

Cloud condensation nuclei (CCN) and ice nuclei (IN) abilities of Al_2O_3 and Fe_2O_3 using MRI dynamic cloud chamber and CFDC-type IN counter

> <u>Tzu-Hsien KUO</u>¹, Masataka MURAKAMI^{1,2} Takuya TAJIRI¹, and Narihiro ORIKASA¹ ¹MRI; ²ISEE, Nagoya U.

> > 2017/02/17@極地研

Outline

- General information of two metal oxide
 - o Reviewed articles in atmospheric composition
- Reviewed articles in cloud chamber and CFDC experiments
- MRI experiments during 2016/10/17-2017/01/16
 - o Particle size distribution
 - o CCN abilities (κ-value)
 - o IN abilities (dynamic cloud chamber/CFDC type IN counter)
- Discussion
- Conclusion and ongoing work

General information of two metal oxide

- Metal oxide sources in the atmosphere
 - Natural– volcano, soil, biomass burning
 - Anthropogenic- engineered, fuel, industrial pollution, firework, aircraft emission, <u>hygroscopic flare</u>

Aluminium oxide observed in the atmosphere

Aluminium accounts for 8.3% of Earth crust; Corundum is the most common naturally occurring crystalline form of aluminium oxide. Industrial proposes

Space shuttle exhausted air at 2-7 km high with 98.9% aluminum oxide in 0.3 μ m diameter and below. (Cofer III et al., 1991)

Roadside: 23.1% in aluminum oxide (Sanderson et al., 2016)

In Abidjan- a rural (Pasteur), an urban (Cocody), an industrial (Vridi) sites, particles are mostly smaller than 2.5 μ m, aluminum, iron, calcium account for 56-79 μ g/mg, 34-54 μ g/mg and 31-37 μ g/mg. (Kouassi et al., 2010)

Linak et al., (2007):Fly-ash includes Al, Ca, Ti,Mg, and iron oxide is below 2.5 μm

From wikipedia

ComponentBituminousSubbituminousLigniteAl2O35-3520-3020-25

Iron oxide observed in the atmosphere

Iron accounts for 4.5% of Earth crust; Industrial proposes

Iron oxide distributes 200-2400 nm in Tsukuba. (Adachi et al., 2016)

Around iron and steel manufacturing facilities, iron oxide distributes 5-10 μ m or less 5 μ m. (Machemer, 2004) Roadside: 52.6% iron in PM₁₈, iron oxide's median diameter 27 and 37nm. (Sanderson et al.,2016)

Anthropogenic forcing

Radiative forcing of climate between 1750 and 2011

Fig 3. Bar chart for RF (hatched) and ERF (solid) for the period 1750–2011, where the total ERF is derived from Figure 8.16. Uncertainties (5 to 95% confidence range) are given for RF (dotted lines) and ERF (solid lines).

Aerosol—cloud—climate interaction

Fig 4. Aerosol-cloud-climate interaction (J.-P. Chen 2004)

Ice nucleation

Fig 5. Modes of ice formation in clouds (from ETH Zürich)

Ice nucleation active surface site (INAS) densities

- INAS density (*ns*) based on geometric aerosol size is a method to parameterize surface area-scaled immersion freezing activities (Connolly et al., 2009; Niemand et al., 2012)
- postulates that ice crystal formation observed in experiments is a solely function of temperature (and ice saturation)
- activated ice crystals (*Nice*) and CN was measured simultaneously during the expansion experiments, the activated fraction of aerosol particles as ice nuclei (*fIN* = *Nice*/*Ncn*) was obtained
- dividing the activated fraction by the volume equivalent surface area of an individual particle (*Sve*) measured in advance for each experiment
- on the assumption of a uniform distribution of ice nucleation sites and their size-independency over a given total aerosol surface area (*Sve Ncn*).

