4.8 6	5 0.3	17	-166	14			
							1 0.0	14			

- 116 -

時 刻	高 度	気圧	経度	緯度	オゾン混合比	気温	気 温	相対湿度	CF.Ch	CFCI	NaO
h : m	km	mb	°E	°N	ppbv	°c	°C	%	pptv	pptv	ppbv
11	4.26	590	1 3 9.7 0	3 4.8 4	4 9,0	-16	-16.0	11			
12	4.1 0	603	1 3 9.7 2	3 4.8 6	4 7.9		-1 5.8	21	315	167	314
13	3.9 2	617	1 3 9.7 5	3 4.8 8	4 6.0	-14	-14.4	40			
14	3.7 7	629	1 3 9.7 7	3 4.8 9	4 4.4		-1 4.7	44			
15	3.6 1	642	1 3 9.7 9	3 4.9 1	4 5.0	-14	-1 3.5	35			
16	3.4 2	658	1 3 9.8 1	3 4.9 3	4 3.9	-12	-1 1.8	31			
17	3.2 3	674	1 3 9.8 4	3 4.9 5	4 2.9		-10.7	. 26			
18	3.0 5	690	1 3 9.8 6	3 4.9 6	4 4.3		- 9.7	23			
19	2.9 1	703	1 3 9.8 8	3 4.9 8	4 3.5	- 9	- 9.4	20			
13:20	2.77	715	1 3 9.8 7	3 5.0 0	4 4.5	- 7	- 7.3	11			
21	2.68	724	1 3 9.8 5	3 5.0 2	47.8		- 6.4	10			
22	2.58	735	1 3 9.8 4	3 5.0 4	4 7.1		- 6.4	9			
23	2.4 3	747	1 3 9.8 3	3 5.0 6	4 6.3	- 5	- 5.4	9			
24	2.30	760	1 3 9.8 2	3 5.0 8	4 7.8		- 4.8	9			
25	2.1 5	775	139.80	3 5.1 0	4 8.1	- 3	- 3.7	8			
26	1.98	792	1 3 9.7 9	3 5.1 1	4 7.7	- 3	- 1.7	9			
13:27	1.84	806	1 3 9.7 8	3 5.1 3	4 6.3		- 2.1	11			÷
28	1.6 9	821	1 3 9.7 6	3 5.1 5	4 5.4	- 3	- 2.5	15			
29	1.5 3	838	1 3 9.7 5	3 5.1 7	4 4.5	- 2	- 2.1	18			
13:30	1.4 0	852	1 3 9.7 4	3 5.1 9	4 4.4	1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -	- 4.7	30			
31	1.26	867	1 3 9.7 3	3 5.2 1	4 3.6	- 2	- 4.8	43			
32	1.1 8	875	1 3 9.7 1	3 5.2 3	4 1.9		- 3.6	60		,	
33	1.10	884	139.70	3 5.2 5	4 0.7	- 2	- 3.2	62			
34	1.0 3	892	139.69	3 5.2 7	4 1.1		- 2.0	53	310	181	321
35	0.9 6	9,00	1 3 9.6 7	3 5.3 0	4 1.4		- 1.6	57			
36	0.9 2	905	1 3 9.6 6	3 5.3 2	3 9.8	- 1	- 1.5	50			
37	0.8 9	908	1 3 9.6 4	3 5.3 4	4 1.1		- 1.6	47			
38	0.8 5	913	1 3 9.6 3	3 5.3 7	4 0.2		- 0.3	45			
39	0.8 0	918	1 3 9.6 1	3 5.3 9	3 6.8		0.0	42			
13:40	0.7 4	925	1 3 9.6 0	3 5.4 1	3 7.7	+ 4	+ 0.9	35			
41	0.6 7	933	1 3 9.5 8	3 5.4 4	38.0		+ 2.0	32			
42	0.6 1	940	1 3 9.5 7	3 5.4 6	3 9.5	+ 4	+ 2.1	31			
43	0.5 3	950	1 3 9.5 7	3 5.5 0	37.4		+ 3.0	26			
44	0.4 4	960	1 3 9.5 6	3 5.5 4	3 6.4		+ 5.0	30			
4 5	0.36	970	1 3 9.5 6	3 5.5 9	3 6.0		5.3	27			
13:46	0.3 0	978	1 3 9.5 5	3 5.6 3	3 5.7		5.4	28			
47	0.2 2	988	1 3 9.5 5	3 5.6 7	3 5.9		7.0	22		l	
48	0.0 6	1008	1 3 9.5 4	3 5.7 1	2 0.1	+10	7.9	29			

(脚 注)

1) 航空機備え付けの温度計による。

2) 湿度計に付属する温度計による。

相対湿度は

オゾンの測定はオゾンゾンデによる。 調布一中之条。エーロコマンダー 680 FL。

時 刻	高 度	気 圧	経度	緯 度	オバン混合比	気 温	CF_2Cl_2	N ₂ O
h : m	km	mb	° ′ E	°′N	ppbv	°C	pptv	ppbv
8:25	0. 12	1006	135° 34.2′	34° 35.6′	24			
26	0.27	990	32.5	34. 5	37			
27	0. 42	972	30. 9	32.8	27			
28	0. 53	957	28.8	31. 1	33			
29	0.67	941	26.6	29. 5	38			
8:30	0.82	924	24.6	27.7	36			
31	1.02	898	22.7	26.0	43			
32	1.22	877	20.7	24. 3	39			
33	1. 43	851	18.1	22.8	42			-
34	1.66	828	16.2	21.1	44			
35	1.87	806	14.3	19.4	44	- 10.2		
36	2. 13	780	12.5	17.4	40			
37	2. 39	754	10.7	15.6	45			
38	2.65	730	09.0	13.6	42			
39	2.88	705	07.4	11.6	41			
8:40	3. 23	680	05.9	09.5	35	- 17.8		
41	3. 53	655	04.3	07.6	40			
42	3.85	628	03. 0	05.7	45	-	304	326
43	4.10	610	01.8	03.7	47			
44	4.32	593	00.7	01.7	49	- 19.0		
8:45	4.58	572	134° 59.5′	33 [°] 59. 7′	59			
46	4.75	558	58.4	57.7	55			
47	4.95	544	57.5	55.8	50	- 20.4		
48	"	"	56.6	53.8	33			
49	"	"	55.4	51.8	. 45			
8:50	"		54.2	49.8	- 51		-	
51	"	"	53. 2	47.8	45			
52		"	52. 2	45.9	55			
53	"	"	51.3	43.9	44			
54	"	"	50. 3	41.9	45	- 20.1	293	351
55	"	"	49. 1	40.0	44			
56	"	"	48.1	37.9	46			
57	"	"	47.3	35. 9	38.			

表4.8 1981年3月10日午前の観測資料

時刻	高度	気圧	经 度	造 世	オバノ混合せ	与泪	CF CI	NO
h : m	km km	mb	°'E	° ' N	ppbv	m ایر ۲	DDtv	ppbv
8 . 58	4.05	EAA	124° 46 4/	22° 22 07		· · · · · · · · · · · · · · · · · · ·		
50	4.00	. 044	104 40.4	33 33.9	43			
9:00	1 93	545	40.0	51.9	40			
01	4.00		44.0	29.6	45			
02			43.7	27.6	39			
02			42.9	25.6	41			
03	"		42.1	23.5	40			
04	"	"	41.2	21.4	46			
			40.1	19.5	45			· · · · · · · · · · · · · · · · · · ·
06			38.9	17.4	40			
07	"	"	37.8	15.3	43			
08	"	"	36.6	13.3	42			
09	"	"	35.3	11.5	51	- 19.9	-	
9:10	4.95	546	34.1	09.6	51			
11	4.93	545	32.9	07.6	45			
12	4.93	545	31.9	05.6	48			
13	4.95	544	30.8	03.6	43			•
14	4.95	544	29, 6	01.7	40			
15	4.97	543	28.6	32 [°] 59.7′	47			· · ·
16	4.97	543	27.4	57.8	43		299	332
17	4.99	542	26.4	55.8	39			
· 18	5.00	541	25.1	53.9	40			
19	5. 02	540	24.0	51.9	42			
9:20	"	"	. 22.8	50.0	41			
21	"	"	21.4	48.1	42			
22	"	"	20.1	46.3	42			* +
23	"	"	18.7	44.3	41			
24	"	"	17.4	42.5	40			
25	<i>"</i>	"	16.1	40.5	41			
26	"	"	14. 9	38.3	41			
27	"	11	13.7	36.1	39			
28	"	"	12. 7	33. 9	45			
29	"	"	11.5	31.7	40			
9:30	"	"	09.8	29.9	40			
31	,"	"	08.4	28.0	43			
	1	1		1	1		1	

時 刻	高 度	気 圧	経 度	緯度	オゾン混合比	気 温	CF ₂ Cl ₂	N ₂ O
h : m	km	mb	° ′ E	° ′ N	ppbv	°C	pptv	ppbv
9:32	5.02	540	134°06.9′	32°26.1′	40			
33	"	"	05.5	24. 2	41			
34	"	"	04.2	22.4	41			
35	"	"	02.9	20. 5	40			
36	"	"	01.5	18.8	42			
37	"	"	00.0	17.0	41			
38	"	"	133° 58.5′	15.2	41		1	
39	"	"	57.0	13.7	40			
9:40	"	"	55.6	11.8	38	-		
41	,"	"	54. 3	10. 0	43			
42	"	"	52.9	08.1	40			
43	"	"	51.7	06.1	35			
44	"	"	50.4	04. 2	39			
45	"	"	49.1	02.3	41	- 19. 9		
46	"	"	47.7	00.5	40			
47	"	"	46.3	31° 58. 7′	38			
48	"	"	45.2	56.6	37			
49		"	43.9	54.6	39			
9:50	"	"	42.6	52.5	39			
51	"	"	41.4	50.5	40	-		
52	"	"	40.0	48.5	38			
53	5. 05	538	38.8	46.6	39		1	-
54	"	"	38. 7	43.6	40			
55	"	"	38.7	40.8	39.			
56	"	"	38. 5	38. 1	39			
57	"	"	38.4	35. 3	• 39			
58	"	"	38.4	32. 5	37			
59	"	"	38.4	29.7	41	- 19.9		
10:00	5.03	539	38.5	26.8	41			
01	5.02	540	38.3	24.1	38			
02	"	"	38.2	21.3	35			
03	"	"	38. 1	18.5	34		291	340
04	5.16	528	37.9	15.8	32	- 19.9		
05	5. 37	518	38. 1	13. 1	35			

- 120 --

時 刻	高 度	気 圧	経度	緯度	オゾン混合比	気 温	CF ₂ Cl ₂	N ₂ O
h∶m	km	mb	°'E	° ′ N	ppbv	°C	pptv	ppbv
10:06	5.50	504	133° 38. 2′	31°10.6′	37		-	
07	5. 73	490	38.3	08.0	36			
08	5.90	478	38.8	05.4	41			
09	6.06	468	39. 1	02.7	. 34			
10:10	6.26	458	39.4	00.0	33			
11	6.36	450	39. 3	30° 57.5′	33			
12	6.49	442	39.6	54.8	37			
13	6.62	434	40.2	52.1	38	- 24.0		
14	6.77	425	40.7	49.5	35			
15	6. 93	_417	41.1	46.8	35			
16	7.09	406	41.4	44.2	36			
17	"	"	42.1	41.6	38	- 25.3		
18	"	"	41.8	39.3	43			
19	"	"	40.4	40.3	44			
10:20	7.06	408	39. 9	42.9	41			
21	7.09	406	39.4	45.5	40			
22	"	"	39.0	48.1	43			
23	"	"	38.4	50. 7	42	- 26.3	291	338
24	"	"	38. 0	53.3	43			
25	"	"	37.6	55.9	37			
26	. //	"	37.0	58.5	39			
27	"	"	36.5	31°00.9′	44			
28	"	"	36. 0	03.4	46			
29	"	"	35.5	06,0	45			
10:30	"	"	35.0	08.4	43			
- 31	"	"	34.3	10.9	47	- 27. 3		
32	"	"	33.8	13.4	44			
33	"	"	33. 4	15.9	45			
34	"	"	33.0	18.3	43			
35	7.07	407	32.6	20.8	43			
36	7.09	406	32. 2	23.3	38			
37	· //	"	31.8	25.7	42			
- 38	. "	"	31.1	28.0	47			
39	"	."	30.8	30.4	60			
	1	1	1	1	1	1	1	

- 121 -

時亥	[]	高度	気 圧	経度	緯度	オゾン混合比	気 温	CF ₂ Cl ₂	N ₂ O
h∶r	n	km	mb	°′E	° ′ N	ppbv	°C	pptv	ppbv
10:	40	7.09	406	133 [°] 30. 5′	31° 33.0′	59	- 27.3		
	41	"	"	30.3	35.6	69			
	42	"	"	30. 3	38.1	72			
	43	7.11	405	29.9	40.6	70		291	330
	44	7.09	406	29.5	43.1	58			
	45	7.06	408	29.0	45.6	50	- 29. 3		
	46	7.09	406	28. 7	48.1	53			
	47	7.11	405	28.3	50.5	56		293	337
	48	"	"	27.8	53.1	53			
	49	"	"	27.4	55.7	59			
11:	50	"	"	26.9	58.3	60	- 29.3		
	51	"	"	26.5	32°00.9′	64			
:	52	"	"	26.5	03.5	64		290	
:	53	"	"	26.6	06.1	66			
:	54	"	"	26.6	08.9	58			
!	55	"	"	27. 0	11.6	51	- 29.3		
	56	"	"	27.5	32° 14. 4′	53	•		
!	57	<i>"</i>	"	28.0	17.3	52			
· .	58	"	"	28. 7	20. 2	53			
:	59	"	"	29. 5	23. 1	47			
11:0	00	7.09	406	30.4	25.9	54	- 29.3		
	01.	"	"	31.2	28.8	55			
()2	"	"	31.8	31.6	51			
()3	7.07	407	32.1	34. 2	63			
()4	"	"	32. 7	36. 9	60		287	341
()5	7.16	403	33. 7	39.8	47	- 29.3		
()6	7.30	397	35.1	42.7	54			
	07	7. 39	391	36.7	45.4	50			
(08	7.48	385	38. 3	48. 1	50			
()9	7.57	380	39.8	50.8	53			
11:	10	7.67	375	40. 3	53.3	48	- 32.4		
	11	7.78	370	40.8	55.7	46			
	12	7.87	365	41.2	58.0	46			
	13	7.92	362	41.8	33° 00.4′	43			
	1				1			[

時 刻	高 度	気 圧	経度	緯度	オゾン混合比	気 温	CF ₂ Cl ₂	N ₂ O
h : m	km	mb	°′Е	° ′ N	ppbv	r	pptv	ppbv
11:14	8.00	358	133° 42. 5′	33° 02.8′	46			
15	8.07	354	43.4	05.2	41	- 34.7		
16	8.14	350	44.3	07.5	44			
17	8. 18	348	44.9	09.6	52	н. 1	290	—
18	8.24	344	45.5	11.7	55			
19	8. 33	341	44.9	11.5	63	- 36.7		
11:20	8.35	339	45.7	09.2	47			
21	8. 43	336	46.8	07.0	46			
22	8. 47	333	47.9	04.8	50			
23	8. 51	331	48.9	02.6	39			
24	8. 56	329	49. 9	00. 5	40			
25	8.60	327	50.9	32 [°] 58. 5 ′	50	- 40.4		
26	8.65	325	51.9	56.4	63			
27	8.69	323	52.4	54.4	65			
28	8.71	322	53. 9	52.2	63		291	337
29	"	. 11	54. 9	50. 1	52	- 41.4		
11:30	"		55.9	48.0	61			
31	"	//	56.8	45.9	52			
32	"	"	57.7	43.8	40			
33	8.75	319	58.4	41.7	48			
34	8. 79	317	59.4	39.6	40	- 41.4		
35	8.81	316	134 [°] 00.3′	37.5	44	- 41.4		
36	8.81	316	01.1	35.4	48			
37	8.85	315	01.9	33. 3	46	- 42.4	· · ·	
38	8.90	314	02.8	31. 2	47	- 42.4	291	3 35
39	8. 75	321	03.8	28.9	41	- 43.4		
11:40	8.65	325	08.4	28.2	48	- 42.4		
41	8.57	330	11.8	31.1	55	- 43.0		
42	8. 45	334	14.8	34. 5	50			
43	8.40	338	17.0	37.9	54			
44	8.30	343	18.0	41.4	56			
45	8. 18	348	19.7	44.9	63	- 37.4		
46	8.11	352	21.2	48.4	46		290	_
47	7.92	362	22.3	51.8	54			

時刻	高 度	気 圧	経度	緯度	オゾン混合比	気 温	CF ₂ Cl ₂	N ₂ O
h∶m	km	mb	°'E	° ' N	ppbv	r	pptv	ppbv
11:48	7.84	368	134° 23.7′	32 [°] 55. 2′	60	X		
49	7.67	375	25.0	58.6	64			
11:50	7.55	383	26.7	33.°02.0′	63	- 33. 1		
51	7.45	388	28.4	05.3	67			
52	7.22	400	30. 0	08.5	63			
53	7.08	407	31. 7	11.6	67		295	328
54	6.97	415	33. 4	14.7	69	- 29.8		
55	6.75	426	34.9	17.9	68			
56	6.64	433	36.6	21. 0	72			
57	6.48	442	38.5	24. 2	71	- 27. 9		
58	6. 33	451	40.3	27.5	70			
59	6.18	460	42.1	30. 6	70	-		
12:00	6.05	468	43. 9	33.6	77		·	
01	5.93	477	45.5	36.7	67			
02	5.77	487	47.3	39. 7	65	- 24.8		
03	5.63	496	49.0	42.6	65			
04	5.50	504	50.7	45.6	69			
05	5.40	513	52. 3 ⁻	48.4	133	- 22. 7		
06	5.26	522	53.5	51.2	142			
07	5.06	537	54.9	54.0	125		284	333
08	4.98	543	56.3	56.8	99			
09	4.77	558	57.1	59.4	79			
12:10	4.58	572	57.8	34°01.9′	68			
11	4.38	588	58.3	04.4	70			
12	4.09	610 ,	59. 1	07.0	60			
13	3.73	638	59. 7	09.5	65			
14	3.44	662	59.8	12.1	58			
15	3.15	687	59.9	14.7	63			
16	2.85	713	135° 00.2′	17.4	61		•	
17	2.57	738	00.3	20.0	66			
18	2.32	762	00.3	22.6	62			
19	2.05	788	00.6	25. 2	55			
12:20	1.82	812	03.8	26.2	57			
21	1.57	837	06.9	27.5	64			· · · · · · · · · · · · · · · · · · ·

時 刻 h:m	高 度 km	気 圧 mb	経 度 • / E	緯 度 ° ' N	オゾン混合比 ppbv	気 温 ℃	CF ₂ Cl ₂ pptv	N₂O ppbv
12:22	1.40	857	135 [°] 10.0′	34°28.5′	57			
23	1. 15	883	13.4	28.6	51			
24	0.98	902	16.8	28.7	53		310	330
25	0.88	917	19.8	28.8	45			
26	0. 78	929	23.0	28.9	46			
27	0.67	942	26.1	29. 2	44		-	
28	0. 55	956	27.4	30.8	53			
29	0.46	968	27.9	32. 9	49.			
12:30	0. 35	980	28.8	34. 7	43			
31	0. 25	992	29.9	36.4	36			
32	0.15	1003	32. 3	36.2	41			
33	0.09	1013	34.6	35.3	38			
· 34	0.00	1024	34.6	35.8	42			
35	0.00	1024	34.7	35.7	41			

(注) オゾンの測定はDASIBI1008 - AHオゾン計による
 気温は航空機に付属の温度計による

八尾一室戸岬。セスナ 404

時刻 高 度 気 圧 度 度 オゾン混合比 気 温 水蒸気混合比 CF2 C12 N2 O 経 緯 °, N °, E °c h:m k m m b ppbv ppmm pptv ppbv 135°36.0 34°35.5 14:02 0.00 1022 13 135°34.5 34°36.5 03 0.27 985 30 04 0.50 958 135°33.0′ 34.°35.0 28 05 0.53 955 135[°]30.9 34°33.5 32 135°28.8′ 34°31.8 0.54 0.6 954 30 2.0 07 0.57 950 135°26.7 34°30.2 39 1.3 135°24.9′ 34°28.1 08 0.60 945 42- 1.0 135°22.7 34°26.4 0.65 940 09 40 - 3.0 135°21.8 34°24.2 14:10 0.95 905 45 - 4.8 135°21.1 11 1.22 875 34°22.1 - 7.6 47 135°20.4 34°20.0 12 1.58 837 39 - 9.3 135°19.8 34°17.7 13 1.88 805 -10.5 46 2.07 135°18.9 34°15.6 14 785 40 -13.0135°18.0 34°13.3 15 2.48 746 36 -14.416 2.66 730 135°16.8 34°11.2 - 16.0 38 135°15.6 34°09.1 17 3.00 700 40 -16.0 135°14.5 34°07.0 18 3.22 680 41 -15.0 135°13.3 ·34°04.7 3.53 655 -16.5 19 44 14:20 3.83 630 135°12.2 34°02.5 37 -17.4 135°11.2 34°00.2 214.20 600 56 - 18.0 135°10.4 33[°]57.8[′] 585 -17.6 224.40 44 135° 9.4 33[°]55.5 4.66 566 23 63 -16.8 135° 8.7 24 4.78 555 33[°]52.8 60 -17.6 135° 9.1 33°49.3 - 18.0 4.98 542 25 46 135° 9.5 33[°]45.8 26 5.02 54043 -18.0135° 9.6 33°42.1 -17.426.4 27 5.02 540 45 5.02 540 135° 9.5 33[°]38.4 56 -17.627.1 28 135° 9.3 33°39.4 29 5.02 540 48 -17.438.1 5.00 542 135° 9.3 33[°]31.3 48 -17.445.214:30 135°09.4 33°27.8 -17.145.2 5.00 542 45 3.1 135 09.3 33°24.4 32 5.00 542 49 -17.445.2 135 09.5 33°20.9 -17.4452 33 5.00 54250 135°09.5 33°17.6 43.0 -17.134 5.00 542 52135°09.5 33°14.3 35 5.02 541 52 -17.145.4

表4.9 1981年3月10日午後の観測資料

-126 -

時刻	高 度	気 圧	経度	_緯 度	オゾン混合比	気 温	水蒸気混合比	CF ₂ Cl ₂	N ₂ O
h : m	k m	m b	°, E	°, N	ppbv	°c	ppmm	pptv	ppbv
14:36	5.02	541	135°09.6	33°11.0	52	-17.0	4 5. 4		
37	5.02	541	135°09.7	33°07.7	49	- 16.5	41.5		
38	5.00	542	135°09.6	33 [°] 04.5 [′]	5 2	- 17.0	42.5		
39	5.00	542	135°09.6	33°01.2	50	- 17.1	45.7		
14:40	5.00	542	135°09.7	32°58.0	53	- 17.0	45.7		
4 1	5.00	542	135°09.6	32°54.8	53	- 16.8	42.5		
4 2	5.00	542	135°09.6	32°51.5́	53	- 16.5	40.4		
43	5.00	542	135°09.6	32 [°] 48.4	53	- 16.5	38.9		
44	5.00	542	135 [°] 09.5 [′]	32 [°] 45.3 [′]	50	- 16.5	33.1		
4 5	5.13	530	135 09.4	32°42.2	5 1	- 18.4	33.8		
4 6	5.36	514	135 [°] 08.0 [′]	32 [°] 41.7 [′]	44	-26.0	33.8		
47	5.63	497	135 [°] 07.6 [′]	32°43.0′	48	- 22.0	34.2		
48	5.75	488	135°07.2	32°45.1	42	- 23.4	3 0.3		
4 9	5.99	473	135 06.8	32 [°] 46.9 [′]	42	- 25.4	27.5		
14:50	6.18	461	135°06.4	32°48.6	44	-27.0	29.0		
5 1	6.38	448	1 35 ° 0 6. 1	32°50.3	52	- 28.8	25.5		
5 2	6.66	432	135°05.7́	32 [°] 52.2 [′]	49	~ 34.0	28.5		
5 3	6.80	423	135°05.4	32°53.9	37	- 31.0	25.9		
54	6.94	415	135°05.1	32°55.7	41	- 32.6	28.4		
5 5	6.98	413	135°04.8	32°57.5	43	- 32.0	28.4	-	
. 56	7.02	411	135°04.4	32 [°] 59.5 [′]	36	-29.8	27.0		
57	7.08	408	135°03.8	33°01.7	42	- 29.8	26.7	300	342
58	7.08	408	1 3 5 ° 0 3. 2	33°03.9	46	29.8	27.0		
59	7.08	408	135 [°] 02.7 [′]	33 [°] 06.1 [′]	53	-32.0	26.7		
15:00	7.08	408	135°02.2	33 [°] 08.3 [′]	52	29.8	27.0		
0 1	7.08	408	1 35 01.6	33°10.4	51	- 31.6	28.1		·
02	7.08	408	1 35 ° 01.0	33°12.5	52	-31.6	26.7		
03	7.08	408	1-35°00.5′	33 [°] 14.6 [′]	56	- 32.0	27.0		
04	7.08	408	135°00.2	33 [°] 16.8 [′]	50	- 32.0	27.0		
0 5	7.08	408	134 [°] 59.8 [′]	33°19.0	53	- 32.0	26.7		
06	7.08	408	134 [°] 59.3 [′]	33°21.2	51	- 32.0	28.4		
07	7.08	408	134 58.9	33°23.4	51	- 31.6	29.0		
0 8	7.08	408	134 [°] 58.6	33 [°] 25.7 [′]	48	- 31.6	28.4		
09	7.08	408	134°58.4	33°28.0	56	- 31.6	28.4		
15:10	7.08	408	134 [°] 58.1 [′]	33°30.3	54	-31.6	29.0		

— 127 —

時 刻	高 度	気 圧	経度	緯度	オゾン混合比	気温	水蒸気混合比	C F 2 C 1 2	N ₂ O
h : m	k m	m b	°, E	°, N	ppbv	°c	ppmm	pptv	ppbv
15:11	7.08	408	134°57.7	33°32.3	50	-31.6	28.4		· · · · · · · · · · · · · · · · · · ·
12	7.08	408	134 [°] 57.2	33 [°] 34.3 [′]	61	-32.0	29.9		
13	7.08	408	134°57.0	33 [°] 36.3 [′]	61	-32.0	31.1		
14	7.08	408	134 [°] 56.4 [′]	33 [°] 38.4	50	- 32.0	31.1		
1 5	7.08	408	1 34 [°] 56. 7	33°40.6	50	-32.0	37.2		
16	7.08	408	134°56.5	33°42.8	70	- 32.0	88.6		
17	7.08	408	134°56.3	33°44.9	67	-32.0	11.4	293	. —
18	7.08	408	134°56.1	33°46.9	54	- 32.0	31.9		
19	7.08	408	134 [°] 55.7 [′]	33 [°] 49.0	50	- 32.0	26.7		
15:20	7.05	409	134 [°] 55.5	33 [°] 50.9 [′]	52	- 32.4	32.5		
2 1	7.05	409	134 55.3	33 [°] 52.9 [′]	70	- 32.8	23.9		
2 2	7.05	409	134°55.2	33 [°] 55.0	70	- 32.8	30.8		
23	7.05	409	134 [°] 55.1 [′]	33°57.0	65	- 33.6	37.2		
24	7.05	409	134°54.9́	33°59.0	63	-33.0	30.3		
2 5	7.08	408	134 [°] 54.6	34°01.1	53	- 33.0	3 1.6		1
2 6	7.08	408	134 [°] 54.4	34 03.2	68	- 33.0	22.7		
27	7.08	408	134°54.1	34°05.3	68	- 32.8	39.2		
28	7.08	408	134°54.0	34°07.5	70	- 32.8	69.5		
2 9	7.08	408	134 [°] 53.8	34°09.7	59	- 32.8	3 9.2		
15:30	7.08	408	134°53.4	34°11.9	64	- 32.8	79.4		
3 1	7.08	408	134 53.2	34 14.1	65	- 32.4	8 2.5		
3 2	7.08	408	134°53.1	34 ° 1 6.4	57	- 32.8	81.4		
33	7.08	408	134 [°] 52.8	34 [°] 18.5 [′]	59	-32.8	80.5		
34	7.08	408	134°52.5	34°20.7	57	- 32.8	82.5		
35	7.08	408	`134°52.3	34°22.9	56	- 32.8	80.5		
3 6	7.08	408	134 52.0	34 25.0	60	- 32.8	81.4		
37	7.08	408	134 [°] 51.8 [′]	34 [°] 27.0 [′]	. 61	- 32.8	80.5		
38	7.08	408	134 [°] 51.4	34 [°] 29.0 [′]	50	- 33.6	80.5		
39	7.08	408	134 [°] 51.0 [′]	34°30.8	.59	-33.6	79.4		
15:40	7.08	408	134 50.6	34 32.7	59	- 33.6	81.4		
41	7.08	408	134°50.2	34°34.4	57	- 33.6	79.4		
42	7.08	408	1 34 ° 49. 7	34°36.2	55	- 33.6	81.4		
43	7.08	408	134°49.4	34°38.1	60	- 34.2	80.5		
44	7.08	408	1 34 °49.1	34°39.9	58	- 34.0	78.5		
4 5	7.08	408	134°48.7	34 [°] 41.5 [′]	59	- 34.0	76.7		

気象研究所技術報告 第6号 1982

時 刻	高度	気 圧	経 度	緯度	オゾン混合比	気 温	水蒸気混合比	CF ₂ Cl ₂	N ₂ O
h∶m	k m	mb	°'Е	°' N	ppbv	°C	p p mm	pptv	ppbv
4 6	7.0 8	408	134° 48.9′	34°43.5′	54	-34.0	7 7.6		
47	7.0 8	408	134°49.2′	34°45.3′	50	-34.0	7 9.4		
48	7.0 8	408	134°49.3′	34° 47.1′	54	-3 4.0	8 0.5		
49	7.0 8	408	134°49.5′	34°49.0′	5 1	-34.2	8 1.4		
5 0	7.0 8	408	134° 49.8′	34°50.8′	4 5	-34.2	8 1.4		
51	7.0 8	408	134° 49.3′	34°52.6′	4 5	- 3 4.0	8 4.5		
5 2	7.0 8	408	134°49.1′	34°54.4′	5 0	-34.0	8 5.4		
53	7.0 8	408	134°49.0′	34°56.4′	56	-34.0	8 4.5		
54	7.0 8	408	134°49.1′	34°58.3′	4 5	-33.6	8 3.4	291	343
5 5	7.0 8	408	134 ^{°°} 48.9′	35°00.1'	5 2	- 3 3.2	8 4.5		
5 6	7.0 8	408	134°48.9′	35°02.0′	5 5	-33.2	8 2.5		
57	7.0 8	408	$134^{\circ}49.1^{\prime}$	35°03.9′	50	-33.4			
58	7.0 8	408	134°49.2′	35°05.8′	53	- 3 4.8			
59	7.2 0	400	134°49.6′	35°07.5′	46	-35.6			
16:00	7.3 2	395	134° 52.4′	35°09.0′	46	-36.0			
16:01	7.5 0	386	134°56.8′	35°07.3′	4 9	-36.0			
0 2	7.5 5	382	134°58.3′	35°03.9′	54	-37.0			-
03	7.6 8	375	134° 59.2′	35°00.6′	48	- 3 8.0			
04	7.7 8	370	135°00.0′	34°57.3′	5 0	- 3 9.0			
0 5	7.87	365	135°01.1′	34° 54.1′	54	-40.4		293	
0 6	7.9 8	358	135°02.1′	34° 51.0′	5 1	-41.8	2 9.5	-	
07	8.1 3	351	135°03.2′	34°47.9′	56	-42.6	2 9.8		
08	8.2 7	343	135°04.3′	34°44.8′	54	-42.6	3 1.2		
09	8.40	337	135°05.4′	34°41.7′	6 7	-44.2	3 1.7		
16:10	8.4 5	333	135 [°] 06.7′	34° 38.7′	6 5	-45.2	3 0.1		
11	8.5 2	333	135°08.0′	34°35.9′	71	-45.2	2 6.5		
12	8.5 7	328	135°09.2′	34°33.1′	65	-45.8	2 5.4		
13	8.6 5	325	135 [°] 10.5′	34° 3 0.2′	59	- 4 5.8	2 1.8		
14	8.6 5	325	135°11.7′	34°27.4′	6,0	-45.8	2 1.2		
15	8.6 7	324	135°13.0′	34°24.6′	66	- 4 5.8	2 1.3		
16	8.7 6	319	135°14.2′	34°21.6′	77	- 4 5.8	2 0.9		
17	8.8 6	316	135°15.5′	34°18.7′	78	-4 5.8	1 8.4		
18	8.8 7	314	135°16.9′	34°15.9′	87	-4 5.8	1 7.7		
19	8.8 0	313	135°18.3′	34°13.2′	80	-46.0	2 0.9	284	338
16:20	8.9 5	311	135°19.9′	34°10.2′	96	-4 6.0	2 0.8		

