

2014年2月の熱帯気象と大気循環場

田中昌太郎(大阪管区気象台) 大野浩史(気象庁海洋気象情報室) 齋藤仁美•*<u>竹村和人</u>(気象庁気候情報課)

写真:甲府地方気象台前より

発表の構成

- はじめに
 使用データと解析手法
 日本の天候
 大気循環場の特徴
- /ヽメい//1 レネ *勿 ∨ノ
- まとめ

---- 17

はじめに

- 2014年2月は、太平洋側で二度の大雪(2/7 ~8日、14~16日)に見舞われ、関東甲信地 方を中心に最深積雪の記録を更新

- 2月14~16日にかけての大雪・暴風雪により、群馬県や山梨県など9つの県で合わせ て死者26名となったほか、住家損壊、停電、 農作物の被害、道路の通行不能、航空機の 欠航等の交通障害が発生(内閣府 2014)。

甲府駅周辺→

はじめに

2月前半に太平洋側で大雪になったことの背景を示す概念図

2013年度異常気象分析検討会定例会資料より

- このような2月の天候の背景となった熱帯の気象や海面水温の状況、及び、大気循環場の状況についてまとめる。

使用データと解析手法

日本の地上観測データ	気象庁による観測データ - 気温、降水量、日照時間、積雪量
大気循環場データ	気象庁55年長期再解析(JRA-55)データ (Kobayashi et al. 2015) - <u>基本要素</u> : 速度ポテンシャルχ、流線関数ψ、ジオポテンシャル高度Z、 東西風U、気温T - <u>解析要素(+基本要素より算出)</u> : 高周波擾乱(2~8日周期成分)の運動エネルギー、波の活 動度フラックス(Takaya and Nakamura 2001)
熱帯の対流活動の推定	外向き長波放射量(OLR)(NOAA提供)
海面水温データ	COBE-SST(気象庁 2006)

平年値: 1981~2010年の30年間での平均 偏差: 平年値からの差

〇<u>関東甲信地方の多雨・多雪年における合成図解析</u>
 合成年: 1964, 1969, 1972, 1974, 1975, 1983, 1984, 1985, 1990, 1994, 及び2011年の各年2月

日本の天候(2014年2月平均)

- 2月上旬半ば~下旬はじめは、大陸の高気圧に伴う下層寒気の影響で、気温の低い日が多かった。
- 月平均気温は、北日本~西日本では平年並となった。
- -月降水量は、東日本太平洋側でかなり多かった(平年比219%)。

日本の天候(2014年2月平均)

- 東日本太平洋側における降雪の深さの月合計は、平年の601%となり、2月としては 1961年以降で最も多い値を更新

- 前橋、熊谷、甲府など11地点では、2月の月最深積雪の大きい方からの1位を更新

海況·対流活動(2014年2月平均)

ことを示す。

- 海面水温は、太平洋赤道域の西部で高温偏差、中・東部で低温偏差。 北インド洋~ 南シナ海では低温偏差。 - 対流活動は、平年と比べて、中部太平洋赤道域を除く太平洋で活発、インド洋東部

~インドネシア付近では不活発。

全球の大気循環場(2014年2月平均)

- 上層では、インド洋東部~インドネシア付近で収束偏差、太平洋では発散偏差 - 上流からのロスビー波束の伝播と対応して、日本付近の南では低気圧性循環偏差

全球の大気循環場(2014年2月平均)

分布と整合しない一方、循環場(流線関数)の分布はよく整合。

多雨・多雪年で合成した

500hPa高度

- 500hPa高度は、日本のはるか東海上で明瞭な正偏差となり、ベーリング海付近でブロッキング高気圧が発達した。

- これらの特徴は、多雨・多雪年における合成図の特徴と整合している。

850hPa気温

等值線:実況、陰影:偏差

多雨・多雪年で合成した 850hPa気温偏差

- 大気下層の気温は、日本列島を境にユーラシア大陸側で低温偏差、太平洋側では 高温偏差となり、南北の気温の傾度が平年と比べて大きかった。

-この特徴は、多雨・多雪年における合成図の特徴と整合している。

850hPa高周波擾乱の 運動エネルギー

850-hPa Eddy Kinetic Energy 01 Feb. 2014 - 28 Feb. 2014

多雨・多雪年で合成した 850hPa高周波擾乱の運 動エネルギーの偏差

95

99

(%)

- 日本の南・東海上では、高周波擾乱の活動がかなり活発となり、多雨・多雪年にお ける合成図の特徴と整合している。

LBM実験結果(2014年2月)