$$n_{s}(T, S_{i}) = -1/A_{aer} \cdot \ln(1 - f_{IN}(T, S_{i}))$$
$$\approx f_{IN}(T, S_{i})/A_{aer}$$

Reviewed articles – AIDA chamber

- Hiranuma et al. (2014) used AIDA chamber, shown with immersion nucleation, tested surface irregularities of Fe₂O₃
 - o The immersion mode ice nucleation efficiency of **milled** Fe₂O₃ particles is almost an order of magnitude higher at −35.2 °C < T <−33.5 °C (RH_i = 125%) than that of the **cubic** Fe₂O₃ particles, indicating a substantial effect of **morphological irregularities** on immersion mode freezing

Fig 8. Results in INAS form

Reviewed articles – AIDA chamber

- Saunders et al. (2010) used AIDA chamber, observed deposition nucleation of Fe₂O₃ at RH_i ranging from 105% to 140% for temperatures below -53 ℃.
 - Approximately 10% of amorphous Fe₂O₃ particles (modal diameter = 30 nm) generated at RH_i = 140% with an initial chamber temperature of -91℃.
- Conditions studied in the chamber which correspond to cirrus cloud formation in the upper troposphere.

Fig 7. calculated number of active sites per unit area of material that become active at the given sice for the iron oxide aerosol experiments as indicated.

[ns (-83 °C)=10^{(3.33×Sice)+8.16}]

Reviewed articles – CFDC

Yakobi-Hancock et al.(2013) using a CFDC at -40.0 ± 0.3 °C and particles size-selected at 200 nm.

Table 1. Tested substances in order of increasing critical RH_i for deposition activation of 0.1 % of 200 nm particles at -40 °C. The electrical conductivity (μ S) of the suspensions is indicated in parentheses for MDD, ATD, orthoclase, and TiO₂ after the sample names.

Sample	Critical RH _i (%)	Category	Source
PbI ₂	122.8 ± 2.0	Anthropogenic	Sigma-Aldrich, 99 %
MDD unwashed (70 µS)	125.4 ± 1.8	Mineral dust	Peters et al. (2008)
MDD (50µS)	126.3 ± 3.4	Mineral dust	Peters et al. (2008)
Orthoclase (K-feldspar) (18 µS)	127.1 ± 6.3	Feldspar mineral	Department of Earth Sciences, University of Toronto
ATD (30 μS)	129.5 ± 5.1	Mineral dust	Powder Technology Inc., 0–5 µm
ATD unwashed (89 µS)	132.9 ± 0.5	Mineral dust	Powder Technology Inc., 0–5 µm
Orthoclase (K-feldspar) unwashed (50 µS)	135.0 ± 3.6	Feldspar mineral	Department of Earth Sciences, University of Toronto
Plagioclase (Na/Ca-feldspar)	136.2 ± 1.3	Feldspar mineral	Department of Farth Sciences, University of Toronto
Kaolinite	136.4 ± 1.9	Clay mineral	0.1% of the total number of injected aerosol
Montmorillonite	139.3 ± 1.0	Clay mineral	particles had nucleated ice
Illite	142.5 ± 2.3	Clay mineral	(i a farma al E and arreatela)
Pyrite (FeS)	142.9 ± 0.8	Metal sulfide	(i.e. formed 5 µm crystals)
Corundum (Al_2O_3)	143.2 ± 3.2	Metal oxide	Sigma-Aldrich, ≥98 %
Calcite (CaCO ₃)	144.3 ± 0.9	Metal carbonate	Department of Earth Sciences, University of Toronto
Magnetite (Fe ₃ O ₄)	144.4 ± 2.2	Metal oxide	Sigma-Aldrich, < 5 µm, 95 %
Quartz (SiO ₂)	144.7 ± 1.5	Metal oxide	Alfa Aesar, 99.9 %
Gypsum (CaSO ₄ 2H ₂ O)	144.8 ± 1.2	Metal sulfate	Sigma-Aldrich, ≥99 %
Galena (PbS)	145.0 ± 1.0	Metal sulfide	Sigma-Aldrich, 99.9 % trace metal basis
Anglesite (PbSO ₄)	145.1 ± 1.3	Metal sulfate	Sigma-Aldrich, 98 %
Zn	145.4 ± 0.6	Pure metal	Atlantic Equipment Engineers, 99.8 %
Massicot (PbO)	145.5 ± 1.3	Metal oxide	Sigma-Aldrich, \geq 99.0 %
Calcite (CaCO ₃)	145.8 ± 1.4	Metal carbonate	Sigma-Aldrich, \geq 99.0 %
Rutile (TiO ₂) unwashed (10.8 μ S)	146.3 ± 1.0	Metal oxide	Sigma-Aldrich, 99–100.5 %
Bunsenite (NiO)	146.5 ± 0.8	Metal oxide	Sigma-Aldrich, 99 %
Cerussite (PbCO ₃)	146.7 ± 0.6	Metal carbonate	Sigma-Aldrich, ACS reagent grade
Rutile (TiO_2) (1.4 µS)	147.4 ± 0.4	Metal oxide	Sigma-Aldrich, 99–100.5 %
ZnS	147.7 ± 1.5	Metal sulfide	Sigma-Aldrich, $\geq 97.0\%$
Zincite (ZnO)	148.6 ± 0.2	Metal oxide	Sigma-Aldrich, \geq 99.0 %
Hematite (Fe ₂ O ₃)	148.8 ± 1.0	Metal oxide	Sigma-Aldrich, < 5 µm, 99+%