時刻	高度	気圧	経度	緯度	オゾン混合比	気 温	水蒸気混合比	CF2Cl2	N₂O
h i m	k m	mb	• • E	°'N	ppbv	°C	ppmm	pptv	ppbv
16:21	8.9 5	311	135°21.4′	34°07.6′	88	-4 5.2	1 8.9		
22	8.9 7	310	135°22.9′	34°04.9′	82	-4 5.6	1 7.2		
23	8.9 7	310	135°24.2′	34°02.1′	85	-44.4	1 7.7		
24	8.9 9	309	135°25.6′	33°59.3′	82	-4 6.0	1 4.8		
2 5	8.9 9	309	135°27.0′	33°56.5′	90	-4 5.8	1 7.7		
26	8.9 9	309	135°28.4′	33° 53.7′	100	-4 6.0	1 7.4		
27	8.9 9	309	135°30.0′	33°50.7′	84	-46.0	1 7.4	283	339
28	8.9 9	309	135°31.4′	33°47.8′	66	-46.0	1 5.9		
29	8.9 9	309	135°32.9′	33°45.0′	64	-4 5.8	1 6.1		
16:30	8.9 9	309	135 [°] 34.2 ′	33°42.1′	5 5	-4 5.6	1 4.8		
31	8 9.9	309	135° 35.6′	3 3 ° 3 9.2 ′	5 2	-45.2	1 4.8		
32	8.87	315	135°36.9′	33°36.1′	59	-43.7	1 4.5		
33	8.7 3	322	135°37.9′	33°32.9′	_ 66	-43.0	1 7.0		
34	8.5 7	328	135°38.2′	33°29.8′	5 9	-41.2	1 5.6		
3 5	8.4 7	334	135°36.6′	33°28.8′	7 0	-41.3	2 0.1		
36	8.3 4	340	135° 34.7′	33° 29.3′	6 0	-40.6	1 8.0	284	333
37	8.1 7	348	135° 32.9′	33°29.8′	66	- 3 9.4	2 0.4		
38	8.0 0	357	135°30.8′	33°30.2′	6 1	-37.8	1 9.9		
39	7.8 5	364	135°29.1′	33° 30.9′	67	-37.0	1 9.8		
16:40	7.6 7	375	135°27.2′	33°31.2′	5 3	-35.4	1 9.4	282	— .
4 1	7.5 5	382	135°25.3′	33°31.8′	82	-34.2	2 8.8		
42	7.30	395	135°23.3′	33°32.8′	76	-3 2.6	2 9.3		
43	7.0 0	412	135° 21.2′	33°32.7′	100		2 9.6		
44	6.77	425	135°18.9′	33°33.1′	85	-2 9.4	3 2.6	284	338
4 5	6.6 7	432	135°16.7′	33°33.4′	96	-27.6	3 3.0		
46	6.5 6	440	135°14.3′	33°33.8′	102	-26.8	3 7.3		
47	6.3 5	450	135°12.6′	33°34.8′	75	-2 5.6	4 0.4		
48	6.1 3	464	135°11.7′	33°36.7′	86	-24.6	3 8.1		
4 9	5.91	478	135°10.4′	33°38.5′	61	-22.4	3 4.4	281	337
16:50	5.7 0	490	135°09.1′	33°40.2′	63	-24.7	3 8.0		
51	5.5 0	504	135°07.8′	33°42.0′	66	-18.8	3 9.7		
5 2	5.2 2	5.2 5	135°06.3′	33°43.5′	69	-17.4	5 1.0	281	—
53	4.9 4	545	135°04.8′	33°44.8′	69	-16.4	5 9.5		
54	4.7 2	562	135°03.2′	33°46.0′	74	- 1 5.6	5 3.7		
5 5	4.5 3	5.7 5	135°01.5′	33°47.2′	7 2	-1 3.6	5 6.5	285	340

時刻	高 度	気圧	経度	緯度	オゾン混合比	気 温	水蒸気混合比	CF ₂ Cl ₂	N 2O
h : m	k m	mb	°'E	°' N	ppbv	°C	ppmm	pptv	ppbv
16:56	4.2 2	598	135°00.0′	33°48.5′	69	-11.6	4 9.8		
57	4.0 2	615	134°58.2′	33°49.6′	69	-10.9	7 7.3		
58	3.8 0	630	134°56.6′	33°50.9′	59	-1 0.0	5 7.4	293	-
5 9	3.5 8	650	134° 55.2′	33° 52.2′	6 9	-10.0	2 2.8		
17:00	3.3 8	668	134° 53.6′	33° 53.4′	83	. – 1 3.8	146		
01	3.1 7	685	134°53.5′	3 3 ° 5 5.8 ′	83	-1 3.8	117		
0 2	2.9 7	702	134° 53.3′	33°58:1′	64	-1 4.2	-	297	-
03	2.7 4	722	134°52.9′	34°00.5′	63	-14.2	- 		
04	2.5 7	738	134° 52.4′	34°02.9′	5 9	-12.2			
0 5	2.3 8	755	134°53.4′	34°05.5′	5 9	1 1.6			
0 6	2.1 8	774	134°54.2′	34°08.0′	58	-10.6			
07	2.0 2	790	134°53.6′	34°10.5′	6 2	- 8.8			
0 8	1.8 0	813	134°54.6′	34°13.1′	6 2	- 8.1			
0 9	· 1.6 0	833	134°56.3′	34°15.5′	5 5	- 7.2			
17:10	1.4 2	853	134°58.8′	34°17.1′	5 5	- 7 .6			
11	1.2 0	877	135°01.9′	34°18.0′	46	- 7.2			
12	1.0 3	895	135°05.2′	34°18.8′	47	- 6.6			
13	1.0 3	895	135°08.4′	34°19.8′	53	- 7.4			
14	1.0 3	895	135° 11.4′	34°20.9′	4 5	- 7.3			
1 5	1.0 3	895	135°14.2′	34°22.5′	4 5	- 7.3			
16	1.0 3	895	135°16.7′	34°24.1′	44	- 5.8			
17	1.0 3	895	135°19.5′	34°25.8′	47	- 4.1			
18	1.0 3	895	135°22.5′	34°27.3′	5 0	- 3.6		-	
19	1.0 4	894	135°25.3′	34°28.7′	5 0	- 3.3			
17:20	0.8 3	918	135°27.2′	34°30.6′	49	- 2.0			
21	0.7 0	940	135° 27.5′	34° 32.8′	3 3				•
22	0.5 3	963	135°28.4′	34°34.9′	2 1				
23	0.3 2	[.] 990	135°29.7′	34°36.5′	4 0				
24	0.2 7	995	135°32.1′	34°36.4′	2 5				
25	0.2 0	1003	135°34.4′	134°35.8′	3 9				
26	0.1 6	1010	135°36.5′	34°34.8′	44				
27	0.1 0	1017	135°36.8′	34°35.6′	3 5				
28	0.0 0	1026	135°35.4′	34°35.6′	36				

(注)

オゾンの測定はDASIBI 1008-AHオゾン計による

水蒸気の測定は露点計による

八尾一汐岬沖。セスナ 404。

-131 -

.

hmmb 0° P 0° Nppbv 0° DDPptvpptv <th< th=""><th>時刻</th><th>高 度</th><th>気 圧</th><th>経 度</th><th>緯度</th><th>オゾン混合比</th><th>気 温</th><th>水蒸気混合比</th><th>CF₂Cl₂</th><th>N₂O</th></th<>	時刻	高 度	気 圧	経 度	緯度	オゾン混合比	気 温	水蒸気混合比	CF ₂ Cl ₂	N ₂ O
14:36 0.00 1012 135 $^{\circ}360'$ 34 $^{\circ}354'$ 13 16.3 672 37 0.12 1003 33.0 35.7 19 15.7 641 38 0.19 993 30.0 35.9 30 13.5 669 39 0.26 982 27.0 36.1 37 13.9 71.4 14:40 0.38 971 2.4.1 36.7 46 13.6 71.5 42 0.60 948 1.8.1 36.9 48 12.3 77.6 44 0.78 927 10.5 77.4 10.9 74.2 78 44 0.78 927 0.02 38.4 43 9.3 55.2 . 45 0.87 910 0.6.1 37.9 47 1.0.5 61.2 . 48 1.05 897 0.0.2 38.4 43 9.3 55.2 . 49 1.09 891 134 $^{\circ}$ 57.2' 38.7 44 85 53.4 14:50	`µ ∶ w	k m	mb	°'E	°'N	ppbv	°C	10 ⁻⁵ g ∕g	pptv	ppbv
37 0.12 1003 3300 35.57 19 1.5.7 6.41 38 0.19 993 300 35.9 30 13.5 66.9 39 0.28 982 27.0 36.1 37 13.9 71.4 14:40 0.38 971 2.41 36.4 14.2 736 41 0.48 962 2.1.1 36.7 46 13.6 77.5 42 0.60 948 1.61 36.9 48 12.3 77.8 44 0.78 927 12.1 37.7 47 10.9 74.2 44 0.78 927 0.21 37.4 48 1.24 79.2 45 0.87 910 0.61 37.9 47 1.16 66.2	14:36	0.0 0	1012	1 3 5 [°] 3 6.0′	34 [°] 35.4′	13	1 6.3	672		
38 0.19 993 300 359 30 125 669 1 14:40 0.38 971 2.41 36.4 142 7.36 41 0.48 962 2.11 36.7 46 13.6 7.15 42 0.60 948 18.1 36.9 48 13.0 7.66 43 0.68 938 15.1 37.2 49 12.3 7.78 44 0.76 927 1.21 37.4 48 12.4 792 45 0.87 917 0.91 37.7 47 10.9 7.42 46 0.94 910 0.61 37.9 47 1.16 662 47 100 903 0.31 38.2 41 10.5 612 49 1.09 891 134.6572 38.4 43 9.3 552 51 1.22 877 51.2 38.2 4.5 8.6 54.7 51 1.22 877 51.2 38.2	37	0.1 2	1003	3 3.0	3 5.7	19	1 5.7	641		
39 0.28 982 270 36.1 37 139 714 14:40 0.38 971 24.1 36.4 14.2 736 41 0.48 962 21.1 36.7 46 13.5 71.5 42 0.60 948 18.1 36.9 48 13.0 766 43 0.68 938 15.1 37.2 49 12.3 77.8 44 0.78 92.7 12.1 37.4 48 12.4 79.2 45 0.87 917 0.91 37.7 47 10.9 74.2 46 0.94 91.0 0.61 37.9 47 11.6 66.2 47 10.0 90.3 0.31 38.2 41 10.5 61.2 48 10.5 887 0.02 38.4 43 9.3 55.2 141:50 1.17 883 54.2 38.9 44 8.6 54.7 52 1.27 87.0 48.2 36.4 <t< td=""><td>38</td><td>0.1 9</td><td>993</td><td>3 0.0</td><td>3 5.9</td><td>30</td><td>1 3.5</td><td>669</td><td></td><td></td></t<>	38	0.1 9	993	3 0.0	3 5.9	30	1 3.5	669		
14:40 0.38 971 241 364 142 736 41 0.48 962 211 36.7 46 136 715 42 0.60 948 181 369 48 130 766 43 0.68 938 151 37.2 49 123 778 44 0.78 927 121 37.4 48 124 792 45 0.87 917 0.81 37.7 47 10.9 742 46 0.94 910 0.61 37.9 47 11.6 662 47 1.00 903 0.31 38.2 41 10.5 612 48 1.05 897 0.02 38.4 43 93 552 49 1.09 891 134°572' 38.7 44 8.5 53.4 141:50 1.17 883 54.2 39.8 46 9.1 57.4 51 1.22 87.7 51.2 39.2 <	. 39	0.28	982	2 7.0	3 6.1	37	1 3.9	714		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	14:40	0.38	971	2 4.1	3 6.4	. —	1 4.2	736		
42 0.60 948 18.1 36.9 48 13.0 766 43 0.68 938 15.1 37.2 49 12.3 778 44 0.78 927 12.1 37.4 48 12.4 792 45 0.87 917 0.91 37.7 47 10.9 742 46 0.94 910 0.61 37.9 47 11.6 662 47 1.00 903 0.3.1 38.2 41 10.5 612 48 105 897 0.02 38.4 43 93 552 49 1.09 891 134°57.2' 38.7 44 8.5 534 14:50 1.17 883 54.2 38.9 44 8.5 54.3 51 1.22 877 5.12 39.2 45 8.6 54.7 52 1.27 87.0 48.2 39.4 47 9.1 57.0 53 1.35 86.3 40.2 47 9.2	41	0.48	962	2 1.1	3 6.7	4 6	1 3.6	715		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	42	0.6 0	948	1 8.1	3 6.9	4 8	1 3.0	766		
440.7892712.137.44812.4792450.879170.9137.74710.9742460.949100.6137.94711.6662471.009030.3.138.241110.5612481.058970.0238.44339.3552491.09891134 0 57.2'38.74448.553.414:501.1788354.238.94448.6543511.2287751.239.24558.654.7521.2787048.239.4479.1570531.3586345.239.84669.157.4541.428503.6.340.34459.3600561.468503.0.540.2479.2582551.468503.0.540.2488.660530.93591.468502.7.540.5458.760.915:001.468502.4.740.54558.663.3011.448532.1.840.2469.363.9021.438551.8.840.2469.363.9031.428571.6.940.4469.364.9041.418591.3.140.3 <td< td=""><td>43</td><td>0.6 8</td><td>938</td><td>1 5.1</td><td>3 7.2</td><td>4 9</td><td>1 2.3</td><td>778</td><td></td><td></td></td<>	43	0.6 8	938	1 5.1	3 7.2	4 9	1 2.3	778		
45 0.87 917 0.91 $3.7.7$ 4.7 $1.0.9$ 7.42 46 0.94 910 0.61 $3.7.9$ 4.7 11.6 6.62 47 1.00 903 $0.3.1$ $3.8.2$ 4.1 10.5 6.12 48 1.05 8.97 0.02 $3.8.4$ 4.3 9.3 5.52 49 1.09 8.91 $13.4^{\circ}57.2'$ $3.8.7$ 4.44 8.5 $5.3.4$ $14:50$ 1.17 8.83 5.42 $3.8.9$ 4.4 8.6 5.43 51 1.22 8.77 $5.1.2$ $3.9.2$ 4.5 8.6 5.47 52 1.27 870 4.82 3.94 4.7 9.1 5.70 53 1.35 8.63 4.52 $3.9.8$ 4.6 9.1 5.74 54 1.42 857 4.22 4.02 4.7 9.2 5.82 55 1.46 850 3.63 4.03 444 9.3 6.17 57 1.48 850 3.05 4.02 4.8 8.6 605 3.09 3.23 58 1.46 850 $2.7.5$ 4.05 4.5 8.7 6.33 $15:00$ 1.44 853 21.8 40.5 4.4 10.1 6.85 02 1.43 855 1.88 40.2 4.6 9.3 6.39 03 1.42 857 1.59 40.4 45 9.3 $6.$	44	0.7 8	927	1 2.1	3 7.4	48	1 2.4	792		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4.5	0.87	917	0 9.1	3 7.7	47	1 0.9	742		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	46	0.94	910	0 6.1	3 7.9	47	1 1.6	662		
48 1.05 897 0.02 38.4 43 9.3 552 49 1.09 891 $134^{\circ}572'$ 38.7 44 8.5 534 $14:50$ 1.17 883 542 38.9 444 8.6 543 51 1.22 877 51.2 39.2 455 8.6 547 52 1.27 870 48.2 39.4 477 9.1 570 53 1.35 863 45.2 39.8 466 9.1 574 54 1.42 857 42.2 40.2 477 9.2 582 55 1.46 850 39.2 40.3 445 9.3 600 56 1.46 850 36.3 40.3 444 9.3 617 57 1.46 850 30.5 40.2 48 8.6 6055 30.9 323 59 1.46 850 27.5 40.5 455 8.7 633 $15:00$ 1.46 850 24.7 40.5 455 8.7 633 01 1.44 853 21.8 40.5 444 10.1 685 02 1.43 855 18.8 40.2 466 9.3 649 04 14.1 859 13.1 40.3 488 9.5 636 02 1.43 855 10.4 40.1 45 9.6 640 04 14.4 <td>47</td> <td>1.0 0</td> <td>903</td> <td>0 3.1</td> <td>3 8.2</td> <td>41</td> <td>1 0.5</td> <td>612</td> <td></td> <td></td>	47	1.0 0	903	0 3.1	3 8.2	41	1 0.5	612		
49 1.09 891 $134^{\circ}572'$ 38.7 44 8.5 534 $14:50$ 1.17 883 542 38.9 44 8.6 543 51 1.22 877 51.2 39.2 45 8.6 547 52 1.27 870 48.2 39.4 47 9.1 570 53 1.35 863 45.2 39.8 46 9.1 574 54 1.42 857 42.2 40.2 47 9.2 582 55 1.46 850 39.2 40.3 445 9.3 610 56 1.46 850 36.3 40.3 444 9.3 617 57 1.46 850 30.5 40.2 48 8.6 605 30.9 58 1.46 850 21.5 40.5 455 8.7 60.9 $15:00$ 1.46 850 21.5 40.5 455 8.7 63.3 01 1.44 853 21.8 40.5 444 10.1 685 02 1.43 855 18.8 40.2 46 9.3 649 03 1.42 857 15.9 40.4 46 9.3 649 04 141 859 13.1 40.3 48 9.5 63.6 05 1.40 860 10.3 40.1 45 9.6 640 04 1.42 857 0	48	1.0 5	897	0 0.2	3 8.4	- 43	9.3	552		
14:50 1.17 883 542 389 44 8.6 543 51 1.22 877 51.2 39.2 45 8.6 547 52 1.27 870 48.2 39.4 47 9.1 570 53 1.35 863 45.2 39.8 46 9.1 574 54 1.42 857 42.2 40.2 47 9.2 582 55 1.46 850 36.3 40.3 44 9.3 617 57 1.46 850 30.5 40.2 48 8.6 605 309 323 58 1.46 850 27.5 40.5 45 8.7 633 309 323 59 1.46 855 24.7 40.5 44 10.1 685 309 323 01 1.44 855 18.8 40.2 46 9.3 639 449 46	49	1.0 9	891	1 3 4 ^o 5 7.2′	3 8.7	44	8.5	534		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	14:50	1.17	883	5 4.2	3 8.9	44	8.6	543		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 1	1.2 2	877	5 1.2	3 9.2	4 5	8.6	547		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 2	1.27	870	4 8.2	3 9.4	47	9.1	570		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	53	1.3 5	863	4 5.2	3 9.8	4 6	9.1	574		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	54	1.4 2	857	4 2.2	4 0.2	47	9.2	582		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 5	1.46	850	3 9.2	4 0.3	4 5	9.3	600		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	56	1.4 6	850	3 6.3	4 0.3	44	9.3	617		
58 1.46 850 30.5 40.2 48 8.6 605 309 323 59 1.46 850 27.5 40.5 455 8.7 609 609 $15:00$ 1.46 850 24.7 40.5 445 8.7 633 639 01 1.44 853 21.8 40.5 444 10.1 685 02 1.43 855 18.8 40.2 466 9.3 639 03 1.42 857 15.9 40.4 466 9.3 649 04 1.41 859 13.1 40.3 488 9.5 6366 05 1.40 860 10.3 40.1 455 9.6 640 06 1.42 858 $07.5'$ $40.2'$ 466 9.8 650 07 1.42 857 0.47 $40.2'$ 47 9.6 659 08 1.43 855 01.9 39.9 466 9.6 661 09 1.44 853 $133^\circ 59.1'$ 39.7 488 9.9 6588 $15:10$ 1.45 852 56.4 39.8 49 9.9 673	57	1.4 6	850	3 3.4	4 0.3	4 5	8.8	588		
59 1.46 850 27.5 40.5 45 8.7 609 $15:00$ 1.46 850 24.7 40.5 45 8.7 633 01 1.44 853 21.8 40.5 44 10.1 685 02 1.43 855 18.8 40.2 46 9.3 639 03 1.42 857 15.9 40.4 46 9.3 649 04 1.41 859 13.1 40.3 48 9.5 636 05 1.40 860 10.3 40.1 45 9.6 640 06 1.42 858 $07.5'$ $40.2'$ 46 9.8 650 07 1.42 857 0.47 $40.2'$ 47 9.6 659 08 1.43 855 01.9 39.9 46 9.6 661 09 1.44 853 $133^\circ 59.1'$ 39.7 48 9.9 658 $15:10$ 1.45 852 56.4 39.8 49 9.9 673	58	1.46	850	3 0.5	4 0.2	48	8.6	605	309	323
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	59	1.46	850	2 7.5	4 0.5	4 5	8.7	609		,
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	15:00	1.4 6	850	2 4.7	4 0.5	4.5	8.7	633		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 1	1.4 4	853	2 1.8	4 0.5	44	1 0.1	685		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 2	1.4 3	855	1 8.8	4 0.2	46	9.3	639		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	03	1.42	857	1 5.9	4 0.4	4 6	9.3	649		
05 1.40 860 10.3 40.1 45 9.6 640 06 1.42 858 07.5' 40.2' 46 9.8 650 07 1.42 857 0.4.7 40.2' 47 9.6 659 08 1.43 855 01.9 39.9 46 9.6 661 09 1.44 853 133°59.1' 39.7 48 9.9 658 15:10 1.45 852 56.4 39.8 49 9.9 673	04	1.4 1	859	1 3.1	4 0.3	48	9.5	636	-	
06 1.42 858 07.5' 40.2' 46 9.8 650 07 1.42 857 0.4.7 40.2' 47 9.6 659 08 1.43 855 01.9 39.9 46 9.6 661 09 1.44 853 133°59.1' 39.7 48 9.9 658 15:10 1.45 852 56.4 39.8 49 9.9 673	0 5	1.4 0	860	1 0.3	4 0.1	4 5	9.6	640		
07 1.42 857 0.4.7 40.2' 47 9.6 659 08 1.43 855 01.9 39.9 46 9.6 661 09 1.44 853 133°59.1' 39.7 48 9.9 658 15:10 1.45 852 56.4 39.8 49 9.9 673	06	1.4 2	858	0 7.5′	4 0.2'	4 6	9.8	650		
08 1.43 855 01.9 39.9 46 9.6 661 09 1.44 853 133°59.1' 39.7 48 9.9 658 15:10 1.45 852 56.4 39.8 49 9.9 673	07	1.4 2	857	0.4.7	4 0.2'	4 7	9.6	659		
09 1.44 853 133°59.1' 39.7 48 9.9 658 15:10 1.45 852 56.4 39.8 49 9.9 673	08	1.4 3	855	0 1.9	3 9.9	4 6	9.6	661		
15:10 1.45 852 56.4 39.8 49 9.9 673	09	1.4 4	853	1 3 3 ^o 5 9.1′	3 9.7	48	9.9	658		
	15:10	1.4 5	852	5 6.4	3 9.8	4 9	9.9	673		

気象研究所技術報告 第6号 1982 表4・10 1981年3月14日の観測資料

時刻	高度	気 圧	経度	緯度	オゾン混合比	気 温	水蒸気混合比	CF ₂ Cl ₂	N ₂ O
h : m	k m	mb	°'E	°' N	ppbv	°C	10 ⁻⁵ g∕g	pptv	ppbv
15:11	1.4 6	850	133°53.6′	34°40.0′	48	1 0.2	665		
12	1.47	848	5 0.9	3 9.8	48	9.8	657		
13	1.5 0	845	4 8.7	3 9.2	47	7.9	604		
14	1.8 2	813	4 6.6	3 9.1	47	6.2	566	-	
15	2.2 8	770	4 4.4	3 9.6	44	4.4	547		
16	2.4 5	753	4 2.5	3 9.7	42	4.2	497		
17	2.8 0	723	4 0.6	4 0.0	41	2.9	427		
18	3.1 7	690	3 8.6	4 0.5	40	0.8	408		
19	3.2 8	680	3 7.7	4 2.6	39	- 0.5	418		
15:20	3.3 7	672	3 6.6	4 4.7	39	- 2.5	373		
21	3.5 3	660	3 4.9	4 6.3	41	- 0.0	340		
22	3.7 8	646	3 3.2	4 7.9	38	- 0.0	259		
23	3.8 6	632	3 1.4	4 9.3	44	- 1.0	315		
24	4.0 5	618	2 9.4	5 0.6	4 5	- 2.5	285		
2 5	4.2 3	604	2 7.5	5 0.0	4 4	- 3.8	266		
26	4.4 4	588	2 5.6	5 3.5	49	- 5.1	244		
27	4.6 0	575	2 3.6	5 4.8	5 1	- 7.1	221	303	3 2 8
28	4.8 0	562	2 1.7	5 6.2	50	- 8.3	206		
29	4.9 7	548	1 9.6	5 7.7	48	- 9.3	182		
15:30	5.1 7	535	1 7.6	5 9.2	4 6	-10.1	155		
31	5,37	522	1 5.5	35°00.7′	46	-11.6	131		
3 2	5.5 6	508	1 3.5	0 2.2	44	-14.1	128		
33	5.80	495	1 1.5	0 3.7	4 2	- 1 4.0	5 6.9		
34	6.0 0	483	0 9.5	0 5.1	4 1	-1 5.6	4 0.2		
3 5	6.2 1	470	0 7.4	0 6.4	41	-17.7	4 0.6		
36	6.4 0	458	0 5.4′	0 7.5′	4 4	-19.4	2 8.1		
37	6.6 2	445	0 3.3	0 8.7	36	-22.1	2 2.4		
38	6.8 5	4.31	0 1.5	1 0.0	38	-23.7	2 0.8		
3 9	7.06	418	0 0.7	1 2.4	39	- 2 5.4	1 9.0		
15:40	7.3 0	405.	0 0.0	1 4.7	39	-26.9	1 5.2	,	
41	7.4 7	396	1 3 2 ^o 5 9.4′	1 6.9	33	- 2 8.2	1 3.7		
42	7.6 7	385	5 9.1	1 9.2	37	- 2 9.1	1 1.5	298	323
43	7.7 2	. 382	5 9.0	2 1.6	37	- 3 0.0	-		
44	7.8 0	377	5 9.0	2 3.8	43	-31.0	9.6 0		
4 5	7.8 8	373	5 9.0	2 6.2	4 5	-31.9	8.8 2		

時刻	高 度	気 圧	経度	緯度	オゾン混合比	気 温	水蒸気混合比	CF ₂ Cl ₂	N ₂ O
h : m	k m	mb	°'E	°'N	ppbv	°C	10 ^{−5} g ∕g	pptv	ppbv
4 6	7.97	368	1 3 2° 5 8.9′	35°28.7′	39	- 3 3.1	8.8 0		
47	8.0 5	364	5 8.9	3 1.2	37	- 3 3.8	8.2 5		
48	8.1 6	359	5 8.8	3 3.6	36	3 5.2	7.1 9		
4 9	8.2 5	355	5 8.8	3 5.9	34	- 3 5.3	7.5 7		
15:50	8.3 2	350	5 8.7	3 8.2	3 5	- 3 5.8	7.2 8		1
51	8.4 2	347	5 8.6	4 0.5	3 5	- 3 6.2	7.0 2		
5 2	8.4 5	345	5 8.4	4 2.8	37	- 3 6.9	6.5 4		
53	8.4 8	343	5 8.0	4 5.1	40	- 3 7.5	6.1 6	301	336
54	8.5 4	340	5 7.5	4 7.0	34	-38.2	5.7 5		
5 5	8.6 3	337	5 6.0	4 7.1	37	-38.3	5.7 3		
56	8.6 8	335	5 6.3	4 5.0	37	- 3 9.0	4.8 0		
57	8.7 2	333	5 6.7	4 2.9	39	- 3 9.1	4.7 7		
58	8.7 5	331	5 6.9	4 0.7	41	- 3 9.1	4.8 0		
59	8.7 9	328	5 7.3	3 8.5	4 3	- 3 9.7	4.5 3		
16:00	8.8 2	326	5 7.7	3 6.3	4 1	- 3 9.7	4.5 6		
01	8.8 6	325	5 8.0	3 4.2	40	- 3 9.7	4.5 7		
0 2	8.8 8	324	5 8.2	3 2.0	3 5	- 3 9.7	5.1 0		
03	8.9 1	323	5 8.1	2 9.9	32	- 3 9.7	5.6 3		
04	8.9 3	322	5 8.1	2 7.7	4 2	-40.1	5.8 8		
0 5	8.9 6	321	5 7.8	2 5.6	37	-40.4	6.6 5		
0 6	8.9 8	320	5 7.9'	2 3.4′	4 5	-40.1	7.6 4		
07	9.0 0	319	5 7.9′	2 1.3	5 0	-40.4	8.6 1		
08	9.0 2	318	5 7.8	1 9.3	49	-4 0.5	8.5 3		
0 9	9.0 4	317	5 8.0	1 7.2	48	-40.8	1 0.9		
16:10	9.0 5	316	5 8.1	1 5.2	4 5	-40.6	1 0.7		
11	9.0 7	315	5 8.2	1 3.2	40	- 4 0.6	1 1.6		
12	9.0 9	314	5 8.1	1 1.2	42	-40.9	1 2.8		
13	9.1 2	313	5 8.2	0 9.2	38	-41.0	1 0.6		
14	9.1 4	312	5 8.1	0 7.2	37	- 4 0.9	1 0.3		
1 5	9.1 7	311	5 8.1	0 5.2	4 0	-41.0	1 1.4		
16	9.1 9	310	5 8.0	0 3.3	4 5	-40.5	1 0.3		
17	9.1 9	310	5 7.8	0 1.3	44	-4 0.8	1 0.1		
18	9.1 9	310	5 7.7	34°59.3	50	- 4 1.0	9.8 8		
19	9.1 9	310	5 7.6	5 7.3	4 6	-41.3	1 0.2		
16:20	9.1 9	310	5 7.3	5 5.3	53	-41.0	1 0.6		

-134 -

時 刻	高度	気 圧	経度	緯 度	オゾン混合比	気 温	水蒸気混合比	CF ₂ Cl ₂	N₂O
h : m	k m	mb	°'E	°'N	ppbv	°C	10 ⁻⁵ g ∕g	pptv	ppbv
16:21	9.1 9	310	132°57.0′	34°53.4′	56	-40.6	1 1.5	3.0 5	332
22	9.1 9	310	5 6.8	5 1.4	41	-40.6	1 1.3		
23	9.2 1	309	5 6.8	4 9.3	4 2	-40.6	1 1.2		
24	9.2 3	308	5 6.8	4 7.5	4 9	-40.8	1 1.6		
2 5	9.2 5	307	5 6.7	4 5.6	5 2	-41.0	1 2.3		
26	9.2 7	306	5 6.8	4 3.6	5 2	-41.0	1 1.9		
27	9.2 7	306	5 6.7	4 1.8	51	-41.0	1 1.9		
28	9.2 9	305	5 6.7	4 0.0	44	-41.0	1 2.4		
29	9.2 9	305	5 7.0	3 8.0	5 0	-41.0	1 2.4		
16:30	9.2 9	305	5 7.1	3 6.2	5 2	-41.0	1 2.4		
31	9.2 9	305	5 7.1	3 4.4	50	-41.0	1 2.4		
32	9.2 9	305	5 7.3	3 2.5	58	- 4 0.9	1 2.1		
33	9.2 9	305	5 7.3	3 0.6	49	-40.6	1 2.5		
34	9.2 9	305	5 7.2	2 8.7	61	-40.6	1 2.7	302	333
3 5	9.2 9	305	5 7.3	2 6.7	57	-40.5	1 2.6		
36	9.2 9	305	5 7.3′	2 4.7'	5 5	-40.5	1 2.6		
37	9.2 9	305	5 7.4	2 2.6	5 7	-40.5	1 2.7		
38	9.2 9	305	5 7.4	2 0.5	57	- 3 9.9	1 2.4		
39	9.2 9	305	5 7.5	1 8.3	56	- 3 9.8	1 2.2		
16:40	9.2 9	305	5 7.5	1 6.2	58	- 3 9.8	1 2.6		
4 1	9.2 9	305	5 7.4	1 4.0	5 8	- 3 9.7	1 2.5		
42	9.2 9	305	5 7.4	1 1.8	5 3	-39.7	1 2.5		
43	9.2 9	305	5 7.4	0 9.6	64	- 3 9.7	1 2.7		
44	9.2 9	305	5 7.4	. 07.5	61	-39.9	1 2.7	-	
4 5	9.2 9	305	5 7.3	0 5.4	64	-39.7	1 2.4		
46	9.2 9	305	5 7.2	0 3.5	5 5	-40.2	1 2.3		
47	9.2 9	305	5 7.2	0 1.5	63	-40.5	1 2.4	298	330
48	9.2 9	.305	5 7.1	3 3 ^o 5 9.5′	5 7	-40.1	1 2.7		
49	9.2 9	305	5 7.0	5 7.5	50	- 3 9.7	1 2.7		
16:50	9.2 9	305	5 7.0	5 5.3	5 5	-39.7	1 1.6		
5 1	9.2 9	305	5 7.1	5 3.1	5 9	- 3 9.7	1 1.6		
5 2	9.2 9	305	5 7.2	5 0.9	57	-39.7	1 1.9		
53	9.2 9	305	5 7.5	4 8.6	57	-39.4	1 1.2		
54	9.2 9	305	5 7.9	4 6.3	6 2	- 3 9.7	1 0.3		
5 5	9.2 9	305	5 7.7	4 4.5	57	- 3 9.3	1 0.5		

