第[部 測定法および測定器の開発

1. 大気中の微量 SO₂, NO_x および COの 測定法の自動化

川村 清,伏見克彦*

1.1 はじめに

地球大気の質の変化を監視することを目的とし、1969年5月WMO第21回執行委員会は大気 バックグ ラウンド汚染観測網の設置を決議した。翌年10月に開かれた第22回執行委員会の決議12の付録18に観測 所で測定対象とする要素として、気体状汚染質については、 CO_2 、CO、 CH_4 、 SO_2 、 H_2S 、 NO_2 、 NO および O_3 があげられ、これらの連続測定が望まれている。

都市大気中のCO₂(340~400ppm), CO(1~5ppm), SO₂(30~90 μ g/m³), NO₂(20~80 μ g/m³), NO₂(20~80 μ g/m³), NO(20~60 μ g/m³)およびO₃(0.01~0.08 ppm)を連続的に監視する方法はすでに実用化さ れ,各地の汚染観測所で使用されている。しかし、バックグラウンド・レベル(SO₂,NO₂,NOについ ていえば各々1 μ g/m³以下)の成分を連続的に測定するには、CO₂およびO₃を除けば、都市大気の質 の監視に用いられている測定器では感度が不足しており、そのまま用いることはできない。

著者らは大気中の微量 SO₂ , NO_x (NO₂ とNO) および CO を連続的に測定できる方法を研究 し,一 応の成果を得たのでその結果を報告する。

1.2 微量 SO₂の 測定法と自動測定装置

都市域の汚染大気の影響をほとんど受けないような地域における大気 SO₂ の測定はその多くがWest and Gaeke (1956)の自動分析によらない通常の方法によりなされてきた。さいきん,大量の試料空 気を処理する目的から,特殊な自動ガス捕集器 (Cuong et al.,1974), あるいは捕集液をしみ込ま せた沪紙 (Axelrod and Hansen,1975) を使用して試料を採取後, West and Gaeke (1956)の 方法で分析された例はあるが, 微量 SO₂ 用の自動測定器およびこれによる観測結果は発表されていない。

これまでの観測結果によると、海洋大気中のSO2 濃度は0.1~3 μ 9/m³ (Georgii,1970, Cuong et al.,1974,その他)であり、Hidy(1973)はSO2 のバックグラウンド・レベルを0.2 ppb (約 0.6 μ 9/m³)と推定している。

1.2.1 測定法の原理

大気中の微量 SO2 の定量法としては, SO2 を塩化第二水銀と塩化カリウムの混合液中に捕集し安定

*地球化学研究部

な錯塩とし、これにホルムアルデヒド、pーロザニリンを加えて呈色化合物を作り、吸光光度法によって測定する操作(Scaringelli et al., 1967, EPA(U.S.), 1971)を自動化することを試みた。

1.2.2 試薬類

この方法に使用する試薬は次の通りである。

- 捕集液 Hg Cl₂ 8.15g, KCl 4.47g, エチレンジアミン四酢酸二ナトリウム50 mg を蒸留水 に溶かし、11とする。
- (2) 0.10% スルファミン酸溶液 (NO2 の妨害除去)。 (3) 0.12% ホルムアルデヒド溶液。
- (4) 0.0024% p-ロザニリン(PRA)溶液 n-ブチルアルコールで精製した 0.3% PRA貯蔵液
 4.0m1 にリン酸希釈液(85% H₃PO₄ 204 m1 / 500 m1) 33m1,蒸留水を加えて50m1とする。
- (5) SO₂ 標準液 メタ重亜硫酸ナトリウムの約0.3 ダを再蒸留水に溶かして 500m1とし、定法によりチオ硫酸ナトリウム標準液を用いて濃度を標定する。この一定量を捕集液で希釈し、0.2 および 1.0 μg SO₂/m1 の標準液を作製し、冷蔵庫に保存する。

1.2.3 自動測定装置

装置の正面および内部写真を図 1.1 および 1.2 に,またその模式図を図 1.3 に示す。装置は試薬槽 (4個),液送ボンプ(4),電磁弁(4) およびガス捕集管,エア・ポンプ,流量計,混合セル,光路 長5 cmの光学セル,光源,受光部,記録計,タイマー,コントロール・ユニット各1個から構成されて いる。光源と光学セルは発色液の温度上昇を防ぐため optical fiber でつながれ,またガス捕集管 には図 1.4 に示すものを使用した。