• 12

Summary of reviewed articles

Table 2. Summary of reviewed articles

	Nucleation mode	Particle size	Results
Hiranuma et al. (2014)	Immersion (AIDA chamber)	modal diameter = 1 μm	milled Fe ₂ O ₃ INAS~1E10 at −35.2 °C < T <−33.5 °C (RH _i = 125%) (larger particle)
Saunders et al. (2010)	Deposition (AIDA chamber)	modal diameter = 30 nm	Fe ₂ O ₃ at RH _i ranging from 105% to 140% for temperatures below -53 °C. (Upper layer)
Yakobi-Hancock et al. (2013)	Deposition (CFDC)	200 nm	-40°C, 1%, RHi=143.2% (Al ₂ O ₃) RHi=148.8% (Fe ₂ O ₃)
Archuleta et al. (2005)	Deposition (CFDC)	50,100,200 nm	200nm, 1%, RH _i ~140% -45 (Al ₂ O ₃) -60°C (Fe ₂ O ₃)

Table 4. Material information

Aerosol (source)	Purity wt%	Density (g cm ⁻³)	Other content	Average surface (m ²)	
Al ₂ O ₃ (APPIE)	99% up	3.9	unknown	1.61E-12 (11/17)	
Fe ₂ O _{3#1} (TETSUGEN)	99.24%	5.2	H ₂ O 0.1%, Cl 0.073%, SO ₄ 0.04%	8.04E-13 (2/13)	
Fe ₂ O _{3#2} (TETSUGEN)	99.05%	5.2	H ₂ O 0.06%, Cl 0.04%, SO ₄ 0.02%	3.85E-13 (11/16)	

Size distribution in the exp.

Fig 10. Particle size distribution

Hygroscopicity measurement system

Kappa

The results indicated that the hygroscopicity (κ -value) were around 0.01, which are comparable to that of surrogates of mineral dust particles, and less than the average κ -value of atmospheric aerosols.

Fig.12 Kappa in experiments.