— 135 —

時刻	高度	気 圧	経度	緯度	オゾン混合比	気 温	水蒸気混合比	CF ₂ Cl ₂	N ₂ O
h∶m	k m	mb	°'E	°' N	ppbv	°C	10 ⁻⁵ g ∕g	pptv	ppbv
16:56	9.2 9	305	132°5 7.5	33°42.6	5 7	- 3 8.9	9.4 8		
57	9.2 9	305	5 7.3	4 0.6	6 2	- 3 8.7	8.4 8		1
58	9.2 9	305	5 7.3	3 8.7	60	-39.0	8.2 0		
59	9.2 9	305	5 7.3	3 6.8	51	-39.4	7.8 4	-	
17:00	9.2 9	305	5 7.2	3 5.0	60	- 3 9.4	8.4 0		
0 1	9.2 9	305	5 7.3	3 3.1	60	- 3 9.3	7.0 8		
0 2	9.2 9	305	5 7.2	3 1.2	5 2	- 3 9.0	7.3 2		
03	9.2 9	305	5 7.3	2 9.3	56	- 3 9.0	6.7 4		
04	9.2 9	305	5 7.4	2 7.3	58	- 3 9.1	6.6 6		
0 5	9.27	306	5 7.5	2 5.6	58	-39.3	6.4 9		
06	9.2 7	306	5 7.6′	2 3.8′	54	- 3 8.6	6.7 2		
07	9.2 7	306	5 7.7	2 2.1	56	-38.5	6.4 1		
0 8	9.2 5	307	5 7.8	2 0.3	5 5	- 3 8.5	6.4 6		
0 9	9.2 5	307	5 7.9	1 8.5	6 2	- 3 8.3	6.6 1	l.	
17:10	9.2 3	308	5 8.0	1 6.6	63	- 3 9.0	6.3 8		
11	9.2 3	308	5 8.1	1 4.6	63	- 3 8.6	6.6 7		
12	9.2 3	308	5 8.3	1 2.8	57	- 3 8.3	9.4 1		
13	9.2 1	309	5 8.5	1 0.8	63	- 3 8.1	8.6 6		
14	9.2 1	309	5 8.0	0 9.7	61	- 3 8.3	8.4 4		
15	9.1 9	310	5 6.8	1 1.0	57	- 3 7.5	1 2.6		
16	9.1 9	310	5 5.9	1 2.0	58	- 3 8.2	9.4 6		
17	9.1 9	310	5 4.9	1 3.2	60	- 3 8.3	9.3 5		
18	9.1 9	310	5 4.0	1 4.5	5 3	- 3 8.3	8.4 1		
19	9.1 9	310	5 2.9	1 5.7	59	- 3 8.3	8.4 1		
17:20	9.1 9	310	5 1.9	1 6.8	61	- 3 8.5	7.0 1		
21	9.1 9	310	5 1.0	1 7.8	59	-38.3	7.1 4		
22	9.1 3	313	5 0.1	1 9.2	61	- 3 8.5	6.3 4	-	
23	9.0 3	317	5 0.1	2 1.6	57	- 3 8.5	6.2 6		
24	8.98	320	5 0.1	2 4.1	5.9	- 3 8.5	6.2 0		
2 5	8.9 5	322	5 0.1	2 6.5	69	-38.5	6.1 6		
26	8.87	325	5 0.1	2 8.7	59	-38.5	6.1 0		
27	8.8 3	327	4 9.9	3 1.4	5 5	- 3 6.4	7.5 7		
28	8.7 5	331	4 9.6	3 4.0	63	- 3 4.5	8.8 6		
29	8.6 8	334	4 8.8	3 6.8	70	-34.0	1 0.4		
17:30	8.6 4	336	4 7.8	3 9.6	6 5	-33.1	1 0.1		

時 刻	高度	気 圧	経 度	緯度	オゾン混合比	気 温	水蒸気混合比	CF ₂ Cl ₂	N ₂ O
h : m	k m	mb	°'E	°' N	ppbv	°C	10 ⁻⁵ g ∕g	pptv	ppbv
17:31	8.48	343	132°46.9 -	33°42.4	69	- 3 1.8	9.1 3		
32	8.3 8	348	4 5.9	4 5.2	63	- 3 1.2	9.5 8		
33	8.2 5	355	4 4.9	4 8.0	7 2	- 3 0.0	· 8.6 5	-	
34	8.10	362	4 4.0	5 0.8	67	-28.6	9.8 1	304	327
3 5	8.0 0	367	• 4 3.0	5 3.7	6 5	- 2.7.4	1 0.1		:
36	7.8 5	375	4 2.2'	5 6.8′	69	-25.8	9.6 8		
37	7.7 3	382	4 1.4	5 9.9	6 5	- 2 5.0	1 0.3		
38	7.6 3	387	4 0.6	34°02.9′	68	- 2 3.4	1 1.9		
3 9	7.5 0	393	3 9.5	0 5.9	68	- 2 3.5	1 1.6		
17:40	7.3 7	400	3 8.9	0 8.9	63	- 2 3.0	1 2.0		
41	7.3 7	400	3 8.0	1 1.8	7 5	- 2 2.8	9.7 8		
4 2	7.37	400	3 7.0	1 4.6	59	-23.4	6.9 2×		
43	7.3 7	400	3 6.0	1 7.5	6 2	- 2 3.3	6.98		
44	7.37	400	3 5.0	2 0.4	66	-23.2	7.0 5		
4 5	7.3 7	400	3 4.2	2 3.1	57	-23.3	8.1 5		
46	7.3 5	401	3 3.9	2 6.4	57	-23.2	9.3 8		
47	7.3 5	401	3 3.5	2 9.4	53	-24.6	8.1 7		
48	7.3 4	402	3 3.1	3 2.4	57	-24.6	1 0.2		
4 9	7.3 4	402	3 2.7	3 5.4	56	- 2 3.8	1 1.0		
5 0	7.3 4	402	3 2.2	3 8.7	5 0	- 2 2.8	1 3.4		
51	7.3 3	403	3 2.0	4 1.9	56	- 2 3.8	8.8 0		
52	7.3 3	403	3 1.8	4 5.0	58	-23.9	9.8 0		
5 3	7.3 3	403	3 1.3	4 8.2	61	-23.5	1 1.3		
54	7.3 1	404	3 1.1	5 1.2	56	- 2 3.8	9.8 7		
5 5	7.3 1	404	3 0.7	5 4.6	5 6	-23.8	1 1.0		
56	7.3 1	404	3 0.2	5 7.8	5 2	- 2 3.9	1 0.9		
5 7	7.3 1	404	2 9.9	35°01.1′	54	-24.7.	.1 3.0		
58	7.3 0	405	2 9.6	0 4.4	5 5	-24.0	1 3.9		
59	7.3 0	405	2 9.2	0 7.6	5 5	-24.2	1 4.7	299	326
18:00	7.3 0	405	2 9.5	1 1.0	47	-24.0	1 8.2		
01	7.28	406	3 4.4	1 1.4	57	- 2 3.8	1 7.5		
0 2	7.0 5	418	3 8.9	1 0.3	49	-23.9	1 5.7		
03	6.9 3	425	4 3.4	0 9.2	54	- 2 3.5	1 5.0		•
04	6.8 2	432	4 7.9	0 8.0	51	-21.7	1 3.9		
0 5	6.7 2	<u></u> 438	5 2.7	0 6.5	53	- 1 9.9	1 3.3		

— 137 —

時刻	高 度	気 圧	経度	緯 度	オゾン混合比	気温	水蒸気混合比	CF ₂ Cl ₂	N ₂ O
h : m	km	mb	°'E	°'N	ppbv	°C	10 ⁻⁵ g ∕g	pptv	ppbv
18:06	6.5 9	446	1 3 2 [°] 5 7.6′	3 5 [°] 0 4.9′	5 7	-18.8	1 9.1		
07	6.4 2	453	133°01.9′	0 3.2	57	-17.0	2 6.4		
08	6.3 8	460	0 6.2	0 1.1	60	- 1 5.9	4 3.2		
0 9	6.2 5	467	1 0.4	34°59.1′	66	-16.6	4 5.5		
18:10	6.1 6	473	1 4.7	5 7.3	. 60	-1 5.2	9 8.1		
11	6.0 1	482	1 9.3	5 5.6	5 9	-1 3.8	9 2.8		
12	5.9 3	487	2 3.7	5 4.1	53	-12.1	104		
13	5.8 0	495	2 8.1	5 2.5	56	-11.8	172		
14	5.6 7	502	3 2.2	5 1.1	57	-13.3	160		
15	5.6 0	507	3 6.4	5 0.5	60	-14.1	152		
16	5.5 7	509	4 0.7	5 0.8	5 5	-13.3	149		
17	5.5 1	- 512	4 4.8	5 0.7	50	-1 2.9	143		
18	5.4 5	517	4 9.3	5 0.5	54	-1 1.0	152		
19	5.3 8	520	5 3.8	5 0.1	58	- 9.7	169		
18:20	5.3 5	523	5 8.4	4 9.8	5 9	- 8.2	173		
21	5.2 8	527	1 3 4 ^o 0 3.1′	4 9.8	66	- 7.8	171		
22	5.2 3	531	0 7.5	4 9.6	63	- 7.8	159		
23	5.1 7	534	1 1.8	4 9.3	67	- 7.9	156		
24	5.1 3	538	1 6.0	4 8.7	63	- 7.9	148		
2 5	5.0 8	542	2 0.0	4 7.9	5 8	- 8.7	157		
26	5.0 2	546	2 3.8	4 7.3	62	- 9.4	237		
27	4.80	562	2 8.2	4 6.6	63	- 8.7	251		
28	4.5 9	576	3 2.7	4 5.8	5 5	- 7.2	280		
29	4.3 8	592	3 6.8	4 4.8	4 2	- 6.9	287		
18:30	4.2 0	606	4 0.9	4 3.9	30	- 5.2	328		
31	3.9 4	626	4 5.0	4 2.9	27	- 3.1	356		
32	3.6 7	648	4 9.3	4 2.0	3 1	- 2.3	373		-
33	3.4 0	670	5 3.7	4 0.9	27	- 0.6	415		÷
34	3.1 5	692	5 7.8	3 9.6	2.4	0.7	451		
3 5	2.8 8	714	135°01.9′	3 8.4	2 2	2.7	497		
3.6	2.7 2	730	0 6.1′	3 7.3′	32	3.8	526		
37	2.5 2	748	1 0.1	3 6.0	22	3.8	560		
. 38	2.1 8	778	1 3.9	3 5.4	28	4.7	587		
39	2.1 0	787	1 7.9	3 5.0	40	6.2	659		
18:40	1.9 0	805	2 1.3	3 3.6	3 2	7.1	678		

気象研究所技術報告 貧	第6号	1982
-------------	-----	------

時 刻 h:m	高度 km	気 圧 mb	経 度 °'E	緯 度 °'N	オゾン混合比 ppbv	気 。 C	水蒸気混合比 10 ⁻⁵ g /g	CF ₂ Cl ₂ pptv	N₂O ppbv
18:41	1.7 2	823	135°19.7	34° 3 2.4	40	9.3	708	· · · · ·	-
42	1.5 3	842	1 6.8	3 2.8	4 6	1 1.6	686		
43	1.4 2	857	1 7.6	3 5.3	51	1 3.1	798		
44	1.2 2	877	2 0.0	3 3.9	48	1 2.8	849		
45	1.0 4	895	2 1.9	3 5.3	49		н .		
46	0.9 2	912	2 1.3	3 8.0	47				
47	0.7 5	932	2 2.6	4 0.1	40				
48	0.5 8	950	2 4.5	4 1.4	3 2				
49	0.4 2	968	2 6.9	4 0.5	27				
18:50	0.2 4	987	2 8.6	3 9.2	2				
5 1	0.0 0	1012	3 0.5	3 9.5	4		·		

(注)

水蒸気混合比はカーボン湿度計による

オゾンの測定はDASIBI 1008-AHオゾン計による 八尾一米子。セスナ 404。

— 139 —
時 刻	高度	気 圧	経 度	緯 度	オゾン混合比	気 温	水蒸気混合比	CF ₂ C1 ₂	N ₂ O
h : m	k m	m b	°, E	°'N	ppbv	°c	10 ⁻⁵ g∕g	pptv	ppbv
9:00	0.00	1007	135°34.8	34°35.4	28				
0 1	0.30	980	1 35° 33.5	34°35.3	30				
0 2	. 0.55	950	135 [°] 31.7 [′]	34°35.7	38				
03	0.62	943	135°29.7′	34°35.8	36				
0 4	0.70	935	135°27.6	34°35.8́	39				
0 5	0.70	935	1 35°2 5.3	34°35.9	44	6.5	322		-
0 6	0.70	935	1 35°22.9	34°35.7	42	6.3	317		
07	0.70	935	135°20.9	34°35.3	43	3.2	291		
08	1.00	900	135°18.8	34°34.7	47	0.3	246		
09	1.32	866	135°17.0	34°34.2	42	- 2.0	175		
9:10	1.67	838	135°15.3	34°33.8	42	- 4.2	102		
11	1.83	810	135°13.5	34°33.2	39	- 7.4	92.7		
12	2.13	780	135°11.8	34° 32. 7	42	- 7.7	27.9		
13	2.28	765	135°09.8	34°32.3	46	7.8	169		
14	2.52	743	135°07.8	34°31.8	42	- 11.3	92.9		
15	2.90	708	1 35 ° 0 5.7	34°31.4	43	- 1 3.3	42.4		
16	3.15	687	135°04.0	34°32.0	46	- 1 3.3	1 9.4		
17	3.38	667	1 3 5 ° 0 3. 3	34°34.1	46	- 8.0	17.3		
18	3.78	643	135°03.0	34°36.2	83	-11.4	11.4		
19	3.88	627	135°02.8	34°38.5	90	-10.5	1 2.3		
9:20	4.12	608	135°02.7	34°40.8	108	- 12.7	1 0.4		
2 1	4.28	595	1 35 ° 0 2.3	· 34°43.1	100	- 14.6	7.17		
22	4.52	577	, 135°02.1	34°45.3́	110	- 16.5	6.20		
2 3	4.77	558	1 35 °02.0	, 34°47.5	116	- 16.8	6.23		
24	5.08	535	135°01.9	34°50.0	91	- 17.5	6.08		
2 5	5.12	532	135°01.8	. 34°52.7́	86	- 16.6	6.66		
26	5.14	530	135°01.7	34°55.2	90	-16.8	9.84		
27	5.14	530	135°01.5	34 [°] 58.1	109	- 16.8	9.84		
28	5.14	530	135°01.5	35°01.0	121	-16.8	9.84		
2 9	5.14	530	135°01.2	35°03.7	128	- 1 6. 1	10.5		
9.: 30	5.08	535	135°00.7	35°06.5	143	-16.0	1 0.5		
3 1	5.08	535	135°00.3	35°09.3	150	- 18.2	9.97		
3 2	5.08	535	134°59.9	35°12.1	144	- 18.6	9.60		
33	5.08	535	134°59.5	35°14.8	143	- 18.8	9.42		

表4.11 1981年3月15日の観測資料

時刻	高度	気圧	経度	緯 度	オゾン混合比	気 温	水蒸気混合比	CF ₂ Cl ₂	N 2 O
h : m	k m	mb	, E	°, N	ppbv	°C	10 ⁻⁵ g∕g	pptv	ppbv
9:34	5.10	533	134°59.1	35°17.5	144	- 21.0	7.58		
3 5	5.11	532	134°58.4	35°20.0	142	-22.2	6.82		1.2
36	5.12	531	134°57.4	35°22.2	132	- 21.9	7.03	•	,
37	5.11	532	134°56.2	35°24.6	130	- 22.1	6.89		
38	5.11	532	134°54.7	35°26.7	114	- 21.7	7.16		
39	5.11	532	134°53.7′	ູ35°29.1	112	- 22.1	6.89		
9:40	5.11	532	134°52.8	35 [°] 31.7	109	- 22.2	7.80	•	
4 1	5.11	532	134°52.0	35°34.1	113	- 21.9	8.03		
4 2	5.11	532	134°51.0	35 [°] 36.5	113	-22.2	7.80		
4 3	5.11	532	134°50.0	35 [°] 38.7 [′]	106	- 22.4	7.65		• .
44	5.11	532	134°49.0	35 [°] 40.8 [′]	100	- 22.6	7.50		
4 5	5.11	532	134°47.8′	35°42.9	100	- 22.4	7.65	•	
46	5.11	532	134 [°] 46.9 [′]	35°45.3	88	- 25.1	5.86		
47	5.28	520	134°46.0	35°47.2	80	-25.8	6.28		
48	5.53	503	134°45.0′	35°48.8	. 88	- 27.1	5.70		
4 9	5.80	485	134 [°] 44.4 [′]	35°50.5	104	-28.7	5.02		
9:50	5.96	475	134°43.9	35°52.3	110	- 29.0	4.97		
5 1	6.17	462	134 [°] 43.3 [′]	35°54.2	143	- 28.2	5.54		
5 2	6.43	446	134°43.0	35 [°] 56.4	170	- 29.8	4.87		
5 3	6.60	435	134°42.8	35 [°] 58.7 [′]	180	-29.5	4.58		
. 54	6.73	425	134 [°] 42.6	36° 01.2	207	-28.8	5.01		
5 5	6.90	418	134°42.6	36°03.8	218	- 29.3	4.86		
56	7.10	407	134°42.4	36°06.4	230	- 30.7	4.86	-	
57	7.11	406	134°42.1	36°09.0	235	-30.3	4.51		
58	7.11	406	134°41.6	36°11.8	235	- 3,0.3	4.51		
59	7.11	406	134°41.2	36°14.7	239	- 30.8	4.28		
10:00	7.11	406	134°41.0	36°17.6	227	- 30.8	4.28		
0 1	7.11	· 406	134 [°] 40.8	36°20.5	227	- 31.2	4.11		
0 2	7.11	406	134 [°] 40.6 [′]	36°23.3′	228	-31.8	3.85		
03	7.11	406	134°40.5	36.°26.2	224	- 32.1	3.73		
04	7.11	406	134°40.3	36°29.0	222	- 33.2	3.74		
0 5	7.11	406	134°40.3	36°31.9	212	- 34.2	3.36		
0 6	7.11	406	134°43.6	36°34.5	204	- 33.2	3.74		
07	7.11	406	134 [°] 48.3 [′]	36 [°] 34.1	226	- 32.4	4.07		
08	7.11	406	134°50.3	36°31.6	224	- 31.9	4.29	263	_

-141 -

時刻	高 度	気 圧	経 度	緯度	オゾン混合比	気 温	水蒸気混合比	C F 2 C 1 2	N ₂ O
h ; m	k m	m b	°, E	°, N	ppbv	°C	10 ^{−5} g∕g	pptv	ppbv
10:09	7.11	406	134°51.4	36°28.9	228	- 30.8	4.82		
10:10	7.11	406	134°52.5	36°26.2	242	-30.6	4.92		· · ·
11	7.11	406	134 [°] 53.6	36°23.6	236	- 30.6	4.37		
12	7.11	406	134 [°] 54.7 [′]	36°20.9	233	-30.8	4.28		
13	7.11	406	134 [°] 55.7 [′]	36°18.2	235	- 29.8	4.75		
14	7.11	406	134°56.9	36°15.6	252	- 29.3	5.01		
1 5	7.11	406	134°57.9	36°13.0	252	- 29.4	4.95		
16	7.11	406	134°58.8	36°10.5	245	- 29.4	4.95		
17	7.11	406	134°59.7	36°08.0	238	-29.3	3.75		
18	7.11	406	135°00.4	36°05.7	244	- 29.5	3.68		~
19	7.11	406	135°01.1	36°03.6	247	-29.5	4.90		
10:20	7.11	406	135°01.8	36°01.3	247	- 29.3	5.01		
2 1	7.11	406	1 35 °0 2.4	35°59.2	246	- 29.0	5.16		
2 2	7.11	406	1 35 ° 03. 1	35°57.0	250	-29.1	5.11		
23	7.11	406	135°03.9	35°54.8	252	- 29.5	4.90		
24	7.11	406	135°04.8	35 [°] 52.6 [′]	253	- 29.5	4.90		
25	7.11	406	135°05.4	35°50.6′	247	- 30.0	3.49		
2 6	7.11	406	135°05.7	35°48.6′	242	- 30.6	4.37		
27	7.11	406	135°05.9	35°46.8′	240	- 30.6	4.37		
28	7.11	406	135°06.2	35 [°] 44.8	232	- 30.6	4.37		
29	7.11	406	135°06.5	35°42.9	247	-29.2	5.06		
10:30	7.11	406	135°06.9	35 [°] 41.1 [′]	262	- 29.2	5.06		
3 1	7.11	406	135°07.2	35°39.5	257	- 27.8	5.84		
3 2	7.11	406	135°07.4	35°38.0	275	- 27.2	6.21		
33	7.11	406	135°07.6	35°36.6	287	-27.2	6.21		
34	7.11	406	135°07.8	35°35.3	289	- 27.2	6.21	271	_
3 5	7.11	406	1 35 ° 08. 1	35°33.9	289	- 27.2	6.21		
36	7.11	406	1 35 °08.4	35°32.4	289	- 26.8	6.47		
37	7.11	406	135°08.8	35°30.9	278	- 26.6	6.60		
38	7.11	406	135°09.2	35°29.3	273	- 27.0	6.34		
. 39	7.11	406	135°09.1	35°28.2	286	- 27.1	6.27		l
10:40	7.11	406	135°09.3	35°26.9	290	-26.8	6.47		
4 1	7.11	406	135°09.0	35°25.6	277	-26.8	6.47		
4 2	7.11	406	135°09.0	35 [°] 24.4	272	-27.0	5.54		
43	7.11	406	135°09.0	35°22.9	272	- 26.8	5.66		

— 142 —

時刻	高度	気圧	経度	緯度	オゾン混合比	気温	水蒸気混合比	CF2 C12	N₂ O
h:m	k m	m b	°, E	°, N	ppbv	°c	10 ⁻⁵ g∕g	pptv	ppbv
10:44	7.11	406	135°08.9	35°21.6	266	- 26.6	6.60		
4 5	7.11	406	135°08.9	35°20.1	269	-26.7	6.53		1
4 6	7.11	406	135°08.9	35°18.7	255	- 26.8	5.66		
4 7	7.11	406	135°09.2	35°17.4	237	- 26.7	5.71		
48	7.11	406	135°09.4	35°16.3	216	- 28.2	4.91		
49	7.11	406	135°09.9	35°15.2	189	- 28.2	4.91		
10:50	7.11	406	135°10.4	35°14.3	157	-28.3	4.85		
- 51	7.11	406	135°11.0	35°13.4	152	- 28.0	5.01		
5 2	7.25	398	135°11.6	35°12.2	152	- 28.1	4.33		
5 3	7.40	390	135°11.0	35°12.8	156	- 28.7	4.16		
54	7.45	387	135°11.4	35°16.0	166	- 29.2	3.98		
5 5	7.55	382	135°11.3	35°18.8	197	- 30.0	3.71		
56	, 7.68	375	135°11.3	35°21.4	262	-31.4	3.26		
57	7.78	369	135°11.4	35°24.0	296	- 31.8	3.18		
58	7.90	363	135°11.5	35 [°] 26.5	295	-31.8	3.23		
5 9	7.94	361	135°11.5	35°29.0	310	-32.4	3.05		
11:00	7.96	360	135°11.4	35°31.5	302	-33.2	2.81		
0 1	8.05	355	135°11.2	35 [°] 34.0	307	- 33.4	2.79		
0 2	8.15	350	135°10.9	35°36.5	315	- 3 3.4	2.83		
03	8.18	348	135°10.5	35°38.8	322	-34.2	2.61		
. 04	8.25	345	135°10.2	35 [°] 41.1 [′]	324	-34.8	2.47		
0 5	8.25	345	135°10.1	35°43.2	322	- 35.4	2.70		
0 6	8.23	346	135°10.1	35°45.3	317	-35.2	2.75		
07	8.31	342	135°10.0	35 [°] 47.5 [′]	327	-36.0	2.55		
08	8.34	340	135°09.9	35°49.6	318	-35.0	2.86		
09	8.38	338	135°09.8	35°51.8	325.	- 36.0	2.58	1	
11:10	8.44	335	135°09.6	35 [°] 53.8 [′]	342	-35.3	2.81		
11	8.50	[.] 332	135°09.2	35°55.8	358	- 35.3	2.83		
12	8.52	331	135°08.9	35 [°] 57.7 [′]	365	-35.6	2.75		
13	8.54	330	135°08.6	35°59.4	368	- 35.6	2.76		
14	8.54	330	135°08.2	36°01.2	352	- 35.8	2.70		
15	8.57	328	135°07.7	36°02.8	332	- 36.1	2.63		
16	8.65	325	135°07.3	36°04.4	319	- 35.2	2.93		
. 17	8.67	323	135°06.9	36°06.0	307	- 35.3	2.91		
18	8.72	322	135°06.5	36°07.5	305	- 35.2	2.95		

— 143 —

時刻	高度	気 圧	経度	緯度	オゾン混合比	気 温	水蒸気混合比	C F 2 C 1 2	N₂ O
h : m	k m	m b	°, E	°, N	ppbv	°c	10 ⁻⁵ g∕g	pptv	ppbv
11:19	8.75	320	135°06.2	36°09.0	275	- 36.1	2.69		
11:20	8.75	. 320	135°06.0	36°10.4	255	- 36.1	2.69		
21	8.75	320	135°05.7	36°11.9	242	- 36.1	2.69		
2 2	8.75	320	135°05.5	36°13.4	241	- 36.1	2.69		
23	8.75	320	135° 05.4	36°14.9	. 242	- 36.1	2.69		
24	8.75	320	135°05.1	36°16.2	235	- 35.8	2.79		
2 5	8.75	320	135°04.9	36°17.7	227	- 35.5	2.88		
26	8.75	320	135°04.6	36°19.3	227	- 36.1	2.69		
27	8.75	320	135°04.1	36°18.2	220	- 36.1	2.69		
.28	8.75	320	135°04.6	36°15.8	212	- 36.1	2.69		
29	8.75	320	135°05.2	36°13.4	203	- 36.1	2.69		
11:30	8.75	320	135°05.8	36°11.1	212	- 35.8	2.39		
31	8.75	320	135°06.6	36°08.7	227	- 35.4	2.91		
32	8.75	320	135°07.3	36°06.4	220	- 36.1	2.69		
33	8.75	320	1 35 [°] 08. 1 [′]	36°04.0	212	- 35.5	. 2.88		
34	8.75	320	135°08.7	36°01.7	224	- 35.5	2.88		
3 5	8.75	320	135°09.3	35° 59.4	240	- 35.5	2.88		
36	8.75	320	135°10.0	35°57.0	224	- 35.5	2.88		
37	8.75	320	135°10.6	35°54.6	222	- 34.5	3.21		
38	8.75	320	135°11.2	35°52.2	227	- 34.6	3.17		
39	8.75	320	135°11.6	35°49.7	197	- 35.3	2.94		
11:40	8.75	320	135°11.9	35°47.3	202	- 35.0	3.04		
4 1	8.75	320	135°12.5	35°44.9	212	- 35.3	2.94		
4 2	8.75	320	135°13.4	35°42.4	229	- 32.9	3.81		
43	8.75	320	135°13.6	35°40.3	254	- 33.0	3.77		
44	8.75	320	135°13.7	3 5 [°] 38.2 [′]	257	- 34.0	3.39		
4 5	8.75	320	1 35° 1 3.9	35 [°] 35.9 [′]	230	- 3 3.2	3.69		
46	8.75	320	135°13.9	35°33.7	252	- 33.2	3.69		
47	8.75	320	135°13.7	35°31.5	245	- 34.6	3.17		
48	8.75	320	135°13.6	35°29.3	192	- 35.3	2.94		
49	8.75	320	135°13.9	35°27.1	192	- 36.8	2.50		
11:50	8.75	320	135°14.1	35°24.9	126	- 36.2	2.67		
5 1	8.75	320	135°14.4	35°22.7′	147	- 37.5	2.31		
5 2	8.75	320	135°14.9	35°20.6′	137	- 37.0	2.44		
5 3	8.75	320	135°15.4	35°18.4	122	- 37.7	2.26		

-144 -

時刻	高 度	気 圧	経度	緯度	オゾン混合比	気 温	水蒸気混合比	CF_2Cl_2	N ₂ O
h : m	k m	m b	Ĕ.	Ň	ppbv	°c	10 ⁻⁵ g∕g	pptv	ppbv
11:54	8.75	320	135°16.0	35°16.2	87	- 38.7	2.02		
5 5	8.75	320	135°16.6	35°14.0	77	- 38.0	2.19		
56	8.75	320	135°17.2	35°11.8	87	- 38.0	2.19		
5 7	8.75	320	135°17.8	35°09.6	82	- 37.7	2.26		
58	8.75	320	135°18.3	35°07.3	99	-37.6	2.28	278	_
5 9	8.75	320	135°18.7	35°05.1	117	- 37.4	2.34		
12:00	8.75	320	135°19.1	35°02.8	138	- 36.3	2.64		
0 1	8.75	320	135°19.4	35°00.5	147	- 36.2	2.67		
0 2	8.75	320	135°19.7	34°58.1	157	- 36.1	2.69		
03	8.75	320	135°20.2	34°55.9	182	- 36.1	2.69		
04	8.75	320	135°20.8	34°53.7	209	- 36.1	2.69	7	
0 5	8.75	320	135°21.1	34°51.5	187	- 36.2	2.67		
0 6	8.75	320	135°21.4	34°49.4	189	-37.0	2.44		
07	8.75	320	135°21.9	34° 47.3	180	- 36.8	2.50		
08	8.75	320	135°22.3	34°45.2	175	- 37.4	2.34		
0 9	8.75	320	135°22.7	34°43.2	180	- 37.4	2.34		
12:10	8.75	320	135°23.0′	34°41.2	187	- 36.8	2.85		
11	8.57	330	135°22.5′	34°40.0	167	- 33.2	4.09		
1 2	8.37	340	135°23.2	34 [°] 42.9	132	-31.0	5.01		
13	8.14	351	135°28.3	34°42.4	107	- 29.3	5.07		
14	7.77	370	135°27.7′	34°42.5	67	- 27.7	4.86		
15	7.45	387	1 35 [°] 3 2.7 [′]	3 4 [°] 4 3.3 [′]	77	-25.6	5.74		
16	7.27	400	135°32.2′	34°43.0	83	- 22.7	7.41		
17	6.90	418	135°36.8	34°44.6	127	- 22.1	6.26		
18	6.60	435	135°36.6	34 [°] 44.3 [′]	150	-20.8	6.83		
19	6.35	450	135°41.2	34°45.6	196	- 19.5	4.49		
12:20	6.03	470	1 35°41.2′	34 [°] 45.0 [′]	200	- 18.5	. 7.87		
21	5.73	• 490	135°45.3	34°45.5	187	- 18.6	7.48		
22	5.56	501	1 35°44.7′	34 [°] 45.3 [′]	2 2 7	- 20.7	5.99		
23	5.33	517	135 [°] 48.1 [′]	34°44.8	147	- 22.1	6.08		
24	5.14	530	135°48.4	34°45.9′	105	-20.7	7.92		
2 5	4.87	550	135 [°] 49.8	34°43.8′	72	- 18.5	9.42		
2 6	4.59	571	135 51.4	34 45.0	65	- 16.5	11.0	292	326
27	4.28	595	135°50.6	34°43.8′	61	-14.4	16.4		
28	3.97	618	135°53.8	34°43.9	63	- 1 3.3	42.7		

- 145 -

			T			·····			
時刻	高度	気圧	経度	緯度	オゾン混合比	気温	水蒸気混合比	CF ₂ Cl ₂	N ₂ O
h : m	k m	m b	°, E	°'N	ppbv	°c	10 ⁻⁵ g∕g	pptv	ppbv
12:29	3.77	635	135°51.8	34°42.8	66	-11.8	47.6		
12:30	3.65	645	135°49.5	34°43.7	66	-10.5	40.7		
3 1	3.43	663	135°48.0	34°42.7		- 10.2	81.4		
3 2	3.26	677	135°50.7	34°43.2	82	- 9.3	55.8		
33	3 2.95	703	135°49.4	34°44.7	55	- 9.5	123		
3 4	2.68	727	135°47.8	34°43.2	57	-10.0	160		
3 5	2.42	752	135°48.7	34°41.4	58	- 8.3	185		
3 6	2.18	775	135°48.1	34°42.3	54	5.5	216		
37	1.85	808	135°46.2	34°41.0	43	- 4.7	225		
38	1.68	825	135°44.2	34°40.1	44	2.5	281		· .
3 9	1.36	860	135°42.3	34°38.9	47	1.8	295		
12:40	1.27	870	1 3 5 ° 4 2. 5	34 [°] 36.5 [′]	47	3.5	331		
4 1	0.95	902	135°40.9	34°35.2	42	5.0	337		
4 2	0.60	940	135°39.5	34°34.0	49	6.2	332		·
4 3	0.35	970	135°37.5	34 [°] 33.8 [′]	47	7.8	326		
4 4	0.18	. 988	135°36.3	34 [°] 34.6 [′]	42	9.5	321		
4 5	0.00	1007	135°34.9	34°35.3	48	1 0.2	346	•	

(注)水蒸気混合比はカーボン湿度計による オゾンの測定はDASIBI1008-AHオゾン計による 八尾-若狭済。セスナ404。

4.4 解析例

(1) 対流圏上部の例

図4.2 に3月15日(1981年)の観測例を示す。観測地域は 図4.3 に示すように大阪一丹後半島に かけてである。極前面に伴うジェットが丹後半島上空にあり観測はそのジェットの付近で行った。 図4.2 では、ジェット流の北側から南側へオゾンが流れ込んでいる様子が分る。図中には 09JST の 沙岬、米子、輪島等での高層観測から得られた前面の位置を太い破線で示してあるが、オゾンは前 面に沿って低高度まで侵入していることが分る。図には示さないが航空機で同時に観測した気温の 不連続面は高度 8 km 付近からオゾン濃度の極大層に沿って下層にのびている。オゾンの濃度の最 大層では下降気流が観測され、(航空機が下方へ押し下げられた)その北側では上昇流が存在した。 図4.2 で上向きまたは下向きの矢印が下降流または上昇流の位置を示す。

図4.2 で細い破線は相対湿度が20%を示し、これで囲まれた部分は20%以下の部分を示す。オゾ ン濃度の高い層は相対湿度が低く、この部分で下降流が存在することを間接的に示す。極前面に伴 うジェットの下方で極前面に沿ってオゾンが成層圏から対流園へ流することは Muramatsu (1980) の等温位面解析の結果と一致する。

図 4.2 オゾンの分布を示す断面図

1981年3月15日 09-12 JSTの観測。実線はオゾン体積混合比 (ppbv)。太い破線は圏界面または前面を示す。細い破線は相対 湿度が20%の面を示し、2本の破線の内側は20%以下の範囲を 示す。矢印のついた実線は飛行径路を示す。径路上で↑、↓は 各々上昇、下降流が観測されたことを示す。M 印は航空機の振 動の激しかった部分、Cは振動の非常に小さい部分を示す。わ くで囲んだ数値はCF₂Cl₂の濃度(pptv)を示す。Jはジェット 流の軸の位置を示す。

図4.3 観測地域及びジェット流の軸の位置 汐岬上空には亜熱帯ジェットがあり, 観測は極前面に伴うジェット付近で 行った。

(2) 対流圏下部の例

図4.4 はオゾンと CFCl₃ の濃度分布を示す。これは調布一柏崎間の断面である。高層観測資料の 解析によると極前面が秋田上空(500mb)から父島(900mb)まで延びていた(09JST、140°E 断面)。 21JST では観測地域上空の前面はほとんど消減している。観測は12-14JST でありこの時間には前 面は弱まりつつあったと思われる。(図4.6、図4.7 参照)

図4.4 で高度 4 ~ 2 km に CFCl₃の低濃度層(165pptv)が存在する。調布からの距離が 20~70 km、高度 2 km 以下までオゾンが流入し、また CFCl₃の低濃度層が存在する。図4.5 の CF₂Cl₂ で も高度 2 ~ 3 km に低濃度層が存在し、調布からの距離が 70km 以内で下層に流入していることが 分る。

上述の高度2km くらいまで侵入しているオゾン濃度が高く、CF₂Cl₂,CFCl₃ 濃度の低い層は直接 成層圏下部から下降して来た可能性がある。

図 4.4 オゾンと CFCl₃ (フレオン11)の濃度分布。 1979年1月19日,調布一柏崎の断面図。

6 140°Eの高層断面図 00Z,19 JAN.1979. 太い実線は圏界面又は前面を示す。 細い実線は温位,破線は気置を示す。

JAN.19, 1979, 12Z

他は前図と同じ。

(3) トレーサー相互の関連

図4.8 は1981年3月10日、14—17時7観測を行ったときの航跡とジェット軸の位置を示す。300mb 面でのジェットの軸はあまりはっきりしていない。観測はこの 300mb 面のジェット軸の下層で行っ た。

オゾン分布を図4.9 に示す。太い実線で09時と21時の高層観測から得られた前面を示す。太い破線は09時に存在したが21時には存在しなかった前面を示す。高度2~3km での前面にはオゾン濃度の高い層が対応する。高度4km以上ではジェット軸の北側から南側へオゾンの高濃度の層が侵入していることは前の例と同様である。

図4.10 は水蒸気の混合比の分布を示すが、ジェット軸の付近でオゾン濃度の高い層では水蒸気濃度が低いことが分る。

図4.11 は CF_2Cl_2 の濃度分布を示すものでオゾン濃度の高い場所と CF_2Cl_2 の濃度が低い場所が 一致していることが分る。このことは 図4.12 で一層はっきり分る。すなわちオゾンと CF_2Cl_2 の 濃度は逆相関で一次式で表わされる。成層圏下部でのオゾン混合比は約100ppbv であり、図4.12 に よると CF_2Cl_2 の混合比は 280pptv であることが分る。

CF₂Cl₂、CFCl₃ は地上で放出され高度 2 km 以上の対流圏内ではだいたい一様に分布し、(第1章) 対流圏内ではほとんど破壊されない。成層圏内に入ると光解離によりそれ等の濃度は急激に減少す る(第5章)。したがって成層圏から対流圏へ空気が流入する場合、オゾン濃度は高く、CF₂Cl₂、CFCl₃ の濃度の低い層が観測されるため、これ等はトレーサーとして役立つ。

水蒸気の高度分布は対流圏内では混合比が高度とともに減少し、圏界面の上方に混合比の最低の 層が存在する (Muramatsu、1981)。したがって CF_2Cl_2 、 $CFCl_3$ と同様対流圏と成層圏の間の交換 のトレーサーとして使えるが凝結、蒸発等の過程が存在するため注意を要する。

太い実線及び破線は,それぞれ 200mb 面と 300mb面 にあるジェットの軸を示す。300mb 面のジェットの軸 はあまりはっきりしない。 a,b,c は高度 5.0 ~ 9.0 kmでの航跡を示す。

図4.9 オゾン濃度の高度分布 10 March 1981, 14—17 JSTの観測 135°E (平均的航跡) に沿う断面図である。太い実線は21 JSTの高層観測に よる前面。破線はあまりはっきりしない前面を示す。矢印 付きの実線は観測径路。Jはジェットの軸の位置を示す。

図 4.11 CF₂Cl₂ 濃度の高度分布 図 4.8 と同時観測

あとがき

本研究にあたっては航空機観測が最も重要な部分をしめている。観測にあたって御協力していた だいた共立航空撮影株式会社、エアロジェットリサーチ株式会社、昭和航空株式会社の方々に感謝 申しあげます。

参考文献

外山芳男 1981:高層における水分量及びその測定法の研究、気象研究所研究報告書、133-142.