(1) 測定操作

測定器の動作順序

- 液送ポンプ①により,捕集
 管に捕集液10 ml が供給される。
- II) エア・ポンプがはたらき, 捕集管に11/minの流速で
 5時間試料空気が通される。
- (iii) 捕集液の液量が蒸発等により減るので,通気後液送ポンプ①,電磁弁①により再び少量の新しい捕集液が供給され,
 9.0m1 に調整される。

iv) 電磁弁②がひらき捕集液は

1.1 微量SO₂用 自動測定装 置の正面写 真

図 1.2 微量 SO₂ 用自動測定装置の 内部写真

図1.3 微量SO2用自動測定装置の模式図

混合セルに移る。これにスルファミン酸溶液 20ml が加え られる。1分後,同時に各2ml づつのホルムアルデヒド, p- ロザニリンが加えられる。

Ⅴ)混合液は電磁弁③がひらき光路長5cmの光学セルに移る。

VI) p- ロザニリン添加13分後,575 nmにおける吸光度を測 定し,記録紙上に記録される。

図 1.4 に使用された 捕集管

vii)液は電磁弁④により排出される。

Viii) 上記操作 i), ii) (30秒間通気), iv), v) および vii)により, 捕集管, セル等が洗浄 される。

iX)上記操作 i),iv), v), vi)および vii) により, ブランク吸光度を測定し, 自動的にペースライ ン設定が行われる。

以上でサンプル測定,洗浄,ブランク測定の1サイクル(6時間)が終了し,再び新しい捕集液が供 給され、次の測定がはじまる。

大気中の SO2 濃度は次式から計算する。

 $SO_2 (\mu g/m^3) = A/EV_0$

ここに、A:あらかじめ作製した検量線から求めたサンプル液中のSO2 量(#9/15m1), E:捕集 効率,V₀: 吸引空気量を0℃,1気圧に換算した値(m²)である。検量線は5 μ9 SO₂ /15 ml まで 直線である。捕集効率は2~3 #g/m³において90%である。本装置によるSO2の検出限界はS/N比 2をとった場合 0.02 #9 であり, 15 #9 SO, /m³における測定値の標準偏差は± 5.8 % である。

1.2.4 測定条件の検討

測定の最適条件を求めるため,下記の実験および検討を行った。

(1) 発色強度と試薬濃度および添加量との関係

-21 -

- i) スルファミン酸 SO₂ 0.6 μ *g*, NO₂⁻¹.0 μ *g* を含む捕集液 9.0 ml に 0~0.16% スルファミン 酸溶液, 0.12% ホルムアルデヒド溶液, 0.0024% PRA溶液の各 2 ml を加えて発色させ,光路 長 5 cmの光学セルで吸光度(575 nm)を測定した。スルファミン酸を加えてない場合の吸光度は 0.078, 0.04~0.16% では一定値(約 0.120)を示した。添加するNO₂⁻を6 μ *g*とした場合,ス ルファミン酸を加えないとSO₂による発色は大きく抑制され,吸光度は0.015 となる。0.10% 溶 液の添加によりNO₂⁻の妨害は除去できる。したがって,本法では0.10%の溶液 2.0 ml を使用し た。
- ii) ホルムアルデヒド SO2 標準液を捕集液で希釈して1.0 µg SO2/9.0 ml の溶液を作製し,以下
 i) で述べた試薬のうちホルムアルデヒド溶液の濃度だけを変え(0.06~0.5%),吸光度を測定した。ホルムアルデヒドはプランク液の吸光度を高めるはたらきをする。SO2に対する感度はアルデヒド濃度 0.12~0.35% でほぼ一定であるが,この範囲以外の濃度では低下する。したがって,0.12%の溶液 2.0 ml とした。
- iii) p ロザニリン ii)で述べた試薬のうちPRAの濃度だけ変えて吸光度を測定した。PRA濃度が0.00096%から0.0029%に増すと、ブランク吸光度は0.077から0.220にほぼ直線的に増大する。SO2に対する感度はPRA濃度が増すと大きくなるが、0.0019~0.0029%の範囲では変化が少なく、吸光度にして0.182~0.200であった。したがって、0.0024%の溶液2.0mlとした。

(2) 吸光 度の pH および温度依存性

呈色の吸収極大波長は発色液のpHにより変化し, pH1.6 で 548 nm, 1.3 で 554 nm, 1.0~1.2 で 575 nm 付近に極大をもつゆるやかな山型の吸収を示す。 pH 1.6 において吸光度は最大となる。 ブランク液の吸光度は pH 値および液温 が高くなると大きくなる。図 1.5 に示すように吸光度と液温