Aerosol and Cloud particles measurements

CAS

CPI

Aerosol Particles

Cloud Particles

Laser sensor

Welas OPC

CCN Counter IN Counter (CCN-200, DMT) (MRI)

Could Condensation Accel

SMPS

(KC-01E, RION) (MODEL3936, TSI)

Device specifications Size range: 10nm~(aerosol)~1μm ~(drop/Ice)~100μm Data: Aerosol size spectra, CCN activity spectra Cloud particle size distribution <u>Operational Ranges</u> Pressure: 1000 ~ 30hPa Wall Temperature: +30 ~ -100 °C Ascent Rate: 0 ~ 30m/s

data:Onset, Time evolution of size distribution and concentration, Particle shape and Habit image and Depolarization ratio

MRI cloud chamber facility System diagram

MRI dynamic cloud chamber exp.

Table 6. Exp. information

date	type	Conc. (#/cc)	ascent rate (m/s)	Tini	Tdini	TLCL	AFmax	Aave	INASmax
161117	Al_2O_3	1360	5	5	-13.3	-16.9	0.0043	1.6E-12	2.7E+09
161118	Al_2O_3	2940	5	5	-8.7	-11.5	0.0425	1.6E-12	2.6E+10
170106	AI_2O_3	1600	5	5	-6.5	-8.9	0.0205	1.6E-12	1.3E+10
170110	Fe ₂ O ₃ #1	4200	5	5	-5.2	-7.5	0.0006	1.2E-12	4.9E+08
170111	Fe ₂ O ₃ #1	8640	5	5	-10.5	-13.6	0.0014	1.2E-12	1.1E+09
170112	Fe ₂ O ₃ #2	3580	5	-5	-13.9	-15.7	0.0031	3.9E-13	7.9E+09
170113	Fe ₂ O ₃ #2	2880	5	-5	-11	-12.5	0.0042	3.9E-13	1.1E+10

Fig 15. MRI dynamic chamber exp.

Activation fraction

INAS

Fig 17. Results in INAS form

Fig 18. Previous results in INAS form

•24

Previous study using MRI chamber

Fig 19. (a) Size distribution of cellulose (b) Rsults in INAS form

Hiranuma et al. (2015)

Discussion for cloud chamber exp.

- Coolant temperature issue (not low enough)
- Around -20°C, the ice crystal can be observed in cloud chamber exp.
- Which is the dominated mechanism, condensation or immersion freezing?
- Size issue, Al₂O₃ has broad size distribution inside the cloud chamber.
 - Size matters more than chemistry for cloud-nucleating ability (Dusek et al., 2006)
 - o More particles are large than 0.2 μm of Al_2O_3

CFDC-type IN counter exp.

nformation
ĺ

type	Mean diameter	Aave
Al_2O_3	0.34	4.9E-13
Fe ₂ O ₃ #1	0.35	4.8E-13
Fe ₂ O ₃ #2	0.28	3.0E-13

Cut-off 1µm

IN measurement employed Temperature:: -10 ∼ -35 °C Relative humidity: SSi ∼ 0 % to SSw ∼ +15 %

Fig 20. MRI IN Counter

CFDC-type IN counter exp.

Discussion

- Is the metal oxide efficient enough as CCN/IN?
 - o Real atmospheric condition, particle size distribution
- How is the difference between laboratory and reality?
 - o Internal/external mixing
 - o mixed-phase clouds
- Uncertainties during the experiment processes.
- We suggest a series of future studies investigating the ice nucleation activity of metal oxide in greater detail

Conclusion and ongoing work

- Kappa of three metal oxide particles are around 0.01-0.04
- Ice nucleation by two metal oxide becomes significant below about -20/-25 °C, temperatures relevant to mixed-phase clouds.
- AI_2O_3 seems to have better IN ability than Fe_2O_3 both in cloud chamber exp. and CFDC-type INc exp.
 - o Onset temperature is around -20°C in cloud chamber exp.
 - o Ability is like illite.
 - o Onset temperature is around -30°C in CFDC-type INc exp.
- Parcel model (Chen and Lamb, 1994) using kappa and INAS for parameterization (Yamashita et al., 2011, 2013; Hoose and Möhler, 2012)

 \bullet \bullet \bullet

Thanks for listening.