- Muramatsu, H., 1980 A case study of the transport of the stratospheric ozone into the troposphere. Pap. in Meteor. Geophys. **31**, 97-105.
- Muramatsu, H. 1981 Water vapor budget in the lower stratosphere over Japan. Pap. in Meteor. Geophys. **32** 1-17.

第5章 数値モデル

村松久史*牧野行雄*広田道夫*

5.1 モデルの概要

鉛直1次元光化学一拡散モデルを作り成層圏内のオゾン及びオゾンに関連する微量気体成分の定常状態及び日変化の計算を行った。考慮に入れた成分は34種類である。N₂とO₂の高度分布は標準 大気から採用し、H₂・CO₂の混合比は一定とし他の成分の分布を求めた。

5.2 基礎資料

表5.1 に考慮した光解離反応を示す。表5.2 には素反応過程とその反応速度定数を示す。反応速 度定数は主として Hampson (1980)のものを採用した。

大気外太陽放射は800-8000Å の範囲を考慮した。表5.3a と表5.3b にその波長分布を示す。表5. 3a は 800-1300Å の波長範囲の線スペクトルであり放射強度は Hinteregger (1970) の値を採用した。

1300-8000Å の範囲の連続スペクトルは 25-100Å づつの区間に分け平均対射強度を 表5.3b に 示す。この波長区間では放射強度が測定者によりかなり異なる値が報告されているのでいくつかの 場合を考えた(Muramatsu, 1975)。

Case A は短波長域で Detwiler et al. (1961) の値を採用したので 2600Å 以下で他の場合に比べ て最も大きい放射強度を与える。

Case B は Case A の 1450-2075A の範囲を Widing et al. (1970) の値でおきかえたもので Ackerman (1971) の分布に近い。

Case C は 2425Å 以下の波長域で Parkinson and Reeves (1969) と Brewer and Wilson (1965) の値を採用したもので三者のうちで最も低い放射強度を与える。長波長領域 (Case A、Case B で は 2600Å 以上、Case C では 2425Å 以上) では Arvesen et al. (1969) の値を用いた。

Case D は Brasseur and Simon (1981) の値を主としたもので 2600A 以下で Case B より少し 小さい値を示す。図5.1a~5.1e に太陽放射強度の波長分布を示す。

表5.4a~表5.4f に気体成分の吸収断面積を示す。表5.4c、表5.4d は酸素分子の Schumann-Runge 吸収帯であり特別の取扱いを必要とする。この報告では Muramatsu (1975)の方法により各波長区 間の平均の透過率、解離率の計算を行った。

モデル大気を表5.5 に示す。大気の密度・気温・スケールハイトは U.S. Standard Atmosphere、 *高層物理研究部

1976を用いた。オゾンの分布は中緯度での平均的分布であり計算の初期値として使用する。最後の 欄には NO の解離率の高度分布を示した (Frederick and Hudson (1979)、太陽天頂角60°の場合)。

表 5.1 光解離反応

J 1	$O_2 + h\nu \rightarrow O(^{3}P) + O(^{3}P)$: $1760 < \lambda < 2424$ Å
J 2	$O_2 + h\nu \rightarrow O ({}^{3}P) + O ({}^{1}D)$: $\lambda < 1760 \text{ \AA}$
J 3	$O_3 + h\nu \rightarrow O_2(^{3}\Sigma g) + O(^{3}P)$: 3100 Å $< \lambda$
J 4	$O_3 + h\nu \rightarrow O_2 ({}^1 \varDelta g) + O ({}^1 D)$: $2660 < \lambda < 3100$ Å
J 5	$O_3 + h\nu \rightarrow O_2({}^1\Sigma_g) + O({}^1D)$: $2000 < \lambda < 2660$ Å
J 6	$O_3 + h\nu \rightarrow O_2({}^1\varDelta g) + O({}^1S)$: $1800 < \lambda < 2000$ Å
J 7	$O_3 + h\nu \rightarrow O_2 ({}^{1}\Sigma_g) + O ({}^{1}S)$: $\lambda < 1800 \text{ \AA}$
J 8	N_2O + $h\nu \rightarrow N_2 + O(^1D)$: $1500 < \lambda < 3150$ Å
J 9	N_2O + $h\nu \rightarrow NO$ + N	$: 1500 < \lambda < 1696 \text{ \AA}$
J 10	$N_2O_5 + h\nu \rightarrow 2NO_2 + O$: $2050 < \lambda < 3800$ Å
J 11	$N_2O_5 + h\nu \rightarrow NO_2 + NO_3$: $2050 < \lambda < 3800$ Å
J 12	$NO_3 + h\nu \rightarrow NO + O_2$: $5800 < \lambda < 9000$ Å
J 13	$NO_3 + h\nu \rightarrow NO_2 + O$: $\lambda < 5800$ Å
J 14	$NO + h\nu \rightarrow N + O$: eta , δ Bands
J 15	$NO_2 + h\nu \rightarrow NO + O$: $2450 < \lambda < 3980$ Å
J 16	$NO_2 + h\nu \rightarrow NO + O(^1D)$: $1350 < \lambda < 2450$ Å
J 17	$HNO_3 + h\nu \rightarrow H + NO_3$: 1650 $< \lambda <$ 2400 Å
J 18	$HNO_3 + h\nu \rightarrow HO + NO_2$: $1880 < \lambda < 3250$ Å
J 19	$H_2O + h\nu \rightarrow HO + H$: 1300 < λ < 2420 Å, 1216 Å
J 20	$HO_2 + h\nu \rightarrow HO + O$: $1850 < \lambda < 2700$ Å
J 21	$H_2O_2 + h\nu \rightarrow HO + HO$: $1900 < \lambda < 3500$ Å
J 22	$CH_4 + h\nu \rightarrow CH_3 + H$: 1350 < λ < 1600 Å, 1216 Å
J 23	$CH_2O + h\nu \rightarrow CHO + H$: $2400 < \lambda < 3340$ Å
J 24	$CH_2O + h\nu \rightarrow H_2 + CO$: 2750 $< \lambda <$ 3600 Å
J 25	$CO_2 + h\nu \rightarrow CO + O$: $1200 < \lambda < 1950$ Å
J 26	$CF_2Cl_2 + h\nu \rightarrow CF_2Cl + Cl$: $1860 < \lambda < 2220$ Å
J 27	$C F Cl_3 + h \nu \rightarrow C F Cl_2 + Cl$	$: 1860 < \lambda < 2250 \text{ Å}$
J 28	$CH_3 Cl + h \nu \rightarrow CH_3 + Cl$: 1750 < λ < 2125 Å
J 29	$CCl_4 + h\nu \rightarrow CCl_3 + Cl$: $1750 < \lambda < 2375$ Å
J 30	$HC1 + h\nu \rightarrow C1 + H$: $1400 < \lambda < 2200$ Å
J 31	$ClONO_2^+ h \nu \rightarrow ClO + NO_2$: 1860< λ < 4600 Å

表5.2 反応式と反応速度定数

反応式

	反応式	反応速度定数
R 1	$O + O + M \rightarrow O_2 + M$	$4.8 \times 10^{-33} (300 \times T)^2$
R 2	$O + O_2 + M \rightarrow O_3 + M$	5.6 x 1 0^{-34} (300 \checkmark T) ^{2.4}
R 3	$O + O_3 \rightarrow O_2 + O_2 (^1 \Delta g)$	$2.0 \times 10^{-11} \exp(-2280 \times T)$
R 4	$O(^{1}D) + O_{2} \rightarrow O + O_{2}(^{1}\Sigma_{g}^{+})$	$2.9 \times 10^{-11} \exp(65 \angle T)$
R 5.	$O(^{1}D) + N_{2} \rightarrow O + N_{2}$	$2.0 \times 10^{-11} \exp((1107 \times T))$
R 6	$O(^{1}D) + O_{3} \rightarrow O_{2}(^{1}\Sigma_{g}^{+}) + O_{2}$	$1.2 \times 10^{-10} \exp((0 \pm 50) / T)$
R 7	$O(^{1}D) + O_{3} \rightarrow O_{2} + 2O(^{3}P)$	$1.2 \mathrm{x} 1 0^{-10} \exp$ ((0 \pm 50)/T)
R 8	$O_2(^1\Sigma_g) + O_3 \rightarrow 2O_2 + O$	2.3×10^{-11} : Anderson (1976)
R 9	$O_2 ({}^1\Sigma_g) + O_2 \rightarrow 2O_2$	1.5×10^{-16} : Noxon (1970)
R10	$O_2 ({}^1\Sigma_g) + N_2 \rightarrow O_2 + N_2$	$2.0 \ge 10^{-15}$
R11	$O_2 ({}^1 \mathcal{A}_g) + O_3 \rightarrow 2O_2 + O$	$1.2 \times 10^{-11} \exp(-2400 \times T)$
R12	$O_2 ({}^1 \varDelta_g) + O_2 \rightarrow 2O_2$	2.2×10^{-18} (T $\swarrow 300$) ^{0.8}
R 13	$O_2 ({}^1 \Delta g) + N_2 \rightarrow O_2 + N_2$	$<2 \times 10^{-20}$ (300 K)
R14	$O_2({}^1\mathcal{A}_g) + O \rightarrow O_2 + O$	1.0×10^{-16} : Hunt (196.6)
R15	$O_2 ({}^1 \varDelta g) \rightarrow O_2 + h \nu$	1.5×10^{-4} : Jones and Gattinger (1963)
R16	$O_2 ({}^1 \Sigma_g) \rightarrow O_2 ({}^1 \varDelta_g) + h \nu$	2.5×10^{-4} : Noxon (1961)
R17	$O_2 ({}^1\Sigma_g) \rightarrow O_2 + h\nu$	1.4×10^{-1} : Noxon (1961)
R18	$N_2O + O(^1D) \rightarrow 2 NO$	$6.2 \ge 10^{-11} \exp((0 \pm 50) / T)$
R19	$N_2 O + O (^1D) \rightarrow N_2 + O_2$	$4.8 \times 10^{-11} \exp((0 \pm 50) / T)$
R 20	$NO + O_3 \rightarrow NO_2 + O_2$	$2.3 \times 10^{-12} \exp(-1450 / T)$
R 21	$NO + O + M \rightarrow NO_2 + M$	$1.2 \ge 10^{-31} (T \swarrow 300)^{-1.8}$
R 22	$\rm NO + NO_3 \rightarrow 2 NO_2$	2×10^{-11}
R 23	$NO_2 + O \rightarrow NO + O_2$	$9.3 \ge 10^{-12}$
R 24	$NO_2 + O_3 \rightarrow NO_3 + O_2$	$1.2 \times 10^{-13} \exp(-2450 / T)$
R 25	$NO_2 + O + M \rightarrow NO_3 + M$	$9.0 \ge 10^{-32} (T \swarrow 300)^{-2.0}$
R 26	$NO_2 + NO_3 + M \rightarrow N_2O_5 + M$	$1.4 \ge 1.0^{-30} (T \swarrow 300)^{-2.8}$
R 27	$N_2O_5 + M \rightarrow NO_2 + NO_3 + M$	$8.8 \times 10^{-6} \exp(-9700 \times T)$
R 28	$N + O + M \rightarrow NO + M$	$1.8 \times 10^{-31} (T)^{-0.5}$
R 29	$N + O_2 \rightarrow NO + O$	$4.4 \times 10^{-12} \exp(-3220 / T)$
R 30	$N + O_3 \rightarrow NO + O_2$	$<1 \times 10^{-15}$
R 31	$N + NO \rightarrow N_2 + O$	$3.4 \ge 10^{-11}$
R 32	$N_2O_5 + H_2O \rightarrow 2 HNO_3$	$<1.3 \text{ x } 10^{-20}$
R 33	$HNO_3 + O \rightarrow NO_3 + HO$	$<3 \text{ x } 1 \text{ 0}^{-17}$
R 34	$HNO_3 + HO \rightarrow NO_3 + H_2O$	$8.5 \ge 10^{-14}$
R 35	$NO + HO_2 \rightarrow NO_2 + HO$	$4.3 \times 10^{-12} \exp (200 / T)$
	157	

	反応式	反応速度定数
R 36	$NO + HO + M \rightarrow HNO_2 + M$	$6.7 \ge 10^{-31} (T \swarrow 300)^{-3.3}$
R 37	$NO + HO_2 + M \rightarrow HNO_3 + M$	Neglected
R 38	$NO_2 + HO + M \rightarrow HNO_3 + M$	$2.6 \ge 10^{-30} (T \swarrow 300)^{-2.7}$
R 39	$N + HO \rightarrow NO + H$	$5.3 \ge 10^{-11}$
R40	$H_2O + O (^1D) \rightarrow 2HO$	$2.3 \times 10^{-10} \exp ((0 \pm 50) / T)$
R41	$H + O_3 \rightarrow HO + O_2$	$1.4 \times 10^{-10} \exp((-(470 \pm 200) / T))$
R42	$H + O_2 + M \rightarrow HO_2 + M$	$5.5 \ge 10^{-32} (T \swarrow 300)^{-1.40}$
R 43	$HO + O \rightarrow H + O_2$	4×10^{-11} exp ((0±300)/T)
R 44	$HO + O_3 \rightarrow HO_2 + O_2$	$1.6 \times 10^{-12} \exp (-(940 \pm 300) / T)$
R 45	$HO + HO \rightarrow H_2O + O$	1×10^{-11} exp (-500/T)
R46	$HO + HO + M \rightarrow H_2O_2 + M$	$2.5 \ge 10^{-31} (T \swarrow 300)^{-0.8}$
R47	$HO_2 + O \rightarrow HO + O_2$	$3.5 \times 10^{-11} \exp ((0 \pm 350) \angle T)$
R 48	$HO_2 + O_3 \rightarrow HO + 2O_2$	$1.1 \times 10^{-14} \exp (-580 \angle T)$
R 49	$\mathrm{HO}_2 + \mathrm{HO} \rightarrow \mathrm{H}_2\mathrm{O} + \mathrm{O}_2$	4×10^{-11}
R 50	$\mathrm{HO}_2 + \mathrm{HO}_2 \rightarrow \mathrm{H}_2\mathrm{O}_2 + \mathrm{O}_2$	$2.5 \ge 10^{-12}$
R 51	$H_2 O_2 + O \rightarrow HO_2 + HO$	$2.8 \times 10^{-12} \exp (-2625 \angle T)$
R52	$\mathrm{H}_{2}\mathrm{O}_{2}\ +\ \mathrm{O} \twoheadrightarrow \mathrm{H}_{2}\mathrm{O}\ +\ \mathrm{O}_{2}$	$2.7 \times 10^{-12} \exp(-2100 / T)$
R 53	$H_2O_2 + HO \rightarrow HO_2 + H_2O$	1×10^{-11} exp (-750/T)
R 54	$H + HO \rightarrow H_2 + O$	$1.4 \times 10^{-14} \exp (-3500 \angle T)$
R 55	$H + HO + M \rightarrow H_2O + M$	$6.1 \ge 10^{-26} T^{-2}$
R 56	$H + HO_2 \rightarrow HO + HO$	$3.2 \ge 10^{-11}$
R 57	$H + HO_2 \rightarrow H_2 + O_2$	$1.4 \ge 10^{-11}$
R 58	$\mathrm{H} \ + \ \mathrm{H}_2\mathrm{O}_2 \ \rightarrow \ \mathrm{H}_2 \ + \ \mathrm{HO}_2$	$5.2 \times 10^{-12} \exp (-1400 \times T)$
R 59	$H + H_2O_2 \rightarrow HO + H_2O$	$5.2 \times 10^{-12} \exp (-1400 \angle T)$
R 60	$H + NO_2 \rightarrow NO + HO$	$5.8 \times 10^{-10} \exp(-450 \times T)$
R 61	$H_2 + O \rightarrow H + HO$	$1.6 \times 10^{-11} \exp (-4750 / T)$
R 62	$H_2 + O (^1D) \rightarrow H + HO$	$9.9 \times 10^{-11} \exp ((0 \pm 50) \angle T)$
R63	$H_2 + HO \rightarrow H + H_2O$	$1.2 \times 10^{-11} \exp (-2200 \times T)^{-11}$
R64	$CH_4 + O \rightarrow CH_3 + HO$	$3.5 \times 10^{-11} \exp (-4550 / T)$
R 65	$CH_4 + O(^1D) \rightarrow CH_3 + HO$	$1.3 \times 10^{-10} \exp ((0 \pm 50) \angle T)$
R 66	$CH_4 + O (^1D) \rightarrow CH_2O + H_2$	$1.4 \times 10^{-11} \exp ((0 \pm 50) / T)$
R67	$CH_4 + O_3 \rightarrow CH_3 + HO + O_2$	Neglected
R68	$CH_4 + HO \rightarrow CH_3 + H_2O$	$24 \times 10^{-12} \exp(-1710 / T)$
R 69	$\mathrm{C}\mathrm{H}_3 \ + \ \mathrm{O}_2 \ + \ \mathrm{M} \ \rightarrow \ \mathrm{C}\mathrm{H}_3\mathrm{O}_2 \ + \ \mathrm{M}$	$2.2 \times 10^{-31} (T \swarrow 300)^{-2.2}$
R 70	$CH_3 + O_2 \rightarrow CH_2O + HO$	$2.9 \times 10^{-13} \exp(-940 \checkmark T)$
R71	$CH_3O_2 + NO \rightarrow CH_3O+ NO_2$	$7 \ge 10^{-12}$
R72	$CH_3O_2 + HO_2 \rightarrow CH_3OOH+O_2$	$6 \ge 10^{-12}$

— 158 —

反応式 反応速度定数 $1.6 \ge 10^{-13}$ R73 $CH_3O_2 + CH_3O_2 \rightarrow 2CH_3O + O_2$ R74 $CH_3O_2 + CH_3O_2 \rightarrow CH_3OOH + CH_2O_2$ Neglected R75 $CH_3O + O_2 \rightarrow CH_2O + HO_2$ 5×10^{-13} exp (-2000/T) R76 $CH_3O + NO \rightarrow CH_3ONO$ Neglected $R77 \quad CH_3O + NO_2 \rightarrow CH_3ONO_2$ Neglected R78 $CH_2O + O \rightarrow CHO + HO$ $3.2 \times 10^{-11} \exp(-1550 \angle T)$ $1.0 \ge 10^{-11}$ R79 $CH_2O + HO \rightarrow CHO + H_2O$ $1.7 \ge 10^{-12} \exp(-4000 \angle T)$ R80 $CH_2O + HO_2 \rightarrow CHO + H_2O_2$ R81 CHO + $O_2 \rightarrow CO + HO_2$ $5.1 \ge 10^{-12}$ R82 $CO + O + M \rightarrow CO_2 + M$ $6.5 \times 10^{-33} \exp(-2180 \times T)$ 1.35×10^{-13} R83 $CO + HO \rightarrow CO_2 + H$ $(1 + P_{atm})$ $6.6 \ge 10^{-12}$ R83a HO + HNO₂ \rightarrow H₂O + NO₂ $2.7 \times 10^{-11} \exp(-257 \angle T)$ $Cl + O_3 \rightarrow ClO + O_2$ R 84 $7.7 \times 10^{-11} \exp(-130 / T)$ R 85 $ClO + O \rightarrow Cl + O_2$ $7.8 \times 10^{-12} \exp(250 \angle T)$ $C1O + NO \rightarrow C1 + NO_2$ R 86 $9.9 \times 10^{-12} \exp(-1359 \angle T)$ R87 C1+ CH₄ \rightarrow HC1+ CH₃ $3.5 \times 10^{-11} \exp(-2290 \times T)$ R88 $C1 + H_2 \rightarrow HC1 + H$ $4.5 \ge 10^{-11}$ R89 $C1 + HO_2 \rightarrow HC1 + O_2$ $2.8 \times 10^{-12} \exp(-425 \swarrow T)$ R90 HC1 + HO \rightarrow C1+ H₂O $1.14 \times 10^{-11} \exp(-3370 / T)$ R91 HC1 + O \rightarrow C1 + HO $1.6 \times 10^{-31} (T \swarrow 300)^{-3.4}$ R92 NO₂ + C1O + M \rightarrow C1ONO₂ + M R93 $C1ONO_2 + O \rightarrow C1O + NO_3$ Neglected $1.4 \times 10^{-10} \exp((0 \pm 50) / T)$ R94 $CF_2Cl_2 + O(^1D) \rightarrow CF_2Cl + ClO$ $22 \times 10^{-10} \exp((0 \pm 50) / T)$ R95 $CFCl_3 + O(^1D) \rightarrow CFCl_2 + C1O$ $2.2 \times 10^{-12} \exp(-1142 \angle T)$ R96 $CH_3C1 + HO \rightarrow CH_2C1 + H_2O$ R97 $CH_3Cl + O(^1D) \rightarrow CH_2Cl + HO$ Neglected R98 $CCl_4 + O(^1D) \rightarrow CCl_3 + ClO$ Neglected

(脚注)

反応速度定数の単位は \sec^{-1} (単分子反応), $cm^3 \sec^{-1}$ (2分子反応), $cm^6 \sec^{-1}$ (3分子反応)で ある。T(°K)は絶体温度を示す。Mは空気分子を示す。Reference を示していないものは Hampson(1980)から採用した。

表5.3a 大気外太陽放射 (800-1300Å)

No.	Wavelength (Å)	Identification	Solar Irradiation Flux (10 ⁹ ph cm ⁻² s ⁻¹)
1	800-830	H cont.	0.7 8
2	835 group	ОШ, ОЦ 835.3, 835.1, 834.5	0.5 2
3	830-860	H cont.	1.5
4	860-890	H cont.	2.7
5	904 group	CIL	0.1 3
6	890-911	H cont.	3.2
7	926.2	ΗLyη	0.2 5
8	930.7	HLyξ	0.2 5
9	933.4	S VI	0.2 5
10	937.8	HLyε	0.3 4
11	944.5	S VI	0.2 2
12	949.7	НЦуδ	0.5 1
13	9 7 2.5	HLyr	0.9 2
14	977.0	СШ	4.5
15	990 group	N III 989.8, 991.5	0.7 2
16	1 0 2 5.7	HLy β	3.6
17	1031.9	OVI	2.6
18	1037.6	ОЧ, СП	2.0
19	1085 group	NI	0.8 5
20	1 1 2 2.5	Si N	0.4 8
21	1 1 2 8.3	Si N	0.5 3
22	1175 group	СШ	2.4
23	1 2 0 6.5	Si 🏛	3.8
24	1 2 1 5.7	ΗLyα	300
25	1 2 3 8.8	NV	0.6 9
26	1242.8	N V	0.4 5
27	1260.7	Si II	0.4 9
28	1265.0	Si II	0.7 2
29	1 3 0 2.2	0 I	0.8 0
30	1 3 0 4.9 - 1 3 0 6.0	ΟI	1.25
	1027-1310	unresolved	0.0

(脚注)

(注1) 太陽放射強度は Hinteregger (1970) による。

(注2) 911-1027ÅiC unresolved flux, 1.21×10⁹ ph cm⁻² s⁻¹が存在するが、これを Na 7-Na16に等記分した。

(注3) 1027-1310Åに unresolved flux, 3.7×10⁹ ph cm⁻² s⁻¹ が存在するが、これを Na17-Na30に等配分した。

		Solar Irradiation Flux 1)					
No	Wavelength	$(\text{ph } \text{cm}^{-2} \text{s}^{-1})$					
140	(Å)	<u> </u>		s)			
	1200 1205	Case A	Case B	Case C	Case D		
٥1 مم		6.65 + 9	6.65+9	2.1 0 + 9	1.07 + 10		
32	1325 -1350	8.10+9	8.10 + 9	2.4 3 + 9	1.16+10		
33	1350 - 1375	8.85 + 9	8.85+9	2.83+9	4.95+9		
34	1375 -1400	9.10 + 9	9.10+9	3.3 3 + 9	7.75+9		
35	1400 -1425	1.15 + 10	1.15+10	3.7 8 + 9	7.85+9		
36	1425 -1450	1.6 0 + 1 0	1.60+10	5.5 0 + 9	7.55+9		
37	1450 -1475	2.26 + 10	2.04 + 10	7.68 + 9	1.0.05 + 10		
38	1475 -1500	3.15 + 10	2.78+10	9.5 3 + 9	1.37 + 10		
39	1500 -1525	4.35 + 10	3.60+10	1.14+10	1.70 + 10		
40	1525 -1550	5.88 + 10	4.33 + 10	1.37 + 10	3.13 + 10		
41	1550 -1575	8.20+10	5.33 + 10	1.63 + 10	3.38+10		
42	1575 -1600	1.14 + 11	7.00+10	1.92+10	2.98+10		
43	1600 -1625	1.49 + 11	9.08 + 10	2.26 + 10	3.75+10		
44	1625 -1650	1.88 + 11	1.14 + 11	2.63 + 10	5.30 + 10		
45	1650 -1675	2.44+11	1.31+11	3.83 + 10	8.13 + 10		
46	1675 -1700	3.15+11	1.82+11	5.93+10	1.16+11		
47	1700 -1725	3.95 + 11	2.55+11	8.50+10	1.77+11		
48	1725 -1751.8	5.20 + 11	3.56+11	1.29 + 11	2.24 + 11		
49	1751.84 - 1774.92	5.66 + 11	3.86+11	1.46+11	2.18+11		
50	1774.92-1792.61	5.31 + 11	3.47 + 11	1.31 + 11	2.23+11		
51	1792.61-1803.79	3.81 + 11	2.40+11	9.29 + 10	1.59 + 11		
52	1803.79-1816.50	4.83+11	2.97 + 11	1.16 + 11	2.16+11		
53	1816.50-1830.76	5.99 + 11	3.7 2 + 1 1	1.44 + 11	2.70+11		
54	1830.76-1846.51	7.51+11	4.5 2 + 1 1	1.80 + 11	2.90+11		
55	$1846.51\!-\!1863.72$	9.46 + 11	5.40+11	2.20+11	3.42 + 11		
56	1863.72-1882.43	1.22 + 12	6.49 + 11	2.66 + 11	4.74 + 11		
57	1882.43-1902.54	1.52+12	7.98 + 11	3.24+11	5.83 + 11		
58	1902.54-1924.19	1.84 + 12	1.00 + 12	4.08 + 11	6.95+11		
59	1924.19-1947.33	2.2 2 + 1 2	1.33 + 12	5.15 + 11	7.98 + 11		
60	1947.33-1971.97	2.76+12	1.85 + 12	6.72 + 11	1.15 + 12		
61	1971.97-1998.17	3.41 + 12	2.56 + 12	8.78 + 11	1.38 + 12		
62	1998.17-2026.01	4.23 + 12	3.31 + 12	1.17 ± 12	2.02 + 12		
63	2026.01-2055.15	5.32 + 12	4.37 + 12	1.60 + 12	2.70+12		

表5.3b 大気外太陽放射 (1300-8000Å)

	Wavelength	Solar Irradiation Flux									
No.	o o		(ph cm	$^{2} s^{-1}$)							
	(A)	Case A	Case B	Case C	Case D						
64	2055.15-2075	4.34 + 12	3.82 + 12	1.44+12	2.12 + 12						
65	2075-2100	6.93 + 12	→	2.35 + 12	4.70 + 12						
66	2100 - 2125	9.03 + 12	·→ ·	3.05 + 12	8.15 + 12						
67	2125-2150	1.17 + 13		4.03+12	9.48 + 12						
68	2150 - 2175	1.41 + 13	\rightarrow	5.33 + 12	9.73 + 12						
69	2175 - 2200	1.62 + 13	\rightarrow	7.1 3 + 1 2	1.22 + 13						
70	2200 - 2225	1.79+13	→	9.20 + 12	1.26 + 13						
71	2225 - 2250	1.91 + 13	\rightarrow	1.11 + 13	1.68 + 13						
72	2250 - 2275	2.01 + 13	\rightarrow	1.29 + 13	1.32 + 13						
73	2275 - 2300	2.06 + 13	\rightarrow	1.45 + 13	1.41 + 13						
74	2300 - 2325	2.04 + 13	→	1.55 + 13	1.56 + 13						
75	2325-2350	1.94 + 13	\rightarrow	1.60+13	1.33 + 13						
76	2350 - 2375	1.94 + 13	\rightarrow	1.64 + 13	1.58 + 13						
77	2375 - 2400	2.02+13	→	1.72+13	1.39 + 1 3						
78	2400 - 2425	2.14+13	\rightarrow	1.82 + 13	1.61 + 13						
79	2425-2450	2.32+13	\rightarrow	→ `	2.02 + 13						
80	2450 - 2475	2.40+13	→	→	1.66 + 13						
81	2475 — 2500		2.40 + 13		1.66+13						
82	2500 - 2525		2.69+13	•	1.62 + 13						
83	2525 - 2550		3.29 + 13		1.77 ± 13						
84	2550-2575		3.84 + 13		3.35+13						
85	2575 - 2600		4.34 + 1.3		4.13 + 13						
86	2600 - 2625		4.58 + 13		3.50 + 13						
87	2625 - 2650	1	5.5 0 + 1 3		6.78 + 13						
88	2650-2675		6.33 + 13		9.08 + 13						
89	2675-2700		7.08 + 13		8.78 + 13						
90	2700 - 2725		7.33 + 13		8.65+13						
91	2725 - 2750		7.05 + 13		6.18 + 13						
92	2750 - 2775		7.03 + 13		8.05 + 13						
93	2775 - 2800		7.25 + 13		5.28 + 13						
94	2800 - 2825		8.28 + 13		7.05 + 13						
95	2825 - 2850		1.01 + 14		1.04 + 14						
96	2850 - 2875		1.23 + 14		9.38 + 13						
97	2875 - 2900		1.53+14		1.38 + 14						