の間には直線的な関係があり,直線の勾配は pH 値が増すにつれて大きくなる。例えば, pH 1.6 に おける勾配は 0.027/℃であり,この値は pH 1.1 における 0.006 /℃の 4.5倍に相当する。

SO2 に対する感度は pHが 1.0~1.6の範囲内では pH が高いほど増大する。SO2 含量 0.2 #8/

分, pH1.0では5分以内で極大に達する。完全発色後, pH1.6では少なくも30分安定であるが, pH1.1および1.0では20分および12分でそれぞれ3%褪色する。

米国で環境汚染の監視に採用されている発色液の pH を 1.6 とする測定法は,図1.6 で示したよう に,他の pH 値のものにくらべSO₂に対する感度は高いが,温度によるブランクの吸光度変化が大 きい。本法では温度依存性の小さい点を考慮し,発色液の pHは 1.1 とした。

(4) 捕集効率

SO2の捕集効率が高く,通気抵抗の少ない捕集管として図1.4で示す形状のものを製作し使用した。 これは市販のミゼット・インピンジャー

より通気抵抗が約15%小さい。これら捕 集器の下流側にインピンジャーをそれぞ れ連結し,各捕集器にSO₂捕集液を10 ml づついれ,1 l/min の流速で空気 を通して捕集効率をしらべた。その結果 を図1.7に示す。測定値はすべて気温 15°~23℃ においてえられたが,新し

図 1.7 通気速度1 1/minにおけるSO₂の捕集効率

い捕集管の捕集効率とインピンジャーのそれとは大体一致し、 $30\mu g/m^3$ 以上の濃度で99%である。 2~ $3\mu g/m^3$ では捕集効率が約93%となる。これは長時間通気による捕集液量の減少($10m1 \rightarrow 8m1$ で実質的な効率低下)に起因する。

- (5) 測定誤差をもたらす主要な原因
 - 液送ポンプによる試薬注入量の変動 PRA溶液注入量の変動(2.0±0.1ml)による発色強度のちがいが最大である。SO。濃度が 0.6 # 9 / m³の場合,約6%の誤差をもたらす。
 - Ⅱ)呈色の温度による変動 図1.5で示したように吸光度の温度による変化率は0.006/℃である。
 誤差を少なくするため、測定器は±1℃以内で一定温度に保たれた測定室に設置することが望ましい。

- 23 -

1.2.5 測定結果

この自動測定器を用い父島における大気中の微量 SO2 の測定を行った。この詳細については後述す るが, SO2 のレベルは 0.4~1.249 /m³ であることがわかった。

本測定器は大気中の微量 SO₂ の自動測定に使用できることがわかったが,問題点としてこの湿式法 では感度の点から6時間の平均値しかえられないため,短時間での濃度変化を知ることができない。更 に新しい方法の開発研究が必要である。

1.3 微量 NO_X 測定法と自動測定装置

現在,大気中のNO_xの測定には,捕集液に吸収させた後,比色分析する湿式法と,NO(NO₂は還元 してNOとする)とO₃との反応の際に生じる発光を測定する化学発光法とが用いられている。わが国の 都市域から離れた地点でのNO₂ 濃度についてはMiyake et al.(1961),Kawamura and Sakurai (1966),その他の研究により,2~7 μ g/m³が与えられている。また海洋大気中のNO₂については 1~3 μ g/m³がえられている(Junge,1957,その他)。NOについては約0.3 μ g/m³と推定されている (Robinson and Robbins,1970)。

1.3.1 NO_x (NO₂とNO)分析法の原理

- (1) 大気中の微量 NO2 の分析法としては、NaOH とNaAsO2 の混合液を捕集液として用い、NO2 を吸収させた後、スルファニルアミドとN-(1-ナフチル)エチレンジアミンを加えて発色させ、 吸光度を測定する方法(Christie et al.,1970, EPA(U.S.),1973)を用いた。
- (2) 大気中の微量 NO の分析法としては,NO₂ を除去した空気を酸化剤に通して NO をNO₂ とし,
 上記1)と同様に捕集液に吸収させて吸光度を測定する方法 (Yanagisawa et al.,1966)を用いた。
 この(1)と(2)の方法を一体化して自動化することを試みた。