<u>線形傾圧モデル</u>(LBM;Linear Baroclinic Model)(Watanabe and Kimoto 2000)

- 2014年2月平均の熱帯域(30°S-30°N) における非断熱加熱偏差を強制として与 えた

- 基本場は、2月の平年値

- 対流圏上層のインド洋東部~太平洋の収束・発散の応答(インド洋東部で収束偏差、 太平洋西部で発散偏差)は、循環場偏差の分布とよく整合している。

LBM実験結果(2014年2月)

先行研究(Ueda et al. 2015; 下段)の解析結果との比較

まとめ

- 2014年2月は、太平洋側で2度の大雪に見舞われ、関東甲信地方を中心に最深積雪の記録を更新したところがあった。

- 日本付近では、平年と比べて、大気下層の気温の南北傾度が大きく、これと対応して日本の南・東海上では高周波擾乱の活動がかなり活発となった。

- このような高周波擾乱の活動の背景には、日本のはるか東海上 で形成されたブロッキング高気圧が影響していた可能性がある。

- 日本付近にみられた大気循環の特徴の多くは、関東甲信地方の 2月の多雨・多雪年にみられる特徴と整合的だった。

- 合成図解析やLBMを用いた実験結果から、熱帯気象以外の要因が、日本付近の循環場や天候に主に関係したとみられる。

- 気象庁, 2006: 気候解析用全球海面水温解析データ(COBE-SST)の特徴, 気候系監視報告別冊第12号.

- 内閣府, 2014:2月14日から16日の大雪等の被害状況等について(26 報).

http://www.bousai.go.jp/updates/h26_02ooyuki/pdf/h26_02ooyuki_26.p df

- Kobayashi, S., Y. Ota, Y. Harada, A. Ebita, M. Moriya, H. Onoda, K. Onogi, H. Kamahori, C. Kobayashi, H. Endo, K. Miyaoka, and K. Takahashi, 2015: The JRA-55 reanalysis: General specifications and basic characteristics. *J. Meteor. Soc. Japan*, **93**, 5-48, doi: 10.2151/jmsj.2015-001.

- Ueda, H., A. Kibe, M. Saitoh, and T. Inoue, 2014: Snowfall variations in Japan and its linkage with tropical forcing, *Int. J. Climatol.*, **35**, 991-998.

- Watanabe, M., and M. Kimoto, 2000: Atmospheric-ocean thermal coupling in North Atlantic: A positive feedback, *Quart. J. Roy. Meteor. Soc.*, **126**, 3343-3369.

日本の天候(2014年2月平均)

地域平均気温偏差の 5日移動平均時系列

月平均気温・降水量、月間日照時間の 地域平均平年差(比)

REGIONAL AVE	RAGES AND TH	EIR RANKS OF 1	MONTHLY MEAD	N TEMPERAT	URE ANOMALY,		
MONTHLY PRE	CIPITATION RA	TIO AND MONT	HLY SUNSHINE	DURATION R	ATIO FOR SUBL	IVISIONS (FEB	.2014)
	気温	降水量	日照時間		気温	降水量	日照時間
	平年差	平年比	平年比		平年差	平年比	平年比
	℃(階級)	%(階級)	%(階級)		℃(階級)	%(階級)	%(階級)
北日本	-0.3 (0)	124 (+)	107 (0)	北海道	-0.1 (0)	95 (0)	116 (+)
		日 87 (-)	日 105 (0)			日 80 (-)	日 116 (+)
		太 156 (+)	太 108 (+)			才 132 (+)	才 111 (+)
						太 96 (0)	太 117 (+)*
				東北	-0.6 (-)	162 (+)*	95 (0)
						日 101 (0)	日 90 (-)
						太 204 (+)*	太 99 (0)
東日本	-0.3 (0)	185 (+)*	92 (-)	関東甲信	-0.6 (-)	265 (+)*	95 (-)
		日 58 (-)*	日 88 (-)	北陸	-0.2 (0)	58 (-)*	88 (-)
		太 219 (+)*	太 93 (-)	東海	0.0 (0)	152 (+)	92 (-)
西日本	0.1 (0)	120 (+)	88 (-)	近畿	-0.1 (0)	93 (0)	88 (-)
		日 115 (+)	日 86 (-)			日 80 (-)	日 93 (0)
		太 125 (+)	太 90 (-)			太 98 (0)	太 87 (-)
				中国	0.0 (0)	72 (-)	81 (-)*
						陰 75 (-)	陰 82 (-)
						陽 68 (0)	陽 80 (-)*
				四国	0.0 (0)	133 (+)	88 (-)
				九州北部	0.2 (0)	136 (+)	87 (-)
				九州南部	0.4 (0)	171 (+)	103 (0)
				・奄美	本 0.3 (0)	本 180 (+)	本 101 (0)
沖縄・奄美	0.5(+)	129 (+)	115(+)		奄 0.8 (+)	奄 139 (+)	奄 116 (+)
				沖縄	0.4 (0)	125 (+)	115 (+)
階級表示 (-):	低い(少ない)(0):平年並 (+):7	高い(多い) 堆	域表示 日:日	本海側	会:山陰 本:本土	(九州南部)