<u>— 162</u> <u>—</u>

気象研究所技術報告	第6号	1982

	Wavelength	Solar Irradiation Flux	
No.		$(ph \ cm^{-2} \ s^{-1})$	
	(A)	Case A, B, C	Case D
98	2900 - 2925	1.78 + 14	2.20+14
99	2925 - 2950	1.98 + 14	1.97 + 14
100	2950 - 2975	2.09 + 14	1,95+14
101	2975 - 3000	2.10 + 14	1.7 5 + 1 4
102	3000 - 3025	2.15 + 14	1.66 + 14
103	3025 - 3050	2.23 + 14	2.27 + 14
104	3050 - 3075	2.34 + 14	2.28+14
105	3075 - 3100	2.49 + 14	2.21 + 14
106	3100 - 3125	2.6 5 + 1 4	2.46 + 14
107	3125 - 3150	2.83 + 14	2.76 + 14
108	3150 - 3175	2.88 + 14	2.77+14
109	3175 - 3200	2.93 + 14	3.02 + 14
110	3200 - 3225	3.18 + 14	3.02 + 14
111	3225 - 3250	3.50 + 14	3.48 + 14
112	3250 - 3275	3.88 + 14	3.49 + 14
113	3275 - 3300	4.13 + 14	4.24 + 14
114	3300 - 3325	4.33 + 14	4.25 + 14
115	3325 - 3350	4.3 0 + 1 4	3.46 + 14
116	3350 - 3375	4.28 + 14	3.46 + 14
117	3375 - 3400	4.25 ± 14	4.06+14
118	3400 - 3425	4.28 + 14	4.07 + 14
119	3425-3450	4.33 + 14	3.92 + 14
120	3450 - 3475	4.43 + 14	3.92 + 14
121	3475 - 3500	4.53 + 14	4.15+14
122	3500 - 3525	4.53 + 14	4.16 + 14
123	3525-3550	4.50 + 14	4.66 + 14
124	3550 - 3575	4.50 + 14	4.67 + 14
125	3575-3600	4.4 5 + 1 4	4.23+14
126	3600 - 3625	4.65 + 14	4.24 + 14
127	3625 - 3650	5.05 + 14	5.30 + 14
128	3650 - 3675	5.30 + 14	5.30 + 14
129	3675-3700	5.35 + 14	5.50 + 14
130	3700 - 3725	5.38 + 14	5.50 + 14
131	3725 - 3750	5.33+14	4.78 + 14

<u>-163</u> -

	Wavelength	Solar Irradiation Flux	
No.	° .	$(ph cm^{-2} s^{-1})$	
	(A)	Case A, B, C	Case D
132	3750 - 3775	5.30 + 14	4.79 + 14
133	3775 - 3800	5.30 + 14	5.70 + 14
134	3800-3825	5.23 + 14	5.70+14
135	3825 - 3850	5.15 + 14	4.31 + 14
136	3850-3875	5.18 + 14	4.3 2 + 1 4
137	3875 - 3900	5.33 + 14	5.75+14
138	3900-3925	5.5 0 + 1 4	5.7 5 + 1 4
139	3925 - 3950	5.88 + 14	4.78 + 14
140	3950 - 3975	6.48 + 14	4.79 + 14
141	3975-4000	7.35 + 14	8.50 + 14
142	4000 - 4050	1.68 + 15	1.7 0 + 1 5
143	4050 - 4100	1.85 ± 15	1.74 ± 15
144	4100-4150	1.93 + 15	1.83 + 15
145	4150 - 4200	1.96 + 15	1.86 + 15
146	4200 - 4250	1.92 + 15	1.82 + 15
147	4250 - 4300	1.85 + 15	1.73 + 15
148	4300 - 4350	1.87 + 15	1.85 + 15
149	4350 - 4400	2.02 + 15	2.02 + 15
150	4400 - 4450	2.1 8 + 1 5	2.1 0 + 1 5
151	4450 - 4500	2.30 + 15	2.28 + 15
152	4500-4600	4.81 + 15	4.65+15
153	4600 - 4700	4.87 + 15	4.70+15
154	4700 - 4800	5.05 + 15	4.82+15
155	4800 - 4900	4.83 + 15	4.72 + 15
156	4900 - 5000	4.98 + 15	4.90+15
157	5000 - 5100	5.00 + 15	4.90 + 15
158	5100 - 5200	4.95 + 15	4.79 + 15
159	5200 - 5300	4.98 + 15	4.96 + 15
160	5300 - 5400	5.13 + 15	5.15 + 15
161	5400 - 5500	5.18 + 15	5.1 2 + 1 5
162	5500 - 5600	5.18 + 15	5.15 + 15
163	5600-5700	5.24 + 15	5.20 + 15
164	5700 - 5800	5.40 + 15	5.33 + 15
165	5800-5900	5.47 + 15	5.23 + 15

No.	Wavelength	Solar Irradiation Flux (ph cm ⁻² s ⁻¹)	
i	(Å)	Case A, B, C	Case D
166	5900 - 6000	5.43 + 15	5.27 + 15
167	6000 - 6100	5.44 + 15	5.32 + 15
168	6100-6200	5.42 + 15	5,28 + 15
169	6200 - 6300	5.38 + 15	5.26 + 15
170	6300 - 6400	5.39 + 15	5.26 + 15
171	6400 - 6500	5.33 + 15	5.27 + 15
172	6500 - 6600	5.23 + 15	5.15 + 15
173	6600 - 6700	5.26 + 15	5.16 + 15
174	6700 - 6800	5.35 + 15	5.19 + 15
175	6800 - 6900	5.28 + 15	5.13 + 15
176	6900 - 7000	5.24 + 15	5.07 + 15
177	7000 - 7100	5.20 + 15	5.02 + 15
178	7100 - 7200	5.08 + 15	4.96 + 15
179	7200 - 7300	5.04 + 15	4.90 + 15
180	7300-7400	4.98 + 15	4.98 + 15
181	7400-7500	4.92 + 15	4.92+15
182	7500 - 7600	4.91 + 15	4.91 + 15
183	7600 - 7700	4.82 ± 15	4.82+15
184	7700 - 7800	4.74 + 15	4.74 + 15
185	7800-7900	4.74 + 15	4.74 + 15
186	7900 - 8000	4.70 + 15	4.74 + 15

気象研究所技術報告 第6号 1982

```
(脚注)
```

```
1) Case A~ Case D で採用した値は次の如し、入(Å) は波長を表わす。
 ① Case A:
      1300 \le \lambda < 2600 : Detwiler et al. (1961)
      2600 \leq \lambda
                 : Arvesen et al. (1969)
 ⊘ Case A:
      1300 \le \lambda < 1450 : Detwiler et al. (1961)
      1450 \le \lambda < 2075 : Widing et al. (1970)
      2075 \le \lambda < 2600 : Detwiler et al. (1961)
      2600 \le \lambda
                     : Arvesen et al. (1969)
 ③ Case C:
    1300 \le \lambda < 1425 : Extrapolation
      1425 \le \lambda < 1875 : Parkinson and Reeves (1969)
      1875 \le \lambda < 2050 : Interpolation
      2050 \le \lambda < 2425 : Brewer and Wilson (1965)
      2425 \le \lambda
                   Arvesen et al. (1969)
 ④ Case D:
     1300 \leq \lambda < 7300 : Brasseur and Simon (1981)
      7300 \leq \lambda : Arvesen et al. (1969)
(注1) →印は左の欄の値と同じ値であることを示す。
(注2) 6.65+9は 6.65×10<sup>9</sup>を示す。
```

	absor	ption cross section	0	2)		N ₂ ³⁾	O ₃ ⁴⁾	CO ₂ ⁵⁾	H ₂ O ⁶⁾
No.	wavelength	identification	σ	σj⁄σ	σί⁄σ		<i>x</i>		
	(Å)		10^{-18} cm^2	· · ·		10^{-18} cm^2	10^{-18} cm^2	10^{-18} cm^2	$10^{-18} \mathrm{cm}^2$
1	800-830	H cont.	3 6.9	0.7 6	0.2 4	< 1 3.4 >			
2	835 group	ОШ 835.3, ОП 835.1,834.5	2 0.1	0.7 9	0.2 1	1 8.4			
3	830 - 860	H cont.	1 7.9	0.7 2	0.28	< 9.2 6 >			
4	860 - 890	H cont.	1 2.6	0.58	0.42	< 8.6 7 >			
5	904 group	СП	1 1.5	0.5 2	0.48	0.5 5 8			
6	890 - 911	H cont.	1 2.6	0.4 9	0.5 1	< 6.0 3 >			
7	926.2	HLy η	1 0.6	0.6 0	0.4 0	1.8 6			
8	930.7	HLyξ	17.1	0.22	0.7 8	1.86			
9	933.4	S VI	1 7.8	0.5 6	0.44	0.5 2 0			· .
10	937.8	HLy ¢	1 8.6	0.44	0.5 6	3 7.2			
11	944.5	S VI	5.7 6	0.1 9	0.81	0.9 2 9	-		
12	949.7	HLy δ	9.2 9	0.6 0	0.40	0.1 5 0			
13	972.5	HLy r	48.3	0.69	0.3 1	7 4.4			
14	977.0	Сш	16.0	0.8 7	0.1 3	1.86			
15	990 group	NII 989.8,991.5	7.1 7	0.7 9	0.2 1	0.0			
16	1 0 2 5.7	HLyβ	2.16	0.4 0	0.60	·	6.5 ×		
17	1 0 3 1.9	OVI	2.6 ++	1.0	0.0		7.0 \times		

表 5.4 a 吸収断面積¹⁾ (800-1300Å)

- 166 --

気象研究所技術報告 第6号 1982

	ab	sorption cross section	02	O ₂ ²⁾		N ₂ ³⁾	0 ₃ ⁴⁾	CO ₂ ⁵⁾	$H_2 O^{6}$
No.	wavelength	identification	σ	σj⁄σ	σί⁄σ				-
	(Å)		10^{-18} cm^2			10^{-18} cm^2	10^{-18} cm^2	10^{-18} cm^2	10^{-18} cm ²
18	1 0 3 7.6	OVI, CI	3.0 ++	1.0	0.0		7.0 [×]		
19	1085 group	ΝΠ	1.8	1.0	0.0		8.0		
20	1 1 2 2.5	Si N	1.0 △	1.0	0.0		1 3.0	170	
21	1 1 2 8.3	Si IV	0.044△	1.0	0.0		1 0.0	90	
22	1175 group	Сш	1.2 5 +	1.0	0.0		7.2	0.1 8 6	
23	1 2 0 6.5	Si II	8.4 +	1.0	0.0		1 4.0	0.0 4 5	
24	1 2 1 5.7	HLyα	0.0 1 0 0 +	1.0	0.0		2 0.0	0.058	1 5.0
25	1238.8	NV	0.34+	1.0	0.0		1 3.0	0.1 0 4	
26	1 2 4 2.8	NV	1 7.5 +	1.0	0.0		1 0.0	0.1 1 7	
27	1 2 6 0.7	Si II	0.4 3 +	1.0	0.0		6.0	0.1 8 0	
28	1265.0	Si II	0.2 0 +	1.0	0.0		5.5	0.2 0 0	
29	1 3 0 2.2	OI	0.42+	1.0	0.0		9.0	0.4 5	
30	1 3 0 4.9 - 1 3 0 6:0	OI	0.4 2 +	1.0	0.0		9.0	0.4 6	

167 -

(脚注)

1) :吸収断面積 σ(cm²/粒子)は,次式で定義される値を示す。

 $I = I_0 \exp(-\sigma \cdot N)$ ただし I_0 は減衰されていない光の強度、 I は吸収を受けて減衰した光の強度、 Nは光路中の吸収物質の粒子数 (粒子/cm²)を示す。

2): Cook and Metzger (1964) による。σj/σ及びσj/σはそれぞれ解離及びイオン化する割合。ただし, +は Ackerman (1971), #は Huffmann

et al. (1964), △は Watanabe (1958) による。

3): Cook and Metzger (1964)による。< >は平均値を示す。

4), 6) : Watanabe (1958) による。×印は外挿値。

5) : Inn et al. (1953) による。

	Wavelength		Abso	orption Cro	oss Section	(cm ²)	:
NO.	(Å)	O ₂ ¹⁾	O ₃ ²⁾	CO ₂ ³⁾	H ₂ O ⁴⁾	N ₂ O ⁵⁾	HC1 ⁶⁾
31	1300-1325	3.7-197)	1.48-17	5.00-19	6.1-18		
32	1325-1350	2.20-18	1.55-17	6.5-19	4.2-18		
33	1350 - 1375	9.0-18	1.29-17	7.2-19	2.5-18		
34	1375-1400	1.35-17	7.31-18	6.6-19	1.2-18		. · ·
35	1400 - 1425	1.48-17	6.71 - 18	6.4-19	6.3-19		2.30-18
36	1425 - 1450	1.46-17	5.59-18	7.0-19	4.8-19		2.67-18
37 .	1450 - 1475	1.36-17	4.83-1.8	6.7-19	6.0-19		3.00-18
38	1475-1500	1.19-17	4.08-18	6.1-19	9.4-19		3.3 0-18
39	1500-1525	1.05-17	3.14-18	5.1-19	1.34-18	6.0 0-1 9	3.6 0-18
40	1525-1550	8.9-18	2.32-18	4.2-19	1.90-18	2.25-19	3.7 5-18
41	1550 - 1575	7.1-18	1.79-18	3.1-19	2.50-18	6.3-20	3.6 5-18
42	1575-1600	5.4-18	1.34-18	2.2-19	3.10-18	3.9-20	3.4 5-18
43	1600-1625	3.9-18	1.04-18	1.4-19	3.80-18	3.8-20	3.1 0-18
44	1625-1650	2.65-18	8.85-19	8.3-20	4.4-18	4.8-20	2.66-18
45	1650 - 1675	1.75-18	8.1 2-1 9	4.8-20	4.6-18	6.5-20	2.24-18
46	1675-1700	1.07-18	8.85-19	2.8-20	4.2-18	8.6-20	1.80-18
47	1700 - 1725	6.7-19	8.19-19	1.6-20	3.7-18	1.03-19	1.46-18
48	1725 — 1751.8	3.9-19	8.22-19	9.4-21	3.0-18	1.19-19	1.20-18

表5.4b 吸収断面積 (1300-1751.8Å)(cm²/粒子)

(注)

1) O_2 : 1300-1650Å, Watanabe (1958); 1650-1751.8Å, Watanabe et al. (1953)

- 2) O₃: Watanabe (1958)
- 3) CO_2 : Inn, et al. (1953)
- 4) H_2O : Watanabe (1958)
- 5) N_2O : Zelikoff et al. (1953)
- 6) HCl: Watson (1977)
- 7) 3.9-19は 3.9×10⁻¹⁹を示す。

No.	Wavelength Å	O ₂ Continut	1) 1m/Bands	O ₃ ²⁾	CO ₂ ³⁾	H ₂ O ⁴⁾	N ₂ O ⁵⁾	NO ₂ ⁶⁾	HNO ₃ ⁷⁾	H ₂ O ₂ ⁸⁾	HO ₂ ⁹⁾	$C F_2 C I^{10}$	C F C 1 ^{11)}
49	1751.84 - 1774.92	3.60-20	1.65-19	8.00-19	5.3-21	2.2-18	1.31-19						
50	1774.92 - 1792.61	1.20-21	1.14-19	7.82-19	2.9 - 21	1.3-18	1.41-19						
51	1792.61 - 1803.79	3.40-22	7.33-20	7.63-19	2.1-21	8.1-19	1.44-19						
52	1803.79 - 1816.50	1.30-22	5.21-20	7.37-19	1.50-21	4.6-19	1.48-19				3.3-18		N.
53	1816.50 - 1830.76	5.00-23	3.3 4 - 2 0	7.07-19	1.03-21	2.20-19	1.51-19				3.4-18		-
54	1830.76 - 1846.51	2.50-23	2.08-20	6.77-19	6.9-22	1.05-19	1.52-19				3.6-18		
55	1846.51 - 1863.72	1.6 6-23	1.21-20	6.48-19	4.5-22	4.0 5-20	1.50-19	2.60-19			3.7-18		
56	1863.72 - 1882.43	1.37→23	5.99-21	6.07-19	2.8-22	1.74-20	1.42-19	2.66-19			3.8-18	9.0-19	2.5 4-18
57	1882.43 - 1902.54	1.30-23	2.78-21	5.47-19	1.5-22	7.5-21	1.29-19	2.90-19	1.43-17		3.9-18	6.8-19	1.90-18
58	1902.54 - 1924.19	1.30-23	1.1 2 - 2 1	4.91-19	7.8-23	3.1-21	1.13-19	2.74-19	1.17-17	6.8-19	4.0-18	5.0-19	1.59-18
59	1924.19 - 1947.33	1.32-23	4.0 2 - 2 2	4.32-19	2.6-23	1.1-21	9.30-20	2.5 5-19	9.9-18	6.0-19	4.2-18	3.3-19	1.28-18
60	1947.33 — 1971.97	1.29-23	1.07-22	3.91-19	4.4-24	3.7-22	7.3-20	2.36-19	7.8-18	5.4-19	4.4-18	2.05-19	1.00-18
61	1971.97 - 1998.17	1.18-23	3.15-23	3.31-19		1.20-22	5.1-20	2.47-19	6.1 - 1 8	5.0-19	4.5-18	1.20-19	7.7-19
62	1998.17 - 2026.01	1.08-23	5.77-24	3.01-19		3.7-23	3.4-20	2.80-19	4.3 5-1 8	4.6-19	4.6-18	6.5-20	5.5-19
63	2 0 2 6.0 1 - 2 0 5 5.1 5	1.0 0-2 3	6.29-25	3.24-19		1.3-23	2.10-20	3.41-19	3.0 0-1 8	4.3-19	4.7-18	3.3-20	3.9-19

表5.4 c 吸収断面積 (Schumann-Runge Bands (1750-2055Å))

-169

気象研究所技術報告 号9 篤 1982

(脚注)

1) O₂: Continuum; 1750-1900Å; Hudson and Mahle (1972), 250°Kの値 1900-2000Å; Jarmain and Nicholls (1967)の値×0.916

> 2000Å以上 ; Ditchburn and Young (1962)とShardanand and Rao (1977)の平均 Bands ; 1750-2050Å; Muramatsu (1975) Table 4, Case A

2) O_3 : $\lambda < 2000 \text{ Å}$; Watanabe (1958)

 $\lambda \ge 2000 \text{ \AA}$; Handbook of Geophysics (1960)

3) CO_2 : $\lambda < 1850 \text{ \AA}$; Inn et al. (1953), $\lambda \ge 1850 \text{ \AA}$; Thompson et al. (1963)

4) H_2O : $\lambda < 1850 \text{ Å}$; Watanabe (1958), $\lambda \ge 1850 \text{ Å}$; Thompson et al. (1963)

5) N_2O : Bates and Hays (1967)

6) NO₂: Bass et al. (1976)

7) HNO₃: Hampson (1980)

170

8) H₂O₂: Hampson (1972)

9) HO₂: Hampson (1973)

10) $CF_2 Cl_2$: Hudson (1977)

11) $CFCl_3$: Hudson (1977)

	_			
÷.	5	1	А	
$\overline{\mathbf{v}}$		4		

吸収断面積 (Schumann-Runge Bands. (1750-2055Å)(cm²/粒子)

No.	Wavelength (Å)	CH ₃ Cl ¹⁾	HC1 ²⁾	$CCl_4^{3)}$	4) C1ONO ₂	5) C1NO ₂	cino ⁶⁾
49	1751.84-1774.92	1.14-18	9.3-19	9.9-18			
50	1774.92-1792.61	9.7-19	7.2-19	8.7-18		-	
51	1792.61-1803.79	8.3-19	6.1-19	7.8-18			•
52	1803.79-181650	7.2-19	5.1-19	6.7-18			
53	1816.50-1830.76	6.0-19	4.4-19	5.5-18			
54	1830.76 - 1846.51	4.9-19	3.6-19	4.5-18			
55	1846.51-1863.72	3.8-19	2.9-19	3.4-18		-	
56	1863.72-1882.43	2.85-19	2.25-19	2.45-18	8.7-18		
57	1882.43-1902.54	2.00-19	1.65-19	1.65-18	7.4-18		
58	1902.54-1924.19	1.38-19	1.17-19	1.10-18	6.3-18	2.1-19	5.8-17
59	1924.19-1947.33	8.9-20	7.2-20	8.4-19	5.5-18	1.45-19	6.3-17
60	1947.33-1971.97	5.6-20	5.1-20	6.8-19	4.7-18	9.1-18	6.8-17
61	1971.97-1998.17	3.10-20	3.30-20	6.6-19	4.1-18	5.9-18	7.0-17
62	1998.17 - 2026.01	1.75-20	2.05-20	6.3-19	3.7-18	4.4-18	6.5-17
63	2026.01 - 2055.15	9.2-21	1.16-20	6.0-19	3.5-18	4.1-18	5.3-17

(注)

1) CH_3Cl : Robbins (1976)

2) HC1 : Watson (1977)

3) CCl₄ : Hampson (1980)

4) ClONO₂: Hudson (1977)

5) C1NO₂ : Hudson (1977)

6) C1NO : Hudson (1977)

表 5.4 e 吸 収 断 面 積 (2055~8000Å)

No.	Wavelength	O ₂ ¹⁾	O ₃ ²⁾	$N_2 O^{3}$	NO2 4)	$N_2 O_5^{5}$	NO ₃ ⁶⁾	HNO ₃ ⁷⁾	HNO ₂ ⁸⁾	$H_2 O_2^{9}$	HO ₂ ¹⁰⁾	HCHO ¹¹)	HCH	$\frac{10^{12}}{10^{12}}$
			0.7.0.10		0.5.5.4.0						1 7 1 0		Y 1	¥ ₂
64	2055.15 - 2075	9.4-24	3.76-19	1.30-20	3.5 5-19	8.0-18		1.95-18	2.15-18	4.0-19	4.7-18			
65	2075-2100	8.8-24	4.73-19	7.3-21	4.17-19	5.0-18		1.25-18	2.63-18	3.8-19	4.7-18			
66	2100 - 2125	8.1-24	6.14-19	3.4-21	4.25-19	4.5-18		7.00-19	3.3-18	3.5-19	4.6-18			
67	2125-2150	7.4-24	8.41-19	1.85-21	4.53-19	3.4-18		4.50-19	4.1-18	3.3-19	4.4-18			
68	2150-2175	6.6-24	1.13-18	1.12-21	4.57-19	2.65-18		2.7 5-1 9	3.5-18	3.0-19	4.2-18			
69	2175-2200	5.8-24	1.50-18	7.1-22	4.23-19	2.1 3-1 8		1.83-19	2.20-18	2.8-19	3.9-18			
70	2200 - 2225	4.9-24	1.98-18	4.5-22	4.5 0-19	1.73-18		1.24-19	1.67-18	2.55-19	3.7-18			
71	2225 - 2250	4.1-24	2.5 5-1 8	2.5-22	3.61-19	1.43-18		9.1-20	1.47-18	2.35-19	3.4-18			
72	2250-2275	3.5-24	3.25-18	1.50-22	3.9 0-1 9	1.17-18		7.1-20	1.3 0-1 8	2.15-19	3.1-18			
73	2275-2300	3.3-24	4.04-18	9.5-23	2.6 5-1 9	1.02-18		5.8-20	1.1 2-1 8	2.00-19	2.7-18			
74	2300 - 2325	2.8 5-24	4.89-18	6.3-23	2.77-19	8.7-19		4.6-20	9.3-19	1.80-19	2.4-18			i
75	2325 - 2350	2.40-24	5.75-18	4.1-23	4.7 5-1 9	7.6-19		3.9-20	7.3-19	1.66-19	2.1-18			L
76	2350 - 2375	1.75-24	6.73-18	2.8 0-2 3	1.62-19	6.6-19		3.1-20	5.9-19	1.50-19	1.78-18			1
77	2375 - 2400	1.3 2-2 4	7.54-18	2.1 0 - 2 3	1.1 3-1 9	5.8-19		2.6-20	4.7-19	1.38-19	1.54-18			
78	2400-2425	8.8-25	8.51-18	1.5 5-23	5.10-20	5.1-19		2.25-20	3.7-19	1.26-19	1.26-18			-
79	2425-2450		9.51-18	1.16-23	5.0 4-2 0	4.6-19		2.10-20	3.1-19	1.15-19	1.07-18			I
80	2450 - 2475		1.07-17	9.0-24	2.62-20	4.1-19		1.95-20	2.5 0-1 9	1.02-19	9.0-19			
81	2475-2500		1.08-17	7.2-24	2.24-20	3.65-19		1.93-20	2.00-19	9.5-20	7.6-19			1

- 172 --

気象研究所技術報告 第6号

(cm²/粒)

1982

No	Wavelength	0		NO	NO	NO	NO	HNO	HNO	но	но	нсно	нсно	
INO.	(Å)	O_2	O_3	N ₂ O	NO ₂	N ₂ O ₅	NO ₃	HNO3	HNO ₂	п202			Y ₁	Y ₂
82	2500-2525		1.11-17	6.0-24	1.38-20	3.25-19		1.90-20	1.57-19	8.5-20	6.5-19			
83	2525 - 2550		1.13-17	5.2-24	1.53-20	2.95-19		1.90-20	1.23-19	7.5-20	5.6-19			
84	2550 - 2575		1.13-17	4.7-24	1.46-20	2.60-19		1.90-20	1.00-19	6.6-20	4.9-19			
85	2575 - 2600		1.1 1 - 1 7	4.5-24	1.68-20	2.34-19		1.89-20	8.5-20	6.0-20	4.1-19			
86	2600 - 2625		1.06-17	4.4-24	1.73-20	2.10-19		1.87-20	6.5-20	5.3-20	3.5-19			
87	2625 - 2650		9.99-18	4.4-24	2.08-20	1.9 2-1 9		1.82-20	4.6-20	4.7-20	3.0 - 1 9.			
88	2650-2675		9.18-18	4.6-24	2.3 3-2 0	1.73-19	-	1.7 5-20	3.4-20	4.2-20	2.6-19	· .		
89	2675 - 2700		8.23-18	5.1-24	2.7 4-20	1.60-19		1.67-20	2.30-20	3.7-20	2.1-19			
90	2700 - 2725		7.22-18	5.3-24	3.03-20	1.4 4-1 9		1.56-20	1.60-20	3.3-20	1.7-19			
91	2725 - 2750		6.14-18	5.4-24	3.75-20	1.32-19		1.46-20		2.9-20	-			
92	2750 - 2775		5.19-18	5.4-24	4.13-20	1.17-19		1.33-20		2.53-20				
93	2775 - 2800		4.30-18	5.4-24	4.96-20	1.05-19		1.20-20		2.2 3-2 0				
94	2800 - 2825		3.39-18	5.4-24	5.49-20	9.5-20		1.04-20	-	1.94-20		2.5-20	0.6 5	0.3 5
95	2825 - 2850		2.7 5-18	5.3-24	6.24-20	8.5-20		9.3-21		1.70-20		2.7-20	0.67	0.3 3
96	2850 - 2875		2.08-18	5.1-24	7.33-20	7.5-20		8.1-21		1.47-20		3.0-20	0.69	0.3 1
97	2875 - 2900		1.56-18	4.9-24	7.72-20	6.6-20		6.9-21		1.28-20		3.1-20	0.7 1	0.2 9
98	2900 - 2925		1.15-18	4.8-24	9.28-20	5.7-20		5.7-21		1.12-20		3.4-20	0.7 3	0.2 7
99	2925 - 2950		8.56-19	4.8-24	9.61-20	5.0-20		4.8-21		9.9-21	:	3.4-20	0.7 4	0.26
100	2950 - 2975		6.18-19	4.8-24	1.06-19	4.2-20		3.9-21		8.6-21		3.4-20	0.7 6	0.24

- 173 --

No	Wavelength	0		NO	NO	NO	NO	IINO	UNO	11.0	що	нсно	нсно	
Nu	(Å)	O_2	O_3	N ₂ O	NO ₂	N ₂ O ₅	NO ₃	HNU3	HNO ₂	$H_2 O_2$	HO ₂		Y ₁	Y ₂
101	2975-3000		4.39-19	4.8-24	1.24-19	3.5-20		3.1-21		7.6-21		3.4-20	0.7 8	0.2 2
102	3000-3025		3.21-19	4.8-24	1.28-19	2.85-20		2.40-21		6.6-21		3.4-20	0.78	0.22
103	3025 - 3050		2.3 3-1 9	4.6-24	1.53-19	2.40-20		1.85-21		5.8-21		3.3-20	0.7 8	0.2 2
104	3050 - 3075		1.64-19	4.1-24	1.57-19	1.95-20		1.3 6-2 1		5.1-21		3.3-20	0.7 7	0.2 3
105	3075 - 3100		1.23-19	3.3-24	1.7 5-1 9	1.63-20		1.00-21	1 1	4.4-21		3.2-20	0.7 6	0.2 4
106	3100-3125		8.93-20	2.4-24	1.93-19	1.34-20		7.0-22		3.9-21		3.0-20	0.7 5	0.2 5
107	3125 - 3150		6.40-20	1.4-24	2.04-19	1.1 3-2 0		4.9-22	3.80-21	3.4-21		2.8-20	0.7 2	0.28
108	3150 - 3175		4.28-20		2.19-19	9.2-21		3.00-22	7.5-21	2.9 5-2 1		2.7-20	0.6 9	0.3 1
109	3175 - 3200		2.98-20		2.40-19	7.7-21		2.30-22	1.50-20	2.60-21		25-20	0.6 5	0.35
110	3200-3225		231-20		2.59-19	6.5-21		1.60-22	2.50-20	2.25 - 21	_	2.4-20	0.6 0	0.4 0
111	3225 - 3250		1.7 1-20		2.69-19	5.7-21		1.1 5-2 2	3.50-20	2.00-21		2.4-20	0.5 3	0.4 7
112	3250 - 3275		1.14-20		2.92-19	4.8-21			4.7-20	1.80-21		2.4-20	0.4 5	0.5 4
113	3275 - 3300		7.4 4-21		2.99-19	4.3-21			6.3-20	1.60-21		2.4-20	0.3 6	0.6 1
114	3300 - 3325		6.10-21		3.08-19	3.7-21			7.0-20	1.40-21	1	2.3-20	0.2 8	.66
115	3325 - 3350		4.35-21		3.37-19	3.3-21			6.6-20	1.23-21		2.3-20	0.19	0.7 0
116	3350 - 3375		2.83-21		3.44-19	3.00-21			7.4-20	1.07 - 21		2.2-20	0.1 1	0.7 1
117	3375 - 3400		1.94-21		3.71-19	2.70-21			9.5-20	9.6-22		2.1-20	0.03	0.69
118	3400 - 3425		1.19-21		3.97-19	2.43-21			9.8-20	8.4-22		1.85-20	0.0	0.6 4
119	3425 - 3450		7.44-22		3.82-19	2.25-21			8.9-20	7.2-22		1.60-20	0.0	0.5 7

- 174 -

No.	Wavelength (Å)	0		NO	NO	NO	NO	HNO	HNO ₂	чο	но	нсно	нсно	
		O_2	O_3	N ₂ O	NO ₂	N ₂ O ₅	NO ₃	HNO ₃		$H_{2}O_{2}$	HO_2		Y ₁	Y ₂
120	3450 - 3475		4.76-22		4.26-19	2.05-21			8.0-20	6.2-22		1.24-20	0.0	0.5 0
121	3475 - 3500		3.13-22		4.5 2-1 9	1.90-21			7.1-20	5.4-22		9.0-21	0.0	0.4 3
122	3500 - 3525		2.16-22		4.4 0-1 9	1.63-21			9.5-20			6.8-21	0.0	0.3 7
123	3525 - 3550		1.34-22		4.74-19	1.4 4-2 1			1.80-19			5.0-21	0.0	0.3 0
124	3550 - 3575		8.19-23		4.99-19	1.24-21			1.75-19		1	3.3-21	0.0	0.23
125	3575 - 3600		5.77-23		4.84-19	1.08-21			9.3-20			2.2-21	0.0	0.1 7
126	3600 - 3625				5.05-19	9.3-22			8.4-20			1.4-21	0.0	0.1 0
127	3625-3650				5.13-19	8.0-22			1.17-19					
128	3650 — 3675				5.4 4-1 9	6.6-22			1.27-19					
129	3675 - 3700				5.31-19	5.4-22			1.21-19					
130	3700 - 3725				5.48-19	4.1-22	i e		7.5-20					
131	3725 - 3750				5.28-19	3.1 - 2 2			3.8-20			-		
132	3750 - 3775				5.89-19	2.05-22		,	3.7-20					
133	3775 - 3800				5.51-19	1.40-22			6.1-20					
134	3800 - 3825				5.7 0-1 9				1.00-19					
135	3825 - 3850				5.68-19				1.6 0-1 9					
136	3850 - 3875	, Tarih			5.7 4-1 9				8.3-20					
137	3875-3900				5.92-19				1.90-20					
138	3900-3925				6.08-19									

- 175 --
| | Wavelength | 0 | | | | | 210 | | | | 110 | нено | HCI | HO |
|-----|-------------|----|----|------------------|-----------------|-------------------------------|-----------------|------------------|---------|----------|-----------------|------|----------------|----------------|
| NQ. | (Å) | 02 | 03 | N ₂ O | NO ₂ | N ₂ O ₅ | NO ₃ | HNO ₃ | HNO_2 | H_2O_2 | HO ₂ | нсно | Y ₁ | Y ₂ |
| 139 | 3925 - 3950 | | | | 5.54-19 | | | | | | | | | |
| 140 | 3950 - 3975 | | | | 5.84-19 | | | | | | | | | |
| 141 | 3975-4000 | | | | 6.15-19 | | | | | | | | | |
| 142 | 4000 - 4050 | | | | 6.50-19 | | | | | | | | | |
| 143 | 4050-4100 | | | | 6.43-19 | | | | | | | | | |
| 144 | 4100 - 4150 | | | | 6.34-19 | | | | | | | | | |
| 145 | 4150 - 4200 | | | | 6.27-19 | | | | | | | | | |
| 146 | 4200-4250 | | | | 6.14-19 | | | | | | | | | |
| 147 | 4250 - 4300 | | | | 5.97-19 | | | | | | | | | |
| 148 | 4300-4350 | | | | 5.80-19 | | | | | | | | | |
| 149 | 4350 - 4400 | | | | 5.63-19 | | | | | | | | | |
| 150 | 4400 - 4450 | | | | 5.47-19 | | | | | | | | | |
| 151 | 4450 - 4500 | | | | 5.30-19 | | | | | | | | | |
| 152 | 4500 - 4600 | | | | 4.84-19 | | | | | | | | | |
| 153 | 4600 - 4700 | | | | 4.27-19 | | | | | | | | | |
| 154 | 4700 - 4800 | | | | 3.78-19 | | | | | | | | | |
| 155 | 4800-4900 | | | | 3.27-19 | | | | | | | | | |
| 156 | 4900 - 5000 | | | | 2.85-19 | | | | | | | | | |
| 157 | 5000 - 5100 | | | | 2.45-19 | | 1.14-18 | | | | | | | |