1.3.2 試薬類

この方法に使用する試薬は次の通りである。

- (1) 捕集液 NaOH 12g, NaAsO2 1g を蒸留水に溶かし, 11とする。
- (2) スルファニルアミド溶液 蒸留水にスルファニルアミド10g, H₃PO₄140ml を加えて溶かし
 た後,蒸留水を加えて11とする。
- (3) 0.1%NEDA溶液 N-(1-ナフチル)エチレンジアミン二塩酸塩0.1gを蒸留水に溶かし、
 100mlとする。
- (4) NO2 標準液 標準原液はデシケータ内で乾燥させたNaNO2 0.1509を秤取し,蒸留水に溶かし
 1 1とする(10049 NO2/ml)。これを捕集液で希釈し、1.049 NO2/ml の標準液を作製す
 る。

- (5) NO2除去剤 ガスクロマトグラフ用担体C-22AW(30~60 mesh)にトリエタノールアミンの
 20% W/V 水溶液をしみ込ませたのち、105℃で15分間乾燥させる(Levaggi et al.,1972)。
 これを内径 2.5 cm,長さ11 cmの吸収管に詰める。
- (6) NO酸化剤 NOのNO₂ への酸化には各種の酸化剤が使われているが、自動測定器にはKMnO₄ 259 を蒸留水に溶かし、H₂SO₄ 259 ,蒸留水を加えて11とした溶液を用いた。
- (7) Cd-Cu 還元筒およびその試薬
 - i) Cd-Cu還元简 高純度カドミウム棒をヤスリで削って粒状とし、2N HC1,03N HNO3,
 蒸留水で洗浄したのち、硫酸銅(209/1)溶液で処理してCd-Cu還元剤を作製し、この約2.5 m
 1をガラスカラム(内径 5 mm, 14 cm長さ)に詰めた。使用前,下記のEDTA溶液 1.5 ml とH
 C1 0.25 ml を蒸留水 2 1に加えた混合液100mlを還元カラムに通しておく(気象庁編:海水分析指針, p.197,1970)。
 - ii) EDTA溶液 エチレンジアミン四酢酸四ナトリウム5gを蒸留水100mlに溶かす。
 - Ⅲ) 0.3%過酸化水素水
 - IV) NO₃ 標準液 110 ℃で1時間乾燥させた KNO₃ 2.1969 を蒸留水に溶かし、11とする。これをさらに蒸留水で100倍に希釈し、標準液とする。本液の濃度は 13.5 µg NO₃/m1 であり、還 元率100%で10.0 µg NO₂/m1 に相当する。

1.3.3 自動測定装置

装置の正面および内部写真を図1.8 および1.9 に,またその模式図を図1.10 に示す。装置は流量計

図 1.8 微量 NO_x 用自動 測定装置の正面 *写*真

図 1.9 微量NOx 自動測定装置の 内部写真

- 25 -

(2台), NO₂ 吸収管(1), NO酸
化管(1), ガス捕集管(2), エア・ ポンプ(1), 試薬槽(3), 電磁弁
(6), 液送ポンプ(6), 光路長5cm
の光学セル(2), 光源(1), 受光部
(2), 記録計(1), コントロール
ユニット(1) で構成されている。ガ
ス捕集管にはSO₂ 捕集に使用したも
のと同じものを使用した。

- (1) NO2の測定操作
 - i)液送ポンプ①により,捕集管に

捕集液10mlが供給される。

ij) エア・ポンプがはたらき, 捕集液に 0.7 1/m in の流速 で5 時間通気する。

- iii) 捕集液の液量は蒸発等により減少し、約8.5 ml になるので、通気後、液送ポンプ①、電磁弁①
 により再び少量の新しい捕集液が供給され、全量9.0 ml に調整される。
- Ⅳ)電磁弁②がひらき,捕集液は光学セルに移る。液送ポンプ②,③により,スルファニルアミド溶液5ml,NEDA溶液1mlが加えられる。混合液は内蔵のミニスターラーにより8分間自動的にかきまぜられる。
- V) 試薬添加13分後,540 nm における吸光度が測定され,記録紙上に記録される。
- VI) 電磁弁③により,液は光学セルから排出される。
- VII) 洗浄 サイクルは上記の |), ||) (通気30秒間), |V), VI) がくりかえされて捕集管,光学セル等が洗浄される。
- VIII)次にブランクの測定が上記の操作 i), iv), v), vi)により行われ,自動的にベースライン設定が行われる。
- (2) NOの測定操作
 - i)液送ポンプ④により,捕集管に捕集液 10 ml が供給される。
 - ■) エア・ポンプがはたらき、空気はNO2 吸収剤、NO酸化剤を通り、0.7 1/minの流速で5時間 捕集管に通される。
 - Ⅲ)通気後,液量は9.0m1に調整される。
 - IV) 電磁弁⑤がひらき捕集液が光学セルに移り, 試薬が加えられる。
 - V) 540 nmにおける吸光度が測定され,記録紙上に記録され,液は光学セルから排出される。
 - Vi) NO₂の場合と同様に捕集管,光学セル等が洗浄されたのち,ブランク吸光度が測定され,自動的にベースライン設定が行われる。

