2013年1月14日の南岸低気圧の 発生・発達過程

シミュレートされた 水物質の混合比 (2013年1月14日9時)

東京大学大気海洋研究所 渡邉俊一•新野宏

2015年8月10日 「南岸低気圧とそれに伴う気象・雪氷災害に関する研究会」

TMOSPHERE AND OCEAN RESEARCH INSTITUT THE UNIVERSITY OF TOKYO

2013年1月14日の低気圧

可降水量(mm)水蒸気フラックス(kg m s⁻¹)

可降水量(mm)水蒸気フラックス(kg m s⁻¹)

ଢ 東京大学 大気海洋研究所

NHMによるシミュレーション

使用モデル	気象庁非静力学モデル (JMA-NHM)
初期值·境界值	GSM
計算領域 鉛直	右図 20m~22.1km
水平解像度 鉛直解像度	10km 40m~1180m(可変)
計算開始時間	2013年1月13日00UTC
計算時間	60時間
雲物理	2モーメントバルク法 雲水・雨・雲氷・雪・霰の混合比 雲氷の数濃度
積雲パラメタリ ゼーション	Kain-Fritsch スキーム
乱流クロージャー モデル	MYNN(Level3)

中心気圧時系列

実験名	設定
CNTL	標準実験
DRY_1300	13日00UTC以降水蒸気なし
DRY_1400	14日00UTC以降水蒸気なし
ULPV1R_1300	UL1 を初期値13日00UTCから取り除く
ULPV2R_1300	UL2 を初期値13日00UTCから取り除く

 領域内の500hPaより上層のPVアノマリーがつくる循環・温位アノマリーを計算 (Piecewise PV inversion; Davis and Emanuel 1991)

- 2. アノマリーを初期値・境界値から取り除く
- 3. シミュレーションを実行

 領域内の500hPaより上層のPVアノマリーがつくる循環・温位アノマリーを計算 (Piecewise PV inversion; Davis and Emanuel 1991)

- 2. アノマリーを初期値・境界値から取り除く
- 3. シミュレーションを実行

 領域内の500hPaより上層のPVアノマリーがつくる循環・温位アノマリーを計算 (Piecewise PV inversion; Davis and Emanuel 1991)

- 2. アノマリーを初期値・境界値から取り除く
- 3. シミュレーションを実行

 領域内の500hPaより上層のPVアノマリーがつくる循環・温位アノマリーを計算 (Piecewise PV inversion; Davis and Emanuel 1991)

- 2. アノマリーを初期値・境界値から取り除く
- 3. シミュレーションを実行

渦位·渦位生成平均 1000-500 hPa

- 1. 湿潤な下層傾圧帯に上層トラフが西から接近
- 2. トラフの全面で上昇流を誘起
- 3. 凝結熱によって対流圏中層にPVが生成
- 4. 中層のPVによる循環で暖気移流・地表温位偏差の形成
- 5. 中層のPV + 地表温位偏差による低気圧性循環

850hPa 鉛直p-速度(色; Pa s⁻¹)、300hPa渦位・500hPa高度

上層高渦位域の接近で対流が強化 → 低気圧発生