- 176 --

1

No	Wavelength		0	NO	NO	NO	NO	UNO	UNO		110	ноно	нс	НО
NO.	(Å)		03	N ₂ O	NO ₂	N ₂ O ₅	NO ₃	HNO ₃	HNO ₂	$H_2 O_2$	HO ₂	нсно	Y ₁	Y ₂
158	5100-5200				2.17-19		1.37-18							
159	5200 - 5300				1.88-19		1.77-18							i.
160	5300 - 5400				1.6 0-1 9		1.95 - 18							
161	5400-5500				1.31-19		2.03-18							
162	5500-5600				1.09-19		2.74-18							
163	5600 - 5700				9.1-20		2.88-18							
164	5700 - 5800				7.3-20		2.76-18							
165	5800 - 5900				6.2-20		4.33-18							
166	5900-6000				4.9-20		4.06-18							
167	6000-6100				4.18-20		1.90-18							
168	6100 - 6200				3.43-20		1.91-18							
169	6200 - 6300				2.70-20		4.4 4-18							
170	6300 - 6400				2.25-20		3.70-18							
171	6400 - 6500				1.83-20		6.5-19							
172	6500 - 6600				1.5 5-2 0		2.7 2-18							
173	6600 - 6700	:			1.23-20		2.94-18							
174	6700-6800			-	9.8-21		6.2-19							
175	6800 - 6900				8.5-21									
176	6900 - 7000			-	7.3-21									

177

No	Wavelength	0	0	NO	NO	NO	NO	HNO	нио	чо	ЧО	нсно	HC	HO
nu	(Å)	02	O_3	N ₂ O	NO ₂	N ₂ O ₅	NO3	HNO ₃	HNO_2	H ₂ O ₂	п02	пено	Y ₁	Y 2
177	$7\ 0\ 0\ 0 - 7\ 1\ 0\ 0$													
178	7100 - 7200													
179	7200 - 7300	-												
180	7300 - 7400					·			•					
181	7400 - 7500													
182	7500 - 7600													
183	7600 - 7700													
184	7700-7800													
185	7800 - 7900						. *							
186	7900 - 8000													

(脚 注)

1) O₂ , 2) O₃ , 3) N₂O:表5.4c と同じ 4) NO₂ : λ≤4100Å; Bass et al. (1976) 4100Å<λ; Leighton (1961)

- 5) $N_2 O_5$, 6) NO_3 , 7) HNO_3 : Hampson (1980) 8) HNO_2 : 2055Å $\leq \lambda \leq 2725$ Å; Hudson (1977) $3125 \text{ \AA} \le \lambda \le 3900 \text{ \AA}$; Hampson (1980)
- 9) H₂O₂ Hampson (1980)
- 10) HO₂ Hampson (1973)
- 11) HCHO Hampson (1980)

12) Y_1 , Y_2 はそれぞれ $CH_2O \rightarrow H + CHO$ 及び $CH_2O \rightarrow H_2 + CO$ の量子収率を示す。Hampson(1980)

気象研究所技術報告 号9篤 1982

表 5.4 f 吸収断面積 (2055~8000Å)

	表 5	0.41 吸収断	面積(205	$5 \sim 8000 \text{ A}$		(cm ² /粒)
$F_2 Cl_2^{(1)}$	CFC1 ₃ ²⁾	CH ₃ C1 ³⁾	HC1 4)	CCl ₄ ⁵⁾	$C1ONO_2^{6}$	CINO ₂ ⁷
85-20	2.65-19	5.6-21	7.5-21	5.5-19	3.5-18	3.7-18

No.	Wavelength (Å)	$CF_2Cl_2^{1}$	CFC1 ₃ ²⁾	CH ₃ Cl ³⁾	HC1 4)	CC14 5)	$C1ONO_2^{6}$	$C1NO_2^{7}$	CINO ⁸⁾
64	2055.15-2075	1.85-20	2.65-19	5.6-21	7.5-21	5.5-19	3.5-18	3.7-18	4.3-17
65	2075 - 2100	1.05-20	1.83-19	3.1-21	4.8-21	4.9-19	3.5-18	3.5-18	3.5-17
66	2100 - 2125	5.6-21	1.23-19	1.58-21	3.00-21	4.2-19	3.6-18	3.4-18	2.70-17
67	2125 - 2150	2.9-21	7.9-20	7.9-22	1.80-21	3.4-19	3.7-18	3.4-18	2.15-17
68	2150 - 2175	1.66-21	4.9-20	2.6 0-2 2	1.05 - 21	2.65-19	3.7-18	3.4-18	1.65-17
69	2175 - 2200	8.9-22	3.0 0-2 0		6.3-22	2.00-19	3.7-18	3.4-18	1.28-17
70	2200 - 2225	4.5-22	1.90-20			1.40-19	3.5-18	3.3-18	9.5-18
71	2225 - 2250		1.1 5-20			9.8-20	3.2-18	3.0-18	7.7-18
72	2250 - 2275		7.7-21			7.0-20	2.8 5-1 8	2.7-18	5.7-18
73	2275 - 2300					4.9-20	2.5-18	2.45-18	4.5-18
74	2300 - 2325			· · · ·		3.3-20	2.1-18	2.2-18	3.3-18
75	2325-2350			· .		2.20-20	1.74-18	1.95-18	2.6-18
76	2350 - 2375					1.45-20	1.46-18	1.70-18	1.95-18
77	2375 - 2400						1.25-18	1.50-18	1.53-18
78	2400 - 2425						1.07-18	1.34-18	1.0.3-18
79	2425 - 2450						9.2-19	1.23-18	7.5-19
80	2450 - 2475						8.0-19	1.12-18	5.4-19
81	2475 - 2500						7.0 - 1.9	1.02-18	4.2-1.9

- 179 --

No.	Wavelength (Å)	C F ₂ C1 ₂	CFCl ₃	CH₃C1	HC1	CCl4	C1ONO ₂	C1NO ₂	CINO
82	2500-2525						6.2-19	9.2-19	3.2-19
83	2525 - 2550						5.4-19	8.2-19	2.6-19
84	2550-2575						4.8-19	7.4-19	2.17-19
85	2575 - 2600			 			4.4-19	6.6-19	1.90-19
86	2600-2625						3.8-19	5.9-19	1.63-19
87	2625 - 2650						3.5-19	5.1-19	1.50 - 19
88	2650 - 2675						3.1-19	4.5-19	1.37-19
89	2675-2700						2.7-19	3.9-19	1.27-19
90	2700 - 2725					·	2.4-19	3.5-19	1.20-19
91	2725 - 2750						2.15-19	3.1 - 1 9	1.13-19
92	2750 - 2775						1.85-19	2.7-19	1.08-19
93	2775 - 2800						1.58-19	2.4-19	1.04 - 19
94	2800 - 2825						1:32-19	2.2-19	1.01-19
95	2825 - 2850			•	· · · ·		1.12-19	2.1-19	9.9-20
96	2850 - 2875						9.4-20	1.95-19	9.7 - 20
97	2875 - 2900						7.9-20	1.83-19	9.5-20
98	2900 - 2925			4.			6.6-20	1.75-19	9.4-20
99	2925 - 2950						5.6-20	1.70-19	9.4-20
100	2950 - 2975						4.8-20	1.63-19	9.3-20

- 180 --

No.	Wavelength (Å)	CF ₂ Cl ₂	CFC1 ₃	CH ₃ C1	HC1	CCl4	C1ONO ₂	C1NO ₂	CINO
101	2975-3000						4.2-20	1.57-19	9.4-20
102	3000 - 3025			· ·			3.6-20	1.50-19	9.4-20
103	3025-3050						3.0-20	1.45-19	9.5-20
104	3050-3075						2.55-20	1.40-19	9.7-20
105	3075 - 3100						2.20-20	1.36-19	1.0 0-1 9
106	3100 - 3125						1.85-20	1.28-19	1.03-19
107	3125 - 3150						1.57 - 20	1.20-19	1.07-19
108	3150 - 3175						1.35-20	1.1 3-1 9	1.14-19
109	3175-3200					i	1.17-20	1.05-19	1.19-19
110	3200-3225						1.00-20	9.8-20	1.21-19
111	3225-3250						8.4-21	8.9-20	1.24-19
112	3250 - 3275						7.3-21	8.1-20	1.27-19
113	3275-3300						6.4-21	7.4-20	1.30-19
114	3300-3325						5.7-21	6.8-20	1.31-19
115	3325 - 3350						5.0-21	6.2-20	1.32-19
116	3350-3375						4.5-21	5.5-20	1.3 3-1 9
117	3375 - 3400				, ,		4.0-21	5.0 - 20	1.34-19
118	3400-3425						3.7-21	4.5-20	1.33-19
119	3425 - 3450						3.5-21	4.1-20	1.33-19

- 181 --

No.	Wavelength (Å)	CF_2Cl_2	CFCl ₃	CH ₃ C1	HCl	CC1	CIONO ₂	C1NO ₂	CINO
120	3450-3475						3.2-21	3.6-20	1.32-19
121	3475-3500						3.00-21	3.2-20	1.31-19
122	3500-3525						2.8-21	2.85-20	1.30-19
123	3525 - 3550						2.6 5-21	2.5-20	1.27 - 19
124	3550 - 3575						2.5-21	2.2-20	1.24-19
125	3575-3600						2.3 5-2 1	1.93-20	1.22-19
126	3600-3625						2.2-21	1.72-20	1.18-19
127	3625 - 3650						2.1 2-2 1	1.50 - 20	1.15-19
128	3650 - 3675				,		2.02-21	1.31-20	1.10-19
129	3675-3700						1.93-21	1.14 - 20	1.05-19
130	3700 - 3725					· · · · ·	1.83-21	1.00-20	1.00-19
131	3725 - 3750						1.73-21	8.7-21	9.5-20
132	3750 - 3775						1.63-21	7.6-21	9.0-20
133	3775-3800				-		1.53-21	6.6-21	8.5-20
134	3800-3825						1.43-21	5.9-21	8.0-20
135	3825-3850						1.33-21	5.1-21	7.5-20
136	3850-3875						1.23-21	4.6-21	7.1-20
137	3875-3900						1.13-21	4.1-21	6.7-20
138	3900-3925						1.06-21	3.5-21	6.2-20

No.	Wavelength (Å)	CF ₂ Cl ₂	CFC1 ₃	CH ₃ C1	HC1	C C 1 ₄	CIONO ₂	C1NO ₂	CINO
139	3925 - 3950					<u> </u>	9.9-22	3.1-21	5.9-20
140	3950 — 3975						9.3-22	2.6-21	5.5 - 20
141	3975-4000						8.8-22	2.25-21	5.2-20
142	4000-4050						7.8-22		
143	4050-4100						6.5-22		
144	4100-4150						5.4-22		
145	4150 - 4200						4.5-22		
146	4200-4250						3.8-22		
147	4250 - 4300					-	3.1-22		
148	4300 - 4350						2.5-22		
149	4350-4400						2.05-22		
150	4400 - 4450						1.71-22		
151	4450-4500						1.42-22		
152	4500-4600					-	1.0 2 - 2 2		
153	4600 - 4700								
154	4700 - 4800								
155	4800 - 4900								
156	4900-5000						,		
157	5000-5100								

- 183 -

No.	Wavelength (Å)	C F 2 C l2	CFCl3	CH3C1	HC1	CCl4	C1ONO ₂	C1NO ₂	CINO
158	5100-5200								
159	5200-5300								
160	5300 - 5400			-					
161	5400 - 5500								
162	5500 - 5600								
163	5600-5700								
164	5700 - 5800								
165	5800-5900				·.				

(脚 注)

1),2):表5.4cと同じ

3)~8):表5.4dと同じ

気象研究所技術報告 第6号 1982

表 5.5 モデル大気

高度	空気密度 ¹⁾	空気積分量2)	気 温 ³⁾	スケールレイト4)	オゾン密度 ⁵⁾	オゾン積分量 ⁶⁾	J no ⁷⁾
km	(粒子/cm ³)	(粒子∕cm²)	(°k)	(km)	(粒子/cm ³)	(粒子/cm ²)	(1/s)
60	0.6439+16	0.4672+22	247.021	7.3678	0.130+11	0.3500+16	0.130-5
59	0.7288+16	0.5449+22	249.769	7.4474	0.154+11	0.4920+16	0.118-5
58	0.8239+16	0.6226+22	252.518	7.5 2 7 0	0.182+11	0.6600+16	0.106-5
57	0.9302 + 16	0.7103+22	255.268	7.6066	0.215+11	0.8585+16	0.972-6
56	$0.1\ 0\ 4\ 9+1\ 7$	0.8092+22	258.019	7.6862	0.254+11	0.1093+17	0.876-6
55	0.1181+17	0.9207+22	260.771	7.7658	0.300+11	0.1370+17	0.787-6
54	0.1329+17	0.1046+23	$2\ 6\ 3.5\ 2\ 4$	7.8453	0.365+11	0.1702+17	0.698-6
53	0.1493+17	0.1187+23	266.277	7.9248	0.440+11	0.2105+17	0.617-6
52	0.1675+17	0.1346+23	269.031	8.0043	0.540+11	0.2595+17	0.542 - 6
51	0.1866+17	0.1524+23	270.650	8.0499	0.657+11	0.3193+17	0.474 - 6
50	0.2135 + 17	0.1725+23	270.650	8.0474	0.800+11	0.3922+17	0.412 - 6
49	$0.2\ 4\ 1\ 8\ +\ 1\ 7$	0.1952+23	270.650	8.0449	0.997+11	0.4820+17	0.355 - 6
48	0.2738+17	0.2210+23	270.650	8.0 4 2 4	0.124+12	0.5939+17	0.304-6
47	0.3111+17	0.2503+23	269.684	8.0112	0.1 5 5 + 1 2	0.7334+17	0.259 - 6
46	0.3564+17	0.2836 ± 23	266.925	7.9267	0.193+12	0.9074+17	0.219-6
45	0.4088+17	0.3219+23	$2\ 6\ 4.1\ 6\ 4$	7.8423	0.240+12	0.1124+18	0.184-6
44	0.4696 + 17	0.3658+23	$2\ 6\ 1.4\ 0\ 3$	7.7579	0.291+12	0.1389+18	0.153-6
43	0.5403+17	0.4 1 6 3 + 2 3	258.641	7.6735	0.353+12	0.1711+18	0.126 - 6
42	0.6 2 2 7 + 1 7	0.4745 ± 23	255.878	7.5892	0.428+12	0.2102+18	0.103-6
41	0.7186+17	0.5415+23	253.114	7.5049	0.519+12	0.2575+18	0.836 - 7
40	0.8308+17	0.6190+23	250.350	7.4206	0.630+12	0.3150+18	0.670-7
39	0.9620+17	0.7086 ± 23	247.584	7.3363	0.750+12	0.3840+18	0.512-7
38	0.1116+18	0.8 1 2 5 + 2 3	244.818	7.2 5 2 1	0.894+12	0.4662+18	0.385-7
37	0.1296+18	0.9331+23	$2\ 4\ 2.0\ 5\ 0$	7.1678	0.106+13	0.5639+18	0.286-7
36	0.1509+18	0.1073+24	239,282	7.0837	0.1 2 7 + 1 3	0.6804+18	0.208-7
35	0.1760+18	0.1 2 3 7 + 2 4	236.513	6.9995	0.1 5 1 + 1 3	0.8194+18	0.149-7
34	0.2056+18	$0.1\ 4\ 2\ 8\ +\ 2\ 4$	$2\ 3\ 3.7\ 4\ 3$	6.9154	0.180+13	0.9849+18	0.963-8
33	0.2406+18	0.1651+24	230.974	6.8312	0.215+13	0.1182+19	0.605-8
32	0.2818+18	0.1912 + 24	$2\ 2\ 8.4\ 9\ 0$	6.7557	0.245+13	0.1 4 1 2 + 1 9	0.370-8
31	0.3283+18	0.2 2 1 7 + 2 4	227.500	6.7243	0.280+13	0.1675+19	0.219-8
30	0.3828+18	0.2573 + 24	$2\ 2\ 6.5\ 0\ 9$	6.6929	0.310+13	0.1970+19	0.125-8
29	$0.4\ 4\ 6\ 6\ +\ 1\ 8$	0.2987+24	225.518	6.6616	0.335+13	0.2292+19	0.596 - 9
28	$0.5\ 2\ 1\ 4+1\ 8$	0.3471+24	224.527	6.6302	0.360+13	0.2640+19	0.269-9
27	0.6092+18	0.4037 + 24	2 2 3.5 3 6	6.5989	0.370+13	0.3005+19	0.115-9
26	0.7122+18	0.4697+24	$2\ 2\ 2.5\ 4\ 4$	6.5675	0.375+13	0.3377+19	0.458 - 10
25	$0.8\;3\;34\!+\!1\;8$	0.5470+24	$2\ 2\ 1.5\ 5\ 2$	6.5362	0.370+13	0.3750+19	0.170-10

高	度	空気密度 ¹⁾	空気積分量 ²⁾	気 温 ³⁾	スケールV1ト ⁴⁾	オゾン密度5)	オゾン積分量 ⁶⁾	J no ⁷⁾
k	m	(粒子/cm ³)	(粒子/cm ²)	(° k)	(km)	(粒子/cm ³)	(粒子/cm ²)	(1/s)
	24	0.9759+18	0.6375+24	220.560	6.5049	0.360 + 13	0.4115+19	0.498 - 10
	23	0.1144+19	0.7434+24	219.567	6.4736	0.340 + 13	0.4465 ± 19	0.132 - 11
	22	0.1341+19	0.8677+24	218.574	6.4423	0.320+13	0.4795+19	0.307 - 12
	21	0.1574+19	0.1013+25	217.581	6.4110	0.300+13	0.5105+19	0.623 - 13
	20	0.1849+19	0.1185+25	216.650	6.3816	0.280+13	0.5395+19	0.108-13
	19	0.2162+19	0.1385+25	216.650	6.3796	0.255+13	0.5662+19	
	18	0.2529+19	0.1620+25	216.650	6.3776	0.233+13	0.5906+19	
	17	0.2959+19	0.1894+25	216.650	6.3756	0.215+13	0.6130+19	
	16	0.3461+19	0.2215+25	216.650	6.3736	0.190+13	0.6333+19	
	15	0.4049+19	0.2591+25	216.650	6.3716	0.170+13	0.6513+19	
	14	0.4737+19	0.3030+25	216.650	6.3696	0.158+13	0.6677+19	- h
	13	0.5 5 4 3 + 1 9	0.3544+25	216.650	6.3676	0.1 4 5 + 1 3	0.6828+19	
	12	0.6486+19	0.4145 + 25	216.650	6.3656	0.1 3 2 + 1 3	0.6967+19	
	11	0.7585+19	0.4849+25	216.650	6.3672	0.119+13	0.7092+19	
	10	0.8598+19	0.5658+25	2 2 3.2 5 2	6.5 5 5 4	0.104+13	0.7204+19	
	9	0.9711+19	0.6573+25	229.733	6.7436	0.980+12	0.7305+19	
	8	0.1093+20	0.7606+25	236.215	6.9317	0.920+12	0.7400+19	
	7	0.1 2 2 7 + 2 0	0.8766+25	$2\ 4\ 2.7\ 0\ 0$	7.1198	0.870+12	0.7489+19	
	6	0.1372+20	0.1066+26	249.187	7,3078	0.830+12	0.7574+19	
	5	0.1531+20	0.1 1 5 2 + 2 6	255.676	7.4957	0.800+12	0.7656+19	
	4	0.1704+20	0.1 3 1 3 + 2 6	262.166	7.6836	0.770+12	0.7734+19	
	3	0.1890+20	0.1493 + 26	268.659	7.8714	0.740+12	0.7810+19	
	2	0.2093+20	0.1692+26	275.154	8.0 5 9 2	0.710+12	0.7882+19	
	1	0.2311+20	0.1912+26	281.651	8.2465	0.690+12	0.7952+19	
	0	0.2547+20	0.2155+26	288.150	8.4 3 4 5	0.670+12	0.8020+19	
_		l						

(脚注)

1) ~ 4) : US Standard Atmosphere 1976

5), 6): 中緯度の平均オゾン分布. 初期値とする.

7): NOの解離率, Frederick and Hudson (1979)による。太陽天頂角60°の場合

— 187 —

5.3 基礎方程式

ある成分の濃度 n_i(i=1、…)の一次元光化学モデルにおける連続方程式は

$$\frac{\partial n_i}{\partial t} = Q_i(n_j) - L_i(n_j) n_i - \frac{\partial}{\partial z} (\phi_i)$$
(5.1)

と書ける。ただし $Q_i(n_j)$ は光化学的生成項、 $L_i(n_j) n_i$ は光化学的消滅項、 ϕ_i は渦動拡散フラックス(上向き)を表わす。

 ϕ_i は

$$\phi_{i} = -K_{z} \left\{ \frac{\partial n_{i}}{\partial z} + \left(\frac{\partial T}{\partial t} + \frac{1}{H} \right) n_{i} \right\}$$
(5.2)

と表わすことができる。ただし K_z は渦動拡散係数、Tは気温、Hはスケールハイトを表わす。 (5.1) 式を差分方程式に書き換えると(Shimazaki and Ogawa, 1974)、

$$\frac{n_{i}(z, t+4t) - n_{i}(z, t)}{4t} = Q_{i}(z, t) - L_{i}(z, t) n_{i}(z, t+4t) + \frac{1}{(4z)^{2}} \left[K_{z}(z)n_{i}(z+4z, t+4t) - \left\{ \gamma(z)K_{z}(z) + K_{z}(z-4z) \right\} n_{i}(z, t+4t) + \gamma(z-4z)K_{z}(z-4z)n_{i}(z-4z, t+4t) \right]$$
(5.3)

と書ける。ただし $\gamma(z)$ は

$$\boldsymbol{\gamma}(z) = 2 - \frac{T(z + \Delta z)}{T(z)} - \frac{\Delta z}{H}$$
(5.4)

を表わしまた **b**i は

$$\phi_{i} = -\frac{K_{Z}(z)}{\varDelta z} \left\{ n_{i}(z + \varDelta z, t + \varDelta t) - \gamma(z) n_{i}(z, t + \varDelta t) \right\}$$
(5.5)

と表わされる。

(5.3) 式は整理すると次の様に書ける、

 $-A n_i(z + \Delta z, t + \Delta t) + B n_i(z, t + \Delta t) - C n_i(z - \Delta z, t + \Delta t) = D$ (5.6) $t_i t_i L$

$$A = K_{z}(z, t) \Delta t / (\Delta z)^{2}$$

$$B = 1 + L_{i}(z, t) \Delta t + \{\gamma(z) \ K_{z}(z) + K_{z}(z - \Delta z)\} \cdot \Delta t / (\Delta z)^{2}$$

$$C = \gamma(z - \Delta z) \ K_{z}(z - \Delta z) \ \Delta t / (\Delta z)^{2}$$

$$D = n_{i}(z, t) + Q_{i}(z, t)$$

5.4 定常状態

5.4.1 方程式

定常状態での n_i は (5.1) 式で $\frac{\partial n_i}{\partial t} = 0$ として得られる。この場合 (5.6)、(5.7) 式は $-An_i(z+\Delta z)+Bn_i(z)+Cn_i(z-\Delta z)=D$ (5.8) $A=K_z(z)/(\Delta z)^2$ $B=L_i(z)+ \{\gamma(z) K_z(z)+K_z(z-\Delta z)/(\Delta z)^2$ $C=\gamma(z-\Delta z) K_z(z-\Delta z)/(\Delta z)^2$ (5.9)

 $D = Q_i(z)$

となる。

5.4.2 境界条件

(5.8) 式を用いて n_i の高度分布 $n_i(z)$ 、i = 1、2、……を求めるとき上部及び下部の境界条件 を必要とするがその与え方には3種類を考えた。

即ち

(a)粒子濃度

これは観測によってその濃度が分っている成分に対する粒子濃度を与える。

(b)光化学平衡

光化学反応過程が拡散過程に比べて速く拡散の効果が無視できるような成分に適用できる。

(5.1) 式で $\frac{\partial \mathbf{n}_i}{\partial t} = 0$, $\frac{\partial \phi_i}{\partial z} = 0$ として $\mathbf{n}_i = \mathbf{Q}_i (\mathbf{n}_j / \mathbf{L}_i (\mathbf{n}_j))$

で与えられる。

(c)フラックス

(1)境界でのフラックスが与えられる場合と

(2)上部境界において境界より上方に生成源をもたない成分の場合がある。

後者の場合はたとえば CH4、CFCl3 等では

 $\phi_i(\mathbf{z}) = \mathbf{L}_i(\mathbf{z}) \mathbf{n}_i \mathbf{H}_i$

(5.11)

(5.10)

で与えられる。ただし $L_i(z) n_i$ は境界での光化学的消滅率、 H_i は i 成分のスケールハイト を表わす。

5.4.3 解き方

計算しようとする高度をK個の層に分け下から1、2、…k、…、Kとする。i番目の成分の第 k層での濃度を、suffix i を省略して n_k と書く。A、B、C、Dの第k層の値を A_k 、 B_k 、 C_k 、 D_k とすると (5.8) 式は

$$-A_{k}n_{k+1}+B_{k}n_{k}-C_{k}n_{k-1}=D_{k}$$
(5.12)

と書ける。

境界条件として下部(k = 1)及び上部(k = K)での濃度がそれぞれ n_{10} 、 n_{ko} と与えられる場合を考える、

$$n_1 = n_{10}, n_k = n_{k0}$$
 (5.13)

次に

$$n_k = a_k + b_k \cdot n_2, \quad k = 1, 2, \dots, K$$
 (5.14)

とおく。

(5.14) 式を(5.12) 式に代入して、

$$\mathbf{n}_{k} = \frac{\mathbf{B}_{k-1}a_{k-1} - \mathbf{C}_{k-1}a_{k-2} - \mathbf{D}_{k-1}}{\mathbf{A}_{k-1}} + \frac{\mathbf{B}_{k-1}\mathbf{b}_{k-1} - \mathbf{C}_{k-1}\mathbf{b}_{k-2}}{\mathbf{A}_{k-1}} \cdot \mathbf{n}_{2}$$
(5.15)

が得られる。(5.15)と(5.14)を比較して

$$\left. \begin{array}{c} a_{k} = \frac{B_{k-1}a_{k-1} - C_{k-1}a_{k-1} - D_{k-1}}{A_{k-1}} \\ b_{k} = \frac{B_{k-1}b_{k-1} - C_{k-1}b_{k-2}}{A_{k-1}} \end{array} \right\}$$
(5. 16)

が得られる、

(5.14) 式で k = 1、2 として

$$a_1 = n_{10}, b_1 = 0.0$$

$$a_2 = 0.0, b_2 = 1.0$$

(5.17) を (5.16) に代入すると

$$a_3, a_4, \dots, a_K$$

 b_3 , b_4 , \cdots , b_K

$$n_2 = (a_{K_0} - a_K) / b_K \tag{5.18}$$

となり、 n_k (k = 1、2、……、K) が求められる。

境界条件として上部の境界では粒子濃度、下部の境界ではフラックス $\phi(1)$ が与えられている場合には(5.17)式のかわりに

$$a_{1} = \frac{\phi(1) \Delta z}{\gamma(1) \cdot K_{z}(1)}, b_{1} = \frac{1}{\gamma(1)}$$

$$a_{2} = 0.0, \quad b_{2} = 1.0$$

とする。ただし、 $\gamma(1)$ 、 $K_z(1)$ は第1層の値とする。

また下部境界で粒子濃度、上部境界でフラックスが(5.11)式で与えられる場合には、(5.18)式 のかわりに

(5.19)

$$n_{2} = \frac{d_{K}a_{K-1} - a_{K}}{b_{K} - d_{K}b_{K-1}}$$
(5. 20)
$$d_{K} = \frac{\gamma(K)}{1 + \frac{L(K) H(K) Az}{K_{Z}(z)}}$$
(5. 21)

とする。

5.4.4 計算フロー

 N_2 、 O_2 、 H_2 、 CO_2 以外の成分を5つのグループに分けて取扱った。すなわち酸素グループ (O_3 、 $O(^3P)$ 、 $O(^1D)$)、窒素グループ(N_2O 、N、NO、NO₂、 NO_3 、 N_2O_5 、 HNO_3)、水素グループ (H_2O 、H、HO、HO₂、 H_2O_2)、メタングループ(CH_4 、 CH_3 、 CH_3O_2 、 CH_3O 、 CH_2O 、CHO、CO)、 塩素グループ(CF_2Cl_2 、 $CFCl_3$ 、 CCl_4 、 CH_3Cl 、Cl、ClO、 $ClONO_2$ 、HCl)である。各グループの中 で光化学反応による交換が速い成分はまと

めて光化学平衡を仮定する。

計算のフローチャートを 図5.2 に示す。 酸素グループについては O_3 、 $O({}^3P)$ 、 $O({}^1D)$ の間で光化学平衡を仮定して 3 成分間の相 対濃度を計算する。次に $Ox = O_3 + O({}^3P)$ + $O({}^1D)$ とすると Oxの寿命は長くなり その高度分布を(5.8)、(5.9)式で計算する。 Oxが決定されると O_3 、 $O({}^3P)$ 、 $O({}^1D)$ は 決定される。 O_2 の励起状態の成分 $O_2({}^1\Sigma)$ 、 $O_2({}^1\Delta g)$ はOx に含めず O_3 、 $O({}^3P)$ 、 $O({}^1D)$ を求めたのち計算する。

窒素グループについては N、NO、NO₂ 等の源となる N₂O の分布をまず計算す る。次に

 $[Total N] = [N] + [NO] + [NO_2] +$ $[NO_3] + 2 [N_2O_5] + [HNO_3]$

として [Total N] の高度分布を計算する。 但し、[] は粒子濃度 (particles/cm³) を示す。

N、NO、NO₂、NO₃、N₂O₅、HNO₃の間 の光化学平衡を仮定して各成分の分布を計 算する。

図 5.2 計算フローチャート(定常状態)

水素グループについては、H、HO 等の源となる H₂O の分布をまず計算し、次に H、HO、HO₂、 H₂O₂ の間の光化学平衡から各成分の濃度を計算する。

メタングループに関しては、CH₄ の酸化過程は CH₄→CH₃→CH₃O₂→CH₃O→CH₂O→CHO→ CO→CO₂ である。まず CH₄ の高度分布を計算する。次に CH₃、CH₃O₂、CH₃O、CH₂O、CHO の間で光化学平衡を仮定して各成分の濃度を計算する。CO は比較的寿命が長いので別に計算する。 CO₂ の混合比は一定、[CO₂]/[M]=0.000314 とした。但し [M] は空気分子の濃度を示す。

塩素グループについては、Cl、ClO 等の源となる CF_2Cl_2 、CFCl₃、CCl₄、CH₃Cl の分布を各々 独立に計算し次に Cl、ClO、ClONO₂、HCl 間の光化学平衡から各成分の濃度を決める。

図5.2 に示すごとく O_3 以外の成分を計算した後、 O_3 の濃度を計算し、以前の O_3 との差が一定 値以下になるまで計算をくり返す。

5.4.5 計算式

表5.1 の光解離反応 J1、J2、……、J31 の太陽光線による解離率を J_i(i = 1-31) とする。考 慮する波長域(800-8000Å)を186個の波長区間に分ける。第j番目の波長区間に対する解離率 J_i の成分を J(i、j) とすると

$$\begin{split} J_{i} &= \sum_{j=1}^{186} J(i, j) \\ J(i, j) &= Y(i, j). \sigma(i, j) T(j) F_{\infty}(j) \end{split}$$

で表わされる。ただし Y(i、j) 及び σ (i、j) は第 i 番目の光解離の第 j 番目の波長区間の量子収率 及び吸収断面積(表5.4a—5.4f)を示す。 T(j) 及び F_∞(j) は第 j 番目の波長区間における透過関 数及び大気外太陽放射強度(表5.3a—5.3b)を示す。

透過関数は太陽光線が大気外から考えている高度まで到達するとき光路中の酸素分子とオゾンの 吸収のために減衰を受けることを考慮して次式で表わされる、

 $T(j) = \exp \{-\sigma(O_2, j) N(O_2) - \sigma(O_3, j) N(O_3)\}$

ただし $\sigma(O_2, j)$ 、 $\sigma(O_3, j)$ は第 j 番目の波長区間での O_2 及び O_3 の吸収断面積を示し、また $N(O_2)$ 及び $N(O_3)$ は光路中の O_2 及び O_3 の粒子濃度の積分値(particles/cm²)を示す。

T (j) の計算で、酸素分子の Schumann-Runge Bands (1750-2055Å、j=49-63) では上記の 計算式は修正しなくてはならないが本報告では Muramatsu (1975) の方法を用いた。

表5.2 の反応式とそれに対する反応速度定数 $R_1 R_2 \cdots R_{98}$ 及び上述の解離率を用いて各グループ内の成分の濃度の計算は次のように表わされる。ただし[A]は成分Aの粒子濃度 $(particles/cm^3)$ を示す。

(1) 酸素グループ

O₃、O(³P)、O(¹D)の間の光化学平衡を仮定し [O₃]> [O(³P)]>> [O(¹D)] を考慮し、O₃、

- 192 -

O(³P)の光化学平衡時の値を O_{3e}、O_e とすると

$$[O_{3e}] = \frac{-D + \sqrt{D^2 + 4R_2R_3[O_2][M](2J_3^* + A)(2J_2^*[O_2] + P)}}{2R_3(2J_3^* + A)}$$
$$[O_e] = \frac{[J_3^* + A)[O_{3e}]}{R_2[O_2][M] - R_3[O_{3e}]}$$