- 26 -

以上NO₂, NO の一連の操作が終了したら(6時間),再び次の測定がはじまる。 (3)計算法

大気中のNO2 およびNO濃度は次式から計算する。

 $NO_2(\mu \mathscr{G}/m^3) = A/E_1V_0$

NO $(\mu g/m^3) = 0.652 \text{ A}/\text{E}_1 \text{E}_2 \text{V}_0$

ここに、A:光学セルにNO₂ 濃度既知の発色液をいれて作製した検量線から求めたサンプル液中のNO₂ 量($\mu g / 15 \text{ ml}$)、E₁:捕集効率と転換係数を含めた値 0.6 9、V₀:吸引空気量を 0 ℃、1 気圧に換算した値(m³)、0.652:NO₂からNOへの換算係数、E₂:NOのNO₂ への酸化効率 0.70。

本装置によるNO₂ およびNOの検出限界は、S/N比2をとった場合、0.01 μ % および 0.014 μ % であり、12 μ % NO₂/m³ および 20 μ % NO/m³ における測定値の標準偏差はそれぞれ±5.6%、 ±7.0% である。

1.3.4 測定条件の検討

この測定器に使用する際の最適条件を求めるために次の諸点を検討した。

- (1) 発色におよぼす試薬の濃度
 - i) スルファニルアミド 1.0 μg NO₂ を含む捕集液 9 m1に 0.1%NEDA溶液 1 m1,各種濃度 のスルファニルアミドおよびリン酸の混合液 5 m1 を加えて発色させ、光路長 5 cmの光学 セルで吸 光度(540 nm)を測定した。スルファニルアミドは発色を若干抑制し、2g/1で0.402、40g/ 1 で0.392 と吸光度は直線的に減少するが、低濃度だと発色までの所要時間が長くなることがわか った。また発色液の pHは 1.6~1.7 が最適であることから、スルファニルアミド 10g, H₃ PO₄ 140 m1 を蒸留水に溶かし11とした液 5 m1とした。
 - ii) NEDA溶液 本液の濃度は発色に対し鈍感で,0.03~0.13g/100 ml の範囲で吸光度はほぼ
 一定値を示した。したがって,NEDA 0.1g/100 ml の液 1 ml とした。
- (2) 呈色時間 捕集液に発色試薬を加えてから最大吸光度に達するまでの時間は20°~25℃ において 約10分であり、その後吸光度は30分間安定である。
- (3) 検量線 NO₂ 標準液を用いて作成した検量線を図1.11に示す。1.0 μg NO₂ / 15 ml の吸光度 は0.396±0.003 であり,吸光度におよぼす温度の影響は20~25℃の範囲では認められなかった。
- (4) NO₂除去効率 NO₂ 除去剤を詰めた吸収管に 20~50 μg NO₂/m³の試料空気を 0.71/minの流 速で通した場合の除去効率は 96% 以上であった。
- (5) NO酸化剤の効率 NO酸化剤11いれた酸化びん,空びんおよび NO2 捕集液をいれたインピンジャーを直列につなぎ,0.71/minの流速で0.01~0.04 ppmの NO 標準ガスを通した後,捕集液

- 27 -

中の NO₂ を測定した。その結果, NOの 70 ± 2 % が酸化されてNO₂ となっていることがわかった。 また酸化びん前後のNO 標準ガスを化学発光方式の NO_x 測定器で測定したところ,酸化びんによる NO の減少量は約75 % であり,よい一致がみられた。 (6) 捕集効率 SO₂ におけると同様に NO₂ につい ても自動測定器に用いた捕集管およびミゼット・イ ンピンジャーに捕集液 10 ml をいれ,これらに0.7 1/min の流速で試料空気を通し,捕集効率を検討 した。その結果を図 1.12 に示す。捕集管の捕集効 率はインピンジャーにくらべてよく、30 μg/m³以 上で前者が89%,後者が86%である。3~6 μg /m³で効率は減少し,約78% となるが,これ は SO₂ の 場合と同様に長時間通気による捕集 液量の減少に起因する。