()*はかなり低い(少ない)、かなり高い(多い)を表す

オ:オホーツク海側 陽:山陽 奄:奄美 太:太平洋側

更新日:2015.03.10

日本の天候(2014年2月平均)

- 赤道季節内振動に伴う対流活動の活発な位相は、2月前半はインド洋を、後半は太 平洋を東進し、これと対応して太平洋西部の下層では西風偏差が明瞭となった。²³

日本付近における低気圧の活動(2014年2月平均)

低気圧の存在頻度(平年偏差)

低気圧の移動速度(平年偏差)

2014/02/01-2014/02/28

2014/02/01-2014/02/28

北海道大学稲津先生ご提供のプログラムを使用

低気圧は、50×10⁻⁶ s⁻¹以上の閉領域として抽出した(Inatsu 2009, Inatsu and Amada 2013に基づいて算出)。

- 日本の南海上や東海上では、平年と比べて、低気圧の存在頻度が高く、東進速度 が遅く、日本付近では低気圧の影響を受けやすかった。

海況・全球の大気循環場

30°N

30°S

60°S

3Ó₩

6ÓW

30°W

関東甲信地方の多雪年における合成図との比較

等值線:合成偏差 陰影:信頼度水準

上層の収束・発散偏差の分布は、多雨・多雪年に現れやすい 分布と整合しない一方、循環場(流線関数)の分布はよく整合。

850hPa風/相当温位の 平年偏差

多雨・多雪年で合成した850hPa 風/相当温位の偏差

平年偏差と信頼度水準

矢印: 合成した850hPa風ベクトル偏差

多雨•多雪年: 1964, 1969, 1972, 1974, 1975, 1983, 1984, 1985, 1990, 1994, 2011年

- 本州の南岸付近の下層では東寄りの風偏差となり、平年と比べて高相当温位となった。この特徴は、多雨・多雪年における合成図の特徴と整合している。

規格化偏差(2014年2月)

規格化偏差(2014年2月)

規格化偏差(2014年2月)

半旬ごとの推移(2/1~2/5)

半旬ごとの推移(2/6~2/10)

半旬ごとの推移(2/11~2/15)

半旬ごとの推移(2/16~2/20)

半旬ごとの推移(2/21~2/25)

半旬ごとの推移(Z500)

半旬ごとの推移(SLP)

半旬ごとの推移(T850)

移動性擾乱によるフィードバック効果

300hPa渦度フラックス 収束発散による高度場 変化

300-hPa Eddy Feedback by Vorticity Flux 01 Feb. 2014 - 28 Feb. 2014

- 日本の東海上の高度正偏差には、移動性擾乱によるフィードバック効果が一部寄 与していた可能性がある。

MJO

- 赤道季節内振動に伴う対流活動の活発な位相は、インド洋から太平洋にかけて東 進した。

日本付近における低気圧の活動(2014年2月平均)

東日本太平洋側の降水量が多い年における合成図(2月)