ただし

$$\begin{split} J_2^* &= J_1 + J_2 \\ J_3^* &= J_3 + J_4 + J_5 + J_6 + J_7 \\ D &= 2 J_2^* R_3 \ [O_2] + R_2 \ [O_2] \ [M] \ A + J_3^* B + AB \\ A &= R_{20} \ [NO] + R_{24} \ [NO_2] + R_{41} \ [H] + R_{44} \ [HO] \\ &+ R_{48} \ [HO_2] + R_{84} \ [Cl] \\ B &= R_{21} \ [NO] \ [M] + R_{23} \ [NO_2] + R_{25} \ [NO_2] \ [M] \\ &+ R_{28} \ [N] \ [M] + R_{33} \ [HNO_3] + R_{43} \ [HO] + R_{47} \ [HO_2] \\ &+ \ (R_{51} + R_{52}) \ [H_2O_2] + R_{61} \ [H_2] + R_{82} \ [CO] \ [M] \\ &+ R_{85} \ [ClO] + R_{91} \ [HCl] \\ P &= J_8 \ [N_2O] + J_{10} \ [NO_2] + J_{20} \ [HO_2] + J_{25} \ [CO_2] \\ &+ \ (J_{15} + J_{16}) \ [NO_2] + J_{20} \ [HO_2] + J_{25} \ [CO_2] \\ &+ R_{29} \ [N] \ [O_2] + R_{31} \ [N] \ [NO] + R_{45} \ [HO]^2 + R_{54} \ [H] \ [HO] \end{split}$$

である。

 $G= [O_e]/[O_{3e}]$

[O_x] = [O₃] + [O (³P)] + [O (¹D)] = [O₃] + [O (³P)] とおくと [O_x] の分布を求める方 程式

$$\frac{\partial [O_X]}{\partial t} = Q - L \cdot [O_X] - \frac{\partial \phi_X}{\partial z}$$

のQ、Lは次のごとくなる。 ϕ_x は $[O_x]$ のフラックス。

$$Q=2J_{2}^{*} [O_{2}]+P$$

$$L \cdot [O_{x}]=2R_{1} [O]^{2} [M]+2R_{3} [O] [O_{3}]+A [O_{3}]+B [O]$$

$$=\frac{1}{1+G} \left\{ \frac{2G(R_{1}G[M]+R_{3})[O_{x}]}{1+G} + A+BG \right\} [O_{x}]$$

 $O(^{1}D)$ 、 $O_{2}(^{1}\Sigma g)$ 、 $O_{2}(^{1}\Delta g)$ は O_{3} 、 $O(^{3}P)$ と光化学平衡にあるとして次のように求められる。

$$\frac{[O(^{1}D)]}{[O_{3}]} = \frac{J_{4} + J_{5} + J_{6} + J_{7}}{R_{4}[O_{2}] + R_{5}[N_{2}]}$$
(5.22)

$$\frac{[O_2({}^{1}\Sigma_g)]}{[O_3]} = \frac{J_5 + J_7 + R_4[O_2][O({}^{1}D)] / [O_3]}{R_8[O_3] + R_9[O_2] + R_{10}[N_2] + R_{17}}$$
(5.23)
$$\frac{[O_2({}^{1}A_g)]}{[O_3]} = \frac{J_4 + J_6}{R_{11}[O_3] + R_{12}[O_2] + R_{13}[N_2] + R_{15}}$$
(5.24)

ただし(5.22)式では J₆、J₇ で生成される O(1 S) はすみやかに O(1 D) に変換されると仮定している。

(2) 窒素グループ

N、NO、…等の源となる N_2O の分布を次式で計算し高度分布を求める、

$$\frac{\partial [N_2 O]}{\partial t} = -\left\{J_8 + J_9 + (R_{18} + R_{19})[O(^1D)]\right\}[N_2 O] - \frac{\partial \phi}{\partial z}$$

ただし ϕ は N₂O の上向きフラックス。

$$[NO] = r_{1} [NO_{2}]$$

$$[HNO_{3}] = r_{2} [NO_{2}]$$

$$[N] = r_{3} [NO_{2}] / (r_{4} + r_{5} [NO_{2}])$$

$$[NO_{3}] = r_{7} [NO_{2}] / (r_{8} + r_{9} [NO_{2}])$$

$$[NO_{3}] = r_{6} [NO_{2}] [NO_{3}]$$

$$[Total N] = [N] + [NO] + [NO_{2}] + [NO_{3}]$$

$$+ 2 [N_{2}O_{5}] + [HNO_{3}]$$

$$= r_{3} [NO_{2}] / (r_{4} + r_{5} [NO_{2}]) + r_{1} [NO_{2}] + NO_{2}$$

$$+ (1 + 2r_{6} [NO_{2}]) r_{7} [NO_{2}] / (r_{8} + r_{9} [NO_{2}])$$

$$+ r_{2} [NO_{2}]$$

ただし

 $Q=2J_{9} [N_{2}O]+2R_{18} [N_{2}O] [O(^{1}D)]-2R_{31} [N] [NO]$

 ϕ は Total N の上向きフラックス

である。ただし今回は J₉=0.0 とおいた。

[ΣN] が求められると、[N]、[NO]、……に関する上述の式から [NO₂] が次の式から計算される、

$$a_1 [NO_2]^3 + a_2 [NO_2]^2 + a_3 [NO] + a_4 = 0.0$$

ただし

```
a_1 = 2r_5r_6r_7 + r_5r_9r_{10}
```

```
a_2 = r_5 r_7 + 2r_4 r_6 r_7 + r_3 r_9 + r_4 r_9 r_{10} + r_5 r_8 r_{10} - [\Sigma N] r_5 r_9
```

 $a_3 = r_4 r_7 + r_3 r_8 + r_4 r_8 r_{10} - [\Sigma N] (r_4 r_9 + r_5 r_8)$

 $a_4 = - [\Sigma N] r_4 r_8$

$$r_{10} = 1 + r_1 + r_2$$

 $[NO_2]$ が計算されると、[NO]、…… $[N_2O_5]$ が上述の式から計算される。

(3) 水素グループ

まず H₂O の分布を次式で決定する、

$$\frac{\partial [H_2 O]}{\partial t} = Q - L[H_2 O] - \frac{\partial \phi}{\partial z}$$

$$Q = (R_{49} [HO_2] + R_{63} [H_2] + R_{53} [H_2O_2]$$

$$+ R_{68} [CH_4] + R_{45} [HO]) [HO]$$

$$L = R_{40} [O(^1D)]$$

$$\phi \ \text{は} \ H_2 O \ \mathcal{O} \bot 向 \ge 7 = \sqrt{2} \times \mathbb{C} \& \mathbb{Z}_0$$

次に H、HO、HO₂、H₂O₂の光化学平衡からこれ等の成分の比を求める、

$$P_{1} = \frac{[H]}{[HO]} = \frac{R_{43}[O] + R_{83}[CO]}{R_{41}[O_{3}] + R_{42}[M][O_{2}]}$$

$$P_{2} = \frac{[HO_{2}]}{[HO]} = \frac{R_{42}[O_{2}][M]P_{1} + R_{44}[O_{3}]}{J_{20} + R_{35}[NO] + R_{47}[O] + R_{48}[O_{3}]}$$

$$P_{3} = \frac{[H_{2}O_{2}]}{[HO]} = \frac{(R_{46}[N] + R_{50}P_{2}^{2})[HO]}{R_{33}[HO] + J_{21}}$$

また

$$[\Sigma H] = [H] + [HO] + [HO_2] + 2 [H_2O_2]$$

の分布は次式で計算する。

$$\frac{\partial [\Sigma H]}{\partial t} = Q - L[\Sigma H] - \frac{\partial \phi}{\partial z}$$

ただし

$$\begin{split} & Q = 2J_{19} \ [H_2O] + 2J_{23} \ [CH_2O] + J_{18} \ [HNO_3] + J_{30} \ [HCl] \\ & + (2R_{40} \ [H_2O] + R_{62} \ [H_2] + R_{65} \ [CH_4] + R_{97} \ [CH_3Cl]) \ [O(^1D)] \\ & + (2R_{61} \ [H_2] + R_{64} \ [CH_4] + R_{78} \ [CH_2O] + R_{33} \ [HNO_3] + R_{91} \ [HCl]) \ [O(^3P)] \\ & + (R_{70} \ [CH_3] + R_{75} \ [CH_3O] + R_{81} \ [CHO]) \ [O_2] \\ & + R_{67} \ [CH_4] \ [O_3] + R_{88} \ [H_2] \ [Cl] \end{split}$$

$$\begin{split} L = q_2 \ [\Sigma H] + q_1 \\ q_2 = \ & \{ 2R_{45} + 2R_{50}P_2{}^2 + 2R_{49}P_2 + R_{53}P_3 + 2(R_{54} + R_{55} \ [M])P_1 \\ & + 2R_{56}P_1P_2 + 2 \ (R_{58} + R_{59})P_1P_3 \} / P_0^2 \\ q_1 = \ & \{ R_{68} \ [CH_4] + R_{79} \ [CH_2O] + R_{34} \ [HNO_3] + R_{38} \ [M] \ [NO_2] \\ & + R_{90} \ [HCl] + R_{96} \ [CH_3Cl] \\ & + (R_{72} \ [CH_3O_2] + R_{37} \ [M] \ [NO] + R_{89} \ [Cl] \ P_2 + 2R_{52} \ [O] \ P_3 \} / P_0 \end{split}$$

 $P_0 = 1 + P_1 + P_2 + 2P_3 \sigma \delta \delta$

[**Σ**H] が求められると、[HO] は

A $[HO]^2 + B [HO] - C = O$

から求められる。ただし

 $A \!=\! 2(R_{46} \ [M] \!+\! R_{50}P_2^2) \!+\! (1 \!+\! P_1 \!+\! P_2)R_{53}$

 $B \!=\! (1\!+\!P_1\!+\!P_2)J_{21}\!- \ [\Sigma H] R_{53}$

 $C = [\Sigma H] J_{21}$

である。[HO] が分ると [H]、[HO₂]、[H₂O₂] は上述の P₁、P₂、P₃ から計算される。 (4) メタングループ

CH4、CO は次の連続方程式から高度分布を計算する。

$$\begin{aligned} \frac{\partial [CH_4]}{\partial t} &= -\left\{ J_{22} + R_{64} [O] + (R_{65} + R_{66}) [O(^1D)] \\ &+ R_{67} [O_3] + R_{68} [HO] \right\} [CH_4] - \frac{\partial \phi}{\partial z} \\ \frac{\partial [CO]}{\partial t} &= J_{24} [CH_2O] + J_{25} [CO_2] + R_{81} [C_2] [CHO] \\ &- \left\{ R_{82} [O] [M] + R_{83} [HO] \right\} [CO] - \frac{\partial \phi}{\partial z} \end{aligned}$$

ただし ϕ は各々 CH₄、CO の上向きフラックスである。

CH₄の酸化過程の生成物、CH₃、CH₃O₂、CH₃O、CH₂O、CHO は光化学平衡を仮定して次の如

— 196 —

く求められる、

$$[CH_{3}] = \frac{J_{22} + R_{64}[O] + R_{65}[O(^{1}D] + R_{67}[O_{3}] + R_{68}[HO]}{R_{69}[O_{2}][M] + R_{70}[O_{2}]} \cdot [CH_{4}]$$

$$[CH_{3}O_{2}] = \left\{ \sqrt{(R_{71}[NO] + R_{72}[HO_{2}])^{2} + 4R_{69}(R_{73} + R_{74})[O_{2}][M][CH_{3}]} - (R_{71}[NO] + R_{72}[HO_{2}]) \right\} / 2(R_{73} + R_{74})$$

$$[CH_{2}O] = \frac{R_{66}[O(^{1}D)[CH_{4}] + R_{70}[O_{2}][CH_{3}] + R_{75}[O_{2}][CH_{3}O]}{J_{23} + J_{24} + R_{78}[O] + R_{79}[HO] + R_{80}[HO_{2}]}$$
$$[CH_{3}O] = \frac{R_{71}[NO][CH_{3}O_{2}] + 2R_{73}[CH_{3}O_{2}]^{2}}{R_{75}[O_{2}] + R_{76}[NO] + R_{77}[NO_{2}]}$$
$$[CHO] = \frac{J_{23} + R_{78}[O] + R_{79}[HO] + R_{80}[HO_{2}]}{R_{81}[O_{2}]} \circ [CH_{2}O]$$

(5) 塩素グループ

まず、CF₂Cl₂、CFCl₃、CH₃Cl、CCl₄の高度分布を次の諸式から計算する、

$$\frac{\partial [CF_2Cl_2]}{\partial t} = -(J_{26} + R_{94}[O(^1D)])[CF_2Cl_2] - \frac{\partial \phi}{\partial z}$$
$$\frac{\partial [CH_3Cl]}{\partial t} = -(J_{28} + R_{96}[HO] + R_{97}[O(^1D)])[CH_3Cl] \frac{\partial \phi}{\partial z}$$
$$\frac{\partial [CFCl_3]}{\partial t} = -(J_{27} + R_{95}[O(^1D)])[CFCl_3] - \frac{\partial \phi}{\partial z}$$
$$\frac{\partial [CCl_4]}{\partial t} = -(J_{29} + R_{98}[O(^1D)])[CCl_4] - \frac{\partial \phi}{\partial z}$$

次に [ΣCl] = [Cl] + [ClO] + [ClONO₂] + [HCl] とし、[ΣCl] を次式で計算する。

$$\frac{\partial [\sum C1]}{\partial t} = Q - \frac{\partial \phi}{\partial z}$$

ただし

 $Q = (J_{26} + R_{94} [O(^{1}D)]) [CF_{2}Cl_{2}] + (J_{27} + R_{95} [O(^{1}D)]) [CFCl_{3}]$

+ $(J_{28}+R_{96} [HO]+R_{97} [O(^{1}D)]) [CH_{3}Cl]+(J_{29}+R_{98} [O(^{1}D)]) [CCl_{4}]$ ϕ は [Σ Cl] の上向きフラックスである。

Cl、ClO、ClONO₂、HClの間の光化学平衡を仮定し、これ等の成分の比を求め、更に今計算した [ΣCl] とから、各成分の濃度が次の諸式から計算される。

 $r_{1} = \frac{[C1]}{[HC1]} = \frac{J_{30} + R_{90}[HO]}{R_{87}[CH_{4}] + R_{88}[H_{2}]}$

$$r_{4} = \frac{[C10]}{[HC1]} = \frac{r_{1}R_{84}[O_{3}]}{R_{85}[O] + R_{86}[NO]}$$
$$r_{5} = \frac{[C10NO_{2}]}{[HC1]} = \frac{r_{4}R_{92}[NO_{2}][M]}{R_{93}[O] + J_{31}}$$

 $[\Sigma Cl] = [HCl] (1+r_1+r_4+r_5)$

5.4.6 結果

(1) 境界条件

5.4.2節で述べた境界条件の具体的な値を表5.6 に示す。 O_x については下部の境界で計算された 濃度が観測値に一致するようにフラックスを決めた(粒子濃度を与えたのと同等とみなせる)。 N_2O 、 CH_4 、 CF_2Cl_2 、 $CFCl_3$ の下部境界値は我々の観測値を用いた(第1章参照)。 H_2O の下部境 界値は Muramatsu (1981)のまとめたものを参考にした。上部境界値は観測値が不確実であるので 4.83-13.0ppmv の間の値を仮定した。Total N (Σ N)、CO、 CH_3Cl 、 CCl_4 、Total Cl (Σ Cl)の下 部境界の濃度は NAS 1979 レポートから採用した。

上部境界条件としてフラックスを与える場合(5.11)式のスケールハイトは 5.0km とした。ただし Total Cl についてはフラックスをゼロとした。

(2) 拡散係数

高度分布の観測が正確に行なわれ、また光化学反応がよく分っている成分についてのモデル計算 値と観測値が一致するように拡散係数の高度分布を決めるのが一般的方法である。今回の報告では N₂O、CH₄の高度分布の観測値を参考にして拡散係数をきめた。図5.3 にこのようにして求めた拡 散係数の高度分布を示す。図中には Crutzen et al.(1978)、NAS1979の値も示してある。NAS1979 と比べると 25km 付近を除いて、我々の値は NAS1979 より小さい。Crutzen et al. (1978)の値 と比べてみると 40km 以上で我々の値は大きくまた 40km 以下では小さい。高度 15-20km に拡 散係数の値の小さい層の存在することが我々の分布の特徴である。この高度分布 (Case F) は次式 で与えられる、

$K_z = a \exp(-0.2608Z + 11.513)$	$0 \leq Z \leq 15$	
$=a 2.0 \times 10^{3}$	$15 \leq Z \leq 20$	
$= a \exp(0.3219(Z-20) + 7.601)$	$20\!\leq\!Z\!<\!35$	(5. 25)
$=a \exp(0.06579(Z-25)+9.210)$)) 35≦Z≦60 -	

ただし、Kz は拡散係数 (cm²sec⁻¹)、Z は高度 (km) である。今回は a=1.5 とした。この場合に ついて図中には Case F (a=1.5) と表わしてある。

(3) 太陽放射その他の条件

これから述べる結果は、大気外太陽放射として Case D、(最も新しい観測結果を含む分布)、緯度 は35°N、時期は春分、拡散係数は Case F (a=1.5)の場合についてである。

(4) 分布

窒素グループ N、NO、NO₂、NO₃、N₂O₅、HNO₃ 及び Total N の分布を 図5.4a に示す。成 層圏上部では NO、下部では HNO₃ が最も多い。中部では NO、NO₂、HNO₃ が同程度に存在す ることが分る。成層圏下部では窒素グループの最終生成物は HNO₃ で最も多く存在することが分 る。

水素グループ H、HO、HO₂、H₂O₂、 Σ H=H+HO+HO₂+H₂O₂ の高度分布を 図5.4b に示す。 高度 50km 以上では HO と HO₂ が最も多く 50km 以下では H₂O₂ が最も多い。前の図で示した HNO₃ は主として NO₂+HO+M→HNO₃+M の反応で生成されるので、窒素グループと水素グ ループの両者の最終生成物とみなせる。前述のごとく下部成層圏では HNO₃ が両グループを通じて 最も濃度が大きい。

図5.4c にメタンの酸化過程で生成される成分の高度分布を示す。CO が最も多く次は CH_2O (ホ ルムアルデヒド)が多いということが分る。酸化の最終生成物は CO_2 である。

図5.4d に塩素グループの分布を示す。最終生成物 HCl は上部・下部成層圏では最も多いが、中部成層圏では CIO、CIONO₂ と同程度の濃度である。

次に個々の成分の高度分布について計算値と観測値の比較を行う。

図5.5a	はオゾン濃度	(粒子/cm ³)	の高度な	分布を示す。	CAL	は計算値を示す。	OBS	は	U.	S
			表5.6	境界条件						

		下部境界	上部境界
	1JX 7J	(14 km)	(54 km)
	Ох	f	р
	N ₂ O	n ; 0.320 ppmv *	f
	Total N	n;1.09 ppbv	n ; 9.8 0 ppbv
	H ₂ O	n;4.83 ppmv*	n;4.83~13.0 ppmv
	Total H	р	р
	CH ₄	n; 1.70 ppmv*	f
	СО	n;0.06 ppm v	р
	CF ₂ Cl ₂	n;0.288 ppbv*	f
	CFCl ₃	n;0.170 ppbv*	f
	CH ₃C ℓ	n ; 0.600 ppbv	f
	CCl ₄	n ; 0.150 ppbv	f ·
	Total Cl	n ; 0.150 ppbv	f (= 0)
		1	1

n:粒子濃度

p: 光化学平衡

f:フラックス

*は我々の観測値、その他の濃度はNAS1979による

- 199 -

図 5.4 d 塩素グループの高度分布 Σ Clは Cl+ClO+ClONO₂+HClを表わす。

気象研究所技術報告 第6号 1982

図 5.5 c N₂Oの高度分布 観測値:細い実線は Ehhalt(1978)の平均分布,破線は Fabian et al.(1979)の平均分布(44°N), 黒丸は筑 波での 1978-1981 の夏期の観測値。

図 5.5 d N₂Oの高度分布 観測値 A~I は Schmeltekopf et al. (1977) による。 A は Saskatchewan (Aug. 1975), C, Dは, Alaska (May. 1976), E-Hは Wyoming (May. 1976), I は Panama (April, 1976)の値。

図 5.5 e NOの高度分布

観測値: → は Ackerman et al. (1975)の May. 1974の値。△, ▲は Ridley et al. (1976)の16 July, 1974及び22 July, 1974の値。●は Drummond et al. (1977), 27 June 1976の値。○は Drummond and Jarnot (1978), 14 June 1975の値。

■一■は Ogawa et al. (1981), 29 May 1978, 40°Nの値。

— 204 —

気象研究所技術報告 第6号 1982

図 5.5 m CF₂Cl₂の高度分布 ハッチした部分は Ehhalt (1978) がまとめた観測値 (1974-1978年の間)の分布する範囲。

図 5.5 o ClO の高度分布 →→→ は Menzies (1979), 20 Sep. 1978 の観測値。 他は Anderson et al. (1980)の観測値。 △ (29 Luly 1076) ● (14 Luly 1077) ● (00 Cap. 107

△(28 July 1976), ■ (14 July 1977), ● (20 Sep. 1977), ▲(25 Oct. 1977), □(2 Dec. 1977), ○(8 Dec. 1976)で ある。

図 5.5 p HC1の高度分布 ハッチした部分は Ehhalt (1978) がまとめた観測値 (1974-1976年 の間)の分布する範囲。

Standard Atmosphere、1976のもので中緯度の平均的分布である。高度 20-40km で計算値の方が 観測値より大きく、両者の違いは高度 30km で最も大きく約50%である。これ以外の高度では両者 はだいたい一致している。

図5.5b-図5.5p に他の成分についての計算値と観測値を示す。前述のごとく拡散係数の高度分布 を決める場合、N₂O と CH₄ の高度分布を参考にしたが、N₂O と CH₄ の両者ともに満足させるこ とは難しく今回は N₂O の方を優先させた。その理由は、N₂O の光化学反応は光解離と O(¹D) と の反応のみであるが、CH₄ は O(¹D)、O₃、HO との反応があり複雑なためである。N₂O の観測値 は Schmeltekopf et al. (1977) の Wyoming でのもの (図5.5d) と Fabian et al. (1979) のもの (図5.5c)を参考にした。CH₄ の高度分布(図5.5j)については 25km 以下では Fabian et al. (1979) の観測値に合うが、25km 以上では Cumming and Lowe (1973) の値に一致する。25km 以上でも Fabian et al. (1979) の値に一致させるよう拡散係数を選ぶと N₂O の分布について計算値と観測 値が一致しなくなる。

 O_3 、 N_2O 、 CH_4 以外で観測値と計算値がだいたい一致するものとしては、NO(図5.5e)、HNO₃ (図5.5i)、CFCl₃(図5.5l)、CF₂Cl₂(図5.5m)等である。HNO₃の計算値は Stone(1978)の観 測値とだいたい一致するが、Lazrus and Gandrud(1974)、NAS 1979の観測値より全体的に大きい。

CFCl。の計算の下部条件として採用した我々の観測値は1978年と1979年の平均値であるから、 Ehhalt (1978) のまとめた観測値 (1974—1978) より大きい。このため高度 14—20km で計算値が 観測値より大きくなっている。

CF₂Cl₂に対しても同様のことが言える。即ち下部境界値として1979年と1981年の観測の平均値を 採用したため Ehhalt (1978)のまとめた観測値 (1974—1978)より 14—16km で計算値が大きく なっている。

次に観測と計算の傾向の合っているものとして、O(³P)(図5.5b)、NO₂(図5.5f)、HO(図5.5 g)等がある。これ等に共通することは計算値が観測値より全体的に小さいことである。

さらに観測と計算の一致の悪いものとして HCl (図5.5p)、ClO (図5.5o)、Cl (図5.5n)、CO (図 5.5k) 等がある。

HCl は 25km 以下では一致はよいが、25km 以上では計算値が小さくなる。

CIO については観測値が大きくばらついてはいるが 40-30km で観測値が大きい。しかし 25km 位では両者は一致する傾向にある。

Cl は観測例が少なく高度分布を比較することはできないが 40km 付近については、観測値が計 算値より大きい。

CO は観測と計算が大きく異なる。観測値は同じ装置・時期による値が大きく異なる(図5.5k、 A、B曲線)ので問題があると言える。 5.4.7 我々の観測との比較

我々は1978~1981の夏期 N₂O、CFCl₃、CF₂Cl₂ 等の高度分布を観測している。前節の計算は春分 であるので本節では観測時期に合わせて夏至での分布の計算を行った。

前節と異なる条件は

(1)時 期:夏至

(2) 拡散係数: (5.26) 式

(3)緯 度:36°N

拡散係数は次式を最適として選んだ。

case H

$K_z = a \cdot exp(-0.2608Z + 11.513)$; $0 \leq Z \leq 15$)	
$=a \cdot 2 \times 10^3$; $15 \le Z < 20$		
$= a \cdot \exp(0.4605(Z - 20) + 7.601)$;20≦Z<25		(
$=a \cdot \exp(0.07737(Z-25)+9.903)$; 25≦Z	· J second second	

5.26)

ただし

 K_z は拡散係数 (cm^2sec^{-1})、Z は高度 (km) とし以下に述べる計算では a=1.7とした。

図5.6a に拡散係数の高度分布を示す。図中に NAS 1979 Report のものを比較のために示す。図 5.6b ~ 図5.6e に計算と観測の比較を示す。

 N_2O 、CFCl₃、CF₂Cl₂ に関しては Fabian et al. (1979)の観測値を比較のため示した。これは 44°N で1977年6月2回、9月2回の平均値である。 N_2O は我々の値よりやや大きい(図5.6b)、 CFCl₃、CF₂Cl₂ は我々の値より少し小さい(図5.6c、図5.6d)。

図5.6e はオゾンの高度分布を示す。舘野で観測されたオゾンゾンデの値、反転観測の値も示して あるが我々の計算値は 30km 以下ではオゾンゾンデの値に近く、30km 以上では反転観測より少し 小さい値を示す。

 N_2O 、CFCl₃、CF₂Cl₂、O₃の我々の観測値は図5.6aの拡散係数を用いて一次元モデルにより矛 盾なく説明できると言える。ここで採用した拡散係数の特徴は下部成層圏で他のモデルに比べて小 さい値をとるということである。これは夏期であることを考えれば当然と言える。

図 5.6 b N2Oの高度分布 Fabian et al (1979)の観測値は図 5.5 c の ものと同じ。•は我々の観測値である。

5.6 c CFCl₃ の高度分布 • は我々の観測値(筑波, 1978-1979, 夏期)。 Fabian et al. (1979)の値は44°Nで1977 年 6 月 2 回, 9 月 2 回の平均値である。

Fabian et al. (1979) については前の図と同じ。

5.5 日 変 化

各成分の日変化は長期間にわたる変化を計算するための参考資料として必要である。また各成分 に対する拡散の効果を見積ることが出来る。

5.5.1 計算式

(5.1) 式で div ϕ_i を無視すると

$$\frac{\partial n_i}{\partial t} = Q_i(n_j) - L_i(n_j), n_i$$

(5.27)

となる。これを差分方程式に書き換えると、

$$n_{i}(z, t+\Delta t) = \frac{n_{i}(z, t) + Q(z, t)\Delta t}{1 + L(z, t)\Delta t}$$
(5.28)

となる。各成分について Q(z, t)、L(z, t) は 表5.1、表5.2 を参照して次のようになる。

(1) 酸素グループ

 $O(^{3}P), O(^{1}D)$ をそれぞれ O, O^{*} とする。

 O_3 : $Q = R_2 [O_2] [M] [O]$

$$L = J_3^* + R_3 [O] + AT$$

O:
$$Q = 2J_2^* [O_2] + J_3^* [O_3] + PT$$

 $L = 2R_1 [M] [O] + R_2 [O_2] [M] + R_3 [O_3] + BT$

ただし

 $J_{3}^{*} = J_{3} + J_{4} + J_{5} + J_{6} + J_{7}$ $J_{2}^{*} = J_{1} + J_{2}$ $AT = R_{20} [NO] + R_{24} [NO_{2}] + R_{41} [H]$ $+ R_{44} [HO] + R_{48} [HO_{2}] + R_{84} [C]$ $BT = R_{21} [NO] [M] + (R_{23} + R_{25} [M]) [NO_{2}] + R_{28} [N] [M] + R_{33} [HNO_{3}] + R_{47} [HO_{2}] + (R_{51} + R_{52}) [H_{2}O_{2}] + R_{61} [H_{2}] + R_{82} [CO] [M] + R_{85} [CIO] + R_{91} [HC]$ $PT = J_{8} [N_{2}O] + J_{10} [N_{2}O_{5}] + J_{13} [NO_{3}] + J_{14} [NO]$ $+ (J_{15} + J_{16}) [NO_{2}] + J_{20} [HO_{2}] + J_{25} [CO_{2}]$ $+ (R_{29} [O_{2}] + R_{31} [NO]) [N] + (R_{45} [HO] + R_{54} [H]) [HO]$

O* は光化学平衡にあるとして

 $O^* = (J_4 + J_5 + J_6 + J_7) [O_3] / (R_4 [O_2] + R_5 [N_2])$

で計算する。

窒素グループ (2) $Q = J_{14}$ [NO] N : $L = R_{28}$ [O] [M] + R_{29} [O₂] + R_{30} [O₃] + R_{3} [NO] + R_{39} [HO] $Q = 2R_{18} [O^*] [N_2O] + (J_{15} + J_{16}) [NO_2] + R_{23} [NO_2] [O]$ NO : $+J_{12}$ [NO₃] + (R₂₈ [O] [M] + R₂₉ [O₂] + R₃₀ [O₃] + R₃₉ [HO]) [N] $L = J_{14} + R_{20} [O_3] + R_{21} [O] [M] + R_{22} [NO_3] + R_{31} [N]$ $+R_{35}$ [HO₂] $+R_{36}$ [HO] [M] $Q = (2J_{10} + J_{11}) [N_2O_5] + J_{13} [NO_3] + J_{18} [HNO_3] + R_{20} [NO] [O_3]$ NO_2 : $+R_{21}$ [NO] [O] [M] $+2R_{22}$ [NO] [NO₃] $+R_{27}$ [N₂O₅] [M] $+R_{35}$ [NO] [HO₂] $L = J_{15} + J_{16} + R_{23} [O] + R_{24} [O_3] + R_{25} [O] [M]$ $+R_{26}$ [NO₃] [M] $+R_{38}$ [HO] [M] $Q = J_{11}[N_2O_5] + (R_{24}[O_3] + R_{25} [O] [M]) [NO_2]$ NO_3 : $+R_{27}$ [N₂O₅] [M] + (R₃₃ [O] + R₃₄ [HO]) [HNO₃] $L = J_{12} + J_{13} + R_{22}$ [NO] + R_{26} [NO₂] [M] N_2O_5 : $Q = R_{26} [NO_3] [NO_2] [M]$ $L = J_{10} + J_{11} + R_{27} [M] + R_{32} [H_2O]$ HNO₃: $Q = 2R_{32} [N_2O_5] [H_2O] + R_{38} [NO_2] [HO] [M]$ $L = J_{18} + R_{33}$ [O] + R_{34} [HO]

- 213 ---

(3) 水園	長グループ
H	$Q = J_{19} [H_2O] + J_{23} [CH_2O] + (R_{43} [HO] + R_{61} [H_2]) [O]$
	$+R_{62} [H_2] [O^*] + (R_{63} [H_2] + R_{83} [CO] + R_{39} [N]) [HO]$
	$+ J_{30} [HCl] + R_{88} [H_2] [Cl]$
	$L = R_{41} [O_3] + R_{42} [O_2] [M] + R_{54} [HO] + R_{55} [HO] [M]$
	$+ (R_{56} + R_{57}) [HO_2] + (R_{58} + R_{59}) [H_2O_2] + R_{60} [NO_2]$
HO :	$Q = (R_{41} [O_3] + 2R_{56} [HO_2] + R_{59} [H_2O_2] + R_{60} [NO_2] [H]$
	$+ (R_{61} [O] + R_{62} [O^*]) [H_2] + (J_{19} + 2R_{40} [O^*]) [H_2O]$
	$+(J_{20}+R_{47} [O]+R_{48} [O_3]+R_{35} [NO]) [HO_2]$
	$+(J_{21}+R_{51} [O]) [H_2O_2]+(J_{18}+R_{33} [O]) [HNO_3]$
	$+(R_{64} [O]+R_{65} [O^*]+R_{67} [O_3]) [CH_4]$
	$+ R_{97} [CH_3Cl] [O^*] + R_{70} [CH_3] [O_2]$
	$+(R_{78} [CH_2O]+R_{91} [HCl]) [O]$
	$L = R_{43} [O] + R_{44} [O_3] + 2(R_{45} + R_{46} [M]) [HO]$
	$+R_{49} \ [HO_2]+R_{53} \ [H_2O_2]+(R_{54}+R_{55} \ [M]) \ [H]+R_{63} \ [H_2]$
	$+R_{34}$ [HNO ₃] $+R_{36}$ [NO] [M] $+R_{38}$ [NO ₂] [M] $+R_{39}$ [N]
	$+R_{68} [CH_4]+R_{79} [CH_2O]+R_{83} [CO]+R_{90} [HC1]+R_{96} [CH_3C1]$
HO_2 :	$Q = R_{42} [H] [O_2] [M] + R_{44} [HO] [O_3] + R_{51} [H_2O_2] [O] + R_{53} [H_2O_2] [HO]$
	$+R_{58}$ [H] $[H_2O_2]+R_{75}$ [CH ₃ O] $[O_2]+R_{81}$ [CHO] $[O_2]$
	$L = J_{20} + R_{47} [O] + R_{48} [O_3] + R_{49} [HO] + 2R_{50} [HO_2]$
	$+ (R_{56} + R_{57}) [H] + R_{72} [CH_{3}O_{2}] + R_{80} [CH_{2}O] + R_{89} [C1]$
	$+R_{35}$ [NO]
H_2O_2 :	$Q = R_{46} [HO]^{2} [M] + R_{50} [HO_{2}]^{2} + R_{80} [CH_{2}O] [HO_{2}]$
· .	$L = J_{21} + (R_{51} + R_{52}) [O] + R_{53} [HO] + (R_{58} + R_{59}) [H]$
(4)	
(4) × 2	$\times \mathcal{V}\mathcal{I}\mathcal{I}\mathcal{I} = \mathcal{I}$
CH_3 .	$Q = (R_{64} [O] + R_{65} [O^*] + R_{67} [O_3] + R_{68} [HO] + R_{87} [CI]) [CH_4]$
	$+ J_{28} [CH_3CI]$
CH O ·	$\mathbf{L} = \mathbf{R}_{69} \begin{bmatrix} \mathbf{O}_2 \end{bmatrix} \begin{bmatrix} \mathbf{M} \end{bmatrix} + \mathbf{R}_{70} \begin{bmatrix} \mathbf{O}_2 \end{bmatrix}$
$C\Pi_3 O_2$.	$Q = R_{69} [CH_3] [O_2] [M]$
СЦОУ	$\mathbf{L} - \mathbf{K}_{71} [\mathrm{NO}] + \mathbf{K}_{72} [\mathrm{HO}_2] + (\mathbf{K}_{73} + \mathbf{K}_{74}) [\mathrm{CH}_3\mathrm{O}_2]$
Сп₃О.	$\mathbf{Q} - \mathbf{K}_{71} \left[\mathbf{CH}_3 \mathbf{O}_2 \right] \left[\mathbf{NO} \right] + 2\mathbf{K}_{73} \left[\mathbf{CH}_3 \mathbf{O}_2 \right]^2$
	$L = K_{75} [O_2] + K_{76} [NO] + R_{77} [NO_2]$
	214