(7) 転換係数 大気中の NO₂ が捕集液に吸収されるとNO₂ および NO₃ を生成する。自動測定の場合,NO₂ のみを測定するので,はじめの NO₂ を求めるためには NO₃ 分の補正が必要である。そこでこの補正(転換係数)を必要とする従来の測定法と NO₃ を還元して吸収された NO₂ の全量を求める方法と比較し,自動

測定器に採用した捕集液の転換係数を求めることをこころみた。

捕集液 $15 \text{ m}^1 & \text{を} : \forall y + \cdot \forall y + \cdot \forall y + - \text{c} \text{v} \text{h}, 11 / \text{m} \text{in}$ の流速で試料空気を $1 \sim 5$ 時間通す。 通気後,試水を共栓試験管に移し,少量の蒸留水でインピンジャーを洗い,洗液を試験管に加えて液 量を $15 \text{ m}^1 & \text{c} \text{t}^3$ 。これを $2 \oplus \mathcal{G}$ し,試水中の $NO_2^- + NO_3^-$ を還元カラム法で, NO_2^- のみを前述 した EPA変法でそれぞれ分析した。分析操作を下に示した。

 i) 還元カラム法 試水 7.5 ml に新しい捕集液を加えて 10 mlとし、0.3%過酸化水素水 1 ml を 混和し、約60℃の温水中に20分間つけておく。冷後、1 N HC1 で液の pH を約9とし、ED T A 溶液 0.2 ml, 蒸留水を加えて 20 ml とする。これを還元カラムに 20~25 drops/min の速 度で通す。この操作でNO₃-は NO₂ に還元され、NO₂-は変化しない。NO₃ 標準液を使用して求 めた還元率は 92-95% であり、6~7回の使用では一定である。前半の10 ml は捨て、後半の 10 ml を分析に供する。これにスルファニルアミド溶液 2 ml, NEDA 溶液 1 mlを混和し、

- 28 -

15分後ブランク液を対照に 540nmにおける吸光度を測定する。同時に作成した検量線から試水 15 m1中の NO₂⁻ +NO₃⁻を NO₂⁻ として求める。この値と下記 ii)の方法でえられた値の差に対し 還元率の補正をしておく。

ii) EPA変法 試水の残りの7.5 ml に新しい捕集液を加えて9 mlとし、スルファニルアミド溶液 5 ml, NEDA溶液 1 ml を加え、比色分析し、NO2 量を求める。この操作では試水中のNO2 とNO3 のうちNO2のみが測定される。

ii) でえられた値に係数 1 $/ \alpha$ をかけて i) でえられた値に等 しくしたときの α が転換係数である。 この係数を求めるための一連の測定を東京 · 高円寺と南鳥島において行ない, α 値としてそれぞれ 0.90±0.02 および 0.88±0.11 がえられた。したが って本自動分析計の α として 0.88 を使うこ とにした。

- (8) 誤差の原因に対する考察
 - i) 液送 ポンプによる試薬注入量の変動 発色試薬を加えた後の液量変動(15.0±0.3 ml)による誤
 差は±2%である。
 - ii) 転換係数 これによる誤差は±5%以内と考えられる。
 - Ⅲ) NO₂ 除去剤および NO 酸化剤 これらによる誤差は除去剤および酸化剤に由来するものがそれ ぞれ±2%および±3%である。

1.3.5 測定結果

この自動測定装置を用い,南鳥島における大気中の微量 NO₂ および NO の測定を行った。この詳細については後述するが,NO₂ および NO のレベルは 0.6~3.3 $\mu g / m^3$ および 0.4~1.4 $\mu g / m^3$ であった。

本測定器は微量 NOx の自動測定に使用できることがわかったが,問題点として湿式法では感度の点 から6 時間の平均値がえられるにすぎない。短時間の濃度変化を知るためには更に新しい測定法の開発 研究が必要である。

1.4 微量CO測定法と自動測定装置

大気中の CO 測定には赤外線吸収法, ガスクロマトグラフ法, 水銀蒸気転換法などが用いられている。 都市大気中の CO 測定には主として赤外線吸収法が用いられ, その測定は自動化されているが, 検出限界 は 0.5 ppm である。したがって, CO のバックグラウンド・レベル濃度の 0.1~0.2 ppm 以下(Seiler and Junge, 1970, その他)を, 赤外線吸収法で測定することは困難である。これを連続測定する方法 としては,現在, ガスクロマトグラフ法か水銀蒸気法が考えられる。ここでは水銀蒸気法による自動測定 を研究した。