Rank of monthly precipitation												
in the Pacific side of Eastern Japan												
1981	-	0	0	+	0	-	0	0	-	+	0	-
1982	-	0	-	0	-	0	+	+	+	0	+	-
1983	0	0	0	+	0	0	0	+	+	0	-	-
1984	0	+	-	-	-	+	-	-	-	-	-	+
1985	-	+	+	+	-	+	-	-	-	-	0	-
1986	-	-	+	0	+	-	0	0	-	-	-	+
1987	0	-	0	-	0	-	-	-	0	0	0	0
1988	-	-	+	0	0	+	0	+	+	-	-	-
1989	+	+	0	+	+	+	+	+	0	0	0	-
1990	0	+	0	0	-	-	-	0	+	0	+	0
1991	0	+	+	0	-	+	-	+	+	+	0	0
1992	0	-	+	+	+	0	-	0	-	+	0	+
1993	+	+	-	-	-	+	+	+	0	0	+	+
1994	0	+	-	-	0	-	-	-	+	-	-	0
1995	0	-	+	0	+	0	+	-	-	-	-	-
1996	-	-	+	-	-	-	+	-	0	-	+	0
1997	-	-	-	0	+	0	+	-	0	-	+	0
1998	+	+	-	+	+	+	0	0	+	+	-	0
1999	-	0	+	+	0	+	0	0	0	-	0	-
2000	+	-	-	0	-	+	0	-	+	0	+	-
2001	+	-	0	-	+	0	-	+	0	+	0	0
2002	+	-	0	-	-	0	0	0	0	+	-	+
2003	+	0	+	+	0	-	+	+	-	-	+	0
2004	-	0	-	-	+	0	-	0	0	+	0	+
2005	+	0	-	-	-	-	+	0	-	0	-	-
2006	+	+	-	0	0	-	+	0	-	+	+	+
2007	0	0	-	-	0	-	+	-	+	0	-	+
2008	0	0	0	+	+	+	-	+	0	0	0	0
2009	+	0	0	0	+	0	0	0	-	+	+	+
2010	-	+	+	+	0	0	0	-	+	+	0	+
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Öct	Nov	Dec

東日本太平洋側の降水量が多い年における合成図(2月)

Rank of monthly precipitation												
in the Pacific side of Eastern Japan												
1981	-	0	0	+	0	-	0	0	-	+	0	-
1982	-	0	-	0	-	0	+	+	+	0	+	-
1983	0	0	0	+	0	0	0	+	+	0	-	-
1984	0	+	-	-	-	+	-	-	-	-	-	+
1985	-	+	+	+	-	+	-	-	-	-	0	-
1986	-	-	+	0	+	-	0	0	-	-	-	+
1987	0	-	0	-	0	-	-	-	0	0	0	0
1988	-	-	+	0	0	+	0	+	+	-	-	-
1989	+	+	0	+	+	+	+	+	0	0	0	-
1990	0	+	0	0	-	-	-	0	+	0	+	0
1991	0	+	+	0	-	+	-	+	+	+	0	0
1992	0	-	+	+	+	0	-	0	-	+	0	+
1993	+	+	-	-	-	+	+	+	0	0	+	+
1994	0	+	-	-	0	-	-	-	+	-	-	0
1995	0	-	+	0	+	0	+	-	-	-	-	-
1996	-	-	+	-	-	÷.	+	-	0	-	+	0
1997	-	-	-	0	+	0	+	-	0	-	+	0
1998	+	+	-	+	+	+	0	0	+	+	-	0
1999	-	0	+	+	0	+	0	0	0	-	0	-
2000	+	-	-	0	-	+	0	-	+	0	+	-
2001	+	-	0	-	+	0	-	+	0	+	0	0
2002	+	-	0	-	-	0	0	0	0	+	-	+
2003	+	0	+	+	0	-	+	+	-	-	+	0
2004	-	0	-	-	+	0	-	0	0	+	0	+
2005	+	0	-	-	-	-	+	0	-	0	-	-
2006	+	+	-	0	0	-	+	0	-	+	+	+
2007	0	0	-	-	0	-	+	-	+	0	-	+
2008	0	0	0	+	+	+	-	+	0	0	0	0
2009	+	0	0	0	+	0	0	0	-	+	+	+
2010	-	+	+	+	0	0	0	-	+	*	0	+
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Öct	Nov	Dec

東日本太平洋側の降水量が多い年における合成図(2月)

東日本太平洋側の降水量が多かった年の例(1984年)

東日本太平洋側の降水量が多かった年の例(1985年)

東日本太平洋側の降水量が多かった年の例(1994年)

東日本太平洋側の降水量が多かった年の例(2006年)

東日本太平洋側の降水量が多かった年の例(2011年)

- 降水量の多かった5年間の循環場をみると、熱帯の対流活動の特徴はばらばらだが、日本の東海上で高度正偏差orブロッキングH、という特徴は共通している。49

ENSO

各監視指数の最近10年間の経過

折線:月平均値、太線:5か月移動平均、赤(青)色陰影:エルニーニョ(ラニーニャ)現象の発生期間

- 2014年2月はエルニーニョ現象もラニーニャ現象も発生していない状態だったが、一時的に東部太平洋で海面水温が低下し、SST平年偏差の分布もラニーニャ現象時に現れやすいパターンとなった。