CH₂O: $Q = R_{66} [CH_4] [O^*] + R_{70} [CH_3] [O_2] + R_{75} [CH_3O] [O_2]$ $L = J_{23} + J_{24} + R_{78}$ [O] + R_{79} [HO] + R_{80} [HO₂] $\mathbf{Q}\!=\!(\mathbf{J_{23}}\!+\!\mathbf{R_{78}}\ [\mathbf{O}]\!+\!\mathbf{R_{79}}\ [\mathbf{HO}]\!+\!\mathbf{R_{80}}\ [\mathbf{HO_2}])\ [\mathbf{CH_2O}]$ CHO: $L = R_{81} [O_2]$ CO : $Q = J_{25} [CO_2] + J_{24} [CH_2O] + R_{81} [CHO] [O_2]$ $L = R_{82}$ [O] [M] + R_{83} [HO] 塩素グループ Cl : $Q = J_{26} [CF_2Cl_2] + J_{27} [CFCl_3] + J_{28} [CH_3Cl]$ $+J_{29}$ [CCl₄] $+J_{30}$ [HCl] $+R_{85}$ [ClO] [O] $+R_{86}$ [ClO] [NO] $+R_{90}$ [HCl] [HO] $+R_{91}$ [HCl] [O] $L = R_{84} [O_3] + R_{87} [CH_4] + R_{88} [H_2] + R_{89} [HO_2]$ CIO : $Q = R_{84}$ [Cl] [O₃] + R_{93} [ClONO₂] [O] + R_{98} [CCl₄] [O^{*}] $+R_{94}$ [CF₂Cl₂] [O^{*}] + R₉₅ [CFCl₃] [O^{*}] + J₃₁ [ClONO₂] $L = R_{85} [O] + R_{86} [NO] + R_{92} [NO_2] [M]$ $CIONO_2$: $Q = R_{92}$ [NO₂] [CIO] [M] $L = J_{31} + R_{93}$ [O] HCl : $Q = (R_{87} [CH_4] + R_{88} [H_2] + R_{89} [HO_2]) [Cl]$

 $L = J_{30} + R_{90}$ [HO] + R_{91} [O]

その他

上記以外の成分 O_2 、 N_2 、 N_2O 、 H_2O 、 CH_4 、 CO_2 、 CF_2Cl_2 、 $CFCl_3$ 、 CCl_4 、 CH_3Cl の濃度は一定とする。

5.5.2 結 果

図5.7a~図5.7wに3高度即ち成層圏下部(22km)、中部(38km)、上部(54km)での各成分の 35°N、春分での日変化を示す。

日変化は次の4つの型に分類できる。

(a) 夜間減少するもの

 $O(^{3}P)$, $O(^{1}D)$, N, NO, H, HO, HO₂, CH₃, CHO, Cl

CH₃O₂ (45km 以上)、CH₃O (45km 以上)、

CH2O (45km以下)、ClO (40km 以下)

(b) 夜間増加するもの

 NO_2 , NO_3 , N_2O_5 , $ClONO_2$,

- 215 -

O₃ (40km 以上)、HNO₃ (45km 以上)、CH₂O (55km 以上)、

ClO (45km 以上)

(c) 日没・日出時に減少するもの

CH₃O₂ (40km 以下)、CH₃O (40km 以下)

(d) ほとんど変化しないもの

CO, HCl

O₃ (30km 以下)、HNO₃ (40km 以下)、H₂O₂ (40km 以下)

各グループの最終生成物 HNO₃、HCl、CO 等は成層圏中部・下部では日変化がほとんどみられない。(メタングループの最終生成物は CO₂ であるがその前段階の CO も安定で最終生成物とみなしてもよい。O₃ についても同様のことが言える。)

次に拡散の効果がどの程度かを表5.7 に示した。光化学一拡散平衡にある状態から出発して、拡 散が無くなったと仮定して南中時から南中時の間の濃度変化を示している。

N、NO、NO₂、Cl、ClO、ClONO₂、HCl等は成層圏中部・下部でかなりの減少を示す。このこ とは、これ等の成分の源がより上層にあり拡散がなくなると急激に減少することを示している。 HO_2, H_2O_2 等は成層圏中部・下部で増加するがこのことは、これ等の源がこの層に存在することを 示す。

成層圏中部・下部で CH_3O_2 、 CH_3O が増加し CH_2O 、CHO が減少するのは、これ等の成分の濃度を決定する NO、 NO_2 、 HO_2 等の変化の影響による。

成層圏上部では NO_2 、 NO_3 、 N_2O_5 、 $CIONO_2$ 、HCl 等が増加しこれ等の源が存在することを示す。

図 5.7a オゾンの日変化

-216 -

-217 -

- 218 -

- 219 -

- 220 -

-221 -

` 表 5.7	拡散を無視したときの各成分の変化
---------	------------------

	ф Д	変	化 率 (%)	/日)
. :		22 km	38 km	54 km
	N	- 32	- 20	
	NO	- 32	- 22	
	NO ₂	- 32	- 17	+ 6
	NO ₃			+ 10
	$N_2 O_5$			+ 38
	HNO3		- 34	
	Н		+ 7	+ 6
	HO ₂	+ 12	+ 7	
	H_2O_2	+ 36		
	CH ₃ O ₂	+ 35	+ 30	
	CH ₃ O	+ 83	+ 68	
	CH ₂ O	- 24		
	СНО	- 25		
· · ·	C1	- 41	- 49	
	CIO	- 14	- 43	
	CIO NO ₂	- 37	- 57	+ 7
	HCl		- 12	+ 51

変化率が±5%/日より大きいもののみを示した。

CFCl₃、CF₂Cl₂のオゾンに対する影響

表 5.8

5.6 オゾンに対するフレオン

の影響 ゾン減少率 (%) 度 5.4.5節の計算式と 5.4.6節 局 $CFCl_3, CF_2Cl_2$ (km) CFCl₃のみ CF₂ Cl₂のみ で採用したのと同じ条件で 両者を含む CFCl₃ と CF₂Cl₂ とオゾン分布 55 - 0.34 - 0.59 - 0.93 に対する影響の見積りを行っ 51 - 0.67 -1.13- 1.76 た。 47 - 1.44 - 2. 32 - 3.68 結果を 表5.8 に示す。 高度 43 - 2.38 - 3.80 - 6.11 55-15km の範囲で CFCl_a と 39 - 1.81 - 2.71 - 4.43 CF₂Cl₂のためにオゾン濃度が 35 - 0.70 - 0.93 - 1.63 どの程度変化しているかを示し 31 - 0.16 - 0.09 - 0.26 た。影響の最も大きい高度は43 27 - 0.07 +0.04- 0.04 km で約6%の減少を与える。 23 - 0.03 + 0.05+ 0.0323km 以下ではわずかながらオ ゾン濃度が増加している。この 19 + 0.09+ 0.15+0.23理由は上層のオゾンが減少した 15 +0.07+ 0.13+0.23ため下層ではオゾンを生成する 15km以下 0 0 0 太陽紫外線が増加したためであ 層 - 0.29 全 - 0.26 ~ 0.55 る。

15km 以下の対流圏での影響を無視すると、オゾン全量に対して約0.6%の減少をもたらしている ことが分る。この値は現時点でのオゾンの減少を示すもので将来どのようになるかは CFCl₃、CF₂ Cl₂ の大気中の濃度変化により決まる。

References

Ackerman, M., 1971 Ultraviolet solar radiation related to mesospheric processes, in Mesospheric Models and Related Experiments, G. Fiocco, ed., D. Reidel Publ. Co., 149-159.

Ackerman, M. and C. Muller, 1973 : Stratospheric methane and nitrogen dioxide from infrared spectra. Pure and Applied Geophysics, **106-108**, 1325-1335.

- Ackerman, M., J. C. Fontanella, D. Frimout, A. Girard, N. Louisnard and C. Muller, 1975 : Simultaneous measurements of NO and NO₂ in the stratosphere. Planet. Space Sci., 23, 651-660.
- Anderson, J. G., 1975 : The absolute concentration of O(³P) in the earht's atmosphere. Geophys. Res. Lett., **2**, 231-234.

- Anderson, J. G., J. J. Margitan and D. H. Stedman, 1977 Atomic chlorine and the chlorine monoxide radical in the stratosphere Three in situ observations. Science, **198**, 501-503.
- Anderson, J. G., H. J. Grassl, R. E. Shetter and J. J. Margitan, 1980 : Stratospheric free chlorine measured by balloon-borme in situ resonance fluorescence. J. Geophys. Res., 85, 2869 -2887.
- Anderson, L. G., 1976 : Atmospheric chemical data survey, Rev. Geophys. Space Phys. 14, 151 -171.
- Arvesen, J. C., R. N. Griffin, Jr. and B. D. Pearson, Jr., 1969 : Determination of extra terrestrial solar spectral irradiance from a research aircraft. Appl. Opt., 8, 2215-2232.
- Bass, A. M., A. E. Ledford and A. H. Laufer, 1976 : Extinction coefficients of NO_2 and N_2O_4 . J. Res. N. B. S., 80A, 143-166.
- Bates, D. R. and P. B. Hays, 1967 : Atmospheric nitrous oxide. Planet. Space Sci., 15, 189-197.
- Brasseur, G. and P. C. Simon, 1981 : Stratospheric chemical and thermal response to long-term variability in solar UV irradiance. J Geophys. Res., **86**, 7343-7368.
- Brewer, A. W. and A. W. Wilson, 1965 Measurements of solar ultraviolet radiation in the stratosphere. Quart. J. R. Met. Soc., 91, 452-461.
- Cook, G. R. and P. H. Metzger, 1964 : Photoionization and absorption cross sections of O_2 and N_2 in the 600-to 1000-Å region. J. Chem. Phys., 41, 321-336.
- Crutzen, P. J., I. A. Isaksen and J. R. McAfee, 1978 : The impact of the chloro-carbon industry on the ozone layer. J. Geophys. Res., 83, 345-363.
- Cumming, C. and R. P. Lowe, 1973 : Balloon-borne spectroscopic measurement of stratospheric methane. J. Geophys. Res., 78, 5259-5264.
- Detwiler, C. R., D. L. Garrett, J. D. Purcell and R. Tousey, 1961 : The intensity distribution in the ultraviolet solar spectrum. Ann. Géophys., 17, 263-272.
- Ditchburn, R. W. and P. A. Young, 1962 : The absorption of molecular oxygen between 1850 and 2500 Å. J. Atmos. Terr. Phys., 24, 127-139.
- Drummond, J. W., J. M. Rosen and D. J. Hofmann, 1977 : Balloon-borne chmiluminescent measurement of NO to 45 km. Nature, **265**, 319-320.
- Drummond, J. R. and R. F. Jarnot, 1978 : Infrared measurements of stratospheric composition II. Simultaneous NO and NO₂ measurements. Proc. R. Soc. London. A, **364**, 237-254.
- Ehhalt, D. H., 1978 : In situ measumements of stratospheric trace constituents. Rev. Geophys. Space Phys., 16, 217-224.

Ehhalt, D. H. and L. E. Heidt, 1973 : The concentration of molecular H_2 and CH_4 in the

stratosphere. Pure and Applied Geophysics, 106-108, 1352-1360.

- Fabian, P., R. Borchers, K. H. Weiler, U. Schmidt, A. Volz, D. H. Ehhalt, W. Seiler and F. Müller, 1979 : Simultaneously measured vertical profiles of H₂, CH₄, CO, N₂O, CFCl₃ and CF₂Cl₂ in the middle-latitude stratosphere and troposphere. J. Geophys. Res., 84, 3149 -3154.
- Fredrick, J. E. and R. D. Hudson, 1979 : Predissociation of nitric oxide in the mesosphere and stratosphere. J. Atmos. Sci., **36**, 737-745.
- Hampson, R. F. ed., 1972 : Chemical kinetics data survey II. Photochemical and rate data for fifteen gas phase reactions of interest for stratospheric chemistry. N. B. S. Report 10828, U. S. Department of Commerce.
- Hampson, R. F. ed., 1973 : Chemical kinetics data survey VI. Photochemical and rate data for twelve gas phase reactions of interest for atmospheric chemistry. NBSIR-73-207. N. B.
 S. Washington D. C.
- Hampson R. F., 1980 : Chemical kinetic and photochemical data sheets for atmospheric reactions. DOT-FA79WAI-005. U. S. Department of Transportation. Washington D. C.
- Handbook of Geophysics, U. S. Air Force Geophysics Diretorate. The Macmillan Co. N. Y. 1960.
- Hinteregger, H. E., 1970 : The extreme ultraviolet solar spectrum and its variation during a solar cycle. Ann. Geophys., 26, 547-554.
- Hudson, R. D. ed. 1977 : Chlorofluoromethanes and the stratosphere. Ref. Publ., 1010, NASA Goddard Space Flight Center, Greenbelt, Md.
- Hudson, R. D. and S. H. Mahle, 1972 : Photodissociation rates of molecular oxygen in the mesosphere and lower thermosphere. J. Geophys. Res., 77, 2902-2914.
- Huffman, R. E., J. C. Larrabee and Y. Tanaka, 1964 : Absorption coefficients of oxygen in 1060 -580 Å wavelength region. J. Chem. Phys., 40, 356-365.
- Hunt, B. G., 1966 : The need for a modified photochemical theory of the ozonosphere. J. Atmos. Sci., 23, 88-95.
- Inn, E. C. Y., K. Watanabe and M. Zelikoff, 1953 Absorption coefficients of gases in the vacuum ultraviolet, III. CO₂. J. Chem. Phys. 21, 1648-1650.
- Jarmain, W. R. and R. W. Nicholls, 1967 : A theoretical study of the v"=0,1,2 progressions of bands and adjoining photodissociation continua of the O₂ Herzberg I system. Proc. Phys. Soc., 90, 545-553.
- Jones, A. Vallance and R. L. Gattinger, 1963 : The seasonal variation and excitation mecha-

nisms of the $1.59\mu^{1}\Delta g^{-3}\Sigma_{\overline{g}}$ twilight airglow bands. Plant. Space Sci., 11, 961–974.

- Kerr, J. B. and C. T. McElroy, 1976 : Measurement of stratospheric nitrogen dioxide from AES stratospheric balloon program. Atmosphere, 14, 166–171.
- Lazrus, A. L. and B. W. Gandrud, 1974 : Progress report on distribution of stratospheric nitric acid. Proc. III Conference on CIAP. U. S. Department of Transportation, 161-167.

Leighton, P. A., 1961 : Photochemistry of Air Pollution, Academic Press, p. 54.

- Menzies, R. T., 1979 : Remote measurement of CIO in the stratosphere. Geophys. Res. Lett., 6, 151-154.
- Mihelcic, D., D. H. Ehhalt, J. Klomfab, G. F. Kulessa, U. Schmidt and M. Trainer, 1978a Measurements of free radicals in the atmosphere by matrix isolation and electron paramagnetic resonance. Ber. Bunsenges. Phys. Chem., 82, 16-19.
- Mihecic, D., D. H. Ehhalt, G. F. Kulessa, J. Klomfab, M. Trainer, U. Schmidt and H. Röhrs, 1978b : Measurements of free radicals in the atmosphere by matrix isolation and paramagnetic resonance. Pure and Applied Geophysics, 116, 530-536.
- Muramatsu, H., 1975 : Dissociation rates of oxygen and ozone molecules in the stratosphere and mesosphere. Pap. in Meteor. Geophys. 26, 219-264.
- Muramatsu, H., 1981 : Water vapor budget in the lower stratosphere over Japan. Pap. in Meteor. Geophys., **32**, 1-17.
- Murcray, D. G., A. Goldman, W. J. Williams, F. H. Murcray, J. N. Brooks, J. Van Allen, R. N. Stocker, J. J. Kosters, D. B. Barker and D. E. Snider, 1974 Recent results of strato-spheric trace-gas measurements from balloon-borne spectrometers. Proc. III CIAP Conference, U. S. Department of Trans-portation.
- NAS, 1979 : Stratospheric ozone depletion by halocarbons : Chemistry and Transport. National Academy of Science, Washington, D. C.
- Noxon, J. F. 1961 : Observation of $(b\Sigma_g^+-a^1\Delta_g)$ transition in O₂. Can. J. Phys. **39**, 1110–1119.
- Noxon, J. F., 1970 : Optical emission from O(¹D) and O₂(b¹Σ_g) in the ultraviolet photolysis of O₂ and CO₂. J. Chem. Phys., **52**, 1852–1873.
- Ogawa, T., K. Shibasaki and K. Suzuki, 1981 : Balloon observation of the stratospheric NO₂ profile by visble absorption spectroscopy. J. Met. Soc. Japan. **59**, 405-419.
- Parkinson, W.H. and E.M. Reeves, 1969 : Measurements in the solar spectrum between 1400 and 1875 Å with a rocket-borne spectrometer. Solar Phys. 10, 342-347.
- Ridley, B. A., J. T. Bruim, H. I. Schiff and J.C. McConnell, 1976 : Altitude profile and sunset decay measurements of stratospheric nitric oxide. Atmosphere, 14, 180-188.

- Robbins, D. F., 1977 : Photodissociation of methyl chloride and methyl bromide in the atmosphere. Geophys. Res. Lett., **3**, 213-216.
- Schmeltekopf, A. L., D. L. Albritton, P. J. Crutzen, P. D. Golden, W. J. Harrop, W. R. Henderson, J. R. McAfee, M. McFarland, H. I. Schiff, T. L. Thompson, D. J. Hofmann and N. T. Kjome, 1977 : Atmospheric nitrous oxdie altitude profiles at various latitudes. J. Atmos. Sci., 34, 729-736.
- Shardanand and A. D. P. Rao, 1977 Collision-induced absorption of O₂ in the Herzberg continuum. J. Quant. Spectrosc. Radiat. Transfer. 17, 433-439.
- Shimazaki, T. and T. Ogawa, 1974 : On the theoretical model of vertical distributions of minor neutral constituents concentrations in the stratosphere. Tech. Memc. ERL OD-20, NOAA, Boulder, Colo.
- Stone, N. W. B., 1978 Expanding field of infrared Fourier transform spectroscopy in the laboratory, industry, and the environment. Appl. Opt., 17, 1332-1341.
- Thompson, B. A., P. Harteck and R. R. Reeves, Jr., 1963 : Ultraviolet absorption coefficients of CO₂, CO, O₂, H₂O, N₂O, NH₃, NO, SO₂ and CH₄ between 1850 and 4000 Å. J. Geophys. Res.,68, 6431-6436.
- U. S. Standard Atmosphere, 1976 U. S. Govt. Printing Office, Washigton, DC.
- Watanabe, K., 1958 : Ultraviolet absorption processes in the upper atmosphere. Adv. in Geophys., **5**, 153-221.
- Watanabe, K., E. C. Y. Inn and M. Zelikoff, 1953 Absorption coefficients of oxygen in the vacuum ultraviolet. J. Chem. Phys., 21, 1026-1030.
- Watson, R. T., 1977 : Chemical kinetics data survey VIII. Rate constants of ClO_x of atmospheric interest. U. S. Dept. Commerce, NBSIR-74-516, 45pp.
- Widing, K. G., J. D. Purcell and G. D. Sanlin, 1970 : The uv continuum 1450-2100 Å and the problem of the solar temperature minimun. Solar Phys., **12**, 52-62.
- Zelikoff, M., K. Watanabe and E. C. Y. Inn, 1953 : Absorption coefficients of gases in the vacuum ultraviolet. Part II. Nitrous oxide. J. Chem. Phys., 21, 1643-1647.

-227 -

第6章 紫外日射の測定

村井潔三*小林正治*

関根正幸*浅野正二*

6.1 はじめに

地表面に到達する日射の波長範囲は、約300nm から 5 μ m と見られるが、その中で紫外日射量は、 大気の上端に入射する、いわゆる太陽常数の中でも約9%弱であって、大気を通過した後に地表面 に到達する日射の中での割合はたかだか数%になる。これは、散乱によって大気外へ反射される量 が波長の減少とともに大きくなることによる。このように、地球大気に入射するエネルギーとして の紫外日射は極めて微小であって、熱収支あるいはエネルギー収支の問題に対する役割は小さい。 ところが、紫外日射に対する関心と、その量の測定は非常に古く、今世紀の初頭からその測定法が 開発されている。これは主として、生物あるいは、医学上の問題から発している。すなわち、紫外 日射は人間の皮膚に対する日焼けを始めとして、動植物に対して種々の効果を示している。そして、 これ等の効果が顕著に現われるのは、波長(λ)が250~320nmの間の紫外域に集中している。種々 の作用の効果の波長分布は現在かなり細かく知られており、320nm は、1つの境目を示し、とくに、 紅斑と呼ばれる効果は280~320nmの間で強い効果を示している。このような生物学的に特徴のあ る領域をとくに、UVB(Biologically active part of the ultraviolet spectrum)と名付けている。 これに応じて、最近は、UVA(320~400nm)、UVC(λ <280nm)というような便宜的な分類も用 いられている。

一方、この波長域はオゾン吸収の著しい領域にもなっており、大気中に入射した日射は、オゾン 層のオゾンによってほとんど吸収されてしまう。その結果、地表面に到達する日射の短波長側の限 界は約290nm となる。オゾンの吸収係数は、約330nm から波長が短くなるとともに急激に大きく なっているので、この領域の波長分布はオゾン層のオゾン量によってほぼ決められ、オゾン量の変 動に伴って著しく変動する、この様に、生物等に直接効果と及ぼす紫外日射は同時にオゾン量に大 きく左右されている。この性質は、現在、オゾン量測定の有力な手がかりとなっており、気象要素 の一つとして世界的観測網による測定に利用されている。ところが、最近の人間活動の激化による 人工汚染気体は、オゾン層内のオゾンを破壊し、オゾンの平均レベルを低下させ、これが地表に入 射する紫外日射の増加を招き、その結果、人体等への有害な効果、とくに、皮膚がんの増加などが 懸念されるようになった。このようにして、紫外日射強度の地域的分布、長期的変動の検出のため の監視網の必要性が叫ばれるようになり、紫外日射への関心が再び大きくなって来たのである。

*高層物理研究部

この報告に示される測定の目的は、上記の観測網の一つとして利用し得るような資料を出来る限 り長期間に亘って集積することにあるが、その他に、国内のいくつかの地点で同時に測定を継続す るための測器についての検討も目的の1つとして扱われている。さらに、可視域の測定資料と併用 して、エーロゾルの散乱吸収の効果についての解析も大事な問題の1つとして含まれる。

6.2 測 定

測定に用いられた装置は、グレーティングと石英プリズムを組合せた複式分光器を本体とし、サー ボ方式の太陽追跡装置をこれに取付けたものを直達日射成分の測定に用いた。また、同型の分光器 の入射スリットの直前に積分球を設置し、全天日射および天空散乱成分の測定のための受光面を形 成した。積分球は半径 10cm で、受光面として開口した円は直経 30mm である。天空散乱成分を 得るためには直径 40mm の円板を用い直射成分と遮蔽した。遮蔽板は赤道儀方式で太陽方向に追随 し、常時直射成分を遮蔽するが、必要に応じ遠隔操作により、遮蔽板を直達日射の光路から外して やる。このようにして全天日射と散乱日射を交互に測定する。

分光器による波長の分解は、直達成分に対しては、約20Å、全天日射および散乱日射に対しては約 30Å である。光量検出は、光電子増倍管を用いているが、310nmより短い領域では印加する電圧は 非常に高く、したがって、雑音成分が大きくなり、測定精度は低下している。また、この波長域で は空気分子およびエーロゾルによる太陽周辺光の効果が著しく、直達成分を測定する場合に混入し て来る散乱光の割合は可視近赤外域に比べてかなり大きくなる。この効果は、太陽高度が低くなる 程大きくなり、大気が同一の状態であったとしても、散乱光成分の割合が大きくなり、垂直気柱に 換算した大気の透過率は見かけ上良くなってしまう。この様に、この測定における装置の誤差、光 の特性による誤差を併せ考えて測定結果を見ると、310nmより短い波長域の測定値は信頼し難いよ うに見受けられる。

装置の検定は、いわゆる Langley 法、すなわち、直射成分のある1日の測定値を測定時刻の airmass(m)に対してプロットし、大気外、m=0における値を外挿によって求めこれを装置の常 数とする。この方法は、古くから行われているものではあるが、精度には限度がある。大気が清澄 で、しかも少なくとも半日間、同じ状態で安定していることが必要である。実際には、このような 好条件の日は極めて少く、地上の観測点では皆無に近い。したがって、通常は何回かの測定によっ てその平均値としてこの常数を決めることになるが、これが測定の精度を悪くする原因となる。

地表に入射する直達日射の強度 $I(\lambda)$ は、大気上端に入射する日射強度を $I_0(\lambda)$ 、大気の消散係数 を $r(\lambda)$ とすると、太陽天頂角がZの時刻では、

 $I(\lambda) = I_0(\lambda) \exp \left[-\tau(\lambda) \cdot \sec z\right]$

と表わされる。測定で得らた $I(\lambda)$ と、上の方法によって求めた、 $I_0(\lambda)$ に対応する装置の常数に よって $\tau(\lambda)$ が求められるが、 $\tau(\lambda)$ の波長分布は滑らかな曲線で表わされる筈であるという前提

-230 -

に立って、各波長における測定値のばらつきを求めて見ると、最もばらつきが大きい様相を呈して いる 390nm の波長では、平均的な滑らかな曲線からのばらつきは約9%である。その他の波長では これよりはかなり小さい。310nm より短い波長では先に述べたように精度は非常に悪くなっている ので、明らかに採用し難い値は除いてある。

6.3 測定結果

ここに掲げる測定結果は、1980年11月から1981年5月までの間、筑波において得られた資料である。直達成分の測定は、全天日射、散乱成分に比べて回数は多いのであるが、3 成分が揃っている時刻のものを選んで図示してある。図6.1(1)~(16)は、上記3 成分の各波長における絶対値を示すもので、実線が全天日射、点線が天空散乱日射、破線が直達日射の値である。単位は何れも W・cm⁻²・ μ m⁻¹である。図の上部に、測定の日、時刻および Optical airmass (m=secZ)を示してある。また、オゾン量は図枠内に示してあるが、これは高層気象台(舘野)におけるドブソン分光計による測定値であって、単位は m atm-cm である。図6.2(1)~(2)は、比較のためにエーロゾルのない大気、オゾンを含む Rayleigh 大気についての値を示したものである。Dave ana Furukawh (1966)の計算によるもので、オゾン総量 341m atm-cm を含むモデル大気について計算されている。m=2.000(Z=60°)とm=3.864(Z=75°)の2つの場合しか示してないので、mの値の異る実測値をそのまま比較することは出来ないが、エーロゾルの効果についてある程度は知ることが出来る。

図6.3(1)~(20)は、直達日射の測定値から求めた消散係数の波長分布を示す。実線は、測定値から 空気分子の散乱の消散係数を差引いた値、すなわち、エーロゾルとオゾンの効果によるものを表わ-している。この値からオゾン吸収の消散係数を差引いた値、すなわち、エーロゾルによる消散係数 を点線で示してある。360nm 以上の波長域では、オゾン吸収の効果は無視し得るので、空気分子の 値を差引いたものがエーロゾルの消散係数として得られる。この部分は図では実線で示されている。 このようにして求めたエーロゾルの消散係数 τ_M (λ)の波長分布は、指数法則分布、すなわち、 τ_M (λ)=C $\lambda^{-\alpha}$ で表わされるように見受けられる。 α の値は場合によって異るが、図に示した例の中で は、 α =0.56~1.21の範囲で変動している。

図6.4(1)~(9)は、天空散乱日射 D(λ)、と全天日射G(λ)、の比の測定値である。図内の数字は、 曲線の番号とこれに対応する時刻及び Airmass (m)の値である。曲線の値は、遮蔽板の着脱によっ て、波長毎に得られた比 R(λ)=D(λ)/G(λ)を示す。したがって、この段階では G(λ)、D(λ) のおのおのの値は得られないが、R(λ)は装置の感度の時間的変動の影響を受けない。G(λ)、D(λ) の値を求めるためには、同時刻に測定された直達成分 I(λ)を用い、

$$G(\lambda) = \frac{I(\lambda)/m}{(1-R(\lambda))}$$
(6.2)

 $D(\lambda) = G(\lambda) - I(\lambda) / m$ (6.3)

という関係式を使う。図6.1 の D(λ) の値はこの方法で求めた値である。図6.4 に示される R(λ) の値は、波長の関数であると同時に、エーロゾルの状態、すなわち、 τ_M (λ)によって変動し、同じ エーロゾルの状態でも太陽高度によって大きく左右される。図6.5 は、先に示した Dave and Furukawa (1966) の計算値から求めた R(λ) の波長分布である。 3本の曲線は、上からZ=75°(m= 3.86)、60°(m=2.00) および30°(m=1.16) の場合の値である。

- 233

- 234 -

- 235

- 236 -

1

気象研究所技術報告

9 篤

上

1982

237

気象研究所技術報告 9 篤 цр 1982

1. 238

239 -

- 240 --

図 6.4 (7)~(9)紫外域における散乱日射と全天日射の比の波長分布

図 6.5 Rayleigh 大気における散乱日射と全天日射の比の波長分布

気象研究所技術報告 第6号 1982

- 241 -

6.4 むすび

ここに掲げた測定例では、波長 310nm より短い領域で測定精度が悪く、現在、この領域での装置の感度の増加と、精度の向上を試みている。また、地上に到達する限界波長(~290nm)付近の測定のために写真測光の方法による測定も実施中である。

直達日射の測定から求めた消散係数の波長分布を見ると、エーロゾルによる消散係数は可視域の 分布から指数関数分布による外挿でほぼ表わし得る。このことから、ドブソン分光計によるオゾン のルーチン観測値を参考にすることにより、消散係数のオゾン成分とエーロゾル成分を分離して求 めることの可能性が認められる。

紫外域における天空散乱成分の割合は非常に大きく、紫外日射量の長期監視のためには、直達日 射の測定だけでは不充分で全天日射量の測定値が重要である。この波長域で、全天日射量を測定す る場合、受光面の入射角特性の優れたものを作るのは非常に難かしいが、技術的問題点としては最 も重要な問題である。

以上のことから、まず第一に、300nm 付近の測定精度を充分に向上し、直射成分の測定かっエー ロゾルの効果とオゾンの効果を分離し、オゾン量の推定を可能にすることが当面の目標となる。次 に、直射成分と散乱成分の同時測定による、オゾンの消長と紫外日射量の監視の体制を整え、長期 変動の検出のための観測を続けることが今後の課題となる。

参考文献

Dave, J. V. and P. M. Furukawa, 1966 : Scattered radiation in the ozone absorption bands at selected levels of a terrestrial, Rayleigh atmosphere, Metorological Monographs, Vol. 7, No. 29, Amer. Met. Soc. 353p.

	気象	文研究所		
	1946 ((昭和21年)	設立	
所 長	: 理 搏	1 松 本	誠	-
予報研究部	部 長	: 理博	片 山	昭
台風研究部	部 長	:理博	相原	正 彦
物理気象研究部	部長	: 理博	岡 林	俊 雄
応用気象研究部	部長	:	村山	信彦
気象衛星研究部	部長	:工博	内 藤	恵 吉
地震火山研究部	部 長	:	渡 辺	偉 夫
海洋研究部	部 長	:理博	多田	利 義
高層物理研究部	部 長	:理博	嘉 納	宗 靖
地球化学研究部	部 長	:農博	大和田	守
	気象研	究所技術執	日告	
編集	集委員長 :	岡林	俊 雄	
編集委員 : 秋	山孝子	椎野純	一 佐	粧 純 男
荒	川正一	穐田	巌 清	野 政 明
遠	藤昌宏	廣田道	夫 杉	村 行 勇
事務局:西	田圭子	西村浩	弥	

気象研究所技術報告は、気象学、海洋学、地震学、その他関連の地球科学の分野において、気 象研究所職員が得た研究成果に関し、技術報告、資料報告及び総合報告を掲載する。 気象研究所技術報告は、1978年(昭和53年)以降、必要の都度刊行される。

> 昭和57年11月30日発行 ISSN 0386-4049 編集兼発行所 気象研究所 茨城県筑波郡谷田部町長峰1-1 印刷所 (株) イセブ印刷 TEL 0298(51)2515(代)