1.4.1 CO分析法の原理

大気中の微量 CO の分析法 としては,200 C に保 った酸化 第二水銀 と CO との反応 により発生する水 銀蒸気量を吸光光度法で測定し,間接的に COを測定する方法 (Robinson and Robbins, 1969, Seiler and Junge, 1970)を用いた。

1.4.2 試 薬

この分析法のために使用する試薬は次の通りである。

- (1) シリカゲル
- (2) 過塩素酸マグネシウム
- (3) モレキュラーシーブ 13 X
- (4) 酸化銀
- (5) 酸化第二水銀
- (6) 酸化パラジウム触媒
- (7) 排ガス処理剤

1.4.3 自動測定装置

この装置の写真を図 1.13 に,またその模式図を図 1.14 に示す。 装置は電子冷凍除湿器,流量計, 除湿カラム(2),モレキュラーシーブカラム,酸化銀カラム,加熱アルミニウムブロックおよび温度調 節ユニット,酸化第二水銀反応管,光学セル,光源,受光部,増巾部,記録計,排ガス吸収管,エアポ ンプ,電磁弁(2),コントロールユニット,標準ガス用ボンベ,希釈ガス用ボンベおよび標準ガス発生 装置から構成される。光学セルは溶融石英製で20 mm & × 100 mm L を使用した。

- (1) 測定操作
 - i)試料空気は11/minの流速で電子冷凍除湿器、シリカゲル、過塩素酸マグネシウムを順次通過し、水蒸気が除かれる。
 - ii) モレキュラーシーブ・カラムで酸化第二水銀と反応する有機物が除かれる。
 - III) 水蒸気,反応性有機物が除かれた空気は 加熱 ブロック中の硬質 ガラス製コイルで予 熱され,酸化第二水銀反応管に導かれ, $HgO + CO \rightarrow CO_2 + Hg$ の反応によって Hg が生じる。

図 1.13 微量 CO 用自動測定装置の正面写具

iV) Hg 蒸気は光学セルに入り,ここで

253.7 nm の吸光度が連続的に測 定され,記録紙上に記録される。

- V) Baselineは1時間のうち20
 分間電磁弁によって ||)と||)の間
 の流路が切りかえられ,試料空気
 中のCOを酸化銀カラムで除くことによって記録される。残りの40
 分間は大気中のCOが連続測定される。
- VI) 排ガスは洗浄され,水銀を除いて大気 中に放出される。
- (2) 測定装置の較正法
 - i)標準ガス発生装置を使用し、CO 濃度
 92 ppm のボンベづめ標準ガスを,PdO
 触媒でCOを除去した空気で希釈し、0、
 0.05、0.11、0.15、0.22 ppm の標準
 ガスを作製した。これらの標準ガスの濃度は、ガスクロマトグラフで検定した結
 果±2.5%内の誤差で一致した。
 - II) これらの標準ガスを、11/min の流 速でCO 測定装置に導入し、測定装置の 検定をおこなった。検量線を図 1.15 に 示す。

1.4.4 分析法の検討

本装置の最適条件を求めるため下記の検討をおこなった。

HgO 反応管の温度と吸光度の関係
 0.5 ppm の標準ガスを測定装置に導入し、
 HgO 反応管の温度を150°から240℃の
 間で変化させた時の吸光度を図1.16 に示す。吸光度は200℃まで温度とともに増すが、200°~240℃の温度範囲内ではほぼ

- 31 -

一定となる。この結果から、測定時の反応管の温度を200℃に設定した。

(2) 流速と吸光度の関係

0.2 ppm の標準ガスを使用し,流速を0.5, 1.0, 1.5 l/minにそれぞれ設定した時の感度および Baseline 吸光度の変化を調べた。これらの流速に対して感度は一定であったが,Baseline吸光 度は流速が大きいほど小さい値を示した。

(3) 検量線の直線性

検量線は、CO濃度 0~0.2 ppm の範囲で直線であるが、これ以上の濃度では直線性がなくなる。

(4) Baselineの安定性

反応管の温度が設定温度に上昇後約6時間は Baseline 吸光度は最大0.6 の減少を示すが,それ 以後は12時間で±0.01 (COの0.015 ppm)と安定になる。

(5) 再現性と検出限界

2週間にわたって0.12 ppm の標準ガスをくりかえし測定した時の標準偏差は±3.2%であった。 検出限界は3 ppbであった。

(6) 妨害物質と応答時間

妨害物質としてアルデヒド類,不飽和炭化水素等の反応性有機物が考えられるが,アルデヒド類は モレキュラーシーブによってその約95%が取り除かれ,測定に対する妨害はなかった。また,酸化 銀を不活性にする水蒸気も,前述の除湿系で十分除湿された。

応答時間は長く,一定値を示すまでに7分を要する。

1.4.5 測定結果

本装置を用い,南鳥島,父島,乗鞍岳において測定をおこなった。その結果の詳細については後述す るが,南鳥島で0.10~0.19ppm,父島で0.06~0.12ppm,乗鞍岳で0.07~0.27ppmが得られ,研 究レベルでは使用に耐えることがわかった。問題点は,Baselineの安定性が悪いこと,応答時間が 長いこと,水銀の使用などで,さらにより良い測定法の研究を進める必要がある。

参考文献

Axelrod, H.D. and S.G. Hansen, 1975: Filter sampling method for atmospheric sulfur dioxide at background concentrations. Anal. Chem., 47, 2460-2462.

Christie, A.A., R.G. Lidzey and D.W.F. Radford, 1970: Field methods for the determination of nitrogen dioxide in air. Analyst, 95, 519-524.

Cuong, N.B., B. Bonsang and G. Lambert, 1974: The atmospheric concentration of sulfur dioxide and salfate aerosols over antarctic, subantarctic areas and oceans. Tellus, 26, 241-248.

- E.P.A. (U.S.), 1971: Reference method for the determination of sulfur dioxide in the atmosphere (Pararosaniline method). Federal Register (U.S.), 36, No.84, Pt. II, 8187.
- E.P.A. (U.S.), 1973: Tentative candidate method for the determination of nitrogen dioxide in the atmosphere. Federal Register (U.S.), <u>38</u>, 15175.
- Georgii, H.W., 1970: Contribution to the atmospheric sulfur budget. J. Geophys. Res., 75, 2365-2371.
- Hidy, G.M., 1973: Removal processes of gaseous and particulate pollutants. In: Chemistry of the lower atmosphere, S.I. Rasool, editor, Plenum Press. New York-London, pp. 121-176.
- Junge, C.E., 1957: Chemical analysis of aerosol particles and of gas traces on the siland of Hawaii. Tellus, 9, 528-537.
- Kawamura, K. and S. Sakurai, 1966: The concentrations of nitrogen dioxide and ozone in the air at inland and seashore in Japan. Pap. Met. Geophys., 17, 200-209.
- Levaggi, D.A., W. Siu, M. Feldstein and E.L. Kothny, 1972: Quantitative separation of nitric oxide from nitrogen dioxide at atmospheric concentration ranges. Environ. Sci. Technol., 6, 250-252.
- Miyake, Y., K. Kawamura and S. Sakurai, 1961: Atmospheric ozone and nitrogen dioxide observed at Mt. Norikura. Pap. Met. Geophys., 12, 310-317.
- Robinson, E. and R.C. Robbins, 1969: Atmospheric CO concentrations on the Greenland ice cap. J. Geophys. Res., <u>74</u>, 1968-1973.
- Robinson, E. and R.C. Robbins, 1970: Gaseous nitrogen compound pollutants from urban and natural sources. J. Air Pollut. Contr. Assoc., <u>20</u>, 303-306.
- Scaringelli, F.P., B.E. Saltzman and S.A. Frey, 1967: Spectrophotometric determination of atmospheric sulfur dioxide. Anal. Chem., <u>39</u>, 1709-1719.
- Seiler, W. and C.E. Junge, 1970: Carbon monoxide in the atmosphere. J. Geophys. Res., <u>75</u>, 2217-2226.

- 33 -

- West, P.W. and G.C. Gaeke, 1956: Fixation of sulfur dioxide as disulfitomercurate (II) and subsequent colorimetric estimation. Anal. Chem., 28, 1816-1819.
- Yanagisawa, S., N. Yamate, S. Mitsuzawa and M. Mori, 1966: Continuous determination of nitric oxide and nitrogen dioxide in the atmosphere. Bull. Chem. Soc. Japan, <u>39</u>, 2173